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Abstract. Studying Long Term Care (LTC) insurance requires to model the lifetime of individ-
uals in presence of both terminal and non-terminal events which are concurrent. In this paper,
we analyze this situation with a multi-state approach and we exhibit non-parametric estimators of
transition probabilities considering the Markov assumption does not hold. The proposed estimators
can be seen as Aalen-Johansen integrals for competing risks data, which are obtained by re-setting
the system with two competing risks blocks. As little attention has been given to this issue, we
derive asymptotic results for this type of estimator under non-dependent random right-censorship
in presence of covariates and discuss their possible outlooks. We also develop a methodology to
investigate time dependence association measures between cause-specific failure times. For key
transition probabilities, we conduct simulations to analyze the performance of our estimators versus
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1 Introduction

Multi-state models offer a sound modeling framework for the random pattern of states experienced
by an individual along time. These stochastic models are very flexible and can be adapted to many
applications. In biostatistics (Hougaard, 1999, 2001; Andersen and Keiding, 2002), this specification
is generally used to model the transitions between states, defined as the occurrence of a disease or
a serious event affecting the survival of an individual. For credit risk and reliability areas, this
framework is transposed to account for the lifetime history of a firm or an item (see e.g. Lando and
Skødeberg, 2002; Janssen and Manca, 2007). For fifteen years, multi-state models have provoked a
growing interest in the actuarial literature to model the random pattern of states experienced by
a policyholder during the contract period. In this context, transitions between states occur when
an event triggers the payment of premiums and benefits. For health and life insurance modeling
purposes, many papers develop comprehensive frameworks for pricing and reserving both with
Markov or semi-Markov assumptions (Haberman and Pitacco, 1998; Denuit and Robert, 2007).
Recently, Christiansen (2012) gives a wide overview of the use of multi-state models in health
insurance, including Long Term Care (LTC) insurance, from an academic perspective. For that
purpose, actuaries need to estimate the transition probabilities between states and additionally the
transition intensities if a continuous model is used. In practice, these probabilities may be adjusted
to account for complex policy conditions (e.g. waiting periods and deferred period).

In this paper, we propose a non-parametric estimation framework based on a multi-state ap-
proach with longitudinal data to account for situations with both multiple terminal (e.g. multiple
causes of death) and non-terminal (e.g. competing diseases or degrees of disability) events without
possibility of recovery. This situation is adapted to the study of some disability, LTC and critical
illness1 insurance guarantees but we believe it may be also applicable for multimorbidity purposes in
biostatistics (Varadhan et al., 2014). If all failure causes can occur in any order, this corresponds to
the the well-known case of competing risks data. Yet, we consider in our setting that death can be
caused by different failure events, i.e. the individual can previously experience a set of possible non-
terminal events. When there is only one terminal event which dependently censors a non-terminal
event, it is natural to refer to the framework of semi-competing risks data (Fine et al., 2001). Many
works in biostatistics focus on estimating the survival function of the latent failure time to a non-
terminal event, using for instance the so-called copula-graphic estimator defined by Zheng and Klein
(1995). However, these approaches only give a very specific information on the latent failure time
and do not allow to characterize the lifetime evolution process. Alternatively, multi-state models
offer better modeling properties than the classical techniques developed for semi-competing risks
data where the states are grouped (Xu et al., 2010).

Fitting multi-state models related to disability and LTC insurance with the available data is
generally done with what could be considered as strong assumptions. To keep calculation simple,
practitioners generally resort to the Markov assumption, i.e. the transition to the next state de-
pends only on the current state (see e.g. Gauzère et al., 1999; Pritchard, 2006; Deléglise et al., 2009;
Levantesi and Menzietti, 2012). This implies that the process ignores the effects of the previous
lifetime-path. However, this assumption is inappropriate when modeling e.g. LTC claimants mor-
tality, as the transition probabilities depend on the occurring age and the duration (or sojourn time)
of each disease (Czado and Rudolph, 2002) and a semi-Markov model is more relevant. In the ac-
tuarial literature, research about fitting non-Markov models is relatively scarce and focused mainly
on disability data which are generally fitted with parametric models, e.g. the so-called Poisson
model (Haberman and Pitacco, 1998). Semi-parametric models are sometimes used, e.g. the Cox
semi-Markov model (Czado and Rudolph, 2002). In this context, there is a need to develop non-

1For example, where death due to dread disease should be distinguished to other causes.
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parametric approaches to check how realistic these assumptions are, especially for the construction
of biometric tables in insurance. With the development of Solvency II and the IFRS frameworks,
this last need for realistic tables is becoming increasingly important (Tomas and Planchet, 2013;
Guibert and Planchet, 2014).

Our main contribution consists in exhibiting a non-parametric framework for the development
of accuracy tests2 and a more realistic representation of the lifetime process. When the Markov as-
sumption holds, non-parametric inference can be easily performed with the so-called Aalen-Johansen
estimator (Aalen and Johansen, 1978; Andersen et al., 1993) used to compute transitions probabil-
ities. Yet, to the best of our knowledge, there is no general non-parametric estimator for transition
probabilities, in continuous time and with censoring. This field is under development but the com-
plexity of inferring multi-state models without this assumption greatly depends on the number
of states defined, the relationship between them and the nature of the available data (censorship
and truncationprocesses). Research on non-Markov models in biostatistics mainly focuses on non-
parametric estimation techniques for particular probabilities. Among them, Datta and Satten (2002)
defined estimators for the state occupation probabilities and Meira-Machado et al. (2006) have con-
sidered transition probabilities estimators for the illness-death (or disability) model. Note also that
Datta and Satten (2001) (consistency results) and Glidden (2002) (weak convergence results) show
that the Aalen-Johansen estimator can be used to infer the state occupation probabilities without
the Markov assumption. An overview of the inference methods used in medical studies when the
Markov assumptions does not hold is available in Meira-Machado et al. (2009).

Our approach extends the work of Meira-Machado et al. (2006). For that, we apply a model
featuring two competing risks blocks which are nested to account for the progressive form of the
process with right-censored data. With such a structure, our model can be viewed as a particular
case of a bivariate competing risks data problem with only one censoring process. Independently
from our research, Allignol et al. (2013) recently emphasized the interest of competing risks ap-
proaches to explain the Meira-Machado et al. (2006) estimators for an illness-death model. With
non-parametric techniques, Cheng et al. (2007) have exhibited estimators for bivariate cause-specific
hazards and bivariate cumulative incidence functions under independent censoring. Our framework
can be linked with these last estimators but it comprises only one independent censoring variable
for both competing risk processes. Motivated by applications in insurance, our main aim in this
context is to develop a non-parametric methodology based on Aalen-Johansen integrals for compet-
ing risks data (Suzukawa, 2002) and investigate the consistency and weak convergence properties
of such estimators in presence of independent right-censoring and covariates. This also contributes
to the study of the expectation of a random function depending to two cause-specific lifetimes with
right-censoring which is a new topic close to the estimation for the joint distribution of two lifetimes
(see e.g. Lopez, 2012). In the statistical literature, this type of integrals with covariates generally
appears to build goodness of fit tests in the context of regression analysis (see e.g. Sellero et al.,
2005) but in our case, we use it rather as a way to derive complex transition probabilities’ proper-
ties useful for actuarial applications. Note that this approach encompasses in particular the case of
classic illness-death model and progressive model.

Apart from transition probabilities, we present another application, namely the association
measures among the cause-specific failure times intervening in our multi-state model. Such an
application is quite natural in this context as our estimators involve a bivariate cumulative incidence
function for two lifetimes intervening in the model. As there are recent advances in the literature on
association measures for bivariate competing risks data (Bandeen-Roche and Liang, 2002; Bandeen-
Roche and Ning, 2008; Cheng et al., 2007, 2010; Scheike and Sun, 2012), another contribution of
this paper is to exhibit non-parametric estimators for a cross-odds ratio measuring association. We

2For example, testing the performance for different competing parametric models.
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think this can be used practically as a preliminary estimator characterizing the lifetime process,
before implementing a parametric model to describe the joint distribution of the two competing
risks processes.

This paper is organized as follows. Section 2 introduces our non-Markov multi-state model and
defines the quantities used to assess transition probabilities and association measures. An acyclic
multi-state model with a set of intermediary and terminal states is re-parametrized as a system of
two competing risks blocks which are nested. We build upon this central idea in Section 3 to provide
non-parametric estimators of the quantities of interest. We derive the convergence properties of these
estimators under independent right-censoring. Section 4 is devoted to a simple simulation analysis
to assess the performance of our non-parametric transition probabilities estimator against the Aalen-
Johansen estimator. Application to real French LTC insurance data is proposed in Section 5.

2 Competing risks model setup

This section outlines in 2.1 our notation and an acyclic multi-state structure with two competing
risks blocks. This formulation enables to model the individual lifetime, which can affected by both
terminal and non-terminal events. In subsection 2.2, we describe the transition probabilities, used
in actuarial science for pricing and reserving purposes. In 2.3, we present a version of the cross-odd
ratio that accounts for the association between failures times introduced in the model.

2.1 Model and basic assumptions

On a probability space (Ω,A,P), we consider a time-continuous stochastic process (Xt)t≥0 with finite
state space S = {a0, e1, . . . , em1 , d1, . . . , dm2} and right-continuous paths with left-hand limits. This
process represents the state of the individual, e.g. in insurance the policyholder, at time t ≥ 0. The
set {e1, . . . , em1} representsm1 intermediary states or non-terminal events, e.g. disability competing
causes, and the set {d1, . . . , dm2} are terminal events, i.e. absorbing states such as direct death,
lapse or death after entry in dependency. The state a0 corresponds to the healthy state. We define,
with the same notations as Rotolo et al. (2013) the set of states to which a direct transition from
a0 is possible: a0’s children, noted C (a0) ⊂ S. For each state e ∈ {e1, . . . , em1}, we also introduce
the set of its children C (e) ⊂ {d1, . . . , dm2}. Of course, the set of children for one terminal event
d ∈ {d1, . . . , dm2} is C (d) = ∅. Hence, an individual can take two types of lifetime paths depending
on whether an intermediate event occurs or not. Figure 1 depicts an example of such an acyclical
multi-state structure.

[Figure 1 about here.]

This multi-state structure can be expressed with latent failure times. We denote by T0e, e ∈
{e1, . . . , em1} the latent times in healthy state corresponding to each non-terminal event and simi-
larly T0d, d ∈ {d1, . . . , dm2}, for terminal events. We also set Ted the latent time from disability state
e to death due to cause d. No particular assumption is introduced regarding the dependence between
the latent failure times. With this notation, we distinguish two steps for the overall lifetime-path
including in two competing risks schemes. In a first step, the individual lifetime history can be
affected by Card (C (a0))-competing exit-causes from the healthy state, i.e. to the non-terminal
(a0 → e) and to the terminal (a0 → d) states. We write C (a0) = CE (a0) ∪ CD (a0) the split of
arrival states between non-terminal and terminal events. Hence, we set-up the competing risks
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process (S, V1) such as

S = inf {t : Xt 6= a0}

=
∑

e∈CE(a0)

T0e1{V1=e} +
∑

d∈CD(a0)

T0d1{V1=d},

where V1 takes its values in C (a0). We call with H the distribution function of the sojourn time in
healthy state S.

