
HAL Id: hal-01183558
https://hal.science/hal-01183558v1

Submitted on 10 Aug 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

ComprehensiveBench: a Benchmark for the Extensive
Evaluation of Global Scheduling Algorithms

Laércio Lima Pilla, Tiago Bozetti, Marcio Castro, Philippe Navaux,
Jean-François Méhaut

To cite this version:
Laércio Lima Pilla, Tiago Bozetti, Marcio Castro, Philippe Navaux, Jean-François Méhaut. Compre-
hensiveBench: a Benchmark for the Extensive Evaluation of Global Scheduling Algorithms. Journal
of Physics: Conference Series, 2015, pp.1-12. �hal-01183558�

https://hal.science/hal-01183558v1
https://hal.archives-ouvertes.fr


ComprehensiveBench: a Benchmark for the

Extensive Evaluation of Global Scheduling

Algorithms

Laércio L Pilla1, Tiago C Bozzetti2, Márcio Castro1,
Philippe O A Navaux2 and Jean-François Méhaut3

1Department of Informatics and Statistics, Technology Center, Federal University of Santa
Catarina, Florianópolis, BR
2Informatics Institute, Federal University of Rio Grande do Sul, Porto Alegre, BR
3University of Grenoble Alpes, LIG, CEA-INRIA, Grenoble, FR

E-mail: laercio.pilla@ufsc.br, tcbozzetti@inf.ufrgs.br, marcio.castro@ufsc.br,

navaux@inf.ufrgs.br, jean-francois.mehaut@imag.fr

Abstract. Parallel applications that present tasks with imbalanced loads or complex
communication behavior usually do not exploit the underlying resources of parallel platforms
to their full potential. In order to mitigate this issue, global scheduling algorithms are
employed. As finding the optimal task distribution is an NP-Hard problem, identifying the
most suitable algorithm for a specific scenario and comparing algorithms are not trivial tasks.
In this context, this paper presents ComprehensiveBench, a benchmark for global scheduling
algorithms that enables the variation of a vast range of parameters that affect performance.
ComprehensiveBench can be used to assist in the development and evaluation of new
scheduling algorithms, to help choose a specific algorithm for an arbitrary application, to emulate
other applications, and to enable statistical tests. We illustrate its use in this paper with an
evaluation of Charm++ periodic load balancers that stresses their characteristics.

1. Introduction
Science has advanced in the last decades partially by virtue of numerical simulations. These
scientific applications are developed using parallel programming languages and interfaces in
order to benefit from the computing and memory resources available in High Performance
Computing (HPC) platforms. These applications are decomposed into parallel tasks (such as
threads or processes) that are distributed over the available resources. Due to the nature of the
simulations, tasks can possess different computational loads, complex communication graphs,
or both. These behaviors result in load imbalance and communication overhead that affect the
applications’ performance and scalability. In these scenarios, global scheduling algorithms such
as load balancers are employed to distribute tasks in a manner to mitigate performance issues [1].

As the problem of finding an optimal task distribution is known to be NP-Hard [2], several
load balancing, work stealing, and task mapping algorithms have been proposed for different
scenarios [3, 4, 5, 6, 7, 8, 9, 10, 11, 12]. These algorithms show different complexities, consider
different information, and optimize or improve different objectives. Due to all this diversity,



the comparison between different global scheduling algorithms is not a trivial task. This affects
several questions related to the problem, including the following and their combination:

• Is one scheduling algorithm better than another? Do we have statistically significant results
to verify that?

• Should my new algorithm consider this information? Does it improve its task distribution?

• What is the best algorithm for my application? What is the best algorithm for my parallel
platform?

• Should I migrate my application to an environment that supports task rescheduling?

Current benchmarks used for the evaluation of scheduling algorithms lack a standard, usually
limiting or ignoring some characteristics of scientific applications that influence algorithms’
performance. Two examples of characteristics left out are the amount of data that has to be
migrated with a task and the dynamic behavior of a task’s load.

In this context, we propose a novel benchmark for the evaluation of global scheduling
algorithms on shared and distributed memory platforms named ComprehensiveBench1.
It considers the main characteristics of parallel applications that affect global scheduling
algorithms’ performance, and is more expressive in the way these characteristics are specified,
enabling the simulation of dynamic behavior. To illustrate its capability of stressing
the main characteristics of global scheduling algorithms, we perform experiments with
ComprehensiveBench in different scenarios and load balancing algorithms. Our results
confirm that ComprehensiveBench can be used to support the development and evaluation
of scheduling algorithms.

