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Abstract

In this work, we develop and analyze a Hybrid High-Order (HHO) method for steady
non-linear Leray–Lions problems. The proposed method has several assets, including the
support for arbitrary approximation orders and general polytopal meshes. This is achieved by
combining two key ingredients devised at the local level: a gradient reconstruction and a high-
order stabilization term that generalizes the one originally introduced in the linear case. The
convergence analysis is carried out using a compactness technique. Extending this technique
to HHO methods has prompted us to develop a set of discrete functional analysis tools whose
interest goes beyond the specific problem and method addressed in this work: (direct and)
reverse Lebesgue and Sobolev embeddings for local polynomial spaces, Lp-stability and W s,p-
approximation properties for L2-projectors on such spaces, and Sobolev embeddings for hybrid
polynomial spaces. Numerical tests are presented to validate the theoretical results for the
original method and variants thereof.

2010 Mathematics Subject Classification: 65N08, 65N30, 65N12
Keywords: Hybrid High-Order methods, nonlinear elliptic equations, p-Laplacian, discrete
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1 Introduction

We are interested here in the numerical approximation of the steady Leray–Lions equation

´divpap¨, u,∇uqq “ f in Ω, (1.1a)

u “ 0 on BΩ, (1.1b)

where Ω Ă Rd, d ě 1, is a polytopal bounded connected domain of boundary BΩ, while a :
Ωˆ Rˆ Rd Ñ Rd is a (possibly nonlinear) function of its arguments, for which detailed assump-
tions are discussed in the following section. This model, which contains the p-Laplace equation,
appears in the modelling of glacier motion [42], of incompressible turbulent flows in porous me-
dia [31] and in airfoil design [41]. Our goal is to design and analyze a discretization method for
problem (1.1) inspired by the Hybrid High-Order (HHO) method introduced in [29] in the context
of a linear diffusion model problem (see also [26] for degenerate advection–diffusion–reaction mod-
els). The proposed method offers several assets: (i) the construction is dimension-independent;
(ii) fairly general meshes including polytopal elements and nonmatching interfaces are supported;
(iii) arbitrary polynomials orders can be considered (including the case k “ 0); (iv) it is efficiently
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parallelisable (the local stencil only connects a mesh element with its faces), and it has reduced
computational cost (when solving by a first-order algorithm, the element-based unknowns can be
eliminated by static condensation).

Numerical methods allowing for arbitrary-order discretizations and general meshes have re-
ceived increasing attention over the last few years. Supporting general polytopal meshes is re-
quired, e.g., in the modelling of underground flows, where degenerate elements and nonconform-
ing interfaces account for complex geometric features resulting from compaction, erosion, and
the onset of fractures or faults. Another relevant application of polyhedral meshes is adaptive
mesh coarsening [6, 11]. The literature on arbitrary-order polytopal methods for linear diffusion
problems is vast. In this context, methods that have similarities (and differences) with the HHO
method include, e.g., the Hybridizable Discontinuous Galerkin method of [23] (cf. also [22] for a
precise study of its relation with the HHO method), the Virtual Element Method of [12, 13, 17],
the High-Order Mimetic method of [47], the Weak Galerkin method of [50,51], and the Multiscale
Hybrid-Mixed method of [7].

The finite element approximation of nonlinear diffusion problems of Leray–Lions type on stan-
dard meshes has been studied in several papers; cf., e.g, [10, 42, 48]. The literature on polytopal
meshes is, however, much more scarce, and is mainly restricted to the lowest-order case. We cite
here, in particular, the two-dimensional Discrete Duality Finite Volume schemes studied in [4] (cf.
also the precursor papers [1–3]), the Mixed Finite Volume scheme of [32] (inspired by [33]) valid
in arbitrary space dimension, and the Mimetic Finite Difference method of [5] for p P p1, 2q and
under more restrictive assumptions than (2.2). High-order discontinuous Galerkin approximations
have also been considered in [20].

The starting point for the present work is the HHO method of [29]. In the lowest-order case,
it has been shown in [29, Section 2.5] that this method belongs to the Hybrid Mixed Mimetic
family [36], which includes the hybrid Mimetic Finite Differences [18], the Hybrid Finite Volume
[39] and the Mixed Finite Volume [33]. The HHO method can therefore be seen as a higher order
version of these schemes. The (hybrid) degrees of freedom (DOFs) for the HHO method are fully
discontinuous polynomials of degree k ě 0 at mesh elements and faces. The construction hinges
on two key ingredients built element-wise: (i) a discrete gradient defined from element- and face-
based DOFs; (ii) a high-order penalty term which vanishes whenever one of its arguments is a
polynomial of degree ď pk`1q inside the element. These ingredients are combined to build a local
contribution, which is then assembled element-wise. A key feature reducing the computational cost
is that only face-based DOFs are globally coupled, whereas element-based DOFs can be locally
eliminated by a standard static condensation procedure.

