
HAL Id: hal-01183520
https://hal.science/hal-01183520v1

Preprint submitted on 9 Aug 2015 (v1), last revised 12 Aug 2015 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Functorial Bridge between the Infinitary Affine
Lambda-Calculus and Linear Logic

Damiano Mazza, Luc Pellissier

To cite this version:
Damiano Mazza, Luc Pellissier. A Functorial Bridge between the Infinitary Affine Lambda-Calculus
and Linear Logic. 2015. �hal-01183520v1�

https://hal.science/hal-01183520v1
https://hal.archives-ouvertes.fr

A Functorial Bridge between the Infinitary Affine
Lambda-Calculus and Linear Logic

Damiano Mazza1 and Luc Pellissier2

1 CNRS, UMR 7030, LIPN, Université Paris 13, Sorbonne Paris Cité
Damiano.Mazza@lipn.univ-paris13.fr

2 Université Paris 13, Sorbonne Paris Cité, LIPN, CNRS, UMR 7030
Luc.Pellissier@lipn.univ-paris13.fr

Abstract. It is a well known intuition that the exponential modality of
linear logic may be seen as a form of limit. Recently, Melliès, Tabareau
and Tasson gave a categorical account for this intuition, whereas the
first author provided a topological account, based on an infinitary syn-
tax. We relate these two different views by giving a categorical version
of the topological construction, yielding two benefits: on the one hand,
we obtain canonical models of the infinitary affine lambda-calculus in-
troduced by the first author; on the other hand, we find an alternative
formula for computing free commutative comonoids in models of linear
logic with respect to the one presented by Melliès et al.

1 Introduction

The exponential modality of linear logic as a limit. Following the work of Girard
[5], linearity has become a central notion in computer science and proof theory:
it provides a finer-grained analysis of cut-elimination, which in turn, via Curry-
Howard, gives finer tools for the analysis of the execution of programs. It is
important to observe that the expressiveness of strictly linear or affine calculi is
severely restricted, because programs in these calculi lack the ability to duplicate
their arguments. The power of linear logic (which, in truth, is not linear at
all!) resides in its so-called exponential modalities, which allow duplication (and
erasing, if the logic is not already affine).

A possible approach to understand exponentials is to see the non-linear part
of linear logic as a sort of limit of its purely linear part. The following old
result morally says that, in the propositional case, exponential-free linear logic
is “dense” in full linear logic:

Theorem 1 (Approximation [5]). Define the bounded exponential

!pA :=

p times︷ ︸︸ ︷
(A& 1)⊗ · · · ⊗ (A& 1),

and define ?pA := (!pA
⊥)⊥. Note that these formulas are exponential-free (if

A is). Let A be a propositional formula with m occurrences of the ! modality

and n occurrences of the ? modality. If A is provable in full linear logic, then
for every p1, . . . , pm ∈ N there exist q1, . . . , qn ∈ N such that A′ is provable in
exponential-free linear logic, where A′ is obtained from A by replacing the i-th
occurrence of ! with !pi and the j-th occurrence of ? with ?qj .

For example, from the canonical proof of ?A⊥ ` (!A ⊗ !A) (contraction, i.e.
duplication), we get proofs of ?p1+p2A

⊥ ` (!p1A⊗ !p2A) for all p1, p2 ∈ N.
Remember that, if a linear formula A says “A exactly once”, then !A stands

for “A at will”. The formula A & 1 is an affine version of A: it says “A at most
once”. This is a very specialized use of additive conjunction, in the sequel we
prefer to avoid additive connectives and denote the affine version of A by A•,
which may or may not be defined as A & 1 (for instance, in affine logic, A• =
A). Therefore, !pA = (A•)⊗p stands for “A at most p times”, hence the nameexplain? reference?
bounded exponential. So the Approximation Theorem supports the idea that !A
is somehow equal to limp→∞ !pA.

Categories vs. topology. This idea was recently formalized in two quite different
ways. The first is due to Melliès, Tabareau and Tasson [12], who rephrased the
question in categorical terms. It is well known [3] that a ∗-autonomous category
admitting the free commutative comonoid A∞ on every object A is a model of
linear logic (a so-called Lafont category). So, given a Lafont category, how does
one compute A∞? Using previous work by the first two authors [11], Melliès et
al. showed that one may proceed as follows:

– compute the free co-pointed object A• on A (which is A& 1 if the category
has binary products);

– compute the symmetric versions of the tensorial powers of A•, i.e. the fol-
lowing equalizers, where Sn is the set of canonical symmetries of (A•)⊗n:

A6n (A•)⊗n Sn

– compute the following projective limit, where A6n ←− A6n+1 is the canon-
ical arrow “throwing away” one component:

1 A61 A62 · · · A6n · · ·

A∞

At this point, for A∞ to be the commutative comonoid on A it is enough that all
relevant limits (the equalizers and the projective limit) commute with the tensor.
Although not valid in general, this condition holds in several Lafont categories
of very different flavor, such as Conway games and coherence spaces.

The second approach, due to the first author [9], is topological, and is based
directly on the syntax. One considers an affine λ-calculus in which variables are
treated as bounded exponentials: in a term of this calculus, a variable x may
appear any number of times, each occurrence appears indexed by an integer

(each instance, noted xi, is labelled with a distinct i ∈ N). The argument of
applications is not a term but a sequence of terms, and to reduce the redex
(λx.t)〈u0, . . . , un−1〉 one replaces each free xi in t with ui (a special term ⊥
is substituted if i ≥ n). The calculus is therefore affine, in the sense that no
duplication is performed, and in fact it strongly normalizes even in absence of
types (the size of terms strictly decreases with reduction).

At this point, the set of terms is equipped with the structure of uniform
space3, the Cauchy-completion of which, denoted by Λaff

∞ , contains infinitary
terms, i.e. allowing infinite sequences 〈u1, u2, u3, . . .〉. The original calculus em-
beds (and is dense) in Λaff

∞ by considering a finite sequence as an almost-
everywhere ⊥ sequence. Reduction, which is continuous, is defined as above, ex-
cept that infinitely many substitutions may occur. This yields non-termination,
in spite of the calculus still being affine: if ∆n := λx.x0〈x1, . . . , xn〉, then
∆ := limn→∞∆n = λx.x0〈x1, x2, x3, . . .〉 and Ω := ∆〈∆,∆,∆, . . .〉 → Ω.

Ideally, these infinitary terms should correspond to usual λ-terms. But there
is a continuum of them, definitely too many. The solution is to consider a par-
tial equivalence relation ≈ such that, in particular, xi ≈ xj for all i, j and
t〈u1, u2, u3, . . .〉 ≈ t′〈u′1, u′2, u′3, . . .〉 whenever t ≈ t′ and, for all i, i′ ∈ N, ui ≈ u′i′ .
After introducing a suitable notion of reduction ⇒ on the equivalence classes of
≈, one finally obtains the isomorphism for the reduction relations

(Λaff
∞ /≈,⇒) ∼= (Λ,→β),

where (Λ,→β) is the usual pure λ-calculus with β-reduction. Similar infinitary
calculi (also with a notion of partial equivalence relation) were considered by
Kfoury [6] and Melliès [10], although without a topological perspective. The
indices identifying the occurrences of exponential variables are also reminiscent
of Abramsky, Jagadeesan and Malacaria’s games semantics [1].

Reconciling the two approaches. The contribution of this paper is to draw a
bridge between the two approaches presented above. Indeed, we develop a cate-
gorical version of the topological construction of [9], which turns out to:

1. give a canonical way of building denotational models of the infinitary affine
λ-calculus;

2. provide an alternative formula for computing the free commutative comonoid
in a Lafont category.

Drawing inspiration from [11,12], we base our work on functorial semantics in
the sense of Lawvere, computing free objects as Kan extensions.

Functorial semantics. The idea of functorial semantics is to describe an algebraic
theory as a certain category constituted of the different powers of the domain of
the theory as the objects, the operations of the theory as morphisms, and encode
the relations between the operations in the composition operation. We will not
consider algebraic theories as Lawvere did, but the more general symmetric
monoidal theories, or PROPs [7] (product and permutation categories).
3 The generalization of a metric space, still allowing one to speak of Cauchy sequences.

Definition 1 (symmetric monoidal theory). An n-sorted symmetric
monoidal theory is defined as a symmetric monoidal category T whose objects are
n-tuples of natural numbers and with a tensorial product defined as the point-wise
arithmetical sum.

A model of T in a symmetric monoidal category (SMC) C is a symmetric
strong monoidal functor T→ C.

