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Abstract 

Planar geometry was exploited for the computation of symmetric visual curves in the image 

plane, with consistent variations in local parameters such as sagitta, chord-length, and the 

curves' height-to-width ratio, an indicator of the visual area covered by the curve, also called 

aspect ratio.  Image representations of single curves (no local image context) were presented 

to human observers to measure their visual sensation of curvature magnitude elicited by a 

given curve. Non-linear regression analysis was performed on both the individual and the 

average data using two types of model: 1) a power function where y (sensation) tends towards 

infinity as a function of x (stimulus input), most frequently used to model sensory scaling data 

for sensory continua, and 2) an ‘exponential rise to maximum’ function, which converges 

towards an asymptotically stable level of y as a function of x. Both models provide 

satisfactory fits to subjective curvature magnitude as a function of the height-to-width ratio of 

single curves. The findings are consistent with an in-built sensitivity of the human visual 

system to local curve geometry, a potentially essential ground condition for the perception of 

concave and convex objects in the real world.  
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Introduction 

 The question whether the human brain may have an in-built sense of geometry has led 

to the emergence of new approaches to visual cognition (e.g. Amir et al., 2014). Since our 

visual environment abounds with curved shapes and features, the question whether our brain 

is sensitive to the geometric properties of visual curves comes to mind. Local two-

dimensional (2D) curvature is a highly informative visual cue for global shape perception, 

object recognition, and image interpretation (e.g. Stevens 1981a and b; Foley et al., 2004; 

Dresp, Silvestri and Motro, 2007; Dresp-Langley 2013; Mustonen et al., 2015; Strother, 

Killebrew and Caplovitz, 2015). Non-conscious brain representations of local stimulus 

geometry may enable conscious knowledge about object properties and associations between 

specific two-dimensional projections and their correlated three-dimensional structures in the 

real world (e.g. Biederman, 1987; Wilson & Wilkinson, 2002; Pizlo et al., 2010; Dresp-

Langley, 2011; Amir et al., 2012; Amir et al., 2014; Li et al., 2013). Objects represented in 

the two-dimensional image plane cover spaces with a roughly elliptic geometry (Figure 1). 

The receptive field structures of visual cortical neurons (curvature detectors) in the primate 

brain, sensitive to local 2D properties of curve stimuli, are also roughly elliptic (e.g. Hubel 

and Wiesel, 1959;  Dobbins, Zucker and Cynader, 1987; 1989). Global shape representation is 

enabled by local stimulus biases favouring symmetry and other 2D structural regularities (Li 

et al., 2009; Li et al., 2013). Neurons of the same coding population, responding optimally to 

deviations from a single straight line (Figure 2) constitute a whole curvature-processing 

network in the primate brain (Yue et al., 2014).   

 At the level of neural processing, current models of curvature coding based on 

functional properties of visual cortical cell populations in the primate brain postulate 

curvature mechanisms that operate in parallel (Yue et al., 2014). They ensure the processing 

of local input from over the visual field and encode curvature for all orientations and for a 

range of curvature amplitudes. Curvature mechanisms are conceived as the combination of the 

responses of several coding populations, with their receptive fields arranged along several 

such curved lines in complex images. Neural response activity is optimal when the line 

contour matches locations and orientations to which the neurons of a given population are 

selective. Perceived curvature would then result from the interaction of mechanisms that 

operate on spatially local contour curvature signals with higher level processes that serve to 

establish global shape (Löffler, 2008; Strother, Killebrew and Caplovitz, 2015). What has 

remained unclear is which critical information contained in a curve stimulus produces the 
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optimal neural response, and whether this suffices to account for optimal curvature 

perception.  

 At the behavioral level, curvature processing depends on the visual context of the 

curved target within the scene context (Figure 3). The visual salience of curves changes with 

the direction, the magnitude and the immediate context of the stimuli, which has important 

implications for the development of visual interface technologies (Mustonen et al., 2015). 

Perceptual interactions between curves have been explained in terms of influences from large-

scale neural averaging occurring in high-level image processing (e.g. Sweeny et al., 2011; 

Mustonen et al., 2015), but this explanation does not help understand what actually 

determines our perception of a curve. Thus, to find out which local information in a curve 

critically determines curvature perception, we need to investigate visual sensations in 

response to single, preferably symmetric, curves under conditions that are as context-free as 

possible (i.e. no immediate image context).  Previous research has shown that local curvature 

signals are strongest when no immediate image context is given (Sweeny , Grabowecky , Kim 

and Suzuki, 2011).  