In a second step, we consider that the life is exposed to m2-causes of exit, may they be direct
(a→ d) or indirect through one of the m1 intermediary states (a→ e→ d). This lifetime variable T
is forced into a competing risks setup (T, V ) where V = (V1, V2) is an indicator of the path followed
by the individual, taken is value in a set denoted V, and V2 depends on the value taken by V1 such
as {

V = (e, d) with d ∈ C (e) if e ∈ CE (a0) ,

V = (0, d) otherwise.

With this notation, we have

T = inf {t : Xt ∈ {d1, . . . , dm2}}

=
∑

e∈CE(a0)

T0e1{V1=e} +
∑
d∈C(e)

Ted1{V2=d}

+
∑

d∈CD(a0)

T0d1{V2=d},

where the survival time of the individual T has a distribution function F . These distribution
functions are assumed to be continuous. Further, we set F (v) (t) = P (T ≤ t, V = v) the continuous
sub-distribution function3 for t ≥ 0 and v ∈ V.

As noted by Meira-Machado et al. (2006) with an acyclic illness-death model, the variables Ted,
representing the residual lifetime after the occurrence of a non-terminal event, are not observed in
case of direct transition, i.e. where S = T . Otherwise, we have S < T . Similarly, the variables (T0e),
e ∈ CE (a0) \ {e′}, and (T0d), d ∈ CD (a0), are automatically censored if the individual experiences
the intermediary state e′.

As is it classical for the analysis of lifetime data, we now consider a right censoring variable C
with a distribution function G

Assumption 1. C is independent of the vector (S, T, V ).

Assumption 1 is widely used for simplicity in practice and is generally verified by insurance data
as observations are censored by administrative events. It is important to note that the censoring
variable is unique for all the latent times and the two lifetime variables (S, T ) are not directly
observed due to this right-censoring mechanism. Instead, the following variables are available{

Y = min (S,C) and γ = 1{S≤C},

Z = min (T,C) and δ = 1{T≤C}.

Additionally for the sake of generality, we incorporate in this paper a vector U = (Ui)i=1,...,p

of p-covariates. Following Stute (1993), we only assume4 that these covariates do not provide any
further information as to whether censoring will take place or not, i.e. we have

Assumption 2.
3Also called cumulative incidence distribution.
4No assumption is made about the dependence structure between (C, S, T,U , V ).
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i. P (S ≤ C | S,U , V1) = P (S ≤ C | S, V1) ,

ii. P (T ≤ C | S, T,U , V ) = P (T ≤ C | T, V ) .

As pointed out above, equality ii. of Assumption 2 is explained by the fact that the pair (S, T ) is,
by construction, subject to censoring and S is uncensored whenever T is. For estimation purposes,
we introduce the distribution function of (S,U), noted H0, and F

(v)
0 the sub-distribution function

of (S, T,U) where the cause is V = v, v ∈ V. Moreover, we have F0 =
∑

v F
(v)
0 .

In this paper, the theoretical results presented below can be applied both for discrete (e.g.
gender, geographical location, social status) and continuous (e.g. biomedical measures) covariates.
However, our practical applications presented in sub-sections 2.2 and 2.3 are limited to discrete
covariates and continuous covariates should be beforehand transformed into categorical variables.

2.2 Transition probabilities

With the notation of subsection 2.1, a classical multi-state process (Xt)t≥0 would be specified in
terms of transition probabilities with 0 ≤ s ≤ t, i, j ∈ S and u a discrete covariates vectors

pij (s, t | u) = P (Xt = j | Xs = i,U = u) .

However in actuarial science, quantities of interest for risk assessment purposes relate to the
probabilities of paying or receiving cash-flows which are more complex (Christiansen, 2012) to
account for complex policy conditions (e.g. waiting periods and deferred period). In particular, one
needs to distinguish each intermediary state since the related payment function may be different
depending upon the trajectory. Let us present some situations illustrated these needs.

i. p00 (s, t | u), the survival probability in healthy state with 0 ≤ s ≤ t,

ii. p0e (s, t, η | u), the probability to enter in a non-terminal state due to cause e ∈ CE (a0) with
0 ≤ s ≤ t and a sojourn time longer than η ≥ 0 at time t,

iii. pee (s, t, | u), the probabilty to stay in the non-terminal event e ∈ CE (a0) between times s and
t with 0 ≤ s ≤ t,

iv. ped (s, t, η, ζ | u), the probability of exit from the non-terminal event e ∈ CE (a0) due to cause
d ∈ C (e) when the sojourn time is between η and ζ with 0 ≤ η ≤ ζ and the time of entry in
the non-terminal event is between s and t with 0 ≤ s ≤ t,

v. p0d (s, t | u), the direct transition probability from the healthy state to the terminal state
d ∈ CD (a0) without suffering from any disease between times s and t with 0 ≤ s ≤ t.

This list can be easily extended or modified considering some particular paths or if one needs to
exhibit exit probabilities from a non-terminal state to some specific sets of terminal events. Anyways,
these quantities can be expressed in terms of the joint distributions of (S,U) and (S, T,U , V ) as
follows

p00 (s, t | u) =
P (S > t,U = u)

P (S > s,U = u)
, (2.1)

p0e (s, t, η | u) =
P (s < S ≤ min (t, t− η), T > t,U = u, V1 = e)

P (S > s,U = u)
, (2.2)

pee (s, t | u) =
P (S ≤ s, T > t,U = u, V1 = e)

P (S ≤ s, T > s,U = u, V1 = e)
, (2.3)
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ped (s, t, η, ζ | u) =
P (η < T − S ≤ ζ, s < S ≤ t,U = u, V = (e, d))

P (T − S > η, s < S ≤ t,U = u, V1 = e)
, (2.4)

p0d (s, t | u) =
P (s < S, T ≤ t,U = u, V = (0, d))

P (S > s,U = u)
. (2.5)

Without covariates, probability (2.1) can be simply estimated using the Kaplan-Meier estima-
tor even if the Markov assumption is not verified. In Equations (2.2), (2.3) and (2.4), note that
{V1 = e} = {V1 = e, V2 ∈ C (e)}. When looking at the numerator in Equation (2.5), we remark that
considering P (T ≤ t,U = u, V = (0, d)) and P (S ≤ t,U = u, V1 = d) leads to different results as
the former assumes competition between all the terminal states whereas the latter is equivalent to
apply right-truncation on the observations which experience non-terminal events.

2.3 Association measures

Considering the general model introduced above, we try to measure association between (S, T ) by
stidying the sub-distribution function F (v)

0 , v ∈ V. This function is a particular case of the general
bivariate cumulative function for a competing risks model with covariates and a unique right-
censoring process. There has been little work on analyzing dependence for multivariate competing
risks data contrary to survival data. In particular, it seems that the so-called Kendall’s tau is not
easily extendable to measure association between several causes, whereas it can be computed non-
parametrically for bivariate survival data (see e.g. Lopez, 2012). Recently, this issue has received
some attention (Bandeen-Roche and Liang, 2002; Bandeen-Roche and Ning, 2008; Cheng and Fine,
2008; Cheng et al., 2010) with an independent censoring scheme. In particular, this literature
focused on estimating a cause-specific version of the localized Kendall’s tau (Bandeen-Roche and
Ning, 2008). However, they analyze association between observed failure times along the lines
of Oakes’s non-parametric estimator (Oakes, 1989). Estimation is potentially biased since it is
evaluated with observable failure times. Moreover, this ratio involves smoothing and the authors
use a piecewise constant assumption on disjoint rectangular regions. Scheike et al. (2010) and
Scheike and Sun (2012) propose alternatively local association measures based on the cross-odds
ratios which have the advantage of accounting for covariates. We follow this approach and consider
non-parametric estimators based on cross-odds ratio. Contrary to the standard bivariate competing
risks model, there may be a strong dependence between the both indicators V1 and V2 due to the
structure of the model.

Let the cross-odds ratio for (e, d) ∈ V, 0 ≤ s ≤ t and u a discrete covariates vector be given by

π
(e,d)
0 (s, t | u) =

odds (T ≤ t, V2 = d | S ≤ s, V1 = e,U = u)

odds (T ≤ t, V2 = d | V1 = e,U = u)
, (2.6)

where odds (A) =
P (A)

1− P (A)
. This measure is based on the comparison between on the one hand

the conditional odds of the event {T ≤ t, V2 = d} for an individual exiting from the healthy state
before time s due to a specific cause e, and on the other hand the odds unconditionally to the event
{S ≤ s}. By definition of S and T , it is not possible to reverse the role of s and t in π(e,d)0 (s, t | u),
thus this function is defined on the upper wedge {0 ≤ s ≤ t}. If {T ≤ t, V2 = d} and {S ≤ s, V1 = e}
are independent conditionally to {V1 = e,U = u}, i.e. the date and the cause of entry in an illness
state e have no effect on the overall lifetime ending due to cause d, then π(e,d)0 (s, t | u) = 1. There is
positive (respectively negative) association if π(e,d)0 (s, t | u) > (<) 1 and this measure takes its values
in [0,∞[. This quantity is easy to handle and is a valuable tool to analyze duration dependence
compared to the cumulative incidence function F (v)

0 which is relatively complicated.
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Alternatively, remark that Cheng et al. (2007) provide simple association measures without
covariates defined, as the ratio of the bivariate cumulative intensity function over the associated
univariate cumulative intensity functions. Note also that a test for the Markov assumption is
proposed by Rodríguez-Girondo and de Uña-Álvarez (2012).

3 Non-parametric estimation, asymptotic properties and applica-
tions

Our aim here is to provide a non-parametric estimation framework and asymptotic results with
the sub-distribution functions F (v)

0 , v ∈ V, as well as for transition probabilities, defined in sub-
section 2.2, and the association measures, introduced in Subsection 2.3. To do this, we define
Aalen-Johansen integrals estimators for competing risks in presence of covariates in Subsection 3.1
and demonstrate their asymptotic properties in 3.2. A possible improvement to properly account for
left-truncation is discussed in Subsections 3.3. Subsections 3.4 and 3.5 are devoted to the application
of our results to transition probabilities and association measures.