A morphism of models of T in C is a monoidal natural transformation between
models of T in C. We will denote as Mod(T, C) the category with models of T in
C as objects and morphisms between models as morphisms.

The simplest symmetric monoidal theory, denoted by B, has as objects the
natural numbers seen as finite ordinals and as morphisms the bijections between
them (the permutations). Alternatively, B can be seen as the free symmetric
monoidal category on one object (the object 1, with monoidal unit 0). As such,
a model of B is nothing but an object A in a symmetric monoidal category C,
and the categories C and Mod(B, C) are equivalent.

The key non-trivial example in our context is that of commutative
(co)monoids. We remind that a commutative monoid in a SMC C is a triple
(A,µ : A ⊗ A → A, η : 1 → A), with A an object of C, such that the arrows
µ and η interact with the associator, unitors and symmetry of C to give the
usual laws of associativity, neutrality and commutativity (see e.g. [8]). A mor-
phism of monoids f : (A,µ, η) → (A′, µ′, η′) is an arrow f : A → A′ such that
f ◦ µ = µ′ ◦ (f ⊗ f) and f ◦ η = η′. We denote the category of monoids of C
and their morphisms as Mon(C). The dual notion of comonoid, and the relative
category Comon(C), is obtained by reversing the arrows in the above definition.
Now, consider the symmetric monoidal theory F whose objects are the natural
numbers seen as finite ordinals and its morphisms are the functions between
them (i.e. F is the skeleton of the category of finite sets). We easily check that
Mod(F, C) ' Mon(C) and Mod(Fop, C) ' Comon(C). Indeed, a strict symmetric
monoidal functor from F to C picks an object of C and the image of any arrow
m→ n of F is unambiguously obtained from the images of the unique morphisms
0→ 1 and 2→ 1 in F, which are readily verified to satisfy the monoid laws.

Summing up, finding the free commutative comonoid A∞ on an object A
of a SMC C is the same thing as turning a strict symmetric monoidal functor
B→ C into a strict symmetric monoidal functor Fop → C which is universal in a
suitable sense. This is where Kan extensions come into the picture.

Free comonoids as Kan extensions. Kan extensions allow to extend a functor
along another. Let K : C → D and F : C → E be two functors. If we think of K
as an inclusion functor, it seems natural to try to define a functor D → E that
would in a sense be universal among those that extend F . There are two ways
of formulating this statement precisely, yielding left and right Kan extensions.
We only describe the latter, because it is the case of interest for us:

Definition 2 (Kan extension). Let C,D, E be three categories and F : C → E,
K : C → D two functors. The right Kan extension of F along K is a functor
RanKF : D → E together with a natural transformation ε : RanKF ◦ K ⇒ F

such that for any other pair (G : D → E , γ : G ◦ K ⇒ F), γ factors uniquely
through ε:

C D

E

K

F G

ε

It is easy to check thatCat(G,RanKF) ' Cat(G◦K,F), where byCat(f, g)
(f and g being functors with same domain and codomain) we mean the 2-homset
of the 2-category Cat, i.e. the set of all natural transformations from f to g.
In other words, RanK is right adjoint to UK , the functor precomposing with K
(whence the terminology “right”—the left adjoint to UK is the left Kan extension).
This observation is important because it tells us that Kan extensions may be
relativized to any 2-category. In particular, we may speak of symmetric monoidal
Kan extensions by taking the underlying 2-category to be SymMonCat (sym-
metric monoidal categories, strict symmetric monoidal functors and monoidal
natural transformations).

Now, there is an obvious inclusion functor i : B → Fop (bijections are par-
ticular functions), which is strictly symmetric monoidal. So if E is symmetric
monoidal and A is an object of E , we are in the situation described above with
C = B, D = Fop,K = i and F the strict symmetric monoidal functor correspond-
ing to A, which we abusively denote by A. The fundamental difference is that the
diagram lives in SymMonCat instead of Cat. It is an instructive exercise to
verify that the free commutative comonoid on A, if it exists, is A∞ = RaniA(1),
i.e. the right symmetric monoidal Kan extension of A along i, computed in 1:

B Fop

E

i

A RaniA

Remember that the free commutative comonoid on A is a commutative comonoid
A∞ with an arrow d : A∞ → A such that, whenever C is a commutative
comonoid and f : C → A, there is a unique comonoid morphism u : C → A∞

such that f = d ◦ u. The arrow d is ε, where ε : RaniA ◦ i ⇒ A is the natural
transformation coming with the Kan extension.

More generally, if T1 and T2 are two symmetric monoidal theories, a symmet-
ric monoidal functor i : T1 → T2 induces a forgetful functor Ui : Mod(T2, E)→
Mod(T1, E) such thatM 7→M ◦ i. So we may reformulate the problem of finding
the “free T-model” on an object A of E as finding a left monoidal adjoint to Ui
with i : B→ T. That is precisely what we did above, with T = Fop.

Computing monoidal Kan extensions. The above discussion is interesting be-
cause it provides a way of explicitly computing A∞ from A. In fact, there is
a well-known formula for computing Kan extensions [8]. When applied to the

above special case, it gives

A∞ =
∏
n

A⊗n/∼,

where A⊗n/∼ is the symmetric tensor product. However, this formula works
only for Kan extensions in Cat and there are no known formulas in other 2-
categories. The main contribution of [11] was to find a sufficient condition under
which the formula is correct also in SymMonCat. The condition is, roughly
speaking, a commutation of the tensor with certain limits depending on the Kan
extension at stake. In the above case, it requires the tensor to commute with
countable products, which, in models of linear logic, boils down to having count-
able biproducts. Lafont categories of this kind do exist (e.g. the category Rel of
sets and relations), but they are a little degenerate and not very representative.

The idea of [12] was to decompose the Kan extension in two, so that the
commutation condition is weaker and satisfied by more Lafont categories. The
intermediate step uses a symmetric monoidal theory denoted by I, whose objects
are natural numbers (seen as finite ordinals) and morphisms are the injections.
Note that Mod(Iop, C) is equivalent to the slice category C ↓ 1. By definition,
this is the category of copointed objects of C: pairs (A,w : A → 1) (with 1 the
tensor unit, not necessarily terminal), with morphisms f : (A,w) → (A′, w′)
arrows f : A→ A′ such that w = w′ ◦ f4.

There are of course strict symmetric monoidal injections j : B → Iop and
j′ : Iop → Fop, such that j′◦j = i. Unsurprisingly, RanjA(1) is the free copointed
object on A, which we denoted by A• above. Since Kan extensions compose
(assuming they exist), we have A∞ = Ranj′A

•(1):

B Iop Fop

C

j j′

A

A•

A∞

For the second Kan extension to be computed in SymMonCat using theCat
formula, a milder commutation condition than requiring countable biproducts
suffices. It is the commutation condition we mentioned above when we recalled
the three-step computation of A∞ (free copointed object, equalizers, projective
limit), which indeed results from specializing the general Kan extension formula.

One more intermediate step. The bridge between the categorical and the topo-
logical approach will be built upon a further decomposition of the Kan extension:
in the second step, we interpose a 2-sorted theory, denoted by P (this is why we
introduced multi-sorted theories, all theories used so far are 1-sorted):

4 The w stands for weakening.

B Iop P Fop

C

j k l

A

(Aω, A•)

A∞
A•

We will call the models of P partitionoids. Intuitively, the free partitionoid on A
allows to speak of infinite streams on A•, from which one may extract arbitrary
elements and substreams via maps of type Aω → (A•)⊗m ⊗ (Aω)⊗n. Such maps
are the key to model the infinitary affine λ-calculus. This intuition is especially
evident in Rel (the category of sets and relations), where Aω is the set of all
functions N→ A• which are almost everywhere ∗ (in Rel, A• = A] {∗}).

2 The Infinitary Affine Lambda-Calculus

We consider three pairwise disjoint, countable sets of linear, affine and expo-
nential variables, ranged over by k, l,m . . ., a, b, c . . . and x, y, z . . ., respectively.
The terms of the infinitary affine λ-calculus belong to the following grammar:

t, u ::= l | λl.t | tu | let k ⊗ l = u in t | t⊗ u linear
| a | let a• = u in t | •t affine
| xi | letxω = u in t | 〈u0, u1, u2, . . .〉 exponential

The linear part of the calculus comes from [2]. It is the internal language of
symmetric monoidal closed categories. As usual, let constructs are binders. The
notation 〈u0, u1, u2, . . .〉 stands for an infinite sequence of terms. We use u to
range over such sequences and write u(i) for ui. Note that each ui is inductively
smaller than u, so terms are infinite but well-founded. The usual linearity/affinity
constraints apply to linear/affine variables, with the additional constraint that
if xi, xj are distinct occurrences of an exponential variable in a term, then i 6= j.
Furthermore, the free variables of a term of the form u (resp. •t) must all be
exponential (resp. exponential or affine).

