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Abstract

This paper presents a methodology for the inverse identification of linearly viscoelastic material param-
eters in the context of steady-state dynamics using interior data. The inverse problem of viscoelasticity
imaging is solved by minimizing a modified error in constitutive equation (MECE) functional, subject to the
conservation of linear momentum. The treatment is applicable to configurations where boundary conditions
may be partially or completely underspecified. The MECE functional measures the discrepancy in the consti-
tutive equations that connect kinematically admissible strains and dynamically admissible stresses, and also
incorporates the measurement data in a quadratic penalty term. Regularization of the problem is achieved
through a penalty parameter in combination with the discrepancy principle due to Morozov. Numerical
results demonstrate the robust performance of the method in situations where the available measurement
data is incomplete and corrupted by noise of varying levels.

1. Introduction

Inverse characterization of viscoelastic properties is of high relevance in many areas of science, engi-
neering, and medicine. In particular, in the medical field, it is well-known that viscoelastic properties are
correlated to tissue pathology [28]. This observation has spurred the development of a group of techniques,
commonly referred to as elastography or elasticity imaging techniques, whose goal is to identify the elastic
or viscoelastic properties of tissue non-invasively (see [13, 24, 22, 15, 25] for reviews). Other applications
abound and include the nondestructive evaluation of structural systems such as buildings, bridges, and
aircraft components.

In this work, we are concerned with the quantification of viscoelastic material properties using noisy
interior data, in situations where traction and/or displacement boundary conditions are unknown or uncer-
tain. This problem is of high relevance in the field of elasticity imaging where displacement or velocity fields
are obtained using ultrasound or MRI, and there is a high degree of uncertainty regarding the magnitude
and nature of the excitation sources. Different techniques have been developed that address this problem,
including algebraic direct inversion [21, 28, 23] and the adjoint weighted equations (AWE) methods [2, 30].
These techniques have the advantage of being non-iterative but need the evaluation of derivatives of the
data, making them very sensitive to noise. Moreover, optimization approaches [10, 20, 11, 7, 1], which have
the advantage of handling sparse and imperfect data, have received limited or no attention for problems
with interior data that lack knowledge of the boundary conditions due to the complication of the forward
problem then being ill-posed.

Our goal in this work is to develop a methodology for reconstructing viscoelastic properties from im-
perfect interior data and underspecified boundary conditions. The proposed methodology is based on the
minimization of a modified error in constitutive equation (MECE) functional [18, 11, 4]. MECE functionals
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combine the error in constitutive equation (ECE) [17], which measures the discrepancy in the constitutive
equations that connect kinematically admissible strains and dynamically admissible stresses, and a quadratic
error term that incorporates the measurement data. MECE-based approaches have found applications in
model updating with vibrational data [18, 5], time-domain formulations [3, 11], and large scale identification
problems in both elastodynamics [4] and coupled acoustic-structure systems [29]. MECE-based identification
methods investigated thus far assume situations where well-posed boundary conditions are available. By
contrast, one of the main features of the present approach is the fact that the proposed MECE formulation
leads to optimality systems that are invertible, subject to a solvability condition that is easily met in practice,
even in cases where (i) boundary conditions are (totally or partially) underspecified, and (ii) interior data
is available only in a portion of the solid under investigation. This result is moreover achieved by exploiting
classical first-order optimality conditions only. Some of the limitations inherent to other optimization-based
formulations are therefore avoided. In addition, we adapt previous ideas regarding the solution strategy for
the minimization problem to the realms of viscoelasticity, where positivity requirements are enforced using
inequality constraints.

The rest of this article is organized as follows. Section 2 describes the steady-state viscoelasticity problem
and the inverse problem of interest. The MECE-based minimization strategy is derived in Section 3, which
also addresses the adjustment of its main parameters. Section 4 is devoted to a set of numerical experiments
designed to demonstrate the capabilities of the method. Concluding remarks are finally given in Section 5.

2. Problem Setting

Governing equations of motion. Let a solid viscoelastic body occupy a bounded and connected domain
Ω ⊂ Rd (1 ≤ d ≤ 3) with boundary Γ. The time-harmonic motion of this body is governed by the balance
equations

∇·σ + b = −ρω2u in Ω, (1a)

σ ·n = t on ΓN , (1b)

where u is the displacement field, ω represents the specified angular frequency, ρ denotes the known mass
density, b is a given body force density, σ represents the stress tensor, t and ΓN ⊆ Γ are the given surface
force density (traction) and its support, respectively, and ns is the outward unit vector normal to Γ; the
kinematic compatibility equations

u = 0 on ΓD, (2a)

ε[u] =
1

2
(∇u+∇uT ) in Ω, (2b)

where ε[u] denotes the linearized strain tensor associated with u and ΓD ⊆ Γ is the portion of the boundary
where the displacement is known; and the (linear viscoelastic) constitutive relation

σ = C :ε[u] in Ω, (3)

where C is the fourth-order, complex-valued viscoelasticity tensor field. Equation (2a) specifies a boundary
condition that is homogeneous, which is assumed in this work for the sake of simplicity and without loss of
generality; the case of a non-homogeneous boundary condition can be treated with minor modifications.

Here, the boundary subsets ΓN and ΓD are only required to not overlap (i.e., ΓN ∩ ΓD = ∅) and do not
necessarily have to form a cover of Γ (i.e., ΓN ∪ΓD ⊆ Γ). When they do not form a cover, equations (1a)-(3)
admit a solution which is not unique, whereas a unique solution exists when ΓN ∪ ΓD = Γ. This unusual
boundary condition setting is chosen to model experimental configurations where full-field interior data (to
be introduced thereafter) is available while boundary conditions are underdetermined.

Weak formulation. We denote the L2(Ω) inner product of square-integrable second-order tensor fields a and
b with 〈a, b〉:

〈a, b〉 :=

∫
Ω

a :bdV =

∫
Ω

aijbij dV,
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where the overline denotes complex conjugation and indicial notation is used (with repeated indices implying
summation). The scalar product of vector or scalar fields follows the same notation, and so does the scalar
product of fields defined over a surface; e.g.,

〈a, b〉Γ :=

∫
Γ

a :b dS.