3.1 General setup

The problem that we consider entails a unique right-censoring process C (Assumption 1). Thus,
the observation of the i-th individual of a sample of length n ≥ 1 is characterize by

(Yi, γi, γiV1,i, Zi, δi, δiV2,i,U i) 1 ≤ i ≤ n ,

which are assumed to be i.i.d. replications of the variable (Y, γ, γV1, Z, δ, δV2,U). If δ = 1, then
obviously γ = 1. Consider first the ordered Y -values Y1:n ≤ Y2:n ≤ . . . ≤ Yn:n and

(
γ[i:n],U [i:n]

)
the concomitant of the i-th order statistic (i.e. the value of (γj ,U j)1≤j≤n paired with Yi:n). An
estimator for H0 is simply obtained from the multivariate Kaplan-Meier estimator considered by
Stute (1993)

Ĥ0n (s,u) =
n∑
i=1

Win1{Yi:n≤s,U [i:n]≤u}, (3.1)

where the Kaplan-Meier weight for the the i-th ordered observation is

Win =
γ[i:n]

n− i+ 1

i−1∏
j=1

(
n− j

n− j + 1

)γ[j:n]
.

Kaplan-Meier integrals taking the form S (ϕ) =
∫
ϕ dH0 with some generic function ϕ are estimated

with

Ŝn (ϕ) =

∫
ϕ (s,u) Ĥ0n (ds, du) =

n∑
i=1

Winϕ
(
Yi:n,U [i:n]

)
.

Considering the bivariate setup of our model, the bivariate cumulative incidence function for
(S, T, V1, V2) is defined and estimated nonparametrically by Cheng et al. (2007) under independent
right-censoring. However, their representation is devoted to general bivariate competing risks data
and we aim to provide estimators which exploit the information that S is necessarily observed
when T is not censored. For this purpose, it is convenient to introduce Z1:n ≤ Z2:n ≤ . . . ≤ Zn:n

the ordered Z-values and
(
Y[i:n], δ[i:n], J

(v)
[i:n],U [i:n]

)
the concomitant of the i-th order statistic with

J
(v)
i = 1{V=v,} and v ∈ V. Based on the idea of Meira-Machado et al. (2006), we consider S as
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a covariate and estimate F (v)
0 using the so-called Aalen-Johansen estimator (Aalen and Johansen,

1978) adapted to competing risk data. This estimators can be rewritten as

F̂
(v)
0n (y, z,u) =

n∑
i=1

W̃
(v)
in 1{Y[i:n]≤y,Zi:n≤z,U [i:n]≤u}

=

n∑
i=1

W̃inJ
(v)
[i:n]1{Y[i:n]≤y,Zi:n≤z,U [i:n]≤u},

(3.2)

where W̃in denotes the Kaplan-Meier weight of the i-th ordered observation, related to the estimated
survival function of T .

The Aalen-Johansen weights for state v, defined as

W̃
(v)
in =

δ[i:n]J
(v)
[i:n]

n− i+ 1

i−1∏
j=1

(
n− j

n− j + 1

)δ[j:n]
, 1 ≤ i ≤ n,

are very close to the Kaplan-Meier weights related to the estimated survival function of T . They can
be interpreted as the mass associated to one observation. Remark than the Inverse Probability of
Censoring Weighting (IPCW) representation can be easily derived from this expression by writing

W̃
(v)
in =

δ[i:n]J
(v)
[i:n]

n
(

1− Ĝn (Yi:n)
) ,

where Ĝn represents the Kaplan-Meier estimator of the distribution function of C. Although the
results presented below are theoretically true for both discrete and continuous covariates, we rec-
ommend in practice to use our estimators for transition probabilities and association measures
with discrete covariates only. A possible way to use these estimators with continuous covariates
is to consider regression techniques. The IPCW theory is largely used for survival models with
dependent censoring and was recently applied to state occupation, exit and waiting times probabil-
ities for acyclic multi-state models (Mostajabi and Datta, 2013) and to transition probabilities for
the illness-death model (Meira-Machado et al., 2014). The extension of our estimators with these
techniques would be clearly feasible but is out of the scope of this paper.

Based on the representation as a sum of (3.2), we are now interested in obtained estimators
of general quantities S(v) (ϕ) =

∫
ϕ dF

(v)
0 with ϕ a generic function. In absence of censoring

process, non-parametric estimation is straightforward, resulting to integrals under the empirical
multivariate distribution function of (S, T,U). In this context, we have complete information and
each observation has the same weight into the empirical process. Since the joint distribution of
(T, V ) has the aspect of a competing risks model, we estimate S(v) (ϕ) by computing the Aalen-
Johansen integral of the form

Ŝ(v)
n (ϕ) =

∫
ϕ (s, t,u) F̂

(v)
0n (ds, dt, du) =

n∑
i=1

W̃
(v)
in ϕ

(
Y[i:n], Zi:n,U [i:n]

)
. (3.3)

These estimators are easily to handle and are similar to those exhibited by Suzukawa (2002)
but we refine this approach by the introduction of covariates. In this context, we need to derive
asymptotic properties as we consider Y in (3.3) to be an uncensored covariate. Note that these
estimators admit also a representation in terms of counting processes through the Kaplan-Meier
product-limit estimator (Allignol et al., 2013, Equation (9)).
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3.2 Asymptotic properties

Let τY and τZ be the least upper bounds of the distribution functions of Y and Z. Under As-
sumptions 1 and 2, the consistency and weak convergence of estimator (3.1) on [0, τY ] can be easily
demonstrated since Stute (1993) and Stute (1996) conditions are satisfied. Note that this result is
also verified if H and G have no jump in common which is a less restrictive condition than con-
tinuity. Thus, for the rest of this subsection we focus on the consistency and weak convergence
properties of estimator (3.3).

Theorem 1. Under Assumptions 1 and 2 and assuming that ϕ is an F0-integrable function, we
have with probability 1

Ŝ(v)
n (ϕ) −→ S(v)

∞ (ϕ) =

∫
1{t<τZ}ϕ (s, t,u) F

(v)
0 (ds, dt, du) , v ∈ V. (3.4)

In addition, if the support of Z is included in that of C, we have obviously Ŝ(j)
n (ϕ)→ S(j) (ϕ) w.p.1.

This result constitutes an extension of the results demonstrated by Suzukawa (2002, Theorem
1) which are directly based on the proof of Stute and Wang (1993) theorem’s. More details about
the proof is given in A.

To obtain weak convergence properties, we adapt the approach followed by Stute (1995) for
Kaplan-Meier integrals and Stute (1996) for the version with covariates. We define similar inte-
grability conditions for any function ϕ F0-integrable to prove a general convergence result. These
conditions are given below.

Assumption 3.
∫
ϕ (S, T,U)2 δ

(1−G (T ))2
dP =

∫
ϕ (S, T,U)2

1−G (T )
dP <∞.

Assumption 4.
∫
|ϕ (S, T,U) |

√
C0 (T )1{T<τZ} dP <∞.

We introduce

M (z) = P (Z ≤ z) ,M0 (z) = P (Z ≤ z, δ = 0) ,

M (v) (y, z,u) = P (Y ≤ y, Z ≤ z,U ≤ u, δ = 1, V = v) ,

and

C0 (x) =

∫ x−

0

G (dy)

(1−M (y)) (1−G (y))
.

We also introduce the functions

λ
(v)
1 (x) =

1

1−M (x)

∫
ϕ (s, t,u)1{x<t<τZ}

(1−G (t))
M (v) (ds, dt, du),

and

λ
(v)
2 (x) =

∫
λ
(v)
1 (τ)1{τ<x}

1−M (τ)
M0 (dτ).

Let us discuss these assumptions. Assumption 3 corresponds to a variance type assumption on ϕ,
guaranteeing the existence of finite second moments. The second condition comes from Stute (1995)
and guarantees the distribution convergence results on [0, τZ ]. Notice that this last assumption is
relatively weak.

Now, we introduce Ŝn (ϕ) =
(
Ŝ
(v)
n (ϕ))

)>
v∈V

and S (ϕ) =
(
S(v) (ϕ)

)>
v∈V . The following theorem

gives asymptotic properties for Ŝn (ϕ).
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Theorem 2. Suppose that the assumptions of Theorem 1 are satisfied and the support of Z is
included in that of C. Under Assumptions 3 and 4, we have

√
n
{
Ŝn (ϕ)− S (ϕ)

}
d−→ N (0,Σ (ϕ)) , (3.5)

where Σ (ϕ) is a m×m symmetric matrix associated to the covariance matrix of the vector a (ϕ) =
(av (ϕ))v∈V where

av (ϕ) =
ϕ (Y, Z,U) δJ (v)

1−G (Z)
+ λ

(v)
1 (Z) (1− δ)− λ(v)2 (Z) , v ∈ V.

The proof of this theorem is postponed in B. From the Equation (3.5), we could obtain asymp-

totic confidence intervals if functions
1

1−G
, λ(v)1 and λ(v)2 were known. This can be done by just

replacing the distribution functions H, M , M0 andMv in the expression of Σ (ϕ) by their empirical
counterparts. However, this calculation may be laborious due to the expression of a (ϕ). Thus, im-
plementing a non-parametric bootstrap procedure is the most appropriate way to obtain asymptotic
variance-covariance estimators.

3.3 Possible improvement for handing left-truncation

In this subsection, we discuss a possible outlook to handle left-truncated data but the formal proof
of the asymptotic results is not discussed in this paper.

So far, for the sake of simplicity, we ignored the case of a left-truncation process L. For LTC
insurance data, which is studied in Section 5, left-truncation is not really an issue as it always
occurs when the individual is still in the healthy state. Hence, Y and Z are observed if Y ≥ L. By
revisiting Assumption 1 such that (C,L) are independent from (S, T, V ), the issue can be addressed
by removing the data for which Yi is smaller than Li, 1 ≤ i ≤ n (Andersen et al., 1993, Chapter
III.3). This would lead to a small bias in our application.

However, more complicated situations may arise in a more general framework if the left-truncation
events can occur after S. Indeed, simply removing truncated observations may induce considerable
loss of information for the estimation of probability P (S ≤ s, V1 = e) with s ≥ 0 and e ∈ C (a0)(Peng
and Fine, 2006). In such a framework, we suggest to refine our proposed product-limit integral es-
timators (3.3) for left-truncated and right-censored data drawing e.g. the representation defined
by Sellero et al. (2005) and assuming particularly that (C,L) is independent of (S, T, V ) and C is
independent of L. For that, one could adapt the Aalen-Johansen weights such that

W̃
(v)
in =

δ[i:n]J
(v)
[i:n]

nCn (Zi:n)

i−1∏
j=1

(
1− 1

nCn (Zi:n)

)δ[j:n]
,

where Cn (x) = n−1
∑n

i=1 1Li≤x≤Zi .