The reduction rules are as follows:

(λl.t)u→ t[u/l] let k ⊗ l = u⊗ v in t→ t[u/k][v/l]

let a• = •u in t→ t[u/a] letxω = u in t→ t[u(i)/xi]

In the exponential rule, i ranges over N, so there may be infinitely many sub-
stitutions to be performed. There are also the usual commutative conversions
involving let binders, which we omit for brevity. The reduction is confluent, as
the rules never duplicate any subterm.

The results of [9] are formulated in an infinitary calculus with exponential
variables only, whose terms and reduction are defined as follows:

t, u ::= xi | λx.t | t〈u0, u1, u2, . . .〉, (λx.t)u→ t[u(i)/xi]

Γ ;∆; l : A ` l : A lin-ax
Γ ;∆, a : A;` a : A

aff-ax
i ∈ N

Γ, x : A;∆;` xi : A•
exp-ax

Γ ;∆;Σ, l : A ` t : B
Γ ;∆;Σ ` λl.t : A(B

(I
Γ ;∆;Σ ` t : A(B Γ ;∆′;Σ′ ` u : A

Γ ;∆,∆′;Σ,Σ′ ` tu : B
(E

Γ ;∆;Σ ` t : A Γ ;∆′;Σ′ ` u : B

Γ ;∆,∆′;Σ,Σ′ ` t⊗ u : B
⊗I

Γ ;∆;Σ ` u : A⊗B Γ ;∆′;Σ′, k : A, l : B ` t : C
Γ ;∆,∆′;Σ,Σ′ ` let k ⊗ l = u in t : C

⊗E

Γ ;Σ;` t : A
Γ ;Σ;` •t : A•

•I
Γ ;∆;Σ ` u : A• Γ ;∆′, a : A;Σ′ ` t : C

Γ ;∆,∆′;Σ,Σ′ ` let a• = u in t : C
•E

. . . Γ ; ;` u(i) : A• . . .

Γ ; ;` u : Aω ωI
Γ ;∆;Σ ` u : Aω Γ, x : A;∆′;Σ′ ` t : C

Γ ;∆,∆′;Σ,Σ′ ` letxω = u in t : C
ωE

Fig. 1. The simply-typed infinitary affine λ-calculus. In every non-unary rule we require
that t, u (or, for the ωI rule, u(i),u(j) for all i 6= j ∈ N) contain pairwise disjoint sets
of occurrences of the exponential variables in Γ .

(the abstraction binds all occurrences of x). Such a calculus may be embedded
in the one introduced above, as follows:

x◦i := let a• = xi in a

(λx.t)◦ := λl.letxω = l in t◦

(t〈u0, u1, u2, . . .〉)◦ := t◦〈•u◦0, •u◦1, •u◦2, . . .〉

and we have t→ t′ implies t◦ →∗ t′◦, so we do not lose generality. However, the
categorical viewpoint adopted in the present paper naturally leads us to consider
a simply-typed version of the calculus, given in Fig. 1. It is for this calculus that
our construction provides denotational models. The types are generated by

A,B ::= X | A(B | A⊗B | A• | Aω,

where X is an atomic type. Note that the context of typing judgments has
three finite components: exponential (Γ), affine (∆) and linear (Σ). Although
it may appear additive, the treatment of contexts is multiplicative also in the
exponential case, as enforced by the condition in the caption of Fig. 1. The typing
system enjoys the subject reduction property, as can be proved by an induction
on the depth of the reduced redex.

3 Denotational Semantics

Definition 3 (reduced fpp, monoidal theory P). A finite partial par-
tition (fpp) is a finite (possibly empty) sequence (S1, . . . , Sk) of non-empty,
pairwise disjoint subsets of N. Fpp’s may be composed as follows: let β :=
(S1, . . . , Sk), with Si infinite, and let β′ := (S′1, . . . , S

′
k′); we define β′ ◦i β :=

(S1, . . . , Si−1, T1, . . . , Tk′ , Si+1, . . . , Sk), where each Tj is obtained as follows:
let n0 < n1 < n2 < · · · be the elements of Si in increasing order; then,

Tj := {nm | m ∈ S′j}. It must be noted that endowed with this composition,
fpp’s form an operad.

We will only consider reduced fpp’s, in which each Si is either a singleton
or infinite. We will use the notation (S1, . . . , Sm;T1, . . . , Tn) to indicate that the
Si are singletons and the Tj are infinite, and we will say that such an fpp has
size m+ n. Note that the composition of reduced fpp’s is reduced. The set of all
reduced fpp’s will be denoted by P.

Reduced fpp’s induce a 2-sorted monoidal theory P, as follows: each β ∈ P
of size m+ n induces an arrow β : (0, 1)→ (m,n) of P. There is also an arrow
w : (1, 0)→ (0, 0) to account for partiality. Composition is defined as above.

For example, let β := (E,O), where E and O are the even and odd integers,
and let β′ := ({0},N \ {0}) (these are actually total partitions). Then β′ ◦1 β =
({0}, E \ {0}, O), whereas β ◦2 β′ = ({0}, O,E \ {0}).

Definition 4 (partitionoid). A partitionoid in a symmetric monoidal cate-
gory C is a strict symmetric monoidal functor5 G : P → C. Spelled out, it is
a tuple (G0, G1, w, (rβ)β∈P)) with (G0, w) a copointed object and rβ : G1 →
G⊗m0 ⊗G⊗n1 whenever β is of size m+n, such that the composition of compatible
w and rβ satisfies the equations induced by P.

A morphism of partitionoids G → G′ is a pair of arrows f0 : G0 → G′0,
f1 : G1 → G′1 such that f0 is a morphism of copointed objects and r′β ◦ f1 =

(f⊗m0 ⊗ f⊗n1) ◦ rβ for all β ∈ P of size m+ n.
We say that F is the free partitionoid on A if it is endowed with an arrow

e : F0 → A such that, for every partitionoid G with an arrow f : G0 → A, there
exists a unique morphism of partitionoids (u0, u1) : G→ F such that f = e ◦ u.

For example, for any set X, (X,XN, !X , (rβ)β∈P) is a partitionoid in Set,
where !X is the terminal arrow X → 1 and, if β = ({i1}, . . . , {im}; {j1

1 < j1
2 <

· · · }, . . . , {jn1 < jn2 < · · · }) and f : N → X, rβ(f) := (f(i1), . . . , f(im), k 7→
f(j1

k), . . . , k 7→ f(jnk)) ∈ Xm × (XN)n.

Lemma 1. If (F0, F1) is the free partitionoid on A, then F0 = A•, the free
co-pointed object on A.

Proof. This follows from observing that (A•, F1) is also a partitionoid on A. ut

Definition 5 (infinitary affine category). Let A be an object in a symmetric
monoidal category. We denote by †A the following diagram:

1 A• (A•)⊗2 · · · (A•)⊗n (A•)⊗n+1 · · ·
ε1 ε2 εn εn+1

where ε1 = ε is the copoint of A• and εn+1 := (id)⊗n⊗ ε, i.e., the arrow erasing
the rightmost component. We set Aω := lim †A (if it exists).

An infinitary affine category is a symmetric monoidal closed category such
that, for all A, the free partitionoid on A exists and is (A•, Aω).
5 An algebra for the fpp operad.

Several well-known categories are examples of affine infinitary categories:
sets and relations, coherence spaces and linear maps, Conway games. Finiteness
spaces are a non-example. We give the relational example here, which is a bit de-Why?
generate but easy to describe and grasp. For the others, we refer to Appendix B.

The category Rel has sets as objects and relations as morphisms. It is
symmetric monoidal closed: the Cartesian product (which, unlike in Set, is
not a categorical product in Rel!) acts both as ⊗ (with unit the singleton
{∗}) and (. Let A be a set and let us assume that ∗ 6∈ A. The free co-
pointed object on A is (up to iso) A ∪ {∗}, with copoint the relation {(∗, ∗)}.
The F1 part of the free partitionoid on A in Rel is (up to iso) the set of
all functions N → A• which are almost everywhere ∗. Given a reduced fpp
β := ({i1}, . . . , {im}; {j1

0 < j1
1 < . . .}, . . . , {jn0 < jn1 < . . .}), the corresponding

morphism of type Aω → (A•)⊗m ⊗ (Aω)⊗n is

rβ := {(a, (ai1 , . . . , aim , 〈aj10 , aj11 , . . .〉, . . . , 〈ajn0 , ajn1 , . . .〉)) | a ∈ A
ω},

where we wrote 〈a0, a1, a2, . . .〉 for the function a : N→ A•, i 7→ ai.