The design of a HHO method for the nonlinear problem (1.1) entails several new ideas. A
first difference with respect to the linear case is that a more natural choice is to seek the gradient
reconstruction in the full space of vector-valued polynomials of degree ď k (as opposed to the space
spanned by gradients of scalar-valued polynomials of degree ď pk ` 1q). The main consequence
of this choice is that, when applied to the interpolates of smooth functions, the discrete gradient
operator commutes with the L2-projector, and therefore enjoys Lp-stability properties (see below).
A second important point is the design of a high-order stabilization term with appropriate scaling.
Here, we propose a generalization of the stabilization term of [29] which preserves the property
of vanishing whenever one of its arguments is a polynomial of degree ď pk ` 1q. As in the linear
case, the construction hinges on the solution of small local linear problems inside each elements,
and the possibility of statically condense element-based DOFs remains available.

The convergence analysis is carried out using a compactness argument in the spirit of [49], and
under minimal regularity assumptions on the exact solution. Adapting the compactness argument
has prompted us to develop discrete functional analysis tools whose interest goes beyond the
specific method and problem considered in this work.

A first notable set of result are (direct and) reverse Lebesgue and Sobolev embeddings on local
polynomial spaces (e.g., on mesh elements and faces, but curved geometries are also allowed).
The term reverse refers to the fact that the largest exponent is bounded above by the term
corresponding to the lowest exponent. Direct Sobolev embedding for broken spaces on fairly
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general polytopal meshes are proved in [19, 27]; specific instances had already been established
in [8, 15, 40, 44, 45]. Reverse embeddings, on the other hand, are established in [16, Theorem
4.5.11], but under the assumption that all mesh elements are affine-equivalent to one (or a finite
number of) given fixed reference elements. This limitation is due to the very generic local finite
element spaces considered therein. Exploiting the fact that we deal with polynomial local spaces,
we can establish a more general version of reverse inequalities, that does not require to specify any
particular geometry of the elements (only their non-degeneracy). Reverse Lebesgue embeddings
are a crucial ingredient to prove the stability of the HHO method.

A second set of results concerns the stability and approximation properties of the L2-projector
on local polynomial spaces. More specifically, we prove under very general geometric assumptions
that the L2-projector is Lp-stable for any index p P r1,`8s, and that it has optimal approximation
properties in local polynomial spaces. Stability results for (global) projectors onto finite element
spaces can be found in [9, 14, 21, 24]. However, these references mostly consider H1-stability, and
assume quite restrictive (and sometimes difficult to check) geometrical assumptions on the meshes.
These limitations are a consequence of dealing with projectors on global finite element spaces,
that include some form of continuity property between the mesh elements. On discontinuous
polynomial spaces such as the ones used in HHO methods, we can establish more general Lp- and
W s,p-stability and approximation properties of local L2-projectors. The approximation results
extend to the W s,p-setting the ones in [28, Section 1.4.4], based in turn on the ideas of [38].

Finally, a third set of discrete functional analysis tools are specific to polynomial spaces with
a hybrid structure, i.e., using as DOFs polynomials at elements and faces. In this case, build-
ing on the results of [27] for discontinuous Galerkin methods (inspired by the low-order discrete
functional analysis results of [33, 39]), we introduce a suitable discrete W 1,p-like norm and prove
a discrete counterpart of Sobolev embeddings and a compactness result for the discrete gradient
reconstruction upon which the HHO method hinges.

The material is organized as follows: in Section 2 we recall a set of standard assumptions to
write a weak formulation for problem (1.1); in Section 3 we detail the discrete setting by specifying
the assumptions on the mesh and recalling the basic results on local polynomial spaces; in Section 4
we formulate the HHO method, state (without proof) the main stability and convergence results,
and provide a few numerical examples; Section 5 collects the discrete functional analysis tools on
hybrid polynomial spaces, which are used in Section 6 to prove the stability and convergence of
the HHO method; in Section 7 we briefly address the treatment of other boundary conditions and
hint at the modifications required in the analysis; a conclusion is given in Section 8 and, finally, in
Appendix A we provide the proofs of the discrete functional analysis results on local polynomial
spaces.

2 Continuous setting

In this section we detail the assumptions on the function a and write a weak formulation for
problem (1.1). Let p P p1,`8q be given, and denote by p1 :“ p

p´1 the dual exponent of p, and by

p˚ the Sobolev exponent of p such that

p˚ “

#

dp
d´p if p ă d,

`8 if p ě d.
(2.1)

We assume that
a : Ωˆ Rˆ Rd ÞÑ Rd is a Caratheodory function, (2.2a)

Da P Lp
1

pΩq , Dβa P p0,`8q , Dr ă
p˚

p1 : |apx, s, ξq| ď apxq ` βa|s|
r ` βa|ξ|

p´1

for a.e. x P Ω, for all ps, ξq P Rˆ Rd,
(2.2b)

rapx, s, ξq ´ apx, s,ηqs ¨ rξ ´ ηs ě 0 for a.e. x P Ω, for all ps, ξ,ηq P Rˆ Rd ˆ Rd, (2.2c)

Dλa P p0,`8q : apx, s, ξq ¨ ξ ě λa|ξ|
p for a.e. x P Ω, for all ps, ξq P Rˆ Rd, (2.2d)
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f P Lp
1

pΩq. (2.2e)

Here, Carathedory function means that apx, ¨, ¨q is continuous on R ˆ Rd for a.e. x P Ω, and
ap¨, s, ξq is measurable on Ω for all ps, ξq P R ˆ Rd. The Euclidean dot product and norm in Rd
are denoted by x ¨ y and |x|, respectively. Classically [46], the weak formulation for (1.1) is

Find u PW 1,p
0 pΩq such that, for all v PW 1,p

0 pΩq,
ż

Ω

apx, upxq,∇upxqq ¨∇vpxq dx “

ż

Ω

fpxqvpxq dx.
(2.3)

3 Discrete setting

This section presents the discrete setting: admissible mesh sequences, analysis tools on such
meshes, DOFs, reduction maps, and reconstruction operators.