    The goal of this study here was to clarify which local information in a curve 

critically determines the strength of visual sensations of curvature in response to single curves 

with consistently varying geometric properties under conditions of context-free viewing. A 

psychophysical scaling procedure is used to bring to the fore whether a particular local 

geometric property accounts for the perceived strength of the curves. In psychophysics there 

are several types of measurement (see Ward et al., 2015, for an up-to-date review) . One relies 

on experimental protocols that allow manipulations of physical variables to be reflected back 

from an experimental participant into the physical world. The participant’s response to a 

stimulus is measured by counting (the proportion of hits and false alarms as in signal 

detection theory, for example) or on a physical continuum such as time (response time). The 

level of some physical variable, like sound or light intensity, required to reach a certain 

performance criterion (detection or discrimination threshold) may also be measured. Another 

type of measurement, the one used in this study here, involves participants’ reporting directly 

on the magnitude of a sensory or other subjective experience such as the magnitude of 

brightness, darkness, or curvature (as here) perceived in a single stimulus. To this effect a 

typical but informal scale (most often a category scale from 1 to 10 as here in this study) is  

used on sample populations of three to ten observers. 
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Material and methods 

Computations based on strictly local curve geometry were implemented to generate a whole 

set of single images of visual curves with variable symmetric curvature in the two-

dimensional image plane. Images of arcs, corresponding to lower and upper halves of ellipses 

were derived mathematically through planar projection by affinity with circles (Figure 5). 

This computation permits generating curved lines in the 2D plane (using AUTOCAD or 

equivalent software) with consistent variations in 2D parameters (Figure 5) for sagitta, chord-

length, and height-to-width ratio (H/W), an index which conveys spatial information relative 

to the visual area covered by a curve (Stevens, 1981a and b). The experiments were conducted 

in accordance with the Declaration of Helsinki (1964).Visual images for the experiments were 

generated in AUTOCAD. Statistical analyses of the visual data were performed using 

SYSTAT. 

 

Curve computation 

Elliptic arcs of planar ellipses were computed using projective geometry and the principle of 

transformation by affinity with concentric circles (Figure 5), a relatively simple procedure for 

computational image generation. To explain how ellipses are obtained in this way, it is useful 

to recall some of the properties of concentric circles, which share the same centre. In the two-

dimensional plane, a so-called principal circle with centre 0 ( 0, ) is defined in terms of 

 2( 0, ) = ( )2+ ( )2           (1) 

where   is the radius of the circle and   and   the two-dimensional spatial coordinates of the 

points falling on its perimeter. A second concentric circle is obtained from the first one by 

 
 2( 0, ) = (  +   )2+ (  +   )2         (2) 
 

or 
 

 2( 0, ) = (  −   )2 + (  −   )2.                                       (3) 

Ellipses as projected images of concentric circles (Figure 2) may be defined in terms of 
 

( ,  ) = (  ,   )           (4) 

of the principal circle  (0,  ) and 
 

( ,  ) = ((  ) ,  )           (5) 
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of the secondary circle  (0,  ). This transform is sometimes referred to as a particular case of 

Newton’s transform. In the two-dimensional plane, an ellipse ( ) is thus defined in terms of 

 

  = 2 2+ 2 2= 1,           (6) 

with axes   and   being the axes of symmetry intersecting at the ellipse's centre. The larger 

axis of the two is referred to as the major and the smaller as the minor. The majors and the 

minors are directly linked to the sagitta, or maximum height ( ), and the chordlength, or 

width ( ) of elliptic arcs (Table 1). The curves were presented as individual images of white 

curves on dark backgrounds (Figure 3). Presentations were generated on an IBM computer 

(Pentium III) equipped with a standard colour screen with a display resolution of 1024 × 768 

pixels. The curves, with ‘positive’ (upward) and ‘negative’ (downward) curvature in the two-

dimensional plane, corresponded to 22 elliptic arcs, derived from concentric circles with 

varying diameter through planar projection by affinity as described here above. The 

luminance of the bright curves was 40 cd/m
2
, measured with a standard photometer 

(Cambridge Research Systems), equipped with software for calibrating grey levels (R–G–B 

combinations) of a computer screen. The dark background of the screen on which the curves 

were presented had a constant luminance (2 cd/m
2
). 

 

Subjects 

Nine observers (five women and four men), all of them graduate students in neuroscience at 

the University of Montpellier, aged between 24 and 26 and with normal or corrected-to-

normal vision participated in the experiments. All were naive to the purpose of the study. 