Theorem 2. An infinitary affine category is a denotational model of the infini-
tary affine λ-calculus.

Proof. The interpretation of types is parametric in an assignment of an object
to the base type X, and it is straightforward (notations are identical). In fact,
we will confuse types and the objects interpreting them.

Let now Γ ;∆;Σ ` t : A be a typing judgment. The type of the corresponding
morphism will be of the form C1 ⊗ · · · ⊗Cn −→ A, where the Ci come from the
context and are defined as follows. If it comes from l : C ∈ Σ (resp. a : C ∈ ∆),
then Ci := C (resp. Ci := C•). If it comes from x : C ∈ Γ , then Ci := Cω if x
appears infinitely often in t, otherwise, if it appears k times, Ci := (C•)⊗k.

The morphism interpreting a type derivation of Γ ;∆;Σ ` t : A is defined as
customary by induction on the last typing rule. The lin-ax rule and all the rules
concerning ⊗ and (are modeled in the standard way, using the symmetric
monoidal closed structure. The only delicate point is modeling the seemingly
additive behavior of the exponential context Γ in the binary rules (the same
consideration will hold for the elimination rules of • and ω as well). Let us treat
for instance the ⊗I rule, and let us assume for simplicity that Γ = x : C, y : D, z :
E, with x (resp. z) appearing infinitely often (resp. m and n times) in t and u,
whereas y appears infinitely often in t but only k times in u. Let us also disregard
the affine and linear contexts, which are unproblematic. The interpretation of
the two derivations gives us two morphisms

[t] : Cω ⊗Dω ⊗ (E•)⊗m −→ A, [u] : Cω ⊗ (D•)⊗k ⊗ (E•)⊗n −→ B.

Now, we seek a morphism of type Cω ⊗Dω ⊗ (E•)⊗(m+n) −→ A ⊗ B, because
x and y appear infinitely often in t⊗ u, whereas z appears m+ n times. This is
obtained by precomposing [t]⊗ [u] with the morphisms rβ : Cω → Cω ⊗Cω and
rβ′ : Dω → (D•)⊗k ⊗ Dω associated with the fpp’s β = (;Tt, Tu) such that Tt

(resp. Tu) contains all i such that xi is free in t (resp. in u), and β′ = (S′u;T ′t) is
defined in a similar way with the variable y.

The weakening on exponential and affine variables in all axiom rules is mod-
eled by the canonical morphisms A• → 1 and Aω → 1. For the rules aff-ax
and exp-ax, we use the canonical morphism A• → A and the identity on A•,
respectively.

The •I rule is modeled by observing that objects of the form Γω ⊗ ∆• are
copointed (from tensoring their copoints), so from an arrow Γω ⊗∆• −→ A we
obtain a unique arrow Γω ⊗ ∆• −→ A• by universality of A•. The •E rule is
just composition.

For what concerns the ωI rule, let us assume for simplicity that Γ = x : C.
This defines a sequence of objects (Ci)i∈N such that Ci is either Cω or (C•)⊗ki

according to whether x appears in u(i) infinitely often or ki many times. Let
now Si := {j ∈ N | xj is free in u(i)}, define the fpp βi = (S0, . . . , Si) and let

ε′i := (id)⊗i ⊗ wi : C0 ⊗ · · · ⊗ Ci−1 ⊗ Ci −→ C0 ⊗ · · · ⊗ Ci−1,

where wi : Ci → 1 is equal to r∅ if Ci = Cω (with ∅ the empty fpp) or it is
equal to ε⊗ki if Ci = (C•)⊗ki . Let β̂i be the reduced fpp obtained from βi by
“splitting” its finite sets into singletons. If we set θi := rβ̂i

, we have that for all
i ∈ N, ε′i ◦ θi+1 = θi. Let now fi be the interpretations of the derivations of
x : C; ;` u(i) : A• and consider the diagram

Cω

1 C0 C0 ⊗ C1 C0 ⊗ C1 ⊗ C2 · · ·

1 A• (A•)⊗2 (A•)⊗3 · · ·

θ0

θ1

θ2
θ3

θn

ε′0 ε′1 ε′2 ε′3

ε1 ε2 ε3 ε4

id f0 f0 ⊗ f1 f0 ⊗ f1 ⊗ f2

We showed above that all the upper triangles commute. It is easy to check that
the bottom squares commute too, making (Cω, ((f0⊗· · ·⊗fi−1)◦θi)i∈N) a cone
for †A. Since Aω = lim †A, this gives us a unique arrow f : Cω → Aω, which
we take as the interpretation of the derivation. The ωE rule is just composition,
modulo the interposition of the canonical arrow Aω → (A•)⊗k in case x appears
k times in t.

It remains to check that the above interpretation is stable under reduction,
which may be done via elementary calculations. ut

4 Computing Symmetric Monoidal Kan Extensions

We mentioned that there is a well-known formula for computing regular Kan
extensions (i.e. in Cat). This requires some notions coming from enriched cate-
gory theory, which we recall next (although here the enrichment will be trivial,
i.e. on Set).

Definition 6 (cotensor product of an object by a set). Let C be a (locally
small) category. Let A be an object in C and E a set. The cotensor product E ◦A
of A by E is defined by:

∀B ∈ C, C(B,E ◦A) ' Set(E, C(B,A))

Any locally small category with products is cotensored over Set (all of its objects
have cotensor products with any set) and the cotensor product is given by:

E ◦A =
∏
E

A

We will write 〈fe〉e∈E : B → E ◦A for the infinite pairing of arrows fe : B → A
and πe : E ◦A→ A the projections.

Definition 7 (end). Let C, E be two categories and H : Cop × C → E a functor.
The end of H, denoted by

∫
C H, is defined as the universal object endowed with

projections
∫
C H → H(c, c) for all c ∈ C making the following diagram commute:

∫
c∈C H(c, c) H(c′, c′)

H(c, c) H(c, c′)

f∗

f∗

for all arrows f : c→ c′ in C.

Finally, here is the formula computing Kan extensions:

Theorem 3 ([8, X.4, Theorem 1]). With the notations of Definition 2, when-
ever the objects exist:

RanKF (d) =

∫
c∈C
D(d,Kc) ◦ Fc.

However, as mentioned in the introduction, the formula of Theorem 3 is only
valid in Cat and we do not have any formula for computing a Kan extension in
an arbitrary 2-category, or even in SymMonCat, our case of interest. Fortu-
nately, Melliès and Tabareau proved a very general result [11, Theorem 1] giving
sufficient conditions under which the Kan extension in Cat (something a pri-
ori worthless for our purposes) is actually the Kan extension in SymMonCat
(what we want to compute). What follows is a specialized version of their result.

Theorem 4 ([11]). Let C, D, E be three symmetric monoidal categories and
F : C → E, K : C → D two monoidal symmetric functors. If (all the objects
considered exist and) the canonical morphism

X ⊗
∫
c∈C
D(d,Kc) ◦ Fc −→

∫
c∈C

X ⊗D(d,Kc) ◦ Fc

is an isomorphism for every object X, then the right monoidal Kan extension (in
the 2-category SymMonCat) of F along K may be computed as in Theorem 3.

Proof. See Appendix A, Theorem 6. ut

We may now give the abstract motivation behind Definition 5. The key prop-
erty therein is that the free partitionoid on A is equal to (A•, Aω). We now
instantiate Theorem 4 to give a sufficient condition for that to be the case.

Proposition 1. Let C be a symmetric monoidal closed category with all free
partitionoids. If, for every objects X and A of C, the canonical morphism

X ⊗
∫
n∈Iop

P((0, 1), (n, 0)) ◦ (A•)⊗n −→
∫
n∈Iop

X ⊗
(
P((0, 1), (n, 0)) ◦ (A•)⊗n

)
is an isomorphism, then C is an infinitary affine category.

Proof. In what follows, when denoting the objects of the theory P, we use the
abbreviation n• := (n, 0) and nω := (0, n).