3.1 Assumptions on the mesh

Denote by H Ă R`˚ a countable set of meshsizes having 0 as its unique accumulation point.
Following [28, Chapter 4], we consider h-refined mesh sequences pThqhPH where, for all h P H, Th
is a finite collection of nonempty disjoint open polyhedral elements T such that Ω “

Ť

TPTh T and
h “ maxTPTh hT with hT standing for the diameter of the element T . A face F is defined as a
hyperplanar closed connected subset of Ω with positive pd´1q-dimensional Hausdorff measure and
such that (i) either there exist T1, T2 P Th such that F Ă BT1 X BT2 and F is called an interface
or (ii) there exists T P Th such that F Ă BT X BΩ and F is called a boundary face. Interfaces
are collected in the set F i

h, boundary faces in Fb
h , and we let Fh :“ F i

h Y Fb
h . The diameter of

a face F P Fh is denoted by hF . For all T P Th, FT :“ tF P Fh | F Ă BT u denotes the set of
faces contained in BT (with BT denoting the boundary of T ) and, for all F P FT , nTF is the unit
normal to F pointing out of T . Symmetrically, for all F P Fh, we let TF :“ tT P Th | F Ă BT u
the set of elements having F as a face.

Our analysis hinges on the following assumption on the mesh sequence.

Assumption 3.1 (Admissible mesh sequence). For all h P H, Th admits a matching simplicial
submesh Th and there exists a real number % ą 0 such that, for all h P H: (i) for all simplex
S P Th of diameter hS and inradius rS, %hS ď rS, and (ii) for all T P Th, and all S P Th such
that S Ă T , %hT ď hS.

The simplicial submesh in this assumption is just a theoretical tool, and it is not used in
the actual construction of the discretization method. Given an admissible mesh sequence, for
all h P H, all T P Th, and all F P FT , hF is uniformly comparable to hT in the sense that
(cf. [28, Lemma 1.42]):

%2hT ď hF ď hT . (3.1)

Moreover, [28, Lemma 1.41] shows that there exists an integer NB depending on % such that

@h P H : max
TPTh

cardpFT q ď NB. (3.2)

Finally, by [28, Lemma 1.40], there is an integer Ns depending on % such that

@h P H : max
TPTh

cardptS P Th | S Ă T uq ď Ns. (3.3)

3.2 Basic results on local polynomial spaces

The building blocks for the HHO method are local polynomial spaces on elements and faces. Let
an integer l ě 0 be fixed. Let U be a subset of RN (for some N ě 1), HU the affine space spanned
by U , dU its dimension, and assume that U has a non-empty interior in HU . We denote by PlpUq
the space spanned by dU -variate polynomials on HU of total degree ď l. In the following sections,
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we will typically have N “ d and the set U will represent a mesh element or face. We note, in
passing, that a subset U with curved boundaries is also allowed except in Lemma 3.6, which is
why we use the different notation T instead of U in this lemma.

A key element in the construction are L2-projectors onto local polynomial spaces on bounded
subsets U Ă RN . The L2-projector πlU : L1pUq ÞÑ PlpUq is defined as follows: For any w P L1pUq,
πlUw is the unique element of PlpUq such that

@v P PlpUq :

ż

U

πlUwpxqvpxqdx “

ż

U

wpxqvpxqdx. (3.4)

Note that the regularity w P L1pUq suffices to integrate w against polynomials on U (which are
bounded functions). In what follows, we state some stability and approximation properties for the
L2-projector. The proofs are postponed to Appendix A.2.

Lemma 3.2 (Lp-stability of L2-projectors on polynomial spaces). Let U be a measurable subset
of RN , with inradius rU and diameter hU , such that

rU
hU

ě δ ą 0. (3.5)

Let k P N and p P r1,`8s. Then, there exists C only depending on N , δ, k and p such that

@g P LppUq : }πkUg}LppUq ď C}g}LppUq. (3.6)

Remark 3.3 (Geometric regularity (3.5) for mesh elements and faces). Elements T P Th and
faces F P Fh of an admissible mesh sequence satisfy the geometric regularity assumption (3.5)
with δ “ %2 and δ “ % respectively.

In the case where W s,ppUq is continuously embedded in CpUq, the following result can be
found in [16, Theorem 4.4.4]. This restriction on the space W s,p, which would prevent us from
analyzing interesting cases for (1.1), is due to the very general setting chosen for analyzing the
interpolation error in [16]. Because we focus here on local polynomial spaces and L2-projectors,
we can improve this result and obtain optimal interpolation errors for any s, p. If U is an open set
of RN , s P N and p P r1,`8s, we recall that | ¨ |W s,ppUq is defined by

@v PW s,ppUq , |v|W s,ppUq :“
ÿ

αPNN , |α|`1“s

}Bαv}LppUq

where |α|`1 “ α1 ` . . .` αN and Bα “ Bα1
1 ¨ ¨ ¨ B

αN
N .