The remaining sections of this paper are organized as follows: related work is discussed
in Section 2. ComprehensiveBench is characterized in Section 3. Its implementation in
Charm++ is presented in the same section. The experimental setup used to exemplify
ComprehensiveBench’s use and the global scheduling performance results are shown in
Section 4. Finally, concluding remarks and future work are discussed in Section 5.

2. Related Work
Benchmarks have been extensively used to evaluate the performance of parallel platforms,
parallelization tools, parallel libraries, and scheduling algorithms [3, 4, 5, 6, 7, 8, 9, 10, 11, 12].
Examples include the NAS Parallel Benchmarks (NPB) [13] and their multi-zone versions (NPB-
MZ) [14], the Princeton Application Repository for Shared-Memory Computers (PARSEC) [15],
the HPC Challenge benchmark suite (HPCC) [16], and the Rodinia benchmark suite [17].
Nevertheless, these benchmarks have limitations that impair the evaluation of global scheduling
algorithms. For instance, NPB is limited to preset input sizes and is mostly useful for the
evaluation of thread and process mapping algorithms that focus on improving communication
performance, PARSEC and Rodinia can only be used in shared memory environments, and
HPCC does not show load imbalance, focusing only in stressing parts of a parallel platform.
The Mantevo Project [18] shows more flexibility with its miniapps, as MiniFE can be tuned
to present load and communication imbalance, and Prolego can be defined using different code
fragments. Nevertheless, dynamic features do not seem to be implemented.

Different approaches have been used to evaluate and compare global scheduling algorithms.
When the main focus of the work is to improve one application’s performance, only said
application is used for comparison. This is the case for applications such as NAMD [4],
BRAMS [5], Betweenness Centrality [7], and Ondes3D [19]. Another approach involves the
generation of artificial application data for the offline comparison of algorithms, as done by

1 Available online in the HieSchella project page: http://forge.imag.fr/projects/hieschella/



Catalyurek et al. [3]. A more toilsome way to compare algorithms requires the implementation
of specific methods as benchmarks, as done by Lifflander, Krishnamoorthy and Kale [20]. Lastly,
a more broad approach benefits from existing global scheduling benchmarks and mini-apps –
such as Adaptive Mesh Refinement (AMR), kNeighbor , lb test , LeanMD , and stencil4D – for
experiments [6, 8, 9, 10]. Still, these benchmarks limit the expression of load imbalance, dynamic
load behavior, communication behavior, initial mapping, size of tasks, or a combination of
these. The use of benchmarks with limited ranges of parameters and behaviors jeopardizes
the attainment of statistically significant results [21]. We explain how ComprehensiveBench
circumvents these issues in the next section.

3. ComprehensiveBench
We describe in this section the main characteristics of our novel global scheduling benchmark.
First, we discuss its main desired characteristics and features. This is followed by a description
of all ComprehensiveBench’s parameters with examples of use. Lastly, we detail how the
benchmark is implemented.

3.1. Features
ComprehensiveBench displays a series of different characteristics to enable the comprehensive
evaluation of global scheduling algorithms and emulation of applications. They include the
expression of the following attributes:

• Irregular loads: tasks can have different loads.

• Dynamic loads: a task’s load can change during execution.

• Mixed loads: tasks can execute integer or floating point operations.

• Irregular communication: the number of messages sent by a task and their sizes can vary
among tasks.

• Dynamic communication: the number of messages sent by a task and their sizes can change
during execution.

• Diverse communication graphs: tasks can be set to communicate with others following
different patterns.

• Irregular task sizes: tasks can have different memory footprints.

• Diverse initial mappings: tasks can be initially mapped to cores following different patterns.

3.2. Parameters
ComprehensiveBench’s parameters can be divided into two categories: simple and complex.
Simple parameters are defined using natural numbers or keywords, while complex parameters are
defined using expressions involving arithmetic operations, variables, numbers, and conditional
(ternary) operators. We discuss each category in the following sections.