The weak formulation of the balance equations (1a) and (1b) then reads

〈σ, ε[w]〉 − ω2〈ρu,w〉 − 〈σ ·n,w〉Γ\ΓN
= F(w), ∀w ∈ W, (4)

with the test function spaceW defined asW := {w : w ∈ H1(Ω;Rd), w = 0 on ΓD} and where the linear
functional

F(w) = 〈b,w〉+ 〈t,w〉ΓN
(5)

embodies the known excitations in Ω and on ΓN . In addition, the space S(u) of dynamically admissible
stresses is defined, for later reference, as

S(u) :=
{
σ : σ ∈ S, eqn. (4) holds

}
, with S = L2(Ω;R3,3

sym). (6)

Likewise, we define the space Z of admissible viscoelasticity tensor fields as

Z =
{
C ∈ L∞(Ω;Q) | ε :Re[C(x)] :ε > c0ε :ε, ε : Im[C(x)] :ε ≥ 0

∀x ∈ Ω and ε ∈ R3,3
sym, ε 6= 0

}
(7)

where Q denotes the 21-dimensional vector space of fourth-order tensors C with major and minor symmetries
(i.e., Cijkl = Cklij = Cjilk) and c0 is some positive constant. Re[·] and Im[·] denote the real and imaginary
parts, respectively, of a complex-valued quantity. Finally, any admissible mass density field ρ ∈ L∞(Ω) must
be bounded below by a positive constant.

Measurements. In addition to the fundamental equations (1a)-(3), we assume availability for the prescribed

frequency ω of experimental data on steady-state displacements, namely (a) measured displacements d̃ in
Ωm ⊂ Ω (interior data) or (b) measured displacements ũ on Γu ⊂ Γ, i.e.:

u = d̃ in Ωm, u = ũ on Γu, (8)

where Ωm and Γu are not simultaneously empty (the numerical examples of Sec. 4 will emphasize the role of
the interior data). Moreover, the measurement surface Γu is assumed to satisfy ΓD∩Γu = ∅, since obviously
no displacement measurement ũ is needed on the constrained part of the boundary.

Remark 1. The equality (8) between the experimental displacements d̃ and ũ and their model counterparts
u must hold for exact measurements but will be enforced only approximately in the upcoming formulation,
to account for experimental uncertainties.

Inverse Problem. The inverse problem addressed in this work consists in reconstructing the viscoelasticity
tensor field C ∈ Z such that (i) the governing equations of motion (1a)-(3) are satisfied, and (ii) it is
consistent with the measurement of the steady-state response of the solid for a known angular frequency ω.

3. Modified error in constitutive equation (MECE) imaging approach

3.1. MECE functional
Following the approach presented in [4, 29], the inverse problem addressed in this work is formulated

as an optimization problem in which the unknown constitutive tensor C is estimated by minimizing an
objective function that additively combines two error terms: 1) an error in constitutive equation (ECE)
functional [17] that has been adapted for viscoelastic materials and that measures the discrepancy in the
constitutive equation that connects kinematically admissible strains and dynamically admissible stresses
and 2) a quadratic error term that quantifies the mismatch between the predicted (or model) displacements
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and the measured ones. Thus, the objective function, hereafter referred to as the viscoelasticity MECE
functional, used in this work is

Λ(u,σ;C) := U(u,σ;C) +
κ

2

[
〈u− d̃,u− d̃〉Ωm + `〈u− ũ,u− ũ〉Γu

]
, (9)

where

U(u,σ;C) :=
1

2

∫
Ω

(σ − C :ε[u]) :P−1 : (σ − C :ε[u]) dV (10)

is the ECE functional that has been adapted for viscoelastic materials; P is a (symmetric, positive-definite,
real-valued) reference fourth-order tensor used for conferring energy units to U ; κ > 0 is a weight parameter
that adjusts the relative contribution of the summands to Λ in (9); and ` is a characteristic length (e.g.
` = Diam(Ω)) ensuring dimensional consistency. Further discussion of P and κ (e.g., how to select them) is
deferred to Section 3.5.

In [4, 29], where only elastic materials were considered, the choice P = C was made in (10). Since this
work is concerned with viscoelastic materials, C is not in general positive-definite, so setting P = C in (10)
would fail to endow U with the following desirable properties:

U(u,σ;C) ≥ 0 ∀ C ∈ Z, (11)

U(u,σ;C) = 0 ⇐⇒ σ = C :ε[u]. (12)

These properties are preserved, on the other hand, by using an arbitrary symmetric, positive-definite P in
U . Thus, for a given triple (u,σ,C) ∈ W × S(u) × Z (see Eqs. (4,6,7) for the definition of these sets),
Λ(u,σ;C) provides a quantitative measure of the compatibility of these variables with (1) the available

measurements d̃ and ũ and (2) the constitutive equation. Since compatibility increases with decreasing Λ,
the solution to the inverse problem of viscoelasticity imaging using an MECE approach is sought as the
PDE-constrained optimization problem

(u∗,σ∗,C∗) := arg min
u∈W,σ∈S(u),C∈Z

Λ(u,σ;C). (13)

A common approach for solving (13) is to use an alternating-directions strategy [11, 4, 29]. This iterative
approach defines the transition from the current iterate (u,σ,C)n to the next iterate (u,σ,C)n+1 through
two successive and complementary partial minimizations of Λ(u,σ;C). The first of these minimizations,

(un+1,σn+1) := arg min
u∈U,σ∈S(u)

Λ(u,σ;Cn), (14)

is concerned with updating the mechanical fields u and σ and imposes the balance of linear momentum,
without the need to introduce any knowledge of external excitations or boundary conditions as a constraint,
while the second minimization pertains to the update of the material parameter C:

Cn+1 := arg min
C∈Z

Λ(un+1,σn+1;C). (15)

The alternating-direction strategy outlined by (14) and (15) is started by choosing an initial value C0 = Cinit

for C and performing (14) with n = 0.

3.2. Updating the Mechanical Fields
The partial minimization (14) is itself a PDE-constrained optimization problem. To solve it, we derive

the optimality conditions using a Lagrange multiplier approach. This requires defining the Lagrangian
L :W ×W × S × Z → R as

L(u,w,σ;C) := Λ(u,σ;C) + Re
(
〈σ ·n,w〉Γ\ΓN

− 〈σ, ε[w]〉+ ω2〈ρu,w〉+ F(w)
)
. (16)

Notice the following: 1) w ∈ W plays the role of the Lagrange multiplier, 2) the constraint expresses the
dynamic admissibility of σ inherent to the definition (6) of S(u), and 3) the term 〈σ · n,w〉Γ\ΓN

in (16)
is crucial for the case in which ΓN ∪ ΓD 6= Γ (i.e., boundary conditions are not prescribed over the entire
boundary).
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In order to derive the optimality conditions, the derivatives of L with respect to u, w, and σ need to be
computed. This is done by means of the directional (Gâteaux) derivative. The Gâteaux derivative F ′g(δg)
of a functional F with respect to g in the direction δg is defined as

F ′g(δg) :=
d

dε
F (g + εδg)

∣∣∣∣
ε=0

.