Let A be an object of C, seen as a strict monoidal functor A : B → C.
We let the reader check that, if (A•, F1) is the free partitionoid on A, then
F1 = Rank′A(1ω), where k′ : B → P is the strict monoidal functor mapping
n 7→ n• (indeed, Definition 4 is just this Kan extension spelled out). This functor
may be written as k ◦ j, with j : B→ Iop the inclusion functor and k : Iop → P
mapping n 7→ n•, which induces a decomposition of the Kan extension, yielding
F1 = RankA

•(1ω). Now, the hypothesis is exactly the condition allowing us to
apply Theorem 4, which gives us

F1 =

∫
n∈Iop

P(1ω, n•) ◦ (A•)⊗n,

so it is enough to prove that lim †A =
∫
n∈Iop P(1ω, n•) ◦ (A•)⊗n.

We start with showing that
∫
n∈Iop P(1ω, n•) ◦ (A•)⊗n is a cone for †A. Let

ψn : (0, 1)→ (n, 0) be the morphism corresponding to the fpp ({0}, . . . , {n−1};).
By composing the canonical projection with πψn (see Definition 6) we get an
arrow

pn :

∫
n∈Iop

P(1ω, n•) ◦ (A•)⊗n → P(1ω, n•) ◦ (A•)
⊗n → (A•)

⊗n
.

Observe now that the following diagram commutes:

P(1ω, n•) ◦ (A•)
⊗n P(1ω, (n+ 1)•) ◦ (A•)

⊗n

(A•)
⊗n

(εn+1)∗

πψn

πψn+1

because εn+1 ◦ ψn+1 = ψn. Moreover, the diagram

P(1ω, (n+ 1)•) ◦ (A•)
⊗n+1

(A•)
⊗n+1

P(1ω, (n+ 1)•) ◦ (A•)
⊗n

(A•)
⊗n

(εn+1)∗

πψn+1

πψn+1

εn+1

commutes too. So, by pasting them with the defining diagram of
∫
n∈Iop P(1ω, n•)◦

(A•)⊗n, one gets:

∫
n∈Iop P(1ω, n•) ◦ (A•)⊗n P(1ω, (n+ 1)•) ◦ (A•)

⊗n+1
(A•)

⊗n+1

P(1ω, n•) ◦ (A•)
⊗n P(1ω, (n+ 1)•) ◦ (A•)

⊗n

(A•)
⊗n

(εn+1)∗

πψn+1

πψn+1

εn+1
(εn+1)∗

πψn

In particular, (
∫
n∈Iop P(1ω, n•) ◦ (A•)⊗n, (pn)) is a cone for the diagram.

Reciprocally, let (B, (bn)) be any cone for this diagram. (bn) extends uniquely
into a family (βn) such that:

– ∀n ∈ N, bn = πψn
◦ βn

– (βn) makes the following diagrams commute:

B P(1ω,m•) ◦ (A•)
⊗m

P(1ω, n•) ◦ (A•)
⊗n P(1ω,m•) ◦ (A•)

⊗n

βm

βn f∗

f∗

for all f : m→ n in P.

Indeed, any element s of P(1ω, n•) is of the form s = q ◦ ψm, where m > n and
q ∈ Iop(m•, n•). So the family (βn) is defined by:

∀n ∈ N, βn = 〈A•(q) ◦ bm〉q◦ψm∈P(1ω,n•)

is the unique family satisfying

πq◦ψm
◦ βn = q ◦ πψm

◦ βm

This definition is sound, as m > m′ such that there exists q, q′, ψm, ψm′ such
that s = q ◦ ψm = q′ ◦ ψm′ , we have

q = q′ ◦ ((id)⊗m
′
⊗ (w•)⊗m−m

′
)

and as such
A•(q) = A•(q′) ◦ εm−m′+1 ◦ · · · ◦ εm

and, as (bn) is a cone for the sequential diagram,

A•(q) ◦ bm = A•(q′) ◦ bm′ .

So B makes the defining diagram of
∫
n∈Iop P(1ω, n•) ◦ (A•)⊗n commute, as

such, (βn) (and thus (bn)) factors through it. Since all the cones of †A factor
through

∫
n∈Iop P(1ω, n•) ◦ (A•)⊗n, it is its limit. ut

Observe that the condition of Proposition 1 is actually quite easy to grasp: it
says that the limit of †A commutes with the tensor, i.e., if we denote by X ⊗†A
the †A diagram in which each (A•)⊗n and εn are replaced by X ⊗ (A•)⊗n and
idX ⊗ εn, respectively, then the condition says lim(X ⊗ †A) = X ⊗ lim †A.

5 From Infinitary Affine Terms to Linear Logic

In [9], it was shown that usual λ-terms may be recovered as uniform infinitary
affine terms. The categorical version of this result is that, in certain conditions,
a model of the infinitary affine λ-calculus is also a model of linear logic.

Theorem 5. Let C be an infinitary affine category. If, for every objects X and
A in C, the canonical morphism

X ⊗
∫

(n,m)∈P
(Aω)

⊗n ⊗ (A•)
⊗m −→

∫
(n,m)∈P

X ⊗ (Aω)
⊗n ⊗ (A•)

⊗m

is an isomorphism, then C is a Lafont category. Moreover, the free commutative
comonoid A∞ on A may be computed as the equalizer of the diagram: where

Aω

A∞ Aω (Aω)⊗3

(Aω)⊗2

id(ε⊗ id) ◦ δ

(δ ⊗ id) ◦ δ

(id⊗ δ) ◦ δ

δswap ◦ δ

Fig. 2. Recovering the free co-commutative comonoid

δ : Aω → Aω⊗Aω and ε : Aω → 1 are the morphisms induced by the fpp (;E,O)
(even and odd numbers) and the empty fpp, respectively, and swap : Aω ⊗Aω →
Aω ⊗Aω is the symmetry of C.

Proof. Let l : P→ Fop be the strict monoidal functor mapping (m,n) 7→ m+ n
and collapsing every arrow (0, 1) → (m,n) to the unique morphism 1 → m + n
in Fop. By composing Kan extensions, we know that A∞ = Ranl(A

•, Aω)(1).
Remark that Fop(1, p) is a singleton for all p ∈ N, so the hypothesis is exactly
what allows to apply Theorem 4, giving us

A∞ =

∫
(m,n)∈P

(Aω)
⊗n ⊗ (A•)

⊗m
.

Now,
∫

(m,n)∈P (Aω)
⊗n ⊗ (A•)

⊗m is the universal object making

∫
(m,n)∈P (Aω)

⊗n ⊗ (A•)
⊗m

(A•)⊗n ⊗ (Aω)⊗m (A•)⊗n
′ ⊗ (Aω)⊗m

′

κn,m

κn′,m′

commute. We are going to show that
∫

(m,n)∈P (Aω)
⊗n⊗ (A•)

⊗m is a cone for the
diagram of Fig. 2. We will only show that

∫
(m,n)∈P (Aω)

⊗n ⊗ (A•)
⊗m

(Aω)⊗2 (Aω)⊗2

δ ◦ κ0,1

swap ◦ δ ◦ κ0,1

commutes. The family (ιn ⊗ ιm ◦ δ ◦ κ0,1)n,m is a cone for †⊗2
A . Moreover, the

θn,m◦δ are defined in terms of the operations of P, they actually are the canonical
maps, and

∀n,m, ιn ⊗ ιm ◦ δ ◦ κ0,1 = κ0,n+m

The exact same reasoning gives:

∀n,m, ιn ⊗ ιm ◦ swap ◦ δ ◦ κ0,1 = κ0,n+m

But (κ0,n+m)n,m factors uniquely through (Aω)⊗2 (the limit of †⊗2
A) and as such,

∀n,m, δ ◦ κ0,1 = swap ◦ δ ◦ κ0,1

which is what we wanted. So
∫

(m,n)∈P (Aω)
⊗n⊗(A•)

⊗m is a cone for the diagram
of Fig. 2.

Let us now prove that every cone for the diagram of Fig. 2 is a cone of the
diagrams defining

∫
(m,n)∈P (Aω)

⊗n ⊗ (A•)
⊗m.

It is easy to verify that any object B making the diagram defining A∞ com-
mute is endowed with exactly one map B → (Aω)⊗n for all n ∈ N, built from
δ and ε which, is moreover, stable under all swaps. In particular, by composing
these maps (B → (Aω)⊗n)n∈N with the arrow Aω → A•, it is clear that there is
a unique family of arrows

∀n,m ∈ N, B → (A•)⊗n ⊗ (Aω)⊗m

stable under extractions and weakenings. So any cone for the diagram defining
Aω is a cone for the diagram defining

∫
(m,n)∈P (Aω)

⊗n ⊗ (A•)
⊗m and as such,

factorizes through it. So
∫

(m,n)∈P (Aω)
⊗n ⊗ (A•)

⊗m is the limit of the diagram
of Fig. 2, and thus isomorphic to A∞. ut

Intuitively, this construction amounts to collapsing the family of non-
associative and non-commutative “contractions” built with δ, ε and swap.