3.2.1. Simple Parameters ComprehensiveBench’s static characteristics are all set using
natural numbers or special keywords. Table 1 lists these benchmark characteristics. The number
of tasks to be executed by ComprehensiveBench (n) directly affects the execution time of
global scheduling algorithms, as a larger number of tasks leads to more time spent on mapping
decisions. The number of cores to be considered by the benchmark (p) has a similar effect, as
the larger the decision space is, the longer a scheduling algorithm may take to decide where to
map a task.

The number of benchmark iterations (r) affects for how long it may execute. The
longer ComprehensiveBench executes, the more time scheduling decisions have to affect



Table 1. ComprehensiveBench’s simple parameters.

Parameters Meaning

n Number of tasks.
p Number of processing units (cores).
r Number of iterations.

lbfreq Rescheduling (load balancing) frequency.
int op Data type to be processed.
gcomm Communication graph.

performance. The rescheduling frequency (lbfreq) has an effect related to it. If the rescheduling
periodicity is small (few iterations), then performance issues like load imbalance and a high
communication overhead can be fixed quickly. Nevertheless, if the algorithm takes too long
computing a new task distribution each time, then its overhead may overcome its benefits.
Meanwhile, if the rescheduling periodicity is large (many iterations), then it may take too long
to correct a poor task distribution.

The int op parameter is used to set the data type to be processed by tasks. If set to true,
tasks work with integer data, otherwise tasks execute single precision floating-point operations.
This parameter can be used to stress processors and influence the decisions of temperature- or
energy-aware global scheduling algorithms.

The last simple parameter is the communication graph (gcomm). While the previous
parameters are set using natural numbers mostly, gcomm is based in three predefined graphs: a
ring, a 2D mesh, and a 3D mesh. The communication graph defines which tasks communicate
with each other, and is independent of the machine topology. While the communication graph
defines which tasks communicate with each other, it does not define how many messages will be
exchanged nor their sizes. These are left to complex parameters discussed next.

3.2.2. Complex Parameters ComprehensiveBench’s complex parameters are expressed using
simple parameters and two different variables with values set at run time. These variables are
presented in Table 2. By using a task’s identifier (t) to influence its load and communication,
ComprehensiveBench enables irregularity among tasks. Meanwhile, the use of the current
iteration (i) makes it possible to vary loads and communication throughout the benchmark
execution, bringing dynamicity. In this sense, the complex parameters work as functions that
have to be computed for each task when first creating them or by each task at each iteration.

Table 2. ComprehensiveBench’s run time variables.

Variable Meaning Range

t Task identifier. 0 ≤ t < n

i Current iteration. 0 < i ≤ r

Table 3 lists the complex parameters used in the benchmark, including their unities and set of
variables and simple parameters used in their expressions. All functions result in integer values.
For instance, the initial mapping of tasks to cores (initmap) can be defined using the task
identifier, the total number of tasks being executed, and the total number of cores. Equation 1
shows the definition of a Round-Robin task distribution, while Equation 2 shows a compact
task distribution, where a range of tasks are mapped to the same core, and Equation 3 shows
a mapping where all tasks start executing in the same core. In all cases, initmap must be in



the range 0 ≤ initmap < p. By changing the initial task mapping, ComprehensiveBench
enables the creation of different scenarios with poor work and communication distributions to
be improved by global schedulers.

initmap = t mod p (1)

initmap = (t ∗ p)/n (2)

initmap = 5 (3)

Table 3. ComprehensiveBench’s complex parameters.

Parameters Meaning Variables and Parameters Unit

initmap Initial mapping. t, n, p Core id
tasksize Task memory footprint. t, n Bytes
load Task execution time. t, i, n ms
msgnum Number of messages. t, i, n —
msgsize Data volume per message. t, i, n Bytes

Each task occupies some space in memory associated with its code, internal variables and
data structures. Whenever a task is assigned to a core different from its current one, its data has
to be migrated. In this sense, a task’s memory footprint has direct influence over its migration
overhead and the scheduling algorithm’s execution time. This data volume is expressed in bytes
with the tasksize parameter. Its value is limited by the maximum integer possible in the
platform (this is the same for load, msgnum and msgsize). All tasks can either occupy the
same amount of memory, as shown in Equation 4, or have different memory footprints. The
latter is exemplified in Equation 5, where tasks with higher identifiers have more data. A global
scheduling algorithm that is aware of tasks’ data volumes may opt to not migrate a task based
in its estimated migration overhead.

tasksize = 1000 (4)

tasksize = 100 ∗ t ∗ t (5)