3.4 Application for transition probabilities estimation

In this subsection, we consider the problem of estimating non-parametrically the transition probabil-
ities introduced in 2.2 when the Markov assumption is not necessarily satisfied. In case the process
is Markovian, transition probabilities can be estimated non-parametrically with the so-called Aalen-
Johansen estimator (Aalen and Johansen, 1978; Andersen et al., 1993). However, this methodology
fails when the Markov assumption is wrong, especially when the transition probabilities depend on
both time and duration (semi-Markov models).
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To address this issue, we express (2.1), (2.2), (2.3) , (2.4) and (2.5) as integrals of the form∫
ϕ dH0 and

∫
ϕ dF

(v)
0

(2.1) =
E
[
ϕ
(0)
t,u (S,U)

]
E
[
ϕ
(0)
s,u (S,U)

] , (3.6)

(2.2) =
E
[
ϕ
(1)
s,t,η,u (S, T,U)1{V=(e,C(e))}

]
E
[
ϕ
(0)
s,u (S,U)

] , (3.7)

(2.3) =
E
[
ϕ
(2)
s,t,u (S, T,U)1{V=(e,C(e))}

]
E
[
ϕ
(2)
s,s,u (S, T,U)1{V=(e,C(e))}

], (3.8)

(2.4) =
E
[
ϕ
(3)
s,t,η,ζ,u (S, T,U)1{V=(e,d)}

]
E
[
ϕ
(4)
s,t,η,u (S, T,U)1{V=(e,C(e))}

], (3.9)

(2.5) =
E
[
ϕ
(5)
s,t,u (S, T,U)1{V=(0,d)}

]
E
[
ϕ
(0)
s,u (S,U)

] , (3.10)

with ϕ(0)
s,u (x, z) = 1{x>s,z=u}, ϕ

(1)
s,t,η,u (x, y, z) = 1{s<x≤min(t,t−η),y>t,z=u}, ϕ

(2)
s,t,u (x, y, z) = 1{s<x,y>t,z=u},

ϕ
(3)
s,tη,ζ,u (x, y, z) = 1{s<x≤t,η<y−x≤ζ,z=u}, ϕ

(4)
s,tη,u (x, y, z) = 1{s<x≤t,η<y−x,z=u} and ϕ

(5)
s,t,u (x, y, z) =

1{x>s,y≤t,z=u}.
Our approach consists in regarding the numerators and denominators in equations (3.6), (3.7),

(3.8), (3.9) and (3.10) as expectation of a simple function of (S, T,U) and estimating these expec-
tations with Kaplan-Meier integrals and Aalen-Johansen integrals. Therefore, natural estimators
for these quantities are

p̂00 (s, t | u) =
Ŝn

(
ϕ
(0)
t,u

)
Ŝn

(
ϕ
(0)
s,u

), (3.11)

p̂0e (s, t, η | u) =
Ŝ
(e,Ce)
n

(
ϕ
(1)
s,t,η,u

)
Ŝn

(
ϕ
(0)
s,u

) , (3.12)

p̂ee (s, t | u) =
Ŝ
(e,Ce)
n

(
ϕ
(2)
s,t,u

)
Ŝ
(e,Ce)
n

(
ϕ
(2)
s,s,u

), (3.13)

p̂ed (s, t, η, ζ | u) =
Ŝ
(e,d)
n

(
ϕ
(3)
s,t,η,ζ,u

)
Ŝ
(e,Ce)
n

(
ϕ
(4)
s,t,η,u

) , (3.14)

p̂0d (s, t | u) =
Ŝ
(0,d)
n

(
ϕ
(5)
s,t,u

)
Ŝn

(
ϕ
(0)
s,u

) , (3.15)
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Theorems 1 and 2 can be applied to derive asymptotic properties for (3.12), (3.13) , (3.14)
and (3.15). The consistency and weak convergence of p̂00 (s, t | u) can be proved easily with the
results of Stute (1996) and the delta-method.

Proposition 3. Under assumptions of Theorem 1, estimators for (3.7), (3.8) , (3.9) and (3.9)
are consistent w.p.1 if the support of Z is included in that of C. Further, we deduce weak conver-
gence properties for these estimators as functions ϕ(1)

s,t,u,η, ϕ
(2)
s,t,u, ϕ

(3)
s,t,η,ζ,u, ϕ

(4)
s,t,η,u and ϕ(5)

s,t,u satisfy
Assumptions 3 and 4. Thus, we have:

i.
√
n {p̂0e (s, t, η | u)− p0e (s, t, η | u)} d−→ N (0, σ0e (s, t, η | u)), with 0 ≤ s ≤ t, η ∈ [0,∞[ and

e ∈ CE (a0),

ii.
√
n {p̂ee (s, t | u)− pee (s, t | u)} d−→ N (0, σee (s, t | u)), with 0 ≤ s ≤ t and e ∈ CE (a0),

iii.
√
n {p̂ed (s, t, η, ζ | u)− ped (s, t, η, ζ | u)} d−→ N (0, σed (s, t, η, ζ | u)), with 0 ≤ s ≤ t, 0 ≤ η ≤

ζ, e ∈ CE (a0) and d ∈ C (e),

iv.
√
n {p̂0d (s, t | u)− p0d (s, t | u)} d−→ N (0, σ0d (s, t | u)), with 0 ≤ s ≤ t and d ∈ CD (a0),

where σ0e (s, t, η | u), σee (s, t | u), σed (s, t, η, ζ | u) and σ0d (s, t | u) are some limit variance func-
tions to be precised.

Proof of Proposition 3. First, the simple function ϕ(0)
s,u satisfies conditions of Theorem 1.1 in Stute

(1996) and therefore Ŝn
(
ϕ
(0)
s,u

)
admit consistent and weak convergence properties. Second, apply-

ing the result of Theorem 1 to the functions ϕ(1)
s,t,u,η, ϕ

(2)
s,t,u, ϕ

(3)
s,t,η,ζ,u, ϕ

(4)
s,t,η,u, and ϕ

(5)
s,t,u which are

clearly F0-integrable, we obtain the consistency results. The proof for weak convergence is obvi-
ously obtained by application of Theorem 2 to our particular functions. The form of variances
σ0e (s, t, η | u), σee (s, t | u), σed (s, t, η, ζ | u) and σ0d (s, t | u) follows with the delta method but
are not easy.

This proposition enlarges the results of Meira-Machado et al. (2006, Corollary 1,2). As seen
above, the variance functions of the limiting Gaussian process is tricky to estimate and can be
computed by means of bootstrap techniques. In section 5, we construct non-parametric bootstrap
pointwise confidence bands for our estimators. This is done with a simple bootstrap resampling
procedure (Efron, 1979). Recently, Beyersmann et al. (2013) provide wild bootstrap approach for
the Aalen-Johansen estimator for competing risks data but, as it is remarked in their paper, this
approach is quite close to that followed by Efron. To the best of our knowledge, no further tentative
has been proposed to obtain more consistent bootstrap methodologies for cumulative intensity
function or other transition probabilities.

3.5 Application to the estimation of association

We are now interested in applying our results to measure nonparametrically associations between
the cause-specific failure times. We exhibit the non-parametric estimator of (2.6) and give its
asymptotic properties. For the sake of simplicity, we ignore here the discrete covariate vector U .
For (e, d) ∈ V and 0 ≤ s ≤ t, the cross-odds ratio is a function of

P (T ≤ t, V2 = d | S ≤ s, V1 = e) =
P (T ≤ t, V2 = d, S ≤ s, V1 = e)

P (S ≤ s, V1 = e)
,
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and
P (T ≤ t, V2 = d | V1 = e) =

P (T ≤ t, V2 = d, V1 = e)

P (V1 = e)
.

The former admits the following non-parametric estimator

F̂
(e,d)
0n (s, t)

Ĥ
(e)
0n (s)

,

where Ĥ(e)
0n is the estimator of the sub-distribution function related to S i.e.

Ĥ
(e)
0n (s) =

n∑
i=1

Win1{V1,[i:n]=e}1{Yi:n≤s}.

The latter can be estimated considering

F̂
(e,d)
n (t)

Ĥ
(e)
0n (∞)

.

Hence, we have the following non-parametric estimator for the cross-odds ratio

π̂
(e,d)
0n (s, t) =

F̂
(e,d)
0n (s, t)

Ĥ
(e)
0n (s)− F̂ (e,d)

0n (s, t)

F̂
(e,d)
n (t)

Ĥ
(e)
0n (∞)− F̂ (e,d)

n (t)

, (3.16)

Proposition 4. Under assumptions of Theorem 1, the time dependent association estimator (3.16)
is consistent w.p.1 if the support of Z is included in that of C. Then, we have

√
n
{
π̂
(e,d)
0n (s, t)− π(e,d)0 (s, t)

}
d−→ N

(
0, σ(e,d)π (s, t)

)
,

with 0 ≤ s ≤ t, and (e, d) ∈ V and where σ(e,d)π (s, t) is some variance function to be precised.

Proof of the Proposition 4. Theorems 1 and 2 are satisfied for the estimator of the sub-distribution
function F̂ (e,d)

0n . The results follow easily using the convergences properties of the Aalen-Johansen
estimators (Andersen et al., 1993) and the delta-method for weak convergence.

By asymptotic normality of (3.16), we can measure locally the association for particular times s
and t. For variance calculation purposes, the bootstrap procedure is appropriate and we suggest a
simple resampling procedure as discuss above. To avoid regarding only some arbitrary time points,
we develop a global measure on the upper wedge {0 ≤ s ≤ t} with an integrated weighted average
version of the cross odds-ratio. A similar approach is followed by Cheng et al. (2007) for bivariate
competing risks data to setup independence tests based on the ratio of the conditional cumulative
incidence function divided by the unconditional cumulative incidence function. They have obtained
convergence results for their estimators with a different strategy than ours, using counting processes
convergence properties and proving that both the bivariate cause-specific hazard and the bivariate
cumulative incidence functions are Hadamard differentiable maps on appropriate domains.

Let µ(e) =
[
µ
(e)
1 , µ

(e)
2

]
and µ(d) =

[
µ
(d)
1 , µ

(d)
2

]
be two time intervals associated with causes e and

d, corresponding to the study period, and let’s introduce the following test statistic
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π̂
(e,d)∗
0n =

∫∫
µ(e)×µ(d)

1{s≤t}w̃n (s, t) π̂
(e,d)
0n (s, t) dsdt, (3.17)

where
w̃n (s, t) =

ŵn (s, t)∫∫
µ(e)×µ(d) 1{s≤t}ŵn (s, t) dsdt

,

represents a weight function that we assume to converge uniformly over µ(e) × µ(d) to a bounded
deterministic function w (s, t). We next derive asymptotic properties for π̂(e,d)∗0n .

Proposition 5. Under the assumptions of Proposition 4, π̂(e,d)∗0n is consistent and
√
n
(
π̂
(e,d)∗
0n − π(e,d)∗

)
is asymptotically normal with mean 1.