It should be remarked that the particular δ used is not canonical, other
morphisms would yield the same result. Indeed, from [9] we know that recovering
usual λ-terms from infinitary affine terms is possible using uniformity which, as
recalled in the introduction, amounts to identifying

λx.〈x0, x1, x2, . . .〉 ≈ λx.〈xβ(0), xβ(1), xβ(2), . . .〉,

for every injection β : N→ N. Theorem 5 amounts to defining a congruence on
terms verifying

λx. 〈x0, x1, x2, . . . 〉 ' λx. 〈x0, x2, x4, . . . 〉
λx. 〈x0, x2, x4, . . . 〉 ⊗ 〈x1, x3, x5, . . . 〉 ' λx. 〈x1, x3, x5, . . . 〉 ⊗ 〈x0, x2, x4, . . . 〉

which is sufficient to recover ≈.

6 Discussion

We saw how the functorial semantic framework provides a bridge between the
categorical and topological approaches to expressing the exponential modality
of linear logic as a form of limit. This gives a way to construct, under certain
hypotheses, denotational models of the infinitary affine λ-calculus. Moreover, it
gives us a formula for computing the free exponential which is alternative to that
of Melliès et al. Since both formulas apply only under certain conditions, it is
natural to ask whether one of them is more general than the other. Although we
do not have a general result, we are able to show that, under a mild condition
verified in all models of linear logic we are aware of, our construction is applicable
in every situation where Melliès et al.’s is.

Indeed, Melliès et al.’s construction amounts to checking that the Kan exten-
sion along m (below, left) is a monoidal Kan extension, whereas the one exposed
in this article amounts to checking that the two Kan extensions along k, then l
are monoidal (below, right):

C

Iop Fop
m

P

C

Iop Fop

k l

As Kan extensions compose, it suffices to know that the Kan extension along
m is monoidal, that m = k ◦ l, and that there exists two monoidal natural
transformations inside the two upper triangles that can be composed to the last
one to be sure that the Kan extensions along k and along l are monoidal too.
We thus get:

Proposition 2. Let C be a symmetric monoidal category with all free parti-
tionoids. Assume that Melliès et al.’s formula works and that Aω exists. If there

exists, for all integers n,m monoidal maps

(A∞)⊗n+m →(Aω)⊗n ⊗ (A•)⊗m

(Aω)⊗n ⊗ (A•)⊗m → (A•)⊗n+m

that composed together are the n+m tensor of the map A∞ → A61 → A• then
C is an infinitary affine category and a Lafont category.

Actually, in all models we are aware of, either both formulas work, or neither
does. For instance, our construction fails for finiteness spaces [4], as does the
construction given in [12].

Acknowledgments

The authors thank Paul-André Melliès for the inspiration and the lively conver-
sations. This work was partially supported by projects Coquas ANR-12-JS02-
006-01 and Elica ANR-14-CE25-0005.

References

1. Abramsky, S., Jagadeesan, R., Malacaria, P.: Full abstraction for PCF. Inf. Com-
put. 163(2), 409–470 (2000)

2. Benton, P.N., Bierman, G.M., de Paiva, V., Hyland, M.: A term calculus for intu-
itionistic linear logic. In: Proceedings of TLCA. pp. 75–90 (1993)

3. Curien, P.L., Herbelin, H., Krivine, J.L., Melliès, P.A.: Interactive Models of Com-
putation and Program Behavior. Societé Mathématique de France (2009)

4. Ehrhard, T.: Finiteness spaces. Mathematical Structures in Computer Science
15(4), 615–646 (2005)

5. Girard, J.Y.: Linear logic. Theor. Comput. Sci. 50, 1–102 (1987)
6. Kfoury, A.J.: A linearization of the lambda-calculus and consequences. J. Log.

Comput. 10(3), 411–436 (2000)
7. MacLane, S.: Categorical algebra. Bulletin of the American Mathematical Society

71(1), 40–106 (1965)
8. MacLane, S.: Categories for the Working Mathematician. Springer-Verlag, 2nd edn.

(1978)
9. Mazza, D.: An infinitary affine lambda-calculus isomorphic to the full lambda-

calculus. In: Proceedings of LICS. pp. 471–480 (2012)
10. Melliès, P.A.: Asynchronous games 1: A group-theoretic formulation of uniformity.

Technical Report PPS//04//06//n◦31, Preuves, Programmes et Systèmes (2004)
11. Melliès, P.A., Tabareau, N.: Free models of t-algebraic theories computed as Kan

extensions (2008), available on the second author’s web page
12. Melliès, P.A., Tabareau, N., Tasson, C.: An explicit formula for the free exponential

modality of linear logic. In: Proceedings of ICALP, Part II. pp. 247–260 (2009)
13. Wood, R.J.: Abstract pro arrows I. Cahiers de Topologie et Géométrie Différentielle

Catégoriques 23(3), 279–290 (1982), http://eudml.org/doc/91304

http://eudml.org/doc/91304

A Kan extensions through distributors

A.1 A distributive account of Kan extensions

The theory of distributors (or profunctors, or modules) provides a very elegant
account of the Theorem 4 that extends to the Theorem 6. In the same way that
functors generalize functions, distributors generalize relations between sets. In
particular, any functor A → B can be seen as a distributor from A to B or in
reverse, allowing to compose functors backwards.

Definition 8 (distributor). Let C and D be two small categories. A distributor
from C to D is a functor

F : Dop × C → Set

We will write it F : C −7→ D. We will view it alternatively as a presheaf F̂ : D →
Ĉ.

We say that a distributor F : C −7→ D is represented by a functor φ : C → D
if F is the curryfication of the composite

C D D̂
F Y

where D̂ is the category of pre-sheafs over D and Y the Yoneda embedding. A
distributor is said to be representable if it is represented by a functor.

Given three small categories C,D, E, and two distributors F : C −7→ D, G :
D −7→ E, we define the composite G ◦ F : C −7→ E by:

∀c ∈ C,∀e ∈ E , G ◦ F (e, c) =

∫ d∈D
G(e, d)× F (d, c)

The composition is associative up to isomorphism (due to Fubini theorem for
co-ends and the lax associativity of the cartesian product in Set). As such, we
can define the bicategory Dist of distributors in the following way:

– objects are small categories;
– morphisms are distributors with the aforementioned composition;
– 2-morphisms are natural transformation.

The bicategory Dist enjoys a close relationship with the bicategory Cat of small
categories. Indeed, any functor F : C → D induce a pair of adjoints distributors
F∗ a F ∗ in the following way:

F∗ : C −7→ D defined by F∗(d, c) = D(d, Fc)

F ∗ : D −7→ C defined by F ∗(c, d) = D(c, Fd)

Moreover, the functor · 7→ (·)∗ : Cat→ Dist is locally fully faithful, that is,

Cat(f, g) ' Dist(f∗, g∗)

This situation between Cat and Dist is called a pro-arrow equipment [13]. It is
a actually the prototypical exemple. All that follows is adaptable in the general
case of a pro-arrow equipment between two arbitrary bicategories.

The following lemma is folklore:

Lemma 2. Let f : C → D and j : C → E be two functors. The representative of
the distributor f∗ ◦ j∗ (if it exists) is the left Kan extension of f along j.

Proof. Let g : E → D. We will note Lanjf the representative of f∗ ◦ j∗.

Cat(Lanjf, g) ' Dist(f∗ ◦ j∗, g∗)
' Dist(f∗, g∗ ◦ j∗)
' Dist(f∗, (g ◦ j)∗)
' Cat(f, g ◦ j)

Corollary 1. Let f : C → D and j : C → E be two functors. If it exists, the
coend ∫ c∈C

E(j(c), ¯)⊗ f(c)

is the left Kan extension of f along j. Dually,∫
c∈C
E(¯, j(c)) ◦ f(c)

is the right Kan extension of f along j.

Proof. Let g : E → D be any functor.