With this definition, the derivative of L with respect to σ in the direction δσ ∈ S is

L′σ(δσ) = Re
(
〈δσ,P−1 :σ〉 − 〈δσ,P−1 :C :ε[u]〉 − 〈δσ, ε[w]〉+ 〈δσ ·n,w〉Γ\ΓN

)
= Re

(
〈δσ,P−1 : (σ − C :ε[u])− ε[w]〉+ 〈δσ ·n,w〉Γ\ΓN

)
. (17)

Enforcing the stationarity condition L′σ(δσ) = 0 ∀δσ ∈ S, we obtain from (17)

w = 0 on Γ \ ΓN , (18a)

σ = C :ε[u] + P :ε[w] in Ω. (18b)

Equation (18a) implies that w ∈ W0 ⊆ W, with the function space W0 defined as

W0 := {w : w ∈ W, w = 0 on Γ \ ΓN} . (19)

Note that W0 ⊂ W (with strict inclusion) whenever the boundary data is insufficient (i.e. ΓN ∪ ΓD 6= Γ),
while W0 = W when ΓN ∪ ΓD = Γ (sufficient boundary data). Then, proceeding in a similar manner, the
derivative of L with respect to u in the direction δu ∈ W is

L′u(δu) = Re
( 〈

(C :ε[u]− σ) :P−1 :C, ε[δu]
〉
+ κ

(
〈u− d̃, δu〉Ωm

+ `〈u− ũ, δu〉Γu

)
+ ω2〈ρδu,w〉

)
. (20)

After substituting (18b) into (20), the stationarity condition L′u(δu) = 0 ∀δu ∈ W takes the form

〈C :ε[w], ε[δu]〉 − ω2〈ρw, δu〉 = κ
(
〈u− d̃, δu〉Ωm

+ `〈u− ũ, δu〉Γu

)
∀δu ∈ W. (21)

Following the same steps for the remaining stationarity condition (which is the constraint in (16)) yields,
using (18b) and noting that 〈σ ·n, δw〉Γ\ΓN

vanishes because δw ∈ W0:

〈C :ε[u] + P :ε[w], ε[δw]〉 − ω2〈ρu, δw〉 = F(δw) ∀δw ∈ W0. (22)

For a given Cn ∈ Z at the nth iteration of the alternating directions scheme, the mechanical field
update thus corresponds to finding (u,w)n+1 ∈ W×W0 solving problem P(un+1,wn+1;Cn), where problem
P(u,w;C) is defined by the coupled weak formulation

〈C :ε[w], ε[δu]〉 − ω2〈ρw, δu〉 − κA(u, δu) = −κAm(δu) ∀δu ∈ W,

〈P :ε[w], ε[δw]〉+ 〈C :ε[u], ε[δw]〉 − ω2〈ρu, δw〉 = F(δw) ∀δw ∈ W0,
(23)

with
A(u, δu) := 〈u, δu〉Ωm

+ `〈u, δu〉Γu
, Am(δu) := 〈d̃, δu〉Ωm

+ `〈ũ, δu〉Γu
.

After solving (23) for (u,w) = (un+1,wn+1), the stress σn+1 can be computed using (18b) with C = Cn.

3.3. Updating the Material Properties
The next step in the alternating directions scheme is to solve the inequality-constrained optimization

subproblem (15), referred to as the material update step. Given the nature of the admissibility constraints
imposed on the viscoelasticity tensor fields, see (7), the material update Cn+1 ∈ Z is here computed by
means of the following two substeps:

1. Proposal substep: A proposed material update C̃n+1 is computed by enforcing the first-order necessary
optimality condition L′C(δC) = 0 ∀δC ∈ Z.

2. Correction substep: If C̃n+1 is admissible, then Cn+1 := C̃n+1. Otherwise, a correction procedure
(explained shortly thereafter) determines an admissible update Cn+1 that approximates C̃n+1.
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Proposal substep. Enforcing the condition L′C(δC) = 0 ∀δC ∈ Z, C̃n+1 solves

∀δC ∈ Z,
〈(

C̃n+1 :ε[un+1]− σn+1
)

:P−1 , ε[un+1] :δC
〉

= 0. (24)

We will focus on isotropic materials for the rest of this article as they lead to simple updating formulae in
the MECE context as shown next. Thus, C has the form

C =

(
B − 2

3
G

)
(I ⊗ I ) + 2GI (25)

with B and G denoting (spatially-dependent) bulk and shear complex moduli, respectively. I and I are the
second- and fourth-order identity tensors, respectively. The tensor P is then also assumed to be isotropic
and to have the same major and minor symmetries as C. Hence, P can be represented as

P =

(
Bp −

2

3
Gp

)
(I ⊗ I ) + 2GpI, (26)

where Gp and Bp are real, positive constants whose selection is discussed in Section 3.5.
The formulae for the proposed update are obtained by first decoupling the stress and strain tensors into

deviatoric and volumetric components; i.e.,

σ = σdev + qI , ε[u] = εdev[u] +
1

3
euI ,

where σdev and εdev are the deviatoric stress and strain tensors, respectively, q = 1
3 tr(σ) is the mean stress,

and eu = tr(ε[u]) is the volumetric strain. Then, combining (24), (25), and (26) and considering variations
δC having the form (25) yields〈 1

2Gp

(
2G̃n+1εdev[un+1]− σn+1

dev

)
:εdev[un+1], δG

〉
+
〈en+1

u

Bp

(
B̃n+1en+1

u − qn+1
)
, δB

〉
= 0

∀δG, δB, (27)

This implies the following pointwise update proposal formulae for the bulk and shear moduli:

B̃n+1 =
qn+1

en+1
u

=
tr(σn+1)

3tr(ε[un+1])
, G̃n+1 =

σn+1
dev :εdev[un+1]

2εdev[un+1] :εdev[un+1]
. (28)

The formulae (28) can be easily extended to the case where B and G are assumed to be constant over some
region D ⊆ Ω. In this case, the numerators and denominators in (28) carry implicit integrations over D;
i.e.,