The execution time of a task is set to each of the benchmark’s iterations by the load

parameter. Its expression is evaluated at the beginning of each iteration in order to enable
dynamicity. For instance, Equation 6 shows a situation where the load of all tasks increases by
10 ms at each iteration. Tasks can also be split into groups with different loads, as illustrated by
the use of the conditional operator in Equation 7. A combination of dynamic and irregular loads
is presented in Equation 8. Using this powerful expression, ComprehensiveBench is able to
create varied load imbalance scenarios to stress global scheduling algorithms and to simulate the
behavior of real applications.

load = 10 ∗ i (6)

load = t < n/2 ? 10 : 50 (7)

load = 5 ∗ i ∗ (t + 1) (8)

The last complex parameters are the number of messages to be sent to another task (msgnum)
and the size of the messages in bytes (msgsize). By setting the communication behavior of tasks
independently from one another, ComprehensiveBench provides the opportunity to test the



communication resources of parallel platforms (i.e., memory and network) and the effectiveness
of global scheduling algorithms in reducing the overall communication time of applications.
Equation 9 illustrates a scenario where the number of messages increases with the execution
of the benchmark, while Equation 10 simulates a scenario where tasks exchange more data at
every five iterations.

msgnum = 1 + i/5 (9)

msgsize = i mod 5 < 1 ? 10000 : 100 (10)

3.3. Implementation Details
ComprehensiveBench is implemented using Charm++ [22, 23]. Charm++ is a parallel
programming language and runtime system (RTS) based on C++ with the goal of improving
programmer productivity. It abstracts architectural characteristics from the developer and
provides portability over multiprocessor and multicomputer platforms. Charm++ applications
are composed of specially designed C++ objects named chares that play the role of tasks, being
responsible for their own work and data. Chares communicate using asynchronous method
invocations following a message-driven execution.

Charm++ includes a load balancing framework [6] that provides an interface for developing
load balancing plugins to Charm++ applications. A load balancer is provided with information
regarding the last iterations of the application and its current mapping, and the runtime system
expects in return a new task distribution to migrate tasks. Several global scheduling algorithms
are distributed with this framework, which helps experimenting with our benchmark.

In order to enable the use of complex expressions to define the tasks’ loads and other
characteristics, all of ComprehensiveBench’s parameters are set in an input file that is
preprocessed right before the benchmark is compiled.

At the start of ComprehensiveBench’s execution, all tasks are created and distributed
among cores following the initial mapping expression. Their communication graph is also set
during initialization. Since several tasks execute in the same core during an iteration, their loads
cannot be simulated by just putting them to sleep. To overcome this issue, a task in the first
core of the platform is responsible for estimating how many internal iterations must be done for
a task to compute for a millisecond. This value is then used by all tasks to guide their loads at
each iteration. This standardization of the workload also enables using ComprehensiveBench
in environments with different processors or processors running at different clock frequencies.

4. Experimental Evaluation
In this section, we present experiments performed with ComprehensiveBench that illustrate
its capability of stressing the characteristics of global scheduling algorithms. First, we detail the
experimental setup with the parallel platform and Charm++ load balancing algorithms used.
This is followed by the description and explanation of the results of four different experimental
configurations.

4.1. Experimental Environment
Table 4 describes the parallel platform and system software used in the experiments. In total,
128 cores were used in the experiments. It is important to emphasize that this machine has
a nonuniform memory access (NUMA) architecture with NUMA factors (ratio between remote
latency and local latency) between 6.4 and 9.6. This results in slow communication between
different NUMA nodes.

In the interest of reducing variability in the results, threads were pinned to cores in all
experiments using numactl.



Table 4. Experimental platform.

Processors 16× Intel Xeon E5-4640
Cores 16× 8 @ 2.4 GHz

Memory 16× 32 GB DDR3 @ 1600 MHz

Linux kernel version 3.0.1010.46
G++ version 4.3.4

Charm++ version 6.6.0
Charm++ build Multicore-linux64

4.2. Global Scheduling Algorithms
Five different load balancing algorithms implemented in Charm++ were used in the
experiments. Their main characteristics are discussed below.

• GreedyLB : A centralized greedy algorithm that only uses task loads for its decisions. It
is employed to quickly mitigate load imbalance. It sorts tasks in decreasing load order and
iteratively maps the unassigned task with the highest load to the least loaded core. The
initial task distribution is not considered in this process, which leads to a large number of
task migrations.