Lemma 3.4 (W s,p-approximation properties of L2-projectors on polynomial spaces). Let U be
an open subset of RN with diameter hU , such that U is star-shaped with respect to a ball of radius
ρhU for some ρ ą 0. Let k P N, s P t1, . . . , k ` 1u and p P r1,`8s. Then, there exists C only
depending on N , ρ, k, s and p such that

@m P t0, . . . , su , @v PW s,ppUq : |v ´ πkUv|Wm,ppUq ď Chs´mU |v|W s,ppUq. (3.7)

Remark 3.5. Using [38, Section 7], the result still holds if U is a finite union of domains that
are star-shaped with respect to balls of radius comparable to hU . This enables us to use Lemma 3.4
on elements of admissible mesh sequences, which are the union of a finite number of simplices;
cf. (3.3).

The next result estimates the trace of the error, and therefore requires more geometric as-
sumptions on the domain (which, in the following sections, will be invariably a mesh element
T ).
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Figure 1: Degrees of freedom for k P t0, 1, 2u. Shaded DOFs can be locally eliminated by static
condensation.

Lemma 3.6 (Approximation properties of traces of L2-projectors on polynomial spaces). Let T
be a polyhedral subset of RN with diameter hT , such that T is the union of disjoint simplices
S of diameter hS and inradius rS such that %2hT ď %hS ď rS for some % ą 0. Let k P N,
s P t1, . . . , k ` 1u and p P r1,`8s. Then, there exists C only depending on N , %, k, s and p such
that

@m P t0, . . . , s´ 1u , @v PW s,ppT q : h
1
p |v ´ πkT v|Wm,ppFT q ď Chs´mT |v|W s,ppT q. (3.8)

Here, Wm,ppFT q is the set of functions that belong to Wm,ppF q for any hyperplanar face F of T ,
with corresponding broken norm.

Finally, the triangle inequality applied to (3.7) (with m “ s) and to (3.8) (with m “ s ´ 1)
immediately gives the following extension of Lemma 3.2.

Corollary 3.7 (W s,p-stability of L2-projectors on polynomial spaces). The following holds:

(i) Under the assumptions of Lemma 3.4, we have, with C only depending on N , ρ, k, s and p,

@v PW s,ppUq : |πkUv|W s,ppUq ď C|v|W s,ppUq;

(ii) Under the assumptions of Lemma 3.6, we have with C only depending on N , %, k, s and p,

@v PW s,ppT q : |πkT v|W s´1,ppFT q ď Ch
1
p1

T |v|W s,ppT q ` |v|W s´1,ppFT q.

4 The Hybrid High-Order method

In this section we introduce the space of degrees of freedom, define the gradient and potential
reconstructions at the heart of the HHO method, state the discrete problem along with the main
stability and convergence results, and provide some numerical examples.

4.1 Local degrees of freedom, interpolation and reconstructions

Let a polynomial degree k ě 0 and an element T P Th be fixed. We define the local space of DOFs

UkT :“ PkpT q ˆ

˜

ą

FPFT

PkpF q

¸

, (4.1)

cf. Figure 1, and we use the underline notation vT “ pvT , pvF qFPFT q for a generic element vT P U
k
T .

We define the local interpolation operator IkT : W 1,1pT q Ñ UkT such that, for all v PW 1,1pT q,

IkT v :“
`

πkT v, pπ
k
F vqFPFT

˘

. (4.2)
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Remark 4.1 (Domain for the interpolation operator). The local interpolation operator is well-
defined for functions v P W 1,1pT q since v is clearly in L1pT q, the domain of πkT , and its trace on
every face F P FT is in L1pF q, the domain of πkF . In passing, in our convergence proofs we only
need apply the interpolation operator to classically regular functions; cf., in particular, the proof
of Theorem 4.5 given in Section 6.

Based on the local DOFs, we introduce a gradient and a potential reconstructions that will
be instrumental in the formulation of the method. In what follows, p¨, ¨qT and p¨, ¨qF denote the
L2-inner product on T and F , respectively. The same notation is used in the vector case pL2qd. We
define the local discrete gradient operator GkT : UkT ÞÑ PkpT qd such that, if vT :“ pvT , pvF qFPFT q P

UkT then for all φ P PkpT qd,

pGkT vT ,φqT “ p∇vT ,φqT `
ÿ

FPFT

pvF ´ vT ,φ¨nTF qF (4.3a)

“ ´pvT ,∇¨φqT `
ÿ

FPFT

pvF ,φ¨nTF qF . (4.3b)

Recalling the definition (4.2) of IkT , and using (4.3b) together with the definition (3.4) of the
L2-projector, one can prove that the following commuting property holds: For all v PW 1,1pT q,

GkT I
k
T v “ πkT p∇vq, (4.4)

where πkT acts component-wise. As a result, by (3.7) and (3.8), GkT I
k
T has optimal approximation

properties in PkpT qd.
The local potential reconstruction operator pk`1

T : UkT Ñ Pk`1pT q is such that, for all vT P U
k
T ,

pk`1
T vT P Pk`1pT q is the unique polynomial whose gradient is the orthogonal projection of GkT vT

on ∇Pk`1pT q Ă PkpT qd, and whose mean value on T is equal to that of vT . This amounts to
defining pk`1

T vT such that

p∇pk`1
T vT ,∇wqT “ p∇vT ,∇wqT `

ÿ

FPFT

pvF ´ vT ,∇w¨nTF qF @w P Pk`1pT q,

ż

T

pk`1
T vT pxqdx “

ż

T

vT pxqdx.