B̃n+1 =

〈
σn+1, I

〉
D

3 〈ε[un+1], I 〉D
, G̃n+1 =

〈
σn+1

dev , εdev[un+1]
〉
D

2 〈εdev[un+1], εdev[un+1]〉D
. (29)

Correction substep. The proposed material updates (28) may not satisfy the inequality constraints imposed

by Z [8]. Thus, the actual updates Bn+1 and Gn+1 are in this work defined from the proposals B̃n+1, G̃n+1

by means of the correction rule

h(Xn+1) :=


h(X̃n+1) : h(Xlow) ≤ h(X̃n+1) ≤ h(Xup)

h (θXn + (1− θ)Xlow) : h(X̃n+1) < h(Xlow)

h (θXn + (1− θ)Xup) : h(X̃n+1) > h(Xup)

, (30)

where X stands for either B or G, the function h(·) is to be substituted with either Re(·) or Im(·), and
θ ∈ [0, 1) is a user-defined weight (θ = 0.5 for the examples shown in Section 4). The complex numbers Blow

and Bup (respectively, Glow and Gup) are prescribed a priori and serve as lower and upper bounds for B
(respectively, G): whenever the real (imaginary) part of the proposed update falls outside of the allowable
interval, it is replaced with a weighted average of the real (imaginary) part of the previous estimate and the
bound being violated. The material update rule (30) may be made equivalent to the gradient projection
method by replacing the correction substep with a subspace minimization (see [19, p. 488] for details), a
variation not used here.
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Remark 2. The treatment of anisotropic materials may require approaches different from the simple up-
dating formulae shown herein depending on the level of material symmetry considered (See Reference [6]
for instance). On the other hand, gradient-based algorithms could be used in general in MECE without any
limitation regarding material symmetries. This direction is currently being investigated by the authors.

3.4. Discretization
The finite element method was used in this work to approximate the solution of the governing variational

problems. Using standard Voigt notation, the trial and test functions and their derivatives are expressed as

uh = [N ] {u} , δuh = [N ] {δu} , ε[uh] = [B] {u} ,
wh = [N ] {w} , δwh = [N ] {δw} , ε[wh] = [B] {w} ,

where [N ] and [B] represent matrices of finite element shape functions and their derivatives with respect to
spatial coordinates, respectively. Moreover, the viscoelasticity field C is discretized using piecewise constant
basis functions (i.e., C is assumed to be constant in each element).

After substituting the above approximations into (23) and applying the standard finite element method,
the discrete coupled system of equations is obtained as[

[T ] [K]− ω2 [M ](
[K]− ω2 [M ]

)H −κ [D]

]{
{w}
{u}

}
=

{
{F}
−κ{R}

}
, (31)

where the superscript notation used to denote an iteration within the alternating directions scheme has been
dropped for the sake of clarity. The matrices and vectors in the block system (31) are defined as follows:

[K] :=
∑

elements

∫
Ωe

[B]
T

[C] [B] dV (32a)

[T ] :=
∑

elements

∫
Ωe

[B]
T

[P ] [B] dV (32b)

[M ] :=
∑

elements

∫
Ωe

ρ [N ]
T

[N ] dV (32c)

[D] :=
∑

elements

∫
Ωe

m

[N ]
T

[N ] dV +
∑

elements

∫
Γe
u

[N ]
T

[N ] dS (32d)

{F} :=
∑

elements

∫
Γe
N

[N ]
T
tdS +

∑
elements

∫
Ωe

[N ]
T
bdV (32e)

{R} :=
∑

elements

∫
Ωe

m

[N ]
T
d̃ dV +

∑
elements

∫
Γe
u

[N ]
T
ũ dS. (32f)

[C] and [P ] denote the appropriate matrix representations of the fourth-order tensors C and P , respectively.

Moreover, the coefficient matrix in (31) is Hermitian. The measured displacements d̃ and ũ in (32f) are
assumed to be continuous over (i.e. available at all nodes in) their respective measurement regions. However,
cases where the measurement data is sparse can be easily taken into consideration. In this case, measurement
locations can be made to coincide with finite element nodes, and [D] in (31) is replaced by a diagonal Boolean
matrix [Q] with nonzero entries only for those global degrees of freedom (DOFs) that are measured; moreover,
{R} becomes a vector whose entries are the measured displacements at the different DOFs. For this work,
the system (31) was solved using the parallel, sparse direct linear solver PARDISO [26, 27].

We now explore the unique solvability of the block system (31). Let [A] := [K] − ω2[M ] and assume
that ΓN 6= Γ (i.e., not all of the boundary Γ has a natural boundary condition such as (1b)). The latter
condition makes [T ] positive definite and, hence, invertible. Let {u} and {w} be elements of the kernel of
the coefficient matrix in (31), i.e. such that

[T ]{w}+ [A]{u} = {0}
[A]H{w} − κ[D]{u} = {0}.
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Combining the above equations and using the invertibility of [T ] so as to eliminate {w}, {u} is found to
verify (

([A]H [T ]−1[A] + κ[D]
)
{u} = {0}.

Since [A]H [T ]−1[A] and [D] are both symmetric and semi-definite positive, this implies that {u} must satisfy
both [A]H [T ]−1[A]{u} = {0} and [D]{u} = {0}. Consequently, the kernel of the block matrix in (31) is
trivial (i.e., {u} = {w} = {0}) only if

Ker([A]H [T ]−1[A]) ∩Ker([D]) = {0}, (33)

where Ker(·) denotes the kernel of a matrix. Since [T ] is positive definite, condition (33) reduces to Ker([A])∩
Ker([D]) = {0}. This analysis does not hold in the case where ΓN = Γ, which is deemed here of little
relevance for interior data problems.

Remark 3. Importantly, the inclusion W0 ⊂ W implies that [A] is rectangular, with more columns than
rows, unless sufficient boundary conditions are present. In that case, Ker([A]) is nontrivial, and condition
(33) imposes constraints on experiments in order to ensure invertibility of the coupled system (31). Those
constraints may be understood as requiring the amount of internal measurements to at least compensate the
missing boundary data. They are for example largely satisfied in the examples of Section 4, where boundary
conditions are absent over the entire boundary but a measured displacement field is assumed to be available
either over the whole domain or in a significant portion of it (full-field data). For instance, in the former
case, the observation matrix [D] is positive definite (i.e. Ker([D]) = {0}), which ensures invertibility of (31)
as per (33).