Dist (f∗ ◦ j∗, g∗)

'Dist

(
(d, e) 7→

∫ c

E(jc, e)×D(d, fc), (d, e) 7→ D(d, ge)

)
'
∫
e

D̂
(
d 7→

∫ c

E(jc, e)×D(d, fc), d 7→ D(d, ge)

)
, by MacLane’s parameter’s theorem

'
∫
e

∫
c

D̂ (d 7→ E(jc, e)×D(d, fc), d 7→ D(d, ge)) , by continuity of the Hom functor

'
∫
e

∫
c

D̂ (E(jc, e)⊗ d 7→ D(d, fc), d 7→ D(d, ge))

'
∫
e

∫
c

Set
(
E(jc, e), D̂(d 7→ D(d, fc), d 7→ D(d, ge))

)
'
∫
e

∫
c

Set (E(jc, e),D(fc, ge))) , by the Yoneda lemma

'
∫
e

∫
c

D(E(jc, e)⊗ fc, ge)

'
∫
c

Cat(e 7→ E(jc, e)⊗ fc, g), by Fubini’s theorem and MacLane’s parameter theorem

'Cat

(∫
c

e 7→ E(jc, e)⊗ fc, g
)
, by continuity of the Hom functor

So, the functor ∫
c

e 7→ E(jc, e)⊗ fc

is the representative of f∗ ◦ j∗. It is the left Kan extension of f along j.

A.2 The symmetric monoidal case

Definition 9 (discrete fibration). A functor F : C → B is a discrete fibration
if for every object c in C, and every morphism g : b→ Fc in B, there is a unique
morphism h : d→ c in C such that Fh = g.

Definition 10 (category of elements). Let F : C → Set. The category of
elements Elt(F) is the category whose objects are pairs (c, x) where c is an object
of C and x ∈ Fc, and morphisms (c, x)→ (c′, x′) are morphisms u : c→ c′ such
that P (u)(x) = x′.

Lemma 3. A functor F : C → B is a discrete fibration if and only if C is iso-
morphic to the category of elements Elt(ϕ) of a presheaf over B, and, up to the
isomorphism, F is the first projection.

Proof. Let F be a discrete fibration. Let ϕ : Bop → Set defined on the objects
by ϕb = {c ∈ C, F c = b} ; and the image of a map g : b → b′ is defined as the
function f : ϕb′ → ϕb that maps c ∈ ϕb′ to the unique d ∈ C such that g is the
image of a map d→ c.

The other direction is trivial.

Every functor factors essentially uniquely as a composite of a final functor
and a discrete fibration. As such, any functor B → C can be seen as a presheaf
over C. This allows to reify diagrams in C as presheafs over C ; which offers a
language to formalize the fact that diagrams of a certain shape have colimits.

Consider a class F of diagram shapes (that is, of small categories), containing
1. The category CF of the diagrams of shape F in C corresponds to a subcategory
C of Ĉ by the aforementioned correspondance. As F contains 1, the Yoneda
embedding C → Ĉ restricts to

y : C → C
c 7→ (1 7→ c)

We can reason about the properties of this embedding. As a restriction of
the Yoneda embedding, it is fully faithful. Moreover, for every category A and
functor f = A → C, a computation based on the Yoneda lemma shows that

Dist(y∗ ◦ f∗, y∗ ◦ g∗) = Cat(f, g)

If it exists, the functor colim : C → C that associates to every diagram in
C its colimit is the left adjoint of y. So, the fact that the diagrams of a certain
shape have a colimit in C can be formally expressed as the fact that the Yoneda
embedding associated to that shape has a left adjoint; the fact that the colimits
commute with the tensor product can be expressed as the fact that the left
adjoint is symmetric monoidal.

Lemma 4. Let f : B −7→ C be a distributor and C be a full subcategory of Ĉ (the
presheaf category over C) containing C. Suppose that the Yoneda embedding of C
into C has a left adjoint

colim a y : C → C
and that f factors through y∗ as

B C C
f∗ y∗

where f : B → C is a functor. The functor colim ◦ f is a representative of f .

Proof.

Dist(f, g∗) = Dist(y∗ ◦ f∗, g∗)
' Dist(y∗ ◦ f∗, y∗ ◦ y∗ ◦ g∗), as the Yoneda embedding is fully faitfull

' Cat(f, y ◦ g)

' Cat(colim ◦ f, g)

Definition 11. Let T : Cat→ Cat be the monad associating to any category
its free symmetric monoidal category. If A is an algebra over T , we will write
[] : TA→ A the structure map.

A symmetric monoidal distributor is a distributor F making

TA TB

A B

TF

[¯]∗

F

[¯]∗

commute for all F : A −7→ B.

Lemma 5. Let j : A → B be a monoidal symmetric functor between two
monoidal symmetric categories. j∗ is symmetric monoidal if and only if∫ A∈TA

A(a, [A])× TB(TjA,B)→ B(ja,B)

is an isomorphism.

Theorem 6 (Melliès and Tabareau [11]). Let A,B, C be symmetric
monoidal categories.

Suppose that the Yoneda embedding y : C → C has a left adjoint colim a y
and that both colim and y are symmetric monoidal.

Let j : A → B be a symmetric monoidal functor such that j∗ is a symmetric
monoidal distributor, and f : A → C be a symmetric monoidal functor. If the
distributor f∗ ◦ j∗ factors through y∗ as:

B C C
g∗ y∗

then the forgetful functor

Uj : SymMonCat(B, C)→ SymMonCat(A, C)

has a left adjoint

Lanj : SymMonCat(A, C)→ SymMonCat(B, C)

computed with a Kan extension.

Proof. The functor colim ◦ g is the Kan extension of f along j: by Lemma 4, it
is the representative of f∗ ◦ j∗, and by Lemma 2, the representative of f∗ ◦ j∗ is
the Kan extension of f along j.

It remains to check that it is symmetric monoidal. As colim is (by hypothesis),
it suffices to show that g is. By hypothesis, f∗ ◦ j∗ is symmetric monoidal. As
composition with y∗ induces a fully faithful functor, g is symmetric monoidal.
The same argument gives the functoriality of the construction.

Corollary 2. Let A,B, C be symmetric monoidal categories.
Suppose that C has small colimits of a given class of shapes and that these

colimits commute with the tensor product.
Let j : A → B be a symmetric monoidal functor such that∫ A∈TA

A(a, [A])× TB(TjA,B)→ B(ja,B)

is an isomorphism.
Let f : A → C be a symmetric monoidal functor.

B Examples of Infinitary Affine Categories

We will describe the construction in models of Multiplicative-Additive Linear
Logic where Melliès et al.’s construction is known to work.

B.1 The relational model

The relational model is the simplest possible model of linear logic and is com-
pletely degenerate: all the dual operations are identified. As such, we will not
verify the conditions we laid out, and just describe the results.

Definition 12 (Rel). The category Rel is the category with objects the sets
and with morphisms the relations between them.

It is a model of MALL with any singleton as a dualizing object, cartesian
product of sets as tensor product and disjoint union as cartesian product.

Rel has furthermore arbitrary products (not just finite). Let’s apply our
recipe. Let A be an object in Rel. For notation convenience, we will write 1 =
{∗}.

Step 1 The free co-pointed object under A is given by A• = A& 1.

Step 2 We remark that the weakening arrows εn : (A•)⊗n → (A•)⊗n−1 arrows
are defined by:

εn = {((a0, . . . , an, ∗), (a0, . . . , an)) | ∀0 6 i 6 n, ai ∈ A& 1}.

Aω is the set of almost finite sequences of elements of A•, N → A• which
are almost everywhere ∗. Given a reduced fpp β := ({i1}, . . . , {im}; {j1

0 < j1
1 <

. . .}, . . . , {jn0 < jn1 < . . .}), the corresponding morphism of type Aω → (A•)⊗m⊗
(Aω)⊗n is

rβ := {(a, (ai1 , . . . , aim , 〈aj10 , aj11 , . . .〉, . . . , 〈ajn0 , ajn1 , . . .〉)) | a ∈ A
ω},

where we wrote 〈a0, a1, a2, . . .〉 for the function a : N→ A•.

Step 3 The commutation relations are satisfied and the free co-commutative
comonoid under A is computed as the set of finite multisets over A:

A∞ =Mfin(A)

Indeed, if we define the multi-support of a sequence a ∈ Aω co-inductively as

msupp(a0, a1, . . .) =

{
[a0] + msupp(a1, a2, . . .) if a0 6= ∗
msupp(a1, a2, . . .) else

As discussed, asking two sequences to be equalized amounts to asking they have
the same multi-support. The limiting cone is defined by

ιn = {µ(a, µ = msupp(a)}

So, the construction is valid in the relational model.

B.2 Coherence spaces

Coherence spaces are the original semantics of linear logic, from which it sprung.

Definition 13 (Coh, [5, section 3]). A coherence space is a pair A =
(|A|,¨A) of a set |A| (the web of A) and a reflexive binary relation ¨A on the
elements of |A|, the coherence of A. A clique of A is a set of pairwise coherent
elements of |A|.