• GreedyCommLB : Similar to GreedyLB with the addition of communication information
in its decisions. The algorithm computes a task’s communication load based on the data
volume that it sends to tasks mapped in other cores. After sorting tasks in decreasing load
order, GreedyCommLB selects the unassigned task with the highest load and maps it to
the core with the smallest total load, which includes both processing and communication
loads. The algorithm has the tendency to map tasks with intense communication to the
same core.

• RefineLB : A less aggressive algorithm than the greedy strategies. The algorithm considers
the current task mapping in its decisions, iteratively refining it to a state where no core
is overloaded or no task migration improves it. RefineLB uses a threshold to define if a
core is overloaded. At each iteration, it verifies all possible task migrations from the most
overloaded core to all underloaded cores, migrating the task that brings its new core the
closest to the threshold. As GreedyLB , it does not consider communication in its decisions.

• RefineCommLB : Similar to RefineLB , but considers the communication behavior of tasks
in its decision of the most suitable destination core for a task.

• RandCentLB : Random algorithm that does not take into consideration any information
about the application or the current state of the platform. It maps tasks to cores randomly
using a uniform distribution.

Besides these five algorithms, all experiments were also executed without any load balancer
to provide a baseline for the results.

4.3. ComprehensiveBench Parameters
Four different synthetic setups were used with ComprehensiveBench: the first one illustrates
the impact of tasks’ sizes on performance; the second one presents scenarios with static load
imbalance; the third one shows how different algorithms handle dynamic load imbalance; and the
forth one stresses how load balancers handle communication-intense applications on a NUMA
platform. The parameters used in all three setups are listed in Table 5. All results presented
in the next section represent the average times measured in 32 runs and present a statistical
confidence of 95% by Student’s t-distribution and a 2% relative error.



Table 5. ComprehensiveBench parameters for the different scenarios tested.

Parameter 1st scenario 2nd scenario 3rd scenario 4th scenario

n 2000 2000 2000 2000
r 50 20 20 20

lbfreq 5 5 5 5
int op false false false false

gcomm Ring Ring Ring Ring

initmap (t ∗ p)/n t mod p t mod p (t ∗ p)/n
tasksize {10 KB, 100 KB, 1 MB} 100 100 100
load 10 10 + {0, 1, 2, 4} ∗ (t mod p) 10 + ((i/10) ∗ {1, 2, 4} ∗ (t mod p) 10
msgnum 1 1 1 {1, 5, 10}
msgsize 100 100 100 10000

4.4. Results
The results of the experiments with each of the four scenarios are presented in the following
sections.

4.4.1. Impact of Tasks’ Sizes This first scenario simulates a balanced application whose tasks
have nontrivial memory footprints, resulting in tasks with high migration costs. Tasks are set
with small loads and little communication, and no benefit is expected to be achieved with load
balancing. In this scenario, ComprehensiveBench helps evaluate the capacity of the different
load balancing algorithms in estimating and avoiding migration costs.

The total execution times achieved by the different load balancing algorithms for tasks with
sizes of 10 KB, 100 KB, and 1 MB are presented in Figure 1. The baseline represents the
execution of ComprehensiveBench without any load balancer and its total execution time
stays the same for all task sizes as no tasks are migrated. The increase in migration overhead
with the increase of task size can be seen for load balancers GreedyLB , GreedyCommLB , and
RandCentLB . These load balancers do not take into consideration the current task mapping and
result in several task migrations at each load balancing call. The total migration overhead for
these load balancers is approximately 4.6, 7, and 18 seconds for the increasing task sizes. This is
a result of migrating 99% of the tasks at each load balancing call. RandCentLB shows a bigger
increase in total execution time because its random migrations also result in load imbalance.

0

5

10

15

20

25

30

35

40

Variant 1: 10 KB Variant 2: 100 KB Variant 3: 1 MB

T
o

ta
l 

ex
ec

u
ti

o
n

 t
im

e 
(s

ec
o

n
d

s)

Scenario 1: task size variation

Baseline GreedyLB GreedyCommLB RefineLB RefineCommLB RandCentLB

Figure 1. Load balancers’ performance with varying task sizes.