(4.5)

It was proved in [29, Lemma 3] that pk`1
T IkT has optimal Hs-approximation properties in Pk`1pT q.

The proof hinges on the fact that, for all v P H1pT q, pk`1
T IkT v satisfies the following Euler equation:

p∇ppk`1
T IkT v ´ vq,∇wqT “ 0 @w P Pk`1pT q, (4.6)

which shows that pk`1
T IkT is nothing but the usual elliptic projector on Pk`1pT q.

4.2 Global degrees of freedom, interpolation and reconstructions

Local DOFs are collected in the following global space obtained by patching interface values:

Ukh :“

˜

ą

TPTh

PkpT q

¸

ˆ

˜

ą

FPFh

PkpF q

¸

.

We use the notation vh “ ppvT qTPTh , pvF qFPFhq for a generic element vh P Ukh and, for all T P

Th, it is understood that vT “ pvT , pvF qFPFT q denotes the restriction of vh to UkT . The global
interpolation operator Ikh : W 1,1pΩq Ñ Ukh is defined such that, for all v PW 1,1pΩq,

pIkhvq|T “ IkT pv|T q. (4.7)
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Uniqueness of interface DOFs is guaranteed by the regularity of functions in W 1,1pΩq. With
PkpThq usual broken polynomial space on Th, for all vh P U

k
h we denote by vh the unique function

in PkpThq such that
vh|T “ vT @T P Th. (4.8)

Finally, we introduce the global discrete gradient operator Gkh : Ukh Ñ PkpThqd and potential

reconstruction pk`1
h : Ukh Ñ Pk`1pThq such that, for all vh P U

k
h,

pGkhvhq|T “ GkT vT and ppk`1
h vhq|T “ pk`1

T vT @T P Th. (4.9)

4.3 Discrete problem and main results

Define the following subspace of Ukh which strongly incorporates the homogeneous Dirichlet bound-
ary condition (1.1b):

Ukh,0 :“
!

vh P U
k
h | vF “ 0 @F P Fb

h

)

. (4.10)

We consider the following approximation of (2.3):

Find uh P U
k
h,0 such that, for any vh P U

k
h,0, Apuh, vhq “

ż

Ω

fpxqvhpxqdx, (4.11a)

where A : Ukh ˆ Ukh ÞÑ R is assembled element-wise

Apuh, vhq :“
ÿ

TPTh

AT puT , vT q, (4.11b)

from the local contributions AT : UkT ˆ UkT ÞÑ R, T P Th, defined such that

AT puT , vT q :“

ż

T

apx, uT pxq, G
k
T uT pxqq ¨G

k
T vT pxqdx` sT puT , vT q,

sT puT , vT q :“
ÿ

FPFT

h1´p
F

ż

F

ˇ

ˇπkF puF ´ P
k
T uT qpxq

ˇ

ˇ

p´2
πkF puF ´ P

k
T uT qpxqπ

k
F pvF ´ P

k
T vT qpxqdspxq,

(4.11c)
with P k`1

T : UkT Ñ Pk`1pT q the second potential reconstruction obtained by setting, for all vT P

UkT ,
P k`1
T vT :“ vT ` pp

k`1
T vT ´ π

k
T p

k`1
T vT q. (4.11d)

This specific (and rather elaborate) expression for the stabilization contribution sT aims at im-
proving the convergence properties of the method. As a matter of fact, sT vanishes whenever one
of its arguments is a polynomial of degree ď pk ` 1q inside the element. More naive choices of sT
(e.g., penalizing the difference uF ´ uT instead of πkF puF ´P

k`1
T uT q), would only ensure that this

stabilisation vanishes on polynomials of degree ď k inside the element.

Remark 4.2 (Static condensation). Problem (4.11a) is a system of nonlinear algebraic equations,
which can be solved using an iterative algorithm. When first order (Newton-like) algorithms are
used, element-based DOFs can be locally eliminated at each iteration by a standard static conden-
sation procedure.

Remark 4.3 (Variants). Following [22], one could replace the space UkT of (4.1) with

Ul,kT :“ PlpT q ˆ

#

ą

FPFh

PkpF q

+

,

for k ě 0 and l P tk ´ 1, k, k ` 1u. For the sake of simplicity, we only consider here the case
l “ k ´ 1 when k ě 1. For k “ 0 and l “ k ´ 1, some technical modifications (not detailed here)
are required owing to the absence of element-based DOFs. The local reconstruction operators GkT
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defined by (4.3) and pk`1
T defined by (4.5) still map on PkpT qd and Pk`1pT q, respectively (their

domain changes, but we keep the same notation for the sake of simplicity). A close inspection
shows that both key properties (4.4) and (4.6) remain valid for the proposed choices for l. The
second potential reconstruction operator P k`1

T defined by (4.11d), on the other hand, is replaced

with P l,k`1
T : Ul,kT Ñ Pk`1pT q such that, for all vT P U

l,k
T , P l,k`1

T vT :“ vT ` pp
k`1
T vT ´ π

l
T p

k`1
T vT q.