Individual experimental sessions were run, with the individual seated comfortably in a semi-

dark room in front of a computer screen.  

 

Procedure 

Observers were told that they were going to view a series of curves, one at a time, and were 

asked to type a number between 0 and 10 that was to reflect the magnitude of curvature that 

came up on the screen in a given trial. The curves were presented in random order, and for 

each observer, a different random sequence of stimuli was generated. A perfectly straight, 

white line with zero curvature was shown on the screen at the beginning of the experimental 

trials to clarify the visual standard for ‘zero curvature’. This control condition was repeated 

five times during a session, with control trials randomly positioned within a sequence of test 

trials. This allowed making sure that subjects consistently replied ‘0’ to the zero curvature 
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stimulus. The duration of an image presentation was one second, and observers were 

encouraged to give their rating as rapidly as possible. Typing the ‘enter’ key triggered the 

presentation of the next stimulus. Each curve was shown twice within a single individual 

session of trials. 

 

Results 

 

Individual psychometric functions of subjective curve magnitude as a function of the curves' 

height-to-width ratio were plotted. “Positive” and “negative” curves with identical height-to-

width ratios produced identical or very similar magnitudes, as could be expected from 

previous data reported by Dresp et al (2007), and these data were therefore averaged. The 

individual results, averaged over the curve orientation factor, are shown in the graphs 

represented in the graphs in Figure 6. Non-linear regression analysis was performed on both 

the individual and the average data using two types of model: 1) a power function where y 

(sensation) tends toward infinity as a function of x (stimulus input), most frequently used to 

model sensory scaling data for sensory continua, and 2) an ‘exponential rise to maximum’ 

function, which converges towards an asymptotically stable level of y as a function of x. The 

exponential-rise-to-maximum thus levels out flat without progression toward infinity. The 

exponential-rise-to-maximum function is written in terms of: 



y = a (1-exp(-b x)) 

 

The power function is expressed in terms of: 

 

 y = axb 

 

The goodness of fit of these models was assessed on the basis of non-linear regression 

analysis. The numerical parameter values for a, b, the regression coefficient R
2 

and the 

associated probability limits (p) for each type of fit are summarized in Tables 2a and b. The 

results from the non-linear regression analyses show that the exponential-rise-to-maximum 

function and the power function produce reasonably good model fits to the individual data. 

Fits to the average data (shown in Figure 7, with error bars) confirm these conclusions. 

 

 



 8 

Discussion 

The visual magnitude of curvature in response to images of single curves without other local 

image context consistently increases with the aspect ratio of the curves, a two-dimensional 

geometry based shape index (e.g. Li, Pizlo, and Steinman, 2009; Pizlo et al., 2010). Context-

free viewing is potentially critical to this finding. When a curved target is presented together 

with other curves in a complex scene context, the visual processing of the target is influenced 

by the context and becomes more difficult to predict. Such contextual effects are likely to be 

due to influences from large-scale neural interactions (see Spillmann, Dresp-Langley and 

Tseng, 2015, for review) in networks of cortical operators, functionally identified in the 

primate brain (Yue et al., 2014). In this study here, context effects on the curvature ratings 

can be excluded given that curvature operators from different coding populations were not 

stimulated. Instead, we may assume locally independent curvature processing, where the 

effect of a single curvature signal at a given trial, presented without any other image context 

here (no local or global interactions), can be directly associated with the curvature estimate it 

produced. Previous psychophysical studies of visual curvature coding (Sweeny , Grabowecky 

, Kim and Suzuki, 2011) had shown that a local curvature signal is strongest in brief viewing 

and  in response to images with a single symmetric curve. Symmetry of the curves is probably 

another important factor (Li et al., 2013).  The mechanisms which explain why symmetry 

helps reduce uncertainty in visual processing are unclear. It has been suggested that all visual 

3D interpretations consistent with a single 2D image would be mirror symmetric, which could 

imply that our visual brain has evolved toward an optimal sensitivity to symmetrical stimulus 

input. Also, the process that leads to 3D shape recovery often depends on the aspect ratio, or 

height-to-width ratio, of shapes, and the visual system appears to compute this parameter on 

the basis of criteria for minimum surface area and maximal planarity of contours (Li, Pizlo, 

and Steinman, 2009; Pizlo et al., 2010). The existence of visual mechanisms that rely on local 

2D shape geometry to recover a 3D shape interpretation makes good sense and confirms 

conclusions from earlier studies (e.g. Biederman, 1987; Dresp, 1997; Strother, Killebrew and 