Meanwhile, RefineLB and RefineCommLB achieved the same total execution time as the



baseline for the two variants with smaller tasks, increasing execution time only when migrating
1 MB tasks. As these algorithms try to improve the current task mapping, they are able to
notice that the load is mostly balanced, suffering only with some communication overhead and
OS jitter, and thus, resulting in almost no migrations. This indicates that refinement-based
algorithms can be much more suitable for application with large memory footprints or parallel
platforms with high migration costs.

4.4.2. Influence of Static Load Imbalance The second scenario simulates an imbalanced
application whose tasks have static loads. The load imbalance comes from having tasks in
128 load groups, where each group has tasks with the same load mapped to the same core. Tasks’
sizes and communication are kept at a minimum to avoid influencing the final performance. The
use of ComprehensiveBench helps to identify the possible performance gains with different
algorithms for applications with irregular but static behavior, and how quickly these algorithms
are able to mitigate load imbalance.

Figure 2 presents the total execution time with global scheduling algorithms and different
levels of load imbalance. In Variant 1, all tasks and cores have the same load. The
total execution time without load balancing and with all algorithms except RandCentLB
is approximately 6.8 seconds, including iterations, communication, runtime overhead and
initialization. Even though greedy algorithms migrate many tasks at each load balancing call,
this migration overhead only increases total execution time by 0.6 seconds.

0
20
40
60
80

100
120
140
160

Variant 1:

10+0*(t mod p)

Variant 2:

10+1*(t mod p)

Variant 3:

10+2*(t mod p)

Variant 4:

10+4*(t mod p)T
o
ta

l 
ex

ec
u

ti
o
n

 t
im

e 
(s

ec
o

n
d

s)

Scenario 2: static load imbalance

Baseline GreedyLB GreedyCommLB RefineLB RefineCommLB RandCentLB

Figure 2. Load balancers’ performance with static load imbalance.

As the load imbalance increases with the variant numbers, the total execution time of
ComprehensiveBench increases accordingly. GreedyLB , GreedyCommLB , RefineLB , and
RefineCommLB are able to improve performance in all variants, achieving almost optimal
work distributions in all cases. The most visible difference in performance between greedy
and refinement-based algorithms happens in Variant 4. Nevertheless, this difference is only 3%
and is inside the error margin of the results.

Finally, it is interesting to see that even RandCentLB is able to improve performance (but
still inside the error margin) as the initial load imbalance increases. This happens because the
chances of having a mapping better than the original one increase as the difference between the
most and least loaded cores increases.

4.4.3. Influence of Dynamic Load Imbalance The third scenario simulates an application that
starts balanced but becomes imbalanced by the middle of its execution. This load imbalance is



a result of dynamic changes in the tasks’ loads, which is a common behavior in some scientific
applications [5, 19]. In addition, load imbalance may happen even after several load balancing
calls. In these situations, online global scheduling algorithms become necessary to achieve
performance and scalability. The possibility of expressing dynamic behaviors is one of the
main benefits of using ComprehensiveBench.

0
10
20
30
40
50
60
70
80
90

100

Variant 1:

10+((i/10)*1*(t mod p)

Variant 2:

10+((i/10)*2*(t mod p)

Variant 3:

10+((i/10)*4*(t mod p)T
o
ta

l 
ex

ec
u
ti

o
n
 t

im
e 

(s
ec

o
n
d

s)

Scenario 3: dynamic load imbalance

Baseline GreedyLB GreedyCommLB RefineLB RefineCommLB RandCentLB

Figure 3. Load balancers’ performance with dynamic load imbalance.

Three variants with increasing dynamic load differences were simulated. The total execution
time achieved by the different algorithms is shown in Figure 3. In this situation, GreedyLB and
GreedyCommLB improved performance the most. They have shown speedups of 1.7 over the
baseline and 1.09 over RefineLB and RefineCommLB for Variant 3. As these greedy algorithms
do no take the current mapping into account, they happen to redistribute tasks before their
dynamic behavior takes place. This results in a less extreme load imbalance after the first ten
iterations, and a smaller total execution time in the end. Meanwhile, the refinement-based
algorithms move almost no tasks during the initial iterations and are faced with more load
imbalance due to load dynamicity.

4.4.4. Influence of Communication The fourth and last scenario simulates communication-
bound balanced applications. As tasks communicate in a ring and a compact task distribution
was applied, locality is maximized with the initial mapping. In this situation, task migrations
are unlikely to improve iteration time.