Remark 4. The fact that the discrete stationarity system (31) is found to be uniquely solvable subject only
to the relatively mild condition (33) is important, as it makes the proposed MECE-based identification method
applicable to many boundary condition and measurement setups.

3.5. The scaling tensor P and the penalty term κ
Choosing P. We chose to define P in terms of the initial viscoelasticity tensor Cinit by P = βR Re[Cinit] +
βI Im[Cinit], with positive weights βR, βI. This choice satisfies the properties required of P , namely that it be
a real-valued, symmetric, positive definite fourth-order tensor (see Sec. 3.1) independent on the unknown C.
Letting [Kinit;R] and [Kinit;I ] denote the real and imaginary parts of the initial stiffness matrix, defined by
(32a) with [C] replaced by [Cinit], the matrix [T ] defined in (32b) is then given by [T ] = βR[Kinit;R]+βI[Kinit;I ]
(up to differences related to the fact that [Kinit] and [T ] incorporate kinematic constraints associated to
spaces W and W0, respectively). We explored different values for the weights βR and βI through numerical
experiments and found the algorithm to be robust in this respect. The arbitrary choice βR = βI = 1 was
used for all results reported thereafter.

Choosing κ. The parameter κ in (9) weights the relative importance between minimizing the ECE term and
matching the experimental data and thus affects the quality of the reconstruction of C. As it affects the
smoothness of C, it acts in this sense as a regularizer, its exact role being (as discussed in [29]) reciprocal to
that of a conventional Tikhonov regularization parameter.

As a first step, the following form for κ, originally proposed in [4], is used as

κ := αA, A :=
〈ε[uinit],P :ε[uinit]〉
〈d̃, d̃〉Ωm + `〈ũ, ũ〉Γu

, (34)

where the weight parameter α > 0 is dimensionless and uinit solves equations (1a)-(3) with C = Cinit. If
Γ \ (ΓD ∪ ΓN ) 6= ∅, it is necessary to prescribe arbitrarily chosen boundary conditions in order to define
uinit uniquely. This does not affect the generality of the method, as uinit is used only as a means to scale κ.
Notice that (34) makes the components of Λ in (9) dimensionally consistent, each having units of energy.

The next step is to devise a strategy for the selection of α. Appropriately choosing α is critical because
high values of α will result in low values of the displacement-misfit functionals in (9), which is undesirable
in the case of noisy data. Conversely, too-low values of α will result in high values of the displacement-
misfit functionals, entailing potential loss of important information contained in the measurements and the
over-smoothing of the solution to the inverse problem.
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The selection of α in this work is based on Morozov’s discrepancy principle [9, 16], a well-established
approach which assumes the level of noise δ in the measurement data to be known a priori. This principle
dictates that the parameter α be chosen to be the smallest positive number such that the final discrepancy
between the computed and measured system response is within the noise level. That is, we select the
minimum α possible subject to the condition∣∣∣∣∣ 〈uα − d̃,uα − d̃〉Ωm + `〈uα − ũ,uα − ũ〉Γu

〈d̃, d̃〉Ωm + `〈ũ, ũ〉Γu

− δ2

∣∣∣∣∣ ≤ εmδ2, (35)

where uα denotes the displacement field obtained as a solution to the optimality system (13) with κ = αA
and εm is a specified relative tolerance. A simple bisection method was implemented to find α on the basis
of (35). This requires solving at each bisection step the optimization problem (13) (here, by means of
the proposed alternating directions scheme). A tolerance εm = O(10−2) was found to be adequate for the
examples of Section 4. Lower error tolerances did not yield any noticeable differences in the solution.

4. Numerical Experiments

This section is devoted to a series of numerical experiments, inspired by the field of biomedical imaging,
that are intended to showcase the capabilities of the methodology of Section 3. They consist in imaging
a viscoelastic inclusion (with unknown location, geometry, and characteristics) embedded in a viscoelastic
background medium (all materials being assumed to be isotropic) by reconstructing the complex bulk and
shear moduli fields B and G, treated as completely unknown. In particular, the examples demonstrate that
adequate reconstructions are achieved in situations where information on the boundary conditions is absent.
In Example 1, a two-dimensional problem is considered where B and G are estimated using noisy interior
displacement data with boundary conditions either known or unknown. Example 2 uses the same setup as
Example 1, but the reconstruction of B and G is done in a window of the problem domain. In Example
3, B and G are imaged in a three-dimensional domain using a full displacement field. In all examples,
frequencies were chosen so as to maintain low wavenumbers in the domain. This choice was made without
loss of generality and in the interest of avoiding excessively fine meshes.

Synthetic measurements were generated for all examples by (i) performing a finite element simulation
with the target material parameters, using a dedicated data simulation mesh; (ii) interpolating the resulting
displacement field onto a (different) reconstruction mesh; and (iii) corrupting that interpolated field with
random noise. For the simulated displacement ûi at a node i, the corresponding noisy measurement ũi is
given as

ũi = ûi(1 + δri), (36)

where ri is a normal random variable with zero mean and unit variance and the parameter δ is a prescribed
relative noise level. In our examples, we use δ = 0.01 and 0.05. The reconstruction mesh in step (ii) is
introduced in order to avoid committing the “inverse crime” in evaluating an inversion methodology; it is
regular (so it carries no information about the inclusion geometry) and coarser than the data simulation
mesh.

For all examples, (Binit, Ginit) will denote (homogeneous) initial guesses, and (B?, G?) will represent the
complex moduli fields yielded by the MECR-based reconstruction. (B0, G0), (B1, G1) will indicate target
values for the background and inclusion materials, respectively, and (Bref, Gref) will denote the corresponding
target moduli fields. Moreover, all materials used in the examples have a homogeneous mass density ρ =
1, 000 kg/m3. All discretized moduli fields are defined with reference to the reconstruction mesh, with Gref

and Bref initially defined on the data simulation mesh and then projected to the reconstruction mesh. The
relative Lp errors on moduli reconstructions will be evaluated (with p = 1 or 2, and using the reconstruction
mesh) for each example; they are defined by

ep[X] :=

[ ∫
Ω

∣∣X? −Xref
∣∣p dV∫

Ω
|Xref|p dV

]1/p

, (p = 1, 2; X = B,G). (37)

9



x
y

t1 

t2 t3 
BA

C

D

Figure 1: Diagram of the problem domain in Examples 1 and 2

For this work, the alternating directions scheme was stopped and deemed to have converged when the
relative change in the functional (9) between two successive iterations dropped below 0.1% for Examples
1 and 2 and 1% for Example 3. A higher tolerance was selected for Example 3 to avoid excessively long
computation times. As pointed out in [29], this criterion was confirmed to be adequate for the examples pre-
sented herein as it was verified (from extensive numerical testing) that the relative change in the mechanical
fields and moduli was negligible for these levels of change in the functional.