Proof of the Proposition 5. First, we note that π̂(e,d)∗0n is Hadamard differentiable at π̂(e,d)0n . By the
results of Proposition 4 and applying the functionnal delta-method (van der Vaart and Wellner,
2000, Theorem 3.9.4), the weak consistency result follows.

The weight function may be chosen constant over the integration region but selecting an appro-
priate function can give more flexibility, and increase the power of the test. As remarked by Cheng
et al. (2007), this requires a preliminary analysis to identify time points with large associations or
lack of data. In addition, regions with opposite sign association should be investigated separately
to avoid reducing the significance of the test.

4 Simulation results for transition probabilities

In this section, we deploy a simulation approach to assess the performance of our new estima-
tors (3.12) and (3.13) relative to the Aalen-Johansen estimators. In the following, the computations
are carried out with the software R (R Core Team, 2015). As our model is based on competing risks
models, the R-package mstate designed by De Wreede et al. (2011) and the book of Beyersmann
et al. (2011) give useful initial toolkits for the development of our code. Note that the model pro-
vided by Meira-Machado et al. (2006) is also implemented in R (Meira-Machado and Roca-Pardinas,
2011). Our script is available upon request from the first author.

For simulation purposes without the Markov assumption, we need to specify dependence assump-
tion between each latent failure times. In presence of only one disease state, i.e. simple illness-death
model, Amorim et al. (2011) use Farlie-Gumbel-Morgenstern copula to model the bivariate distri-
bution of gap times (S, T − S). With our more general model, we consider the simulation approach
set up by Rotolo et al. (2013) applied to an acyclic multi-state model as depicted in Figure 2. For
the sake of simplicity and without loss of generality, we consider only one terminal event and two
non-terminal events.

[Figure 2 about here.]

First, we set a Clayton copula Cθ0 with dependent parameter θ0 to combine the failure times
T0e, e ∈ {e1, e2}, and T0d from the starting state a0 with notations defined in sub-section 2.1

P (T0e1 > te1 , T0e1 > te2 , T0d > td) = Cθ0 (P (T0e > te1) ,P (T0e > te2) ,P (T0d > td))

=

1 + P (T0d > td)
−θ0 +

∑
e∈{e1,e2}

[
P (T0e > te)

−θ0 − 1
]−1/θ0 ,
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As a second step, we define another Clayton copula Cθe for each non-terminal event e1, e2 to
put together its latent times T0e and its children’s Ted. This gives for e ∈ {e1, e2}

P (T0e > te, Ted > td) = Cθe (P (T0e > te) ,P (Ted > td))

=
(

1 + P (T0e > te)
−θe + P (Ted > td)

−θe
)−1/θe

.

With this setting, we assume the dependent parameters θ0 and θe, e ∈ {e1, e2}, have the same
value θ = 0.5 for each copula model. We consider that the latent failure times T0e, Ted, e ∈
{e1, e2}, and T0d follow Weibull distributions Wei (λ, ρ) with λ and ρ being respectively the scale
and shape parameters. To assess the performance of our estimators, we introduce three independent
variables C0, C1 and C2 which follow Exponential distributions Wei (λ, 1) and right-censor failure
times originated from a0, e1 and e2. We compare the results under two censoring scenarios: (1)
a moderate censoring scenario and (2) a medium censoring scenario. Table 1 shows the selected
values for the parameters.

[Table 1 about here.]

The proportion of censoring for the both moderate scenario is 21% for S and 34% for T − S.
Under the medium scenario, they are respectively 24% and 47%. For each scenario, we consider
three samples with size n = 200, n = 400 and n = 800 based on K = 1000 replicated datasets.

Then, we focus especially on p̂0e (s, t, 0) and p̂ee (s, t) to measure the performance of our method-
ology for some fixed values of time s = 5, s = 10, s = 15. We choose these estimators as they can
also be computed with the Aalen-Johansen estimators. To do this, we follow Meira-Machado et al.
(2006) and compute the bias, variance and mean square error as well as their integrated versions
on the interval [s, s+ 50]5. Tables 2 and 3 report the results for both censoring scenarios.

[Table 2 about here.]

[Table 3 about here.]

The simulations show for p̂e1e1 (s, t) and p̂e2e2 (s, t) that our non-parametric estimators (NP) are
more relevant than the Aalen-Johansen estimators (AJ), both for the moderate and the medium
censoring scenario. Tables 2 and 3 clearly illustrate that the AJ estimator is highly biased compared
to our estimator and this bias seems to increase with the size of the sample. This leads to higher
MSE for AJ estimators. The good performances of NP estimators in terms of bias and MSE are
offset by an higher variance. Note that the bias for the NP estimator is weaker for small values
of s in line with the copula specification (lower tail dependence). In average, the time spent in
non-terminal state is longer for state e1 than for state e2, leading to higher bias for state e2 with
the NP estimators. For the medium scenario, the situation is different between e1 and e2 at time
s = 5 as individuals in state e1 are more prone to be censored. For both the AJ and NP estimators,
we remark that the bias and the variance increase with the value of s.

In a second step, we compare our estimators p̂0e1 (s, t, 0) and p̂0e2 (s, t, 0) to their Aalen-Johansen
equivalent. These results are more complex to investigate as in such a context the bias depends on
the choice of marginal distributions, the censoring scenarios, the interval [s, s+ 50]. The choice of the
Copula function also has an important effect as it defines the regions where the Markov assumption
is not satisfied. Indeed, the observation of local biases6 leads to identifying some particular time
points where the NP estimators are clearly relevant and others where these estimators are seriously

5We approximate the integral by a sum on time intervals of width 0.2
6Not shown here but available on demand.
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biased. This feature is illustrated in Tables 2 and 3 and contrasts with the results observed by
Meira-Machado et al. (2006), as their simulation process does not allow to extract this behavior. A
similar contradiction is also observed by Allignol et al. (2013) with comparable estimators but with
different simulation approach.

As the average time spent in state a0 before moving to state e1 is longer than e2, the dependance
with sojourn time in e1 has a more pronounced effect on the transition probability p0e1 (s, t, 0)
than sojourn time in e2 on p0e2 (s, t, 0). This explains why the Markovian estimator has better
performance for state e2. For p0e1 (s, t, 0), the Markovian estimator is highly biased for small values
of s and t − s (s ∈ {5, 10} and t ≤ 20). This bias remains stable with the sample size. For this
reason, NP estimators have better performances in terms of integrated bias at time s = 5 for e1
but this gain decreases significantly when the censoring effect increases and is relatively low for e27.
Conversely, NP estimators are highly biased when t > 20 and this bias increases with the values
of s. This effect is particularly pronounced for T0e2 due to the selected parameters. As we choose
Clayton copula, this results was expected. With these two divergent effects, the integrated bias is
sensitive to the selected period: the first effect dominates for low values of s and t but the second
is stronger elsewhere. For n = 400 and n = 800, this induces a lower integrated bias for Markovian
estimators applied to state e2 and both estimators are equivalent, except for s = 5, for state e1. As
for the integrated variance estimators, the simulations indicate that the NP and AJ estimators are
similar.

5 Application to LTC insurance data

Long Term Care (LTC) insurance is a mix of social care and health care provided on a daily basis,
formally or informally, at home or in institutions, to people suffering from a loss of mobility and
autonomy in their activities of daily life. In France, this guarantee is dedicated to elderly people
who are partially or totally dependent and benefits are mainly paid as an annuity. Their amounts
depend on the policyholders’ lifetime-paths and possibly on their degree of dependency (see e.g.
Plisson, 2009; Courbage and Roudaut, 2011). This section describes our LTC insurance dataset
and discusses the results obtained with our non-parametric estimators. Finally we measure the
uncertainty on the estimated transition probabilities with a non-parametric bootstrap process.

5.1 Data description

The dataset that we analyze here is drawn from the database of a French LTC insurer. It is almost
the same dataset that is used to estimate the probabilities of entry into dependency in Guibert and
Planchet (2014). This data is also studyed by Tomas and Planchet (2013) with an adaptive non-
parametric approach for smoothing the survival law of LTC claimants but without distinguishing
the effect of each disease. In this last study, the authors compute the monthly death rates for the
population of LTC heavy claimants and exhibit significant differences for duration times indicating
that the lifetime after entry into dependency clearly depends upon the age and the time elapsed
since the entry8.

The data is longitudinal with independent right-censoring (administrative censoring) and left-
truncation. Comparing to the previous studies, we have improved the data by adding the individual
cause-specific living path after entry into dependency. The period of observation stretches from the
beginning of 1998 to the end of 2010 and the range of ages is 65-90. We observe around 210,000
contracts and 68% of insured are censored before entry in dependency. We refer to Guibert and

7We obtain better performance for e2 when s < 5.
8In addition, we have fitted a Cox semi-Markov model as a preliminary test to assess the Markov assumption,

which returns the duration time as a significant factor. This means that the Markov assumption is not satisfied.
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Planchet (2014) and Tomas and Planchet (2013) for more detailed description of this dataset. The
data is split into 4 groups of pathologies: a neurological pathologies e1 (censoring rates=40%), var-
ious pathologies e2 (censoring rates=36%), terminal cancers e3 (censoring rates=6%) and dementia
e4 (censoring rates=45%). Considering death d1 and cancellation d2 as the other exit causes from
the initial state, the multi-state structure of our dataset is shown in Figure 3. We do not consider
any covariate in this application.

[Figure 3 about here.]

5.2 Estimation results for transition probabilities and association measures

In this section, we perform the estimation of transition probabilities (3.12) and (3.14). Figure 4
displays the annual probabilities of becoming dependent between s and s + 1 year and staying at
least one month in the disability state.

[Figure 4 about here.]

We also present for comparison the annual incidence rates

q0e (s, s+ 1) = P (S ≤ s+ 1, V1 = e | S > s) ,

for each disease e computed with simple Aalen-Johansen estimators for competing risks data (see
Guibert and Planchet, 2014, Section 4.2). The corresponding pointwise 95% confidence intervals are
obtained from 500 bootstrap resamples employing the asymptotic normality and bootstrap standard
errors estimates. For each disease, transition probabilities (3.12) globally grow over time and we
observe that the gap between incidence rates and transition probabilities increases rapidly after
age 75. For terminal cancers, the incidence rates by age 80 is 3.7 times higher than transition
probabilities due to a very high mortality of insured just after entry in dependency.

We give in Figure 5 the crude estimated surface of monthly death rates ped (s, s+ 1, η, η + 1/12)
with our model for each entry cause. For the sake clarity, these rates are presented in terms of age
of occurrence9 and duration times in dependency state. The range of ages of occurrence is 70− 90
and the maximum duration is 60 months. Beforehand, we have removed rates higher than 0.5 which
are clearly not reliable.

[Figure 5 about here.]