The total execution time achieved by the different scheduling algorithms in this scenario
is presented in Figure 4. As the number of messages exchanged between tasks at each
iteration increases, so does the total execution time of ComprehensiveBench. No load
balancing algorithms was able to improve performance, just as happened in the first
tested scenario. However, the increase in execution time in this scenario is a result
of slower communication, not migration overhead. Finally, it can be noticed that the
communication-aware scheduling algorithms, GreedyCommLB and RefineCommLB , show no
improvement over their communication-oblivious counterparts. These algorithms underestimate
the communication costs in this platform because they have no knowledge of the machine
topology and memory hierarchy, which results in migrations that affect performance.

4.5. Summary
One of the most important results of all scenarios simulated with ComprehensiveBench is
that no single scheduling algorithm was the best in all cases. For instance, RefineLB achieved the



0
10
20
30
40
50
60
70
80
90

100

Variant 1: 1 message Variant 2: 5 messages Variant 3: 10 messages

T
o
ta

l 
ex

ec
u
ti

o
n
 t

im
e 

(s
ec

o
n

d
s)

Scenario 4: static communication

Baseline GreedyLB GreedyCommLB RefineLB RefineCommLB RandCentLB

Figure 4. Load balancers’ performance with varying numbers of messages.

best results on balanced applications whose tasks have nontrivial memory foot prints (Scenario
1) whereas GreedyLB achieved the best results on applications influenced by dynamic load
imbalance (Scenario 3). Moreover, both scheduling algorithms presented similar results for
imbalanced applications whose tasks have static loads (Scenario 2). Theses results emphasize
the most indicated uses for some scheduling algorithms and the scenarios where they should be
avoided. They also highlight the importance of a comprehensive benchmark to evaluate the pros
and cons of different global scheduling algorithms.

5. Conclusion and Future Work
The difficulty of evaluating and comparing global scheduling algorithms led us to the
development of a flexible and expressive benchmark. ComprehensiveBench considers the
main characteristics of parallel applications that affect the performance of these algorithms,
and enables the simulation of dynamic behavior through parameters set at compile time.
ComprehensiveBench helps in the comparison of different global scheduling algorithms and
the simulation of parallel applications.

We implemented ComprehensiveBench using the Charm++ parallel programming
environment and used it to evaluate load balancing algorithms with four different scenarios.
The first scenario highlighted the migration overhead of tasks with large memory footprints by
algorithms that do not take the current task mapping into account for their decisions. The second
scenario showed how greedy and refinement-based algorithms are able to achieve almost optimal
work distributions when handling static load imbalance, while the third scenario illustrated
how the greedy algorithms were better suited for dynamic load imbalance. Finally, the fourth
scenario highlighted the weakness of GreedyCommLB and RefineCommLB in estimating the
communication costs on NUMA platforms. In all tested cases, ComprehensiveBench allowed
us to distinguish between the global scheduling algorithms and showed that no algorithm was
the best for all scenarios.

As future work, we plan to employ ComprehensiveBench to evaluate different algorithms
on a wide range of parallel platforms. We also plan to develop a mechanism for choosing
global scheduling algorithms automatically given the characteristics of an application and a
platform. ComprehensiveBench will help by providing varied test cases and enabling the use
of machine learning. Finally, we project the use of ComprehensiveBench to emulate other
parallel applications and evaluate their migration to environments that support task migration,
such as Charm++.



References
[1] Casavant T L and Kuhl J G 1988 IEEE Trans. Softw. Eng. 14 141–154 URL http://dx.doi.org/10.1109/

32.4634

[2] Leung J Y T 2004 Handbook of scheduling: algorithms, models, and performance analysis Chapman &
Hall/CRC computer and information science series (Chapman & Hall/CRC)

[3] Catalyurek U V, Boman E G, Devine K D, Bozdag D, Heaphy R and Riesen L A 2007 Parallel and Distributed
Processing Symposium, 2007. IPDPS 2007. IEEE International pp 1–11 URL http://dx.doi.org/10.

1109/IPDPS.2007.370258

[4] Bhatele A, Kale L V and Kumar S 2009 Proceedings of the 23rd international Conference on Supercomputing
(ICS 2009) (New York, NY, USA: ACM) pp 110–116 URL http://doi.acm.org/10.1145/1542275.