Every coherence space A has a dual coherence space A⊥ with same web |A|
and coherence relation

a ¨A⊥ b⇔ a = b or ¬(a ¨A b)
The coherence of the dual is called the incoherence of the primal and written
a ˚A b.

For every coherence spaces A and B, we define their tensor product as the
coherence space A⊗B with web |A| × |B| and coherence defined by

a⊗ b ¨A⊗B a′ ⊗ b′ ⇔ a ¨A a′ and b ¨B b′

where a⊗ b is just a semantically-flavoured notation for the couple (a, b).
For every coherence spaces A and B, we define their cartesian product as the

coherence space A&B with web |A|+ |B| and coherence defined by

a ¨A&B a′ ⇔ a ¨A a′
b ¨A&B b′ ⇔ b ¨B b′

a ¨A&B b

The category Coh is defined as the category with coherence spaces as objects
and cliques of A(B = (A⊗B⊥)⊥ as morphisms. For clarity’s sake, we explicit
the coherence of A(B.

a(b ¨A(B a′(b′ ⇔
{
a ¨A a′ ⇒ b ¨B b′

a ˚A a′ ⇒ b ˚B b′

where a (b is again a notation for (a, b). There is a forgetful functor from
cliques of A(B to relations of A and B. As such, cliques compose as relations.

It is a ∗-autonomous category with finite products, and thus a model of
MALL.

Let’s apply our recipe. Let A be an object of Coh.

Step 1 The category Coh has finite products. As such, we can define the free
co-pointed object A• to be equal to A& 1 equipped with its second projection.

Step 2 We claim that Aω is defined as follows:

– its web |Aω| is the set of almost finite sequences of elements of A•, N→ A•

which are almost everywhere ∗.
– given two sequences a and b,

a ¨Aω b⇔ ∀i ∈ N, if (ai ∈ |A| and bi ∈ |A|), then ai ¨A bi
– given a reduced fpp

β := ({i1}, . . . , {im}; {j1
0 < j1

1 < . . .}, . . . , {jn0 < jn1 < . . .}),

the projecting cone is

rβ := {a((ai1 ⊗ . . .⊗ aim ⊗ 〈aj10 , aj11 , . . .〉 ⊗ . . .⊗ 〈ajn0 , ajn1 , . . .〉) | a ∈ A
ω},

where we wrote 〈a0, a1, a2, . . .〉 for the function a : N→ A•.

For Aω to be well-defined, we only have to prove that for all n ∈ N, ιn is indeed
a clique of Aω ((A•)⊗n. Let

a((ai1 ⊗ . . .⊗ aim ⊗ 〈aj10 , aj11 , . . .〉 ⊗ . . .⊗ 〈ajn0 , ajn1 , . . .〉)

and

b((bi1 ⊗ . . .⊗ bim ⊗ 〈bj10 , bj11 , . . .〉 ⊗ . . .⊗ 〈bjn0 , bjn1 , . . .〉)

be two elements of rβ . If a and b are coherent, then for all index i, ai ¨ bi and

(ai1 ⊗ . . .⊗ aim ⊗ 〈aj10 , aj11 , . . .〉 ⊗ . . .⊗ 〈ajn0 , ajn1 , . . .〉)
¨(bi1 ⊗ . . .⊗ bim ⊗ 〈bj10 , bj11 , . . .〉 ⊗ . . .⊗ 〈bjn0 , bjn1 , . . .〉),

else they are incoherent, that is, for a certain i 6 n (as for all indices greater
than a certain n, the two sequences coincide) ai ˚ bi, which is absurd. So rβ is
a clique.

To show that Aω is the limit of the diagram, we have to check that it is a
cone (which is obvious) and that it is universal among them. Let (B, (bβ)) be
another cone. The relation

{x((y0, y1, . . .),∀x ∈ |B|,∀i ∈ N, (x((yi1 ⊗ . . .⊗yim ⊗〈yj10 , . . .〉⊗ . . .) ∈ bβ}

is well-defined, a clique and is a relation between B and Aω that factorizes
the (bn). It is moreover unique as any other factorizing relation would have to
coincide with the composition with the projections. So Aω is the limit of the
diagram.

Moreover, for all object X, X ⊗ Aω is the limit of the tensorized diagram,
as the coherence in the two parts of a tensor product are independent. So Aω is
indeed the right Kan extension of A.

Step 3 Given the remark at the end of Section 5, the construction makes the
order collapse and requires all the elements to be pairwise coherent. As such, it
is easy to check that the limit of the diagram of Theorem 5 is A∞, the space
with web the set of finite multicliques (multisets of pairwise coherent elements)
over A and coherence defined by:

∀µ, ν ∈ |A∞|, µ ¨ ν ⇔ µ+ ν ∈ |A∞|

and e : A∞ → Aω defined by e = {µ (a, µ is the multi-support of a, µ ∈
|Aω|}.

The conditions of proposition 5 are verified, and so !A = A∞ is the free
co-commutative comonoid under A, with co-multiplication (contraction):{

µ(ν ⊗ ρ ∈ |!A| × |!A|2, ν + ρ = µ
}
.

B.3 Conway games

Definition 14 (Conway−). A Conway game A is an oriented rooted well-
founded graph (VA, EA, λA) consisting of a set VA of vertices (the positions of
the game), a set EA ⊆ VA×VA of edges (the moves of the game), and a function
λA : EA → {−1; +1} indicating wether a move is played by Opponent (−1) or
Proponent (+1). We write ?A for the root of the underlying graph. A Conway
game is called negative when all its moves starting from the root are played by
Opponent.

A play s = m1 · m2 · · · · · mk of a Conway game A is a path s : ?A � xk
starting from the root ?A whose vertices are labeled by m1,. . . ,mk. A play is
alternating when ∀i ∈ {1, . . . , k − 1}, λA(mi+1) = −λA(mi).

Every Conway game A induces a dual game A⊥ by reversing the polarities
of the moves.

For every Conway games A and B, we define their tensor product as the
game A⊗B with set of vertices VA⊗B = VA × VB, moves defined as

x⊗ y →
{
z ⊗ y if x→ z in the game A
x⊗ z if y → z in the game B

and the polarity of a move in A⊗B defined as the polarity of the underlying move
in the component A or the component B. The Conway game 1 with a unique
position ? and no moves is the neutral element of the tensor product.

For every negative Conway games A and B, we define their cartesian product
A&B as the game whose

– set of positions is the amalgamated sum of the positions of A and B under
the initial position;

– Opponent moves from the initial position ?A&B are of two kinds

?A&B →
{
x if ?A → x in the game A
y if ?B → y in the game B

– moves from a position x in the component A (respectively B) are exactly
the moves from x in the Conway game A (respectively B), with the same
polarity.

A strategy of a Conway game A is defined as a non empty set of alternating
plays of even length such that every non-empty play starts with an Opponent
move, σ is closed by even length prefix, and σ is deterministic, that is, for all
plays s and all moves m, n, n′,

s ·m · n ∈ σ ∧ s ·m · n′ ⇒ n = n′

The category Conway− has negative Conway games as objects and strategies
σ of A⊥⊗B as morphisms σ : A→ B. It is symmetric monoidal closed and has
finite and infinite products. As such, it is a model (degenerate, as it is compact
closed) of the multiplicative and additive fragment of linear logic.

Step 1 The monoidal unit 1 is terminal in the category Conway−. As such, the
free affine object A• is just the object A itself.

Step 2 The limit Aω is the game defined as follows:

– its positions are infinite words w = x1 · · ·xn · · · whose letters are positions
xi of the game A such that only a finite number of them are different than
?A,

– its root is the word ?A · · · ?A · · · ,
– a move w → w′ is a move played in one copy:

w1xw2 → w1yw2

– the polarities are inherited from those of A.

It is endowed with projections Aω → A⊗n the partial copycat strategies playing
only in the first n letters.

The commutation condition is verified: they follow from [12].

Step 3 The equalizer A∞ is defined as follows:

– its positions are infinite words w = x1 · · ·xn · · · whose letters are positions
xi of the game A such that for every i ∈ N?, the position xi+1 is the root
?A whenever the position xi is the root ?A,

– the root is the word ?ωA,
– a move is a move played in one copy,
– the polarities are inherited from those of A.

It is equipped with the equalizer A∞ → Aω consisting of copycat reordering
strategies.

The construction on the category of negative Conway games yields the con-
struction for the whole category of Conway games. For details, see [12].

	A Functorial Bridge between the Infinitary Affine Lambda-Calculus and Linear Logic