The death rates are not observed for some regions due to lack of data, in particular for duration
longer than twelve months. We find that the residual lifetime (after an individual enters dependency)
is very different from one the type of disease to another and this clearly means that a specific
association structure is needed to model this phenomena. In particular, the model shows extreme
death rates for terminal cancers for the first six months. We now use the cross-odds ratio to
measure association. We compute log

(
π̂
(e,d)
0n (s, s+ t)

)
along with 95% confidence intervals at age

s = 70, 75, 80, 85, and 90 and duration t = 1, 6, 12 and 24 months obtained with 500 bootstrap
samples. The results are given in Table 4.

[Table 4 about here.]

For each disease, the association decreases over age s and decreases slightly with duration for
a given age s. This confirms the strong effect of entry in non-terminal events on survival time.
Association for terminal cancers is no longer available beyond 6 months at age 90 due to lack of
data.

9We have considered integer ages.
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6 Discussion

This paper focuses on the non-parametric analysis of particular acyclic multi-state models relaxing
the Markov assumption in presence of independent right-censoring. Building on a competing risks
set-up distinguishing two different lifetimes, we propose estimators for the treatment of such model
based on Aalen-Johansen integrals for competing risks data. The asymptotic properties can be
derived by adapting the results obtained for Kaplan-Meier integrals with covariates to competing
risks data. This allows to exhibit estimators for transition probabilities which can be used to check
any assumption usually made in applications with observed data. Due to the bivariate structure of
our model, we attempt to measure the association between the failure times for each joint causes.
The measure chosen is inspired by those recently developed for bivariate competing risks data, and
adapted to account for the mechanical association between failure causes.

The simulations demonstrate the relevance of our approach to estimate particular transition
probabilities. Our estimators become locally superior to the so-called Aalen-Johansen estimator for
transition probabilities of the form (2.2) for time points where the Markov assumption is cleary
rejected. As an illustration, we apply estimators adapted to actuarial needs on LTC insurance data
where the Markov assumption is not verified. In addition, we introduce association estimators that
can be used to pinpoint the region where the Markov assumption is not satisfied.

Besides, a interesting extension would be to develop methods to reduce the bias of our Aalen-
Johansen integrals estimators with finite samples. The work of Amorim et al. (2011) is a natural
direction to follow when covariates are not present. Note also that recent improvements (better per-
formance) of these initial estimators of Meira-Machado et al. (2006) are given by de Uña-Álvarez
and Meira-Machado (2015). Our non-parametric estimators are applicable with observed discrete
covariates. However, it may be difficult to apply directly these estimators with lots of covari-
ates due to the dimension of the problem. An outlook for future investigations consist in analysis
non-parametric and semi-parametric regressions with the framework introduced in this paper. De-
veloping a semi-parametric approach for the cross odds ratio following Scheike and Sun (2012) may
be also interesting to exploit the bivariate structure of our model. Finally, there is another issue
in constructing some goodness-of-fit tests which requires to compute appropriate critical values.
We have considered a classic Efron’s bootstrap technique (Efron, 1981) with resampling approach
for our applications. Nevertheless with survival data in presence of censoring, this methodology is
generally chosen since it is more consistent. This subject is left for future works.
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A Proof of Theorem 1

Let, for i = 1, . . . , n and v ∈ V, D(v)
i =

(
Yi, δi, J

(v)
i ,U i

)
and for each n ≥ 0, the σ-algebra

F (v)
n = σ

(
Zi:n, D

(v)
[i:n], 1 ≤ i ≤ n,Zn+1, D

(v)
n+1, . . .

)
,

where D(v)
[i:n] are the value paired with Zi:n.

Clearly for v ∈ V, Ŝ(v)
n (ϕ) is adapted to F (v)

n and F (v)
n is decreasing and converges towards F (v)

∞ =⋂
n≥1F

(v)
n . Our strategy, following Stute andWang (1993), is to demonstrate that

(
Ŝ
(v)
n (ϕ) ,F (v)

n , n ≥ 0
)

is a reverse-time supermartingale and then apply convergence result given by Neveu (1975, Propo-
sition V-3-11, p. 116) to obtain consistency. For the following lemma, we consider that ϕ is a
nonnegative fonction. Otherwise, the results remain applicable by decomposing ϕ into positive and
negative parts.

Lemma 1. For ϕ ≥ 0 and assuming that the distribution function of Z is continuous,
(
Ŝ
(v)
n (ϕ) ,F (v)

n , n ≥ 0
)

is a reverse-time supermartingale for v ∈ V.

Proof. Denote by F̂ (v)
n (z) =

∑n
i=1 W̃

(v)
in 1{Zi:n≤z} and let F̂ (v)

n {z} = F̂
(v)
n (z) − F̂ (v)

n (z−), we can
remark that

Ŝ(v)
n (ϕ) =

n∑
i=1

ϕ
(
Y[i:n], Zi:n,U [i:n]

)
F̂ (v)
n {Zi:n}.

If Zn+1 has rank k with 1 ≤ k ≤ n+ 1, then Zi:n = Zi:n+1 for all i < k. Thus, we have

k−1∑
i=1

ϕ
(
Y[i:n], Zi:n,U [i:n]

)
F̂ (v)
n {Zi:n} =

k−1∑
i=1

ϕ
(
Y[i:n+1], Zi:n+1,U [i:n+1]

)
F̂ (v)
n {Zi:n+1} ,

n∑
i=k

ϕ
(
Y[i:n], Zi:n,U [i:n]

)
F̂ (v)
n {Zi:n} =

n+1∑
i=k+1

ϕ
(
Y[i:n+1], Zi:n+1,U [i:n+1]

)
F̂ (v)
n {Zi:n+1} ,

and
ϕ
(
Y[k:n+1], Zk:n+1,U [k:n+1]

)
F̂ (v)
n {Zk:n+1} = 0.

Hence, we obtain that

Ŝ(v)
n (ϕ) =

n+1∑
i=1

ϕ
(
Y[i:n+1], Zi:n+1,U [i:n+1]

)
F̂ (v)
n {Zi:n+1} . (A.1)

Following the same lines of the proof of Lemma 2.2 in Stute and Wang (1993) (see also Stute
(1993, Lemma 2.2)), we show with Lemma 2.1 of Stute and Wang (1993) applied to D[i:n] that

E
[
F̂ (v)
n {Zi:n+1} | F (v)

n+1

]
= W̃

(v)
i,n+1 , 1 ≤ i ≤ n

and
E
[
F̂ (v)
n {Zn+1:n+1} | F (v)

n+1

]
≤ W̃ (v)

n+1,n+1 .

Since ϕ ≥ 0, the result follows immediately by writing the conditionnal expectation of (A.1).
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From Lemma 1, we have by applying the Proposition V-3-11 of Neveu (1975) that E
[
Ŝ
(v)
n (ϕ) | F (v)

∞
]

admits limit P-almost surely. Due to the Hewitt-Savage zero-one law, F (v)
∞ is trivial and then

lim
n→∞

E
[
Ŝ(v)
n (ϕ) | F (v)

∞

]
= lim

n→∞
E
[
Ŝ(v)
n (ϕ)

]
= S(v)

∞ (ϕ) .

Now, we aim to determine the value of S(v)
∞ (ϕ). To do this, we write

m (z) = P (δ = 1 | Z = z) ,

Ψn (z) =
n∏
i=1

(
1 +

1−m (Zi:n)

n− i+ 1

)
1{Zi:n<z}

,

and for v ∈ V
ϕ̃(v) (z) = E

[
ϕ (Y,Z,U) δJ (v) | Z = z

]
.

Lemma 2. Under the assumptions of Lemma 1, we have for v ∈ V

E
[
Ŝ(v)
n (ϕ)

]
= E

[
ϕ̃(v) (Z)E [Ψn−1 (Z)]

]
.

Proof. Let Rjn denote the rank of Zj among Z1, . . . , Zn, we can write

E
[
Ŝ(v)
n (ϕ)

]
= E

[
n∑
i=1

W̃
(v)
in ϕ

(
Y[i:n], Zi:n,U [i:n]

)]

= E


n∑
i=1

1

n− i+ 1
E


ϕ
(
Y[i:n], Zi:n,U [i:n]

)
δ[i:n]J

(v)
[i:n]

×
i−1∏
j=1

(
n− j

n− j + 1

)δ[j:n]
| Z1:n, . . . , Zn:n


 .

From Lemma 2.1 of Stute and Wang (1993) applied to D
(v)
i for i = 1, . . . , n, we know that,

conditionally on Z1:n < . . . < Zn:n, the concomitants among the D’s are independent. Hence,

E
[
Ŝ(v)
n (ϕ)

]
= E

 n∑
i=1

ϕ̃(v) (Zi:n)

n− i+ 1

i−1∏
j=1

E

[(
n− j

n− j + 1

)δ[j:n]
| Zj:n

]
= E

 n∑
i=1

ϕ̃(v) (Zi:n)

n− i+ 1

i−1∏
j=1

(
1− m (Zj:n)

n− j + 1

)
= E

 n∑
i=1

ϕ̃(v) (Zi:n)

n

i−1∏
j=1

(
1 +

1−m (Zj:n)

n− j

)
= E

 n∑
i=1

ϕ̃(v) (Zi)

n

n∏
j=1

(
1 +

1−m (Zj)

n−Rjn

)
1{Zj<Zi}


= E

ϕ̃(v) (Z1)
n∏
j=1

(
1 +

1−m (Zj)

n−Rjn

)
1{Zj<Z1}

 . (A.2)

If Zj < Z1 then Rjn = Rj,n−1. Conditioning on Z1, the result follows easily.
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A similar proof is established in Stute and Wang (1993)[Lemma 2.4] and reused in Stute (1994).
Now, we are in position to prove the Theorem 1 by studying the process Ψn (z).

Proof of the Theorem 1. From Stute and Wang (1993)[Lemma 2.5 and Lemma 2.6] and assuming
that G and the distribution function of F are continuous, for each z < τZ , we have

E [Ψn (z)] ↑ 1

1−G (z)
. (A.3)

Hence, under the Assumption 2 and ϕ ≥ 0, we obtain by applying Lemma 2, Equation (A.3)
and the monotone convergence theorem that

S(v)
∞ (ϕ) =

∫
1{Z<τZ}

ϕ̃(v) (Z)

1−G (Z)
dP

=

∫
1{Z<τZ}E

[
ϕ (Y, Z,U) δJ (v) | Z

] 1

1−G (Z)
dP

=

∫
ϕ (S, T,U)

1{T<τZ}δJ
(v)

1−G (T )
dP

=

∫
ϕ (S, T,U)

1{T<τZ}J
(v)

1−G (T )
P (T ≤ C | S, V, T,U) dP

=

∫
ϕ (S, T,U)

1{T<τZ}J
(v)

1−G (T )
P (T ≤ C | V, T ) dP.