1542295

[5] Rodrigues E R, Navaux P O A, Panetta J, Fazenda A, Mendes C L and Kale L V 2010 Computer Architecture
and High Performance Computing, Symposium on 0 71–78

[6] Zheng G, Bhatele A, Meneses E and Kale L V 2011 International Journal of High Performance Computing
Applications (IJHPCA)

[7] Frasca M, Madduri K and Raghavan P 2012 Proceedings of the International Conference on High Performance
Computing, Networking, Storage and Analysis SC ’12 (Los Alamitos, CA, USA: IEEE Computer Society
Press) URL http://dl.acm.org/citation.cfm?id=2388996.2389125

[8] Pilla L L, Ribeiro C P, Cordeiro D, Mei C, Bhatele A, Navaux, Broquedis F, Mehaut J and Kale
L V 2012 Parallel Processing (ICPP), 2012 41st International Conference on pp 118–127 URL http:

//dx.doi.org/10.1109/ICPP.2012.9

[9] Menon H and Kalé L 2013 Proceedings of SC13: International Conference for High Performance Computing,
Networking, Storage and Analysis SC ’13 (New York, NY, USA: ACM) URL http://doi.acm.org/10.

1145/2503210.2503284

[10] Pilla L L, Ribeiro C P, Coucheney P, Broquedis F, Gaujal B, Navaux P O A and Méaut J F 2014 Future
Generation Computer Systems 30 191–201 ISSN 0167-739X URL http://dx.doi.org/10.1016/j.future.

2013.06.023

[11] Tessier F, Mercier G and Jeannot E 2014 IEEE Transactions on Parallel and Distributed Systems 25 993–
1002 URL http://dx.doi.org/http://doi.ieeecomputersociety.org/10.1109/TPDS.2013.104

[12] Cruz E H M, Diener M, Pilla L L and Navaux P O A 2015 23rd Euromicro International Conference on
Parallel, Distributed, and Network-Based Processing pp 207–214

[13] Bailey D, Harris T, Saphir W, Wijngaart R V, Woo A and Yarrow M 1995 The NAS Parallel Benchmarks
2.0

[14] Van der Wijngaart R F and Jin H 2003 NAS Parallel Benchmarks, Multi-Zone Versions
[15] Bienia C, Kumar S, Singh J P and Li K 2008 Parallel Architectures and Compilation Techniques (PACT)
[16] Luszczek P R, Bailey D H, Dongarra J J, Kepner J, Lucas R F, Rabenseifner R and Takahashi D 2006

Proceedings of the 2006 ACM/IEEE Conference on Supercomputing SC ’06 (New York, NY, USA: ACM)
URL http://doi.acm.org/10.1145/1188455.1188677

[17] Che S, Sheaffer J W, Boyer M, Szafaryn L G, Wang L and Skadron K 2010 Workload Characterization
(IISWC), 2010 IEEE International Symposium on pp 1–11

[18] Heroux M A, Doerfler D W, Crozier P S, Willenbring J M, Edwards H C, Williams A, Rajan M, Keiter E R,
Thornquist H K and Numrich R W 2009 Sandia National Laboratories, Tech. Rep. SAND2009-5574

[19] Tesser R, Pilla L L, Navaux P O A, Dupros F, Mehaut J F and Mendes C 2014 To be published on Parallel,
Distributed and Network-Based Processing (PDP), 2014 22st Euromicro International Conference on pp
1–8

[20] Lifflander J, Krishnamoorthy S and Kale L V 2012 Proceedings of the 21st international symposium on
High-Performance Parallel and Distributed Computing HPDC ’12 (New York, NY, USA: ACM) URL
http://doi.acm.org/10.1145/2287076.2287103

[21] Touati S A A, Worms J and Briais S 2013 Concurrency and Computation: Practice and Experience 25
1410–1426 URL http://dx.doi.org/10.1002/cpe.2939

[22] Kale L V and Krishnan S 1993 Proceedings of the Eighth Annual Conference on Object-Oriented Programming
Systems, Languages, and Applications (OOPSLA 1993) (ACM) pp 91–108

[23] Acun B, Gupta A, Jain N, Langer A, Menon H, Mikida E, Ni X, Robson M, Sun Y, Totoni E, Wesolowski
L and Kale L 2014 High Performance Computing, Networking, Storage and Analysis, SC14: International
Conference for pp 647–658 URL http://dx.doi.org/10.1109/SC.2014.58