4.1. Example 1: 2D reconstruction with 2D data

This example demonstrates the ability of the proposed methodology to image the shear and bulk moduli
fields of viscoelastic materials from noisy two-dimensional displacement data, under plane strain conditions.
Two scenarios were considered. Scenario 1 assumes complete knowledge of the boundary conditions (i.e.,
ΓD ∪ ΓN = Γ), whereas Scenario 2 assumes no knowledge of the boundary conditions (i.e., ΓD = ΓN = ∅).
The domain for this example (Fig. 1) consists of a square background with an elliptical inclusion. Each side
of the square is 4 cm, and the ellipse has a major radius, respectively minor radius, of 8

√
2 mm, respectively

5
√

2 mm. Moreover, the major radius of the ellipse has an orientation of 45◦ with respect to the x−axis.
The frequency used in this example was 100 Hz. The target viscoelastic moduli for the background were

set to B0 = 50 kPa and G0 = 5 + 2.5i kPa (with i =
√
−1), with the inclusion target properties taken

as B1 = 4B0 and G1 = 4G0. The bulk modulus was thus assumed to be purely elastic. There are many
applications in which the bulk modulus is taken as purely elastic (see for instance [12, 14]). The boundary
conditions used to generate the measurement data, sketched in Figure 1, were such that the bottom side
was fixed while traction loads given by t1 = [0 − 5] kPa, t2 = [−5 5] kPa, and t3 = [5 − 5] kPa (see Fig. 1)
were applied to all other sides. The data simulation mesh involved about 22, 000 linear quadrilateral (Q4)
elements, while the reconstruction mesh used 15, 600 Q4 elements. Moreover, the noise levels used in (36)
were δ = 0.01 and 0.05.

The alternating directions algorithm was started by setting (Binit, Ginit) = (B0, G0). Figure 2 shows
Re(B?), the real part of the reconstructed bulk modulus. The background modulus is seen to be correctly
preserved in all four cases. Moreover, the inclusion shape was also accurately recovered. The accuracy of
the reconstruction B? in the inclusion, however, varies according to the data noise and whether boundary
conditions are known or unknown: unsurprisingly, the reconstruction with δ = 0.01 is more accurate than
that with δ = 0.05, while the lack of boundary condition data also moderately degrades accuracy. Indeed,
all images in Figure 2 correctly reveal the stiffer inclusion.

The imaging results Re(G?) and Im(G?) are shown in Figures 3 and 4, respectively. Trends similar to
the results for Re(B?) can again be observed. The reconstruction of Im(G) appears to be less accurate than
that of the other quantities. This can be explained by the sensitivity of Im(G?) on the measured data, since
different reconstructions (not reported herein) were obtained using data generated with different loading
conditions.
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Figure 2: Example 1, reconstruction of Re(B). Units: kPa, mm
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Figure 3: Example 1, reconstruction of Re(G). Units: kPa, mm

12



0 10 20 30 400

5

10

15

Horizontal Distance from Left [mm]

Im
(G

) [
kP

a]

 

 

Reference
Known BCs  1%
Known BCs  5%
Unknown BCs  1%
Unknown BCs  5%

(a) Line plot along AB (see Fig. 1)
(b) Reference Im(Gref)

(c) Im(G?): known BCs, δ = 0.01 (d) Im(G?): known BCs, δ = 0.05

(e) Im(G?): unknown BCs, δ = 0.01 (f) Im(G?): unknown BCs, δ = 0.05

Figure 4: Example 1, reconstruction of Im(G). Units: kPa, mm

13



Table 1 shows the values of the weighting parameter α selected according to Morozov’s principle (see
Section 3.5) for the results corresponding to Scenarios 1 and 2, respectively. These tables also report the
relative L1 and L2 reconstruction errors as defined in (37). For comparison purposes, the inverse problem was
also solved using the purely elastic initial guess (Binit, Ginit) = (B0,Re(G0)); the corresponding values for
α and the relative errors in the reconstructed moduli are also reported in Table 1. As it can be appreciated
in these tables, the value of α decreased with increasing noise level – which is indeed expected because the
noisier the measurement data, the less strictly it should be enforced. Additionally, the α values corresponding
to the elastic initial guess are lower by a few orders of magnitude than those corresponding to the viscoelastic
initial guess. This is a direct result of the choice of normalization used for this work, which is presented in
(34). More specifically, an elastic initial guess yields uinit with a larger magnitude than the one obtained
using a viscous initial guess (holding the real part constant), since uinit in the latter case is attenuated by
damping. Hence, uinit with a larger magnitude leads to a higher value of A, which is compensated with a
lower value for α in order to satisfy Morozov’s principle.

Table 1: Algorithm diagnostics for Example 1.

Scenario Initial guess δ α e1[B] e2[B] e1[G] e2[G]

known BCs
Background

0.01 0.20 0.15 0.23 0.15 0.15
0.05 0.14 0.28 0.36 0.25 0.24

Real part of background
0.01 6.6× 10−5 0.16 0.22 0.15 0.15
0.05 4.9× 10−5 0.27 0.33 0.26 0.25

unknown BCs
Background

0.01 0.30 0.29 0.30 0.32 0.29
0.05 0.10 0.45 0.48 0.40 0.39

Real part of background
0.01 8.9× 10−5 0.27 0.29 0.34 0.29
0.05 2.7× 10−5 0.41 0.46 0.47 0.42

It is important to point out that the reconstruction errors presented in Table 1 may provide a misleading
sense of the accuracy of the reconstructed moduli. For instance, small errors in the shape or location of
the reconstructed inclusion may lead to relatively high L1 and L2 errors, which are nevertheless not truly
representative of the visual reconstruction quality seen in Figures 2–4. The L1 and L2 errors given in Table
1, however, are useful for making relative comparisons between the different reconstructions. For example,
reconstruction errors increase as expected with either increasing data noise or loss of boundary information.
On the other hand, these errors are rather insensitive to the nature of the initial guess (i.e., elastic vs.
viscoelastic), i.e. the MECE-based algorithm exhibits robustness with respect to the initial guess.