The interest of the case l “ k ` 1 is that it holds, for all vT P UkT , P k`1,k`1
T vT “ vT , and the

stabilization contribution takes the simpler form

sT puT , vT q “
ÿ

FPFT

h1´p
F

ż

F

ˇ

ˇπkF puF ´ uT qpxq
ˇ

ˇ

p´2
πkF puF ´ uT qpxqπ

k
F pvF ´ vT qpxqdspxq.

This simplification, however, comes at the price of having more element-based DOFs, which leads
in turn to more onerous local problems for both the computation of the operator reconstructions
and the elimination of element-based unknowns by static condensation. We also notice that the
choice l “ k ` 1 is close in spirit to the Hybridizable Discontinuous Galerkin methods introduced
in [23] for a linear diffusion problem. The choice l “ k ´ 1, on the other hand, can be related to
the High-Order Mimetic method introduced in [47] in the context of linear elliptic equations.

We next state our main results for problem (4.11). The proofs are postponed to Section 6.

Theorem 4.4 (Existence of a discrete solution). Under Assumption (2.2), if Th is a mesh, then
there exists at least one solution uh P U

k
h,0 to (4.11).

Theorem 4.5 (Convergence). We assume (2.2) and we let pThqhPH be an admissible mesh se-
quence. For all h P H, we let uh P Ukh,0 be a solution to (4.11) on Th. Then up to a subsequence
as hÑ 0, recalling the definition (2.1) of the Sobolev index p˚,

• uh Ñ u and pk`1
h uh Ñ u strongly in LqpΩq for all q ă p˚,

• Gkhuh Ñ∇u weakly in LppΩqd,

where u P W 1,p
0 pΩq solves the weak formulation (2.3) of the PDE (1.1). If we assume, moreover,

that a is strictly monotone, that is the inequality in (2.2c) is strict if ξ ‰ η, then

• Gkhuh Ñ∇u strongly in LppΩqd,

Remark 4.6 (Uniqueness). If a does not depend on s and is strictly monotone, then the solutions
to both the continuous problem (2.3) and its discrete counterpart (4.11) are unique, and the whole
sequence of approximate solutions converges to the weak solution of (1.1).

4.4 Numerical examples

To close this section, we provide a few numerical examples to assess the convergence properties of
the method. We consider the p-Laplacian problem, corresponding to the following choice for the
function a: for 1 ă p ă `8,

apx, u,∇uq “ |∇u|p´2∇u.

When p “ 2, we recover the usual (linear) Laplace operator. We consider the two-dimensional
analytical solution originally proposed in [3, Section 4], corresponding to upxq “ exppx1 ` πx2q

with suitable source term f inferred from (1.1a). The domain is the unit square Ω “ p0, 1q2, and
nonhomogeneous Dirichlet boundary conditions inferred from the expression of u are enforced on its
boundary. We compute the numerical solution corresponding to polynomial degrees k “ 0, . . . , 4.
The meshes used are the triangular and Cartesian mesh families 1 and 2 from the FVCA 5
benchmark [43], and the distorted (predominantly) hexagonal mesh family of [30, Section 4.2.3];
cf. Figure 2. In Figures 3 and 4 we display the convergence of the error }Gkhpuh ´ Ikhuq}LppΩqd for
p “ 3 and p “ 4, respectively. In all the cases, increasing the polynomial degree k improves the
convergence rate. Further numerical tests (not reported here for the sake of brevity) show that
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Figure 2: Meshes used in the numerical tests of Section 4.4.

k “ 0 k “ 1 k “ 2 k “ 3 k “ 4

10´3 10´2

10´8

10´6

10´4

10´2 0.97

1.97

2.97

3.96

4.93

(a) Triangular mesh family

10´2.5 10´2 10´1.5

10´7

10´6

10´5

10´4

10´3

10´2

10´1

100

1.03

1.52

2.19

3.28
4.19

(b) Cartesian mesh family

10´2.5 10´2 10´1.5
10´7

10´6

10´5

10´4

10´3

10´2

10´1

100

0.91

1.69

2.77

3.58
4.58

(c) Hexagonal mesh family

Figure 3: }Gkhpuh ´ Ikhuq}LppΩqd vs. h, p “ 3.

this remains true when considering “degenerate” cases (i.e., solutions with a gradient that vanishes
in part of the domain, in which case the diffusive properties of (1.1) degenerate), although the
gain can sometimes be less relevant. We note, in passing, that the results obtained in [1,3,10] for
lowest-order schemes suggest that we should not expect, in general, optimal convergence properties
in Pk`1pThq. Instead, the order of convergence depends on both the regularity of the exact solution
and the index p (with optimal convergence orders recovered for smooth solutions to the Poisson
problem, corresponding to p “ 2). Finally, for the sake of completeness, we report in Figure 5 the
numerical results obtained for p “ 4 with the method discussed in Remark 4.3 and corresponding
to l “ k` 1. In this case, taking the element-based DOFs in Pk`1pT q does not seem to bring any
significant advantage in terms of convergence (compare with Figure 4).