Since C and (V, T ) are independent (see Assumption 1), we remark that P (T ≤ C | V, T ) = 1 −
G (T ). Hence, we obtain

S(v)
∞ (ϕ) =

∫
1{t<τZ}ϕ (s, t,u) F

(v)
0 (ds, dt, du). (A.4)

As indicated earlier for a continuous F (v), the desired proof follows from Lemma 1, Equation (A.4)
and proposition V-3-11 of Neveu (1975).

B Proof of Theorem 2

Here, we denote

M̂n (z) =

n∑
i=1

1{Zi≤z},

M̂0n (z) =
n∑
i=1

1{Zi≤z,δi=0},

M̂ (v)
n (y, z,u) =

n∑
i=1

1{Yi≤y,Zi≤z,U i≤u,δi=1,Vi=v},

the empirical distribution functions of M , M0 and M (v)
0 . Directly based on Stute (1995)’s proof,

our strategy is in 2 steps: prove CLT when ϕ vanishes to the right of some ν < τZ and then extend
it on [0, τZ ]. Note that Suzukawa (2002) also follows the same strategy.
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Lemma 3. We have for v ∈ V

Ŝ(v)
n (ϕ) =

1

n

n∑
i=1

ϕ (Yi, Zi,U i) δiJ
(v)
i exp

n
∫ Zi−

0
ln

1 +
1

n
(

1− M̂n (τ)
)
M̂0n (dτ)

 (B.1)

Proof. From the same rationale used to obtain (A.2), we find

Ŝ(v)
n (ϕ) =

1

n

n∑
i=1

ϕ (Yi, Zi,U i) δiJ
(v)
i

n∏
j=1

(
1 +

1− δj
n−Rjn

)
1{Zj<Zi}

.

The result follows immediately by definition of M̂n (z) and M̂0n (z), see proof of Lemma 2.1 in
Stute (1995).

The exponential term in (B.1) is expanded in Stute (1995) such as

exp {. . .} =
1

1−G (Zi)
(1 +Bin + Cin) +

1

2
exp {∆i} (Bin + Cin)2 , (B.2)

where

Bin = n

∫ Zi−

0
ln

1 +
1

n
(

1− M̂n (τ)
)
M̂0n (dτ)−

∫ Zi−

0

M̂0n (dτ)

1− M̂n (τ)
,

Cin =

∫ Zi−

0

M̂0n (dτ)

1− M̂n (τ)
−
∫ Zi−

0

M0 (dτ)

1−M (τ)
,

and ∆ is between the 2 terms

n

∫ Zi−

0
ln

1 +
1

n
(

1− M̂n (τ)
)
M̂0n (dτ) and

∫ Zi−

0

M0 (dτ)

1−M (τ)
.

Considering (B.1) and (B.2), we write

Ŝ(v)
n (ϕ) =

1

n

n∑
i=1

ϕ (Yi, Zi,U i) δiJ
(v)
i

1 +Bin + Cin
1−G (Zi)

+
1

2n

n∑
i=1

ϕ (Yi, Zi,U i) δiJ
(v)
i exp {∆i} (Bin + Cin)2.

(B.3)

Now, we decompose the last equation and study approximations for each component. To do
this, we make for ϕ the following assumption

Assumption 5. ϕ is an F0-integrable function such that
∫
ϕ2dF0 <∞ and ϕ (s, t,u) = 0 for ν < t

where ν < τZ .

This assumption aims to bound the denominators of the terms obtained in the following lemmas.

Lemma 4. Under Assumption 5, we have

1

n

n∑
i=1

ϕ (Yi, Zi,U i) δiJ
(v)
i

Cin
1−G (Zi)

= −
∫∫∫

ϕ (s, t,u)1{τ<t,τ<ω}

(1−G (t)) (1−M (τ))2
M̂n (dω)M0 (dτ)M (v) (ds, dt, du)

+

∫∫
ϕ (s, t,u)1{τ<t}

(1−G (t)) (1−M (τ))
M̂0n (dτ)M (v) (ds, dt, du) +R(v)

n ,

(B.4)

where |R(v)
n | = O

(
n−1 lnn

)
w.p.1.
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Proof. Using the following decomposition for z < Zn:n in Cin,

1

1− M̂n (z)
= − 1− M̂n (z)

(1−M (z))2
+

2

1−M (z)
+

(
M̂n (z)−M (z)

)2
(1−M (z))2

(
1− M̂n (z)

) ,
we can write

1

n

n∑
i=1

ϕ (Yi, Zi,U i) δiJ
(v)
i

Cin
1−G (Zi)

= −
∫∫∫

ϕ (s, t,u)1{τ<t,τ<ω}

(1−G (t)) (1−M (τ))2
M̂n (dω) M̂0n (dτ) M̂ (v)

n (ds, dt, du)

+ 2

∫∫
ϕ (s, t,u)1{τ<t}

(1−G (t)) (1−M (τ))
M̂0n (dτ) M̂ (v)

n (ds, dt, du)

−
∫∫

ϕ (s, t,u)1{τ<t}

(1−G (t)) (1−M (τ))
M0 (dτ) M̂ (v)

n (ds, dt, du) +R
(v)
n1 ,

(B.5)

where

R
(v)
n1 =

∫∫
ϕ (s, t,u)1{τ<t}

(1−G (t))

(
M̂n (t)−M (t)

)2
(1−M (t))2

(
1− M̂n (t)

)M̂0n (dτ) M̂ (v)
n (ds, dt, du).

Under Assumption 5 and with same argument as Stute (1995, Lemma 2.5), i.e. using iterated
logarithm for empirical measures and strong law of large numbers (SLLN), we obtain |R(v)

n1 | =
O
(
n−1 lnn

)
w.p.1. For the rest of the proof, we shall decompose the other terms in the previous

equation (B.5) as a U-statistic plus a negligible remainder. Formally, we have

∫∫∫
ϕ (s, t,u)1{τ<t,τ<ω}

(1−G (t)) (1−M (τ))2
M̂n (dω) M̂0n (dτ) M̂ (v)

n (ds, dt, du)

=

∫∫∫
ϕ (s, t,u)1{τ<t,τ<ω}

(1−G (t)) (1−M (τ))2

×

[
M̂n (dω)M0 (dτ)M (v) (ds, dt, du) +M (dω) M̂0n (dτ)M (v) (ds, dt, du)

− 2M (dω)M0 (dτ)M (v) (ds, dt, du) +M (dω)M0 (dτ) M̂ (v)
n (ds, dt, du)

]
+R

(v)
n2 ,

(B.6)

and∫∫
ϕ (s, t,u)1{τ<t}

(1−G (t)) (1−M (τ))
M̂0n (dτ) M̂ (v)

n (ds, dt, du)

=

∫∫
ϕ (s, t,u)1{τ<t}

(1−G (t)) (1−M (τ))

×
[
M̂0n (dτ)M (v) (ds, dt, du)−M0 (dτ)M (v) (ds, dt, du) +M0 (dτ) M̂ (v)

n (ds, dt, du)
]

+R
(v)
n3 ,

(B.7)
where |R(v)

n2 | = O
(
n−1 lnn

)
and |R(v)

n3 | = O
(
n−1 lnn

)
w.p.1. We refer to similar arguments as for

Lemmas 2.3 and 2.4 of Stute (1995) to obtain the two representations based on the Hajek projection
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of a V-statistic of the multivariate data
(
Yi, Zi,U i, δi, J

(v)
i

)
, 1 ≤ i ≤ n. Finally, the proof of (B.4)

follows by substituting (B.6) and (B.7) into (B.5).

Now, we regard the other terms in (B.3) in the following Lemma.

Lemma 5. Under Assumption 5, we have with w.p.1

1

n

∣∣∣∣∣
n∑
i=1

ϕ (Yi, Zi,U i) δiJ
(v)
i

Bin
1−G (Zi)

∣∣∣∣∣ = O
(
n−1

)
, (B.8)

and
1

2n

∣∣∣∣∣
n∑
i=1

ϕ (Yi, Zi,U i) δiJ
(v)
i exp {∆i} (Bin + Cin)2

∣∣∣∣∣ = O
(
n−1 lnn

)
. (B.9)

Proof. The proof follows immediately from the proofs of Lemmas 2.6 and 2.7 of Stute (1995).

Proof of Theorem 2. With Lemmas 4 and 5, Equation (B.3) yields

Ŝ(v)
n (ϕ) =

1

n

n∑
i=1

ϕ (Yi, Zi,U i) δiJ
(v)
i

1−G (Zi)
+

1

n

n∑
i=1

[
λ
(v)
1 (Zi) (1− δi)− λ(v)2 (Zi)

]
+R

(v)
n4 (B.10)

where |R(v)
n4 | = O

(
n−1 lnn

)
w.p.1. As a consequence, we have CLT results for Ŝ(v)

n (ϕ), v ∈ V, and
Theorem 2 follows under Assumption 5.

Finally, the results of Theorem 2 can be extended on ]ν, τZ ] by an argument similar to that of
the proof of Theorem 1.1 in Stute (1995) under Assumptions 3 and 4.
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Figure 1: Exemple of an acyclic multi-state model with 2-level of competing risks.
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Figure 2: Multi-state structure for the simulation study.
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Figure 3: Multi-state structure of LTC data.
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Figure 4: Estimated transition probabilities (dashed line) from the healthy state a0 to the
dependency states e1, . . . , e4 and the related incidence rates (solid line). The corresponding

pointwise 95% confidence interval are obtained from 500 bootstrap samples.
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(a) e1-Neurologic pathologies.
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(b) e2-Various pathologies.
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(c) e3-Terminal cancers.
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(d) e4-Dementia.

Figure 5: Surfaces of estimated death rates for (a) Neurologic pathologies, (b) Various
pathologies, (c) Terminal cancers and (d) Dementia entry causes.
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Table 1: Simulation parameters for the both censoring scenarios.

Parameter T0e1 T0e2 T0d C0 Te1d C1 Te2d C2

Moderate censoring scenario
Scale λ 25 15 40 35 2.5 10 5 15
Shape ρ 0.9 0.8 1.1 1 0.5 1 0.8 1

Medium censoring scenario
Scale λ 25 15 40 27 2.5 3 5 7
Shape ρ 0.9 0.8 1.1 1 0.5 1 0.8 1

Note: This table displays the simulation parameters used for the
moderate and the medium censoring scenarios. Our simulation ap-
proach uses Weibull distributions Wei (λ, ρ) .