Remark 5. We also investigated the case in which the sought bulk modulus was also viscoelastic. We
consistently observed that both Re(B) and Im(B) were reconstructed with less accuracy than Re(G) and
Im(G). The Im(B) component showed the largest reconstruction error, to the point that the inclusion was
not identified. These results are not shown herein for the sake of brevity. However, we confirmed that the
observed inaccuracy in the reconstruction of Im(B) and Im(G) stems from the specific geometry and loading
configuration used for the examples shown herein. More accurate reconstructions could be obtained using,
for instance, multiple experiments in which the loads and boundary conditions are varied.

4.2. Example 2: 2D reconstruction with window
This example aims to highlight the ability of the proposed approach to reconstruct the shear and bulk

moduli fields in a subdomain, or window, of the original problem domain Ω and also to further investigate
the influence of the initial guess (Binit, Ginit) on the reconstruction. The problem setup used is identical
to that of Example 1 except for the fact that measured displacements are now assumed to be available
only in a window Ωw ⊂ Ω, taken as a square subdomain with sides of 28 mm centered at the center of Ω
(so that |Ωw| = 0.49|Ω|). The MECE-based formulation will be applied to the subdomain Ωw and in the
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(a) Reference with window

(b) Initial guess 1: real part of background (c) Initial guess 2: background

(d) Initial guess 3: Binit = 50; Ginit = 5 + 4.5i (e) Initial guess 4: Binit = 50; Ginit = 10 + 3i

Figure 5: Example 2, reconstruction of Re(B). Background is B0 = 50 and G0 = 5 + 2.5i. Units: kPa,
mm
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(a) Reference with window

(b) Initial guess 1: real part of background (c) Initial guess 2: background

(d) Initial guess 3: Binit = 50; Ginit = 5 + 4.5i (e) Initial guess 4: Binit = 50; Ginit = 10 + 3i

Figure 6: Example 2, reconstruction of Re(G). Background is B0 = 50 and G0 = 5 + 2.5i. Units: kPa,
mm
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(a) Reference with window

(b) Initial guess 1: real part of background (c) Initial guess 2: background

(d) Initial guess 3: Binit = 50; Ginit = 5 + 4.5i (e) Initial guess 4: Binit = 50; Ginit = 10 + 3i

Figure 7: Example 2, reconstruction of Im(G). Background is B0 = 50 and G0 = 5 + 2.5i. Units: kPa,
mm
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absence of boundary condition information. A uniform reconstruction mesh is defined on Ωw featuring 6,400
quadrilateral (Q4) elements. Synthetic data noise is generated using (36) with δ = 0.01. Four different initial
guesses are considered, with the bulk modulus set in all cases to Binit = B0 = 50 kPa and the following
choices for the shear modulus: 1) Ginit = Re(G0) = 5 kPa (elastic initial guess); 2) Ginit = G0 = 5+2.5i kPa;
3) Ginit = 5 + 4.5i kPa; and 4) Ginit = 10 + 3i kPa. Thus, each initial guess involves a different level of
damping in the shear modulus.

Figures 5, 6, and 7 show the reconstructions obtained with different initial guesses for the alternating
directions algorithm. As it can be seen in Figure 5, the different initial guesses did not have a significant
effect on the reconstruction of Re(B). This is indeed expected because Binit was the same for all cases.
Moreover, these reconstructions correctly identified the background value B0 but underestimated B1 in the
inclusion. This is also seen in Figure 6 to be the case for Re(G), whose estimated value is nevertheless
more accurate. In addition, initial guess 4 resulted in higher reconstruction errors for Re(G) than the other
reconstructions, which seems to be a reflection of the large discrepancy between Re(Ginit) and Re(G0) for
that case. Finally, all reconstructions of Re(B) and Re(G) correctly identified the inclusion shape. The
reconstruction of Im(G), shown in Figure 7, is the most affected by the different initial guesses considered.
The quality of the reconstruction inside the inclusion locus improves with increasing values of Im(Ginit), with
initial guess 3 providing the best result. This trend appears to be reversed, however, for the reconstruction
in the background region. Additionally, the use of a window led to a degradation in the reconstruction
quality. We are currently investigating the exact reason for this degradation.

Table 2 shows the value for α obtained according to Morozov’s principle and the relative L1 and L2

reconstruction errors for the different initial guesses considered. The reconstruction errors are seen to
not depend significantly on the initial guess, which confirms the robustness of the algorithm in this sense.
However, these errors are, in general, slightly greater than their counterparts in Example 1, which is evidence
of some degradation in the reconstruction quality when using a window. Moreover, as in Example 1, the
value for α is lower for the (elastic) initial guess than for the others, but the drop is not as sharp as in
Example 1. We conjecture this is due to the difference in size (i.e., area) between Ωw and Ω and the way
the domain affects α through (34).

Table 2: Example 2: algorithm diagnostics.

Initial guess α e1[B] e2[B] e1[G] e2[G]

Binit = 50 kPa Ginit = 5 kPa 0.05 0.55 0.45 0.53 0.41
Binit = 50 kPa Ginit = 5 + 2.5i kPa 0.43 0.58 0.47 0.51 0.40
Binit = 50 kPa Ginit = 5 + 4.5i kPa 0.61 0.57 0.46 0.60 0.44
Binit = 50 kPa Ginit = 10 + 3i kPa 0.43 0.58 0.48 0.65 0.47

4.3. Example 3: 3D reconstruction with 3D data

This example is designed to showcase the ability of the MECE-based reconstruction algorithm to scale
to more general three-dimensional situations. The reconstructions performed for this example were done
for the unknown boundaries scenario and using noisy displacement data. The domain Ω, shown in Figure
8, consists of a cube (edge length: 4 cm). An inclusion, whose support is an elliptic cylinder (length: 2
cm; axis along the z direction; major and minor semiaxes: 11.3 mm and 7 mm, with 45◦ inclination) whose
center coincides with that of the cube, is to be identified.