k “ 0 k “ 1 k “ 2 k “ 3 k “ 4

10´3 10´2

10´7

10´6

10´5

10´4

10´3

10´2

10´1

100

0.96

1.99

3

3.92
4.84

(a) Triangular mesh family

10´2.5 10´2 10´1.5

10´5

10´4

10´3

10´2

10´1

100

0.84

1.37

2.21

2.83

3.79

(b) Cartesian mesh family

10´2.5 10´2 10´1.5

10´5

10´4

10´3

10´2

10´1

100

0.82

1.51

2.67

3.05
4.01

(c) Hexagonal mesh family

Figure 4: }Gkhpuh ´ Ikhuq}LppΩqd vs. h, p “ 4.
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k “ 0 k “ 1 k “ 2 k “ 3 k “ 4

10´3 10´2
10´8

10´6

10´4

10´2

100

1.02

1.99

3.01

3.98
4.91

(a) Triangular mesh family

10´2.5 10´2 10´1.5

10´5

10´4

10´3

10´2

10´1

0.8

1.32

2.2

2.85

3.83

(b) Cartesian mesh family

10´2.5 10´2 10´1.5

10´5

10´4

10´3

10´2

10´1

100

0.88

1.55

2.59

2.95
3.93

(c) Hexagonal mesh family

Figure 5: }Gkhpuh´ Ikhuq}LppΩqd vs. h, p “ 4 for the variant of the method discussed in Remark 4.3
and corresponding to l “ k ` 1.

5 Discrete functional analysis tools in hybrid polynomial
spaces

This section collects discrete functional analysis results on hybrid polynomial spaces that are used
in the convergence analysis of Section 6.

5.1 Discrete W 1,p-norms

We introduce the following discrete counterpart of the W 1,p-seminorm on Ukh:

}vh}1,p,h :“

˜

ÿ

TPTh

}vT }
p
1,p,T

¸
1
p

, (5.1)

where the local seminorm }¨}1,p,T on UkT is defined by

}vT }1,p,T :“

˜

}∇vT }
p
LppT qd

`
ÿ

FPFT

h1´p
F }vF ´ vT }

p
LppF q

¸
1
p

. (5.2)

It is a simple matter to check that }¨}1,p,h defines a norm on Ukh,0. We next show uniform equiva-

lence between the local seminorm defined by (5.2) and two local W 1,p-seminorms defined using the
discrete gradient and potential reconstructions (cf. (4.3a) and (4.5), respectively) and the penalty
contribution sT (cf. (4.11c)). This essentially proves stability for the discrete problem (4.11a) in
terms of the }¨}1,p,h-norm. The argument hinges on the following direct and reverse Lebesgue
embeddings, whose proof is postponed to Appendix A.1.

Lemma 5.1 (Direct and reverse Lebesgue embeddings). Let U be a measurable subset of RN such
that (3.5) holds. Let k P N and q,m P r1,`8s. Then,

@w P PkpUq : }w}LqpUq « |U |
1
q´

1
m }w}LmpUq, (5.3)

where A « B means that there is a real M ą 0 only depending on N , k, δ, q and m such that
M´1A ď B ďMA.

We are now ready to prove the norm equivalence.

Lemma 5.2 (Equivalence of discrete W 1,p-seminorms). Let pThqhPH be an admissible mesh se-
quence and k P N. Let T P Th, p P r1,`8q, and denote by |¨|s,p,T the local face seminorm such
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that, for all vT P U
k
T , recalling the definition (4.11c) of sT ,

|vT |s,p,T :“ sT pvT , vT q
1
p “

˜

ÿ

FPFT

ż

F

h1´p
F |πkF pvF ´ P

k`1
T uT qpxq|

pdspxq

¸
1
p

. (5.4)

Then,

}vT }1,p,T «
´

}∇pk`1
T vT }

p
LppT qd

` |vT |
p
s,p,T

¯
1
p

«

´

}GkT vT }
p
LppT qd

` |vT |
p
s,p,T

¯
1
p

, (5.5)

where A « B means that M´1A ď B ďMA for some real number M ą 0 that may depend on Ω,
%, k and p, but does not otherwise depend on the mesh, T or vT .

Remark 5.3 (Choice of the face seminorm). The proof of the norm equivalence does not make
use of the specific structure of sT , and could have been proved replacing |¨|s,p,T by any other local

face seminorm composed by terms scaling on each face F P FT as h1´p
F }¨}LppF q.

Proof. We abridge A À B the inequality A ďMB with real M only depending on Ω, %, k and p.

Step 1: p “ 2. It was proved in [29, Lemma 4] that

}vT }
2
1,2,T « }∇pk`1

T vT }
2
L2pT qd ` |vT |

2
s,2,T , (5.6)

which is exactly the first relation in (5.5) for p “ 2. To prove the second, we notice that since, for
all vT P U

k
T , ∇pk`1

T vT is an orthogonal projection of GkT vT in L2pT qd, we have }∇pk`1
T vT }L2pT qd ď

}GkT vT }L2pT qd . Relation (5.6) therefore shows that

}vT }
2
1,2,T À }G

k
T vT }

2
L2pT qd ` |vT |

2
s,2,T .