Table 2: Performance analysis for the moderate censoring scenario.

p0e1 (s, t, 0) pe1e1 (s, t) p0e2 (s, t, 0) pe2e2 (s, t)

n s Estimator BIAS VAR MSE BIAS VAR MSE BIAS VAR MSE BIAS VAR MSE

200 5 NP 0.2677 0.0292 0.0314 0.6066 0.7473 0.7559 0.1974 0.0708 0.0719 1.0558 0.4734 0.4986

5 AJ 0.2107 0.0238 0.0250 12.5020 0.1686 4.7780 0.2025 0.0545 0.0557 13.0388 0.0823 4.6581

10 NP 0.2400 0.0479 0.0495 1.6947 1.4419 1.5208 0.3353 0.1322 0.1353 2.4179 0.9449 1.0810

10 AJ 0.4173 0.0562 0.0600 13.3934 0.4767 5.4007 0.3671 0.1225 0.1263 14.6820 0.1721 5.6497

15 NP 0.2955 0.0846 0.0871 2.2481 2.7788 2.9194 0.4811 0.2538 0.2597 3.1900 1.8140 2.0565

15 AJ 0.6290 0.1150 0.1240 13.0411 1.5824 6.0611 0.5685 0.2548 0.2649 15.6106 0.4091 6.3747

400 5 NP 0.1410 0.0150 0.0155 0.4132 0.3997 0.4036 0.0971 0.0391 0.0393 0.7755 0.2467 0.2595

5 AJ 0.1157 0.0103 0.0110 12.6670 0.0759 4.8312 0.1268 0.0270 0.0275 13.0637 0.0383 4.6253

10 NP 0.1769 0.0242 0.0250 1.7003 0.7829 0.8509 0.4501 0.0695 0.0747 2.3527 0.5160 0.6397

10 AJ 0.1962 0.0244 0.0255 13.7911 0.1779 5.3736 0.2102 0.0595 0.0607 14.7317 0.0820 5.5742

15 NP 0.2338 0.0401 0.0415 2.5634 1.3643 1.5265 0.6775 0.1209 0.1332 3.3957 0.9095 1.1744

15 AJ 0.3331 0.0510 0.0537 14.5204 0.4781 5.9202 0.3074 0.1201 0.1231 15.8460 0.1699 6.2659

800 5 NP 0.0771 0.0082 0.0084 0.2412 0.2174 0.2188 0.1602 0.0202 0.0208 0.9523 0.1337 0.1536

5 AJ 0.1250 0.0050 0.0057 12.7165 0.0378 4.8383 0.0907 0.0125 0.0128 13.1200 0.0181 4.6491

10 NP 0.2097 0.0132 0.0144 1.6509 0.4465 0.5060 0.7095 0.0335 0.0452 2.5794 0.2817 0.4321

10 AJ 0.1513 0.0114 0.0123 13.9589 0.0839 5.4243 0.1214 0.0273 0.0278 14.7700 0.0375 5.5601

15 NP 0.3212 0.0207 0.0234 2.6677 0.7873 0.9486 1.0721 0.0545 0.0809 3.8228 0.5062 0.8399

15 AJ 0.2075 0.0235 0.0249 14.9268 0.1820 5.9346 0.1559 0.0551 0.0558 15.9453 0.0779 6.2465

Note: This table contains the estimates of integrated absolute bias (BIAS), integrated variance (VAR), integrated mean square error (MSE) with our non-parametric
estimators (NP) and the so-called Aalen-Johansen estimators (AJ). We compare the results at time s = 5, s = 10 and s = 15 for samples with size n = 200, n = 400
and n = 800. The results are obtained with K = 1, 000 simulations.
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Table 3: Performance analysis for the medium censoring scenario.

p0e1 (s, t, 0) pe1e1 (s, t) p0e2 (s, t, 0) pe2e2 (s, t)

n s Estimator BIAS VAR MSE BIAS VAR MSE BIAS VAR MSE BIAS VAR MSE

200 5 NP 0.9159 0.0668 0.0887 1.914 1.2698 1.3744 0.4886 0.1229 0.1305 0.8676 0.7658 0.7836
5 AJ 0.4688 0.0451 0.0521 12.9462 0.2773 5.3693 0.5384 0.0979 0.1073 13.0583 0.1052 4.7245
10 NP 0.7760 0.1135 0.1308 2.1609 2.5397 2.6578 0.6324 0.2168 0.2267 2.9612 1.5380 1.7775
10 AJ 0.9717 0.1197 0.1462 13.3084 1.1390 6.127 1.0419 0.2340 0.2678 14.3679 0.3248 5.6281
15 NP 0.9537 0.2150 0.2421 3.1541 4.9698 5.2163 0.8754 0.3978 0.4167 3.9565 3.0569 3.5118
15 AJ 1.6298 0.2595 0.3284 9.9289 4.5391 7.5448 1.7081 0.4857 0.5766 14.572 1.1424 6.5033

400 5 NP 0.6869 0.0380 0.0503 1.4312 0.7400 0.7953 0.2841 0.0675 0.0699 0.9746 0.4318 0.4546
5 AJ 0.2855 0.0177 0.0197 13.192 0.0991 5.4109 0.2573 0.0446 0.0472 13.1923 0.0500 4.7607
10 NP 0.4185 0.0576 0.0624 1.6965 1.4035 1.4806 0.6878 0.1133 0.1274 3.6053 0.8671 1.1742
10 AJ 0.4284 0.0484 0.0547 14.6438 0.2995 6.3756 0.5511 0.1086 0.1197 14.7660 0.1252 5.6891
15 NP 0.4635 0.0977 0.1037 2.8219 2.4924 2.7194 0.9460 0.1983 0.2250 5.0151 1.5387 2.1608
15 AJ 0.8309 0.1140 0.1350 14.7602 1.0902 6.8767 0.9716 0.2321 0.2663 15.6127 0.35102 6.3629

800 5 NP 0.5821 0.0214 0.0296 1.2003 0.4007 0.4364 0.1554 0.0364 0.0371 0.8650 0.2357 0.2512
5 AJ 0.2491 0.0075 0.0092 13.2184 0.0460 5.3865 0.1506 0.0213 0.0220 13.1564 0.0256 4.6949
10 NP 0.2420 0.0275 0.0291 2.1227 0.7551 0.8598 0.9525 0.0519 0.0747 3.7492 0.4470 0.7607
10 AJ 0.2786 0.0202 0.0223 14.7628 0.1348 6.3297 0.2993 0.0516 0.0545 14.8136 0.0595 5.6305
15 NP 0.3710 0.0410 0.0449 4.0669 1.3465 1.7387 1.3976 0.0854 0.1343 5.6074 0.7752 1.4943
15 AJ 0.4045 0.0485 0.0542 15.8200 0.3886 7.0898 0.5068 0.1112 0.1204 15.8090 0.1446 6.2374

Note: This table contains the estimates of integrated absolute bias (BIAS), integrated variance (VAR), integrated mean square error (MSE) with our non-parametric
estimators (NP) and the so-called Aalen-Johansen estimators (AJ). We compare the results at time s = 5, s = 10 and s = 15 for samples with size n = 200, n = 400 and
n = 800. The results are obtained with K = 1, 000 simulations.
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Table 4: Estimated association measures.

s 1 month 6 months 12 months 18 months 24 months

e1-Neurologic pathologies

70 3.302 3.253 3.201 3.138 3.06

(3.034, 3.569) (2.98, 3.525) (2.921, 3.481) (2.853, 3.423) (2.768, 3.352)

75 2.604 2.543 2.48 2.403 2.329

(2.417, 2.79) (2.352, 2.733) (2.287, 2.672) (2.209, 2.596) (2.13, 2.528)

80 1.892 1.844 1.761 1.679 1.61

(1.725, 2.059) (1.676, 2.013) (1.586, 1.935) (1.501, 1.857) (1.429, 1.791)

85 1.373 1.348 1.277 1.223 1.182

(1.18, 1.567) (1.151, 1.544) (1.07, 1.484) (1.007, 1.439) (0.961, 1.404)

90 0.959 0.925 0.944 0.958 0.889

(0.67, 1.248) (0.617, 1.234) (0.627, 1.26) (0.575, 1.34) (0.45, 1.328)

e2-Various pathologies

70 5.15 5.124 5.06 5.044 4.974

(4.706, 5.594) (4.686, 5.562) (4.612, 5.509) (4.589, 5.498) (4.52, 5.428)

75 4.184 4.09 4.012 3.898 3.841

(3.939, 4.429) (3.835, 4.345) (3.752, 4.273) (3.635, 4.161) (3.574, 4.107)

80 3.27 3.229 3.135 3.007 2.914

(3.066, 3.474) (3.023, 3.436) (2.92, 3.349) (2.787, 3.226) (2.694, 3.134)

85 2.263 2.217 2.169 2.149 2.067

(2.057, 2.47) (2.002, 2.431) (1.944, 2.394) (1.915, 2.383) (1.823, 2.311)

90 1.621 1.661 1.694 1.736 1.706

(1.333, 1.909) (1.343, 1.979) (1.339, 2.048) (1.328, 2.144) (1.24, 2.172)

e3-Terminal cancers

70 3.846 3.802 3.761 3.692 3.637

(3.436, 4.257) (3.384, 4.221) (3.332, 4.189) (3.266, 4.119) (3.212, 4.062)

75 3.366 3.388 3.353 3.303 3.254

(3.065, 3.666) (3.073, 3.703) (3.035, 3.671) (2.982, 3.625) (2.931, 3.576)

80 3.004 3.036 3.026 2.984 2.915

(2.708, 3.3) (2.722, 3.35) (2.701, 3.352) (2.642, 3.325) (2.566, 3.264)

85 2.371 2.39 2.39 2.366 2.298

(2.059, 2.683) (2.055, 2.725) (2.029, 2.751) (1.977, 2.755) (1.894, 2.701)

90 1.652 − − − −
(1.026, 2.277) − − − −

e4-Dementia

70 4.45 4.469 4.403 4.282 4.174

(4.226, 4.673) (4.241, 4.698) (4.165, 4.641) (4.027, 4.537) (3.907, 4.442)

75 3.396 3.333 3.258 3.115 2.994

(3.27, 3.522) (3.199, 3.467) (3.117, 3.4) (2.969, 3.26) (2.845, 3.142)

80 2.333 2.272 2.193 2.102 2.007

(2.233, 2.433) (2.168, 2.376) (2.082, 2.304) (1.989, 2.214) (1.889, 2.125)

85 1.487 1.434 1.379 1.313 1.234

(1.38, 1.594) (1.323, 1.545) (1.264, 1.493) (1.192, 1.434) (1.107, 1.36)

90 0.885 0.876 0.826 0.775 0.751

(0.737, 1.033) (0.718, 1.034) (0.651, 1.002) (0.583, 0.968) (0.53, 0.973)

This table gives the estimated association measures for each dependency state e1, . . . , e4 with
the 95% confidence interval in parentheses computed with 500 bootstrap replications. The
results are calculated at age s = 70, 75, 80, 85, 90 and with duration t = 1, 6, 12, 24 months.
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