Caplovitz, 2015). The idea of local mechanisms for global shape recovery is consistent with 

the fact that shape recognition is viewpoint independent in as far as the projected image does 

not change substantially under small or moderate changes in the viewing direction of the 

shape (e.g. Li & Steinman, 2009). Sensitivity to planar geometry thus appears as a potentially 

important aspect of brain processing, essential for generating the most likely shape 

interpretation on the basis of relatively simple computations. The findings from this study 

here indicate that the human perceptual system is definitely sensitive to the local geometry of 
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curve stimuli. Whether this sensitivity is in-built or learnt remains to be clarified in 

experiments testing its ontogenetic development (cf. Amir et al., 2014). Whether the power 

law or the exponential rise to maximum law should be preferred to model the findings 

depends on conceptual issues relative to sensory continua (cf. Ward, 2015 for a recent review) 

which are beyond the scope of this paper and potentially irrelevant, as both functions are 

shown to produce reasonably good fits.  

 

Conclusions 

Curved objects represented in the 2-D image plane can be computed on the basis of a very 

simple mathematical transform based on planar shape geometry. These computations yield 

consistent variations in a limited number of critical curve parameters. Power and exponential 

rise to maximum models adequately account for curvature magnitude scaled by human 

observers as a function of local curve parameters relative to the two-dimensional visual area 

covered by the curve, the height-to-width ratio, showing that the visual magnitude of 

curvature in planar images can be consistently linked to this local parameter. The conclusions 

lend support to theories of geometry based brain representations for the perception or 

recovery of complex shape information from two-dimensional images (e.g. Wilson & 

Wilkinson, 2002; Pizlo, 2008; Amir et al., 2012; Amir et al., 2014). 
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Figure captions 

 

Figure 1 

Most objects represented by line contours in the two-dimensional image plane cover a space 

that roughly corresponds to the shape of an ellipse. The receptive field structures of visual 

cortical detectors in the primate brain also cover areas which are roughly elliptic. The height-

to-with ratio (h/w), sometimes also called aspect ratio, of 2D shapes is a geometric parameter 

relative to the visual area covered by a curve. 

 

Figure 2 

Curvature selective visual cortical neurons of one and the same coding population respond 

optimally to deviations from a single straight line on the basis of functionally identified 

receptive field properties, which include contrast sensitivity and selectivity to local contrast 

signs (shown here schematically, for illustration). A multitude of such curvature mechanisms 

operate in parallel in the primates' visual brain. 

 

Figure 3 

In complex images, local curvature permits generating strong three-dimensional shape effects. 

Curvature processing can be made easier, or rendered more difficult when a local curve 

(target) is embedded in such a complex scene context of multiple curves. Contextual effects of 

this kind are explained in terms of long-range neural interactions (see Spillmann, Dresp-

Langley and Tseng, 2015, for review).  

 

Figure 4 

In this study here, image context effects were excluded by presenting images of a single 

curve, one after another in random order. In this way, curvature operators from only one, not 

many different coding channels were stimulated on a given experimental trial. 

 

Figure 5 

Vertically and horizontal oriented ellipses in the two-dimensional plane can be obtained from 

concentric circles through a geometric transform called planar projection by affinity. In 

Cartesian space, an ellipse may be defined as the projected image of two concentric circles. In 

the two examples given here, images (x, y) = (b 
x
, a 

y
) of the principal circle C(0,a) and images 

(x, y) = ((a/b) x, y) of the secondary circle C(0,b) generate ellipses through planar projection 
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by affinity with the two circles. In our study, upward oriented and downward oriented arcs of 

eleven such ellipses, derived from concentric circles with varying diameter, were generated.  

 

Figure 6 

The individual psychometric functions are shown here. Subjective magnitudes of visual 

curvature are plotted as a function of the height-to-width ratio of the curves. 

 

Figure 7 

The psychometric function describing the average data is shown here, with errors bars. 

Subjective magnitudes of visual curvature, with power fit and exponential-rise-to-maximum 

fit, are plotted as a function of the height-to-width ratio of the curves. 

 

Table 1 

Values in centimetres (on the screen) for sagitta or maximum height (h), chordlength or width 

(w) and aspect ratio (h/w) of the curves, presented here as individual images of white visual 

contours on dark backgrounds. 

 

Tables 2a and b 

Numerical values for a, b, the regression coefficient R
2 

, and probability limits (p) for 

exponential (2a) and power (2b) functions fitted to the individual curvature estimates (Figure 

5). 
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Figure 6, 7 
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Table 2b 
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