To prove the converse estimate, we plug φ “ GkT vT into the definition (4.3a) of GkT vT , and use
the Cauchy–Schwarz inequality together with the discrete trace inequality [28, Lemma 1.46] and
the uniform bound (3.2) on NB to infer

}GkT vT }
2
L2pT qd À }∇vT }L2pT qd}G

k
T vT }L2pT qd `

ÿ

FPFT

h
´ 1

2

F }vF ´ vT }L2pF q}G
k
T vT }L2pT qd

À }vT }1,2,T }G
k
T vT }L2pT qd .

This estimate shows that }GkT vT }L2pT qd À }vT }1,2,T and, combined with (5.6) to estimate |vT |s,2,T À
}vT }1,2,T , completes the proof of the case p “ 2.

Step 2: p P r1,`8q. Relation (5.5) for a generic p can be deduced from the case p “ 2 thanks
to Lemma 5.1 (T and F clearly satisfy the geometric assumptions therein, cf. Remark 3.3). We
only show how to do this to establish

}vT }
p
1,p,T À }G

k
T vT }

p
LppT qd

` |vT |
p
s,p,T ,

all the other estimates being obtained in a similar way. By admissibility of pThqhPH, we have
hF |F | « |T | for any F P FT . Thus, for vT P U

k
T , by Lemma 5.1,

}vT }
p
1,p,T À |T |

1´ p2 }∇vT }
p
L2pT qd

`
ÿ

FPFT

h1´p
F |F |1´

p
2 }vF ´ vT }

p
L2pF q

À |T |1´
p
2

˜

}∇vT }
2
L2pT qd `

ÿ

FPFT

h´1
F }vF ´ vT }

2
L2pF q

¸

p
2

,
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where, to pass to the second line, we used the inequality

@θ ą 0, @ai ě 0 :
N
ÿ

i“0

ai ď N

˜

N
ÿ

i“1

aθi

¸

1
θ

(5.7)

which follows from writing aj “ pa
θ
j q

1
θ ď p

řN
i“1 a

θ
i q

1
θ for all j. Apply (5.5) with p “ 2 and use

again Lemma 5.1 and the inequality (5.7) to infer

}vT }
p
1,p,T À |T |

1´ p2

˜

}GkT vT }
2
L2pT q `

ÿ

FPFT

h´1
F }π

k
F pvF ´ P

k`1
T vT q}

2
L2pF q

¸

p
2

À |T |1´
p
2

˜

|T |1´
2
p }GkT vT }

2
LppT q `

ÿ

FPFT

h´1
F |F |

1´ 2
p }πkF pvF ´ P

k`1
T vT q}

2
LppF q

¸

p
2

À |T |1´
p
2

˜

|T |1´
2
p

ˆ

}GkT vT }
2
LppT q `

ÿ

FPFT

h
2
p´2

F }πkF pvF ´ P
k`1
T vT q}

2
LppF q

˙

¸

p
2

À }GkT vT }
p
LppT q `

ÿ

FPFT

h1´p
F }πkF pvF ´ P

k`1
T vT q}

p
LppF q.

5.2 Discrete Sobolev embeddings

The following discrete counterpart of Sobolev embeddings will be used in Proposition 6.1 to obtain
an a priori estimate of the discrete solution.

Proposition 5.4 (Discrete Sobolev embeddings). Let pThqhPH be an admissible mesh sequence.
Let 1 ď q ď p˚ if 1 ď p ă d (with p˚ defined by (2.1)) and 1 ď q ă `8 if p ě d. Then, there
exists C only depending on Ω, %, k, q and p such that

@vh P U
k
h,0 : }vh}LqpΩq ď C}vh}1,p,h. (5.8)

Remark 5.5 (Discrete Poincaré). For q “ p (this choice is always possible since p ď p˚ for any
space dimension d) this proposition states a discrete Poincaré’s inequality.

Proof. Here, A À B means that A ď MB for some M only depending on Ω, %, k, q and p. We
recall the discrete Sobolev embeddings in PkpThq from [28, Theorem 5.3] (cf. also [19,27]):

@w P PkpThq : }w}LqpΩq À }w}dG,p, (5.9)

where the discrete W 1,p-norm on PkpThq is defined by

}w}dG,p :“

˜

ÿ

TPTh

}∇wT }
p
LppT qd

`
ÿ

FPFh

h1´p
F }rwsF }

p
LppF q

¸
1
p

. (5.10)

Here, for all T P Th, wT :“ w|T , while rwsF “ wT1
´ wT2

is the jump of w through a face F P F i
h

such that TF “ tT1, T2u (the sign is irrelevant). If F P Fb
h , then TF “ tT u and we let rwsF “ wT .

For vh P U
k
h,0 and F a face between T1 and T2, we have, using the triangle inequality,

}rvhsF }LppF q ď }vT1 ´ vF }LppF q ` }vT2 ´ vF }LppF q.

Due to the strong boundary conditions, this estimate is also true if F is a boundary face and the
term T2 is removed. Hence, gathering by elements,

ÿ

FPFh

h1´p
F }rwsF }

p
LppF q À

ÿ

FPFh

h1´p
F

ÿ

TPTF