The frequency used in this example was 50 Hz. The target moduli are (B0, G0) = (100, 20 + 2i) kPa
for the background and (B0, G0) = (300, 60 + 8i) kPa for the inclusion. The boundary conditions used
to generate the measurement data consisted of compression and shearing loads on every face of the cube
except the bottom face, which was fixed. The data generation mesh involved 60, 000 quadratic tetrahedral
elements, while the coarser reconstruction mesh used about 15, 600 trilinear hexahedral elements. Synthetic
data noise is again generated using (36), with δ = 0.01.
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Figure 8: Example 3: domain and inclusion

The initial guess for the MECE-based algorithm is set to (Binit, Ginit) = (B0, G0). Figure 9 shows
threshold plots for all reconstructed values of the moduli. These plots show the cube background and the
inclusion with corresponding elements from the mesh shaded in for reference purposes. Additionally, Figure
10 shows cuts parallel to the cube faces, going through the center of the domain. The algorithm was able to

(a) Re(B). [Min, Max] = [175, 234]

(b) Re(G). [Min, Max] = [35, 46] (c) Im(G). [Min, Max] = [4.5, 8]

Figure 9: Example 3: threshold plots. Intervals represent bounds on values of elements shown in red.
Units: kPa
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(a) Reference (b) Reference (c) Reference

(d) Re(B) (e) Re(B) (f) Re(B)

(g) Re(G) (h) Re(G) (i) Re(G)

(j) Im(G) (k) Im(G) (l) Im(G)

Figure 10: Example 3, reconstructed moduli in planes through center of domain: xy-plane (left column),
yz-plane (middle column), xz-plane (right column). Units: kPa

20



correctly identify the location and shape of the inclusion as well as the value of the background’s moduli. The
reconstructed values in the inclusion region, nevertheless, underestimate in all instances the target values.
Indeed, the reconstructed maximum value in the domain is less than the corresponding target inclusion
modulus in all cases.

Table 3 shows the value of the weighting parameter α, selected according to Morozov’s principle, and
the relative reconstruction errors. For comparison purposes, the scenarios where boundary conditions are
either unknown or known are both considered. As in all other numerical experiments performed for this
investigation, reconstructions obtained without boundary condition information are less accurate than those
obtained with known boundary conditions. However, the former reconstructions, as demonstrated by Figures
9 and 10, remain meaningful and useful for biomedical imaging purposes.

Table 3: Example 3: algorithm diagnostics.

Boundary Conditions α e1[B] e2[B] e1[G] e2[G]

Known 4.9 0.25 0.30 0.13 0.16
Unknown 2.7 0.38 0.40 0.31 0.35

5. Conclusions

The intended contributions of this work, devoted to the imaging of linearly viscoelastic heterogeneous
moduli using interior data, include (i) the development of an algorithm exploiting a generalized error in
constitutive equation functional which handles in a very natural way situations where boundary conditions
are not known and (ii) a demonstration of its feasibility on 2D and 3D synthetic imaging problems involving
up to tens of thousands of unknown viscoelastic moduli and using incomplete and noisy displacement data
without information on the boundary conditions. In addition, the resulting optimality sub-system for the
mechanical fields was shown to be invertible. Regularization of the inverse problem of viscoelasticity imaging
is achieved using Morozov’s discrepancy principle, which assumes the availability of prior information on
the level of data noise. Our proposed approach would be particularly useful in the area of biomechanical
imaging, which aims to image the material parameters of a tissue from displacements measured in its interior
and where accurate information on boundary conditions is not readily available.

Future directions of investigation include the following: 1) to assess the algorithm against real experi-
mental data; 2) to formulate alternative definitions of the ECE functional based on the Legendre-Fenchel
error density which would easily allow multi-frequency data and not involve a normalization tensor P ; 3) to
extend the formulation to address imaging problems in which measured data from multiple experiments is
available; 4) to determine the convergence properties of the alternating directions strategy; and 5) to devise
regularization techniques to select the weighting parameter α in cases in which the noise level in the data is
unknown.

Acknowledgments Wilkins Aquino and Manuel Diaz were partially supported by NIH Grant #
R01CA174723.

References

[1] Aguilo M.A., Aquino W., Brigham J.C., Fatemi M. An inverse problem approach for elasticity imaging through vibroa-
coustics. Medical Imaging, IEEE Transactions on, 29:1012–1021 (2010).

[2] Albocher U., Oberai A.A., Barbone P.E., Harari I. Adjoint-weighted equation for inverse problems of incompressible
plane-stress elasticity. Computer Methods in Applied Mechanics and Engineering, 198:2412–2420 (2009).

[3] Allix O., Feissel P., Nguyen H.M. Identification strategy in the presence of corrupted measurements. Engineering Com-
putations, 22:487–504 (2005).

[4] Banerjee B., Walsh T.F., Aquino W., Bonnet M. Large scale parameter estimation problems in frequency-domain elasto-
dynamics using an error in constitutive equation functional. Computer Methods in Applied Mechanics and Engineering,
253:60 – 72 (2013).

21



[5] Barthe D., Ladeveze P., Deraemaeker A., Loch S.L. Validation and updating of industrial models based on the constitutive
relation error. AIAA journal, 42:1427–1434 (2004).

[6] Bonnet M., Constantinescu A. Inverse problems in elasticity. Inverse problems, 21:R1 (2005).
[7] Brigham J., Aquino W., Mitri F., Greenleaf J., Fatemi M. Inverse estimation of viscoelastic material properties for solids

immersed in fluids using vibroacoustic techniques. Journal of applied physics, 101:023509–023509 (2007).
[8] Christensen R. Theory of viscoelasticity: an introduction. Academic press (1982).
[9] Colton D., Kress R. Inverse acoustic and electromagnetic scattering theory, vol. 93. Springer (2012).

[10] Doyley M., Meaney P., Bamber J. Evaluation of an iterative reconstruction method for quantitative elastography. Physics
in Medicine and Biology, 45:1521 (2000).

[11] Feissel P., Allix O. Modified constitutive relation error identification strategy for transient dynamics with corrupted data:
The elastic case. Computer methods in applied mechanics and engineering, 196:1968–1983 (2007).

[12] Fung Y. Biomechanics: mechanical properties of living tissues. Biomechanics / Y. C. Fung. Springer-Verlag (1981).
[13] Gao L., Parker K., Lerner R., Levinson S. Imaging of the elastic properties of tissue–A review. Ultrasound in medicine &

biology, 22:959–977 (1996).
[14] Grasely Z. Measuring and modeling the time-dependent response of cementitious materials to internal stresses. Ph.D.

thesis, University of Illinois at Urbana-Champaign (2006).
[15] Greenleaf J.F., Fatemi M., Insana M. Selected methods for imaging elastic properties of biological tissues. Annual review

of biomedical engineering, 5:57–78 (2003).
[16] Isakov V. Inverse problems for partial differential equations, vol. 127. Springer (2006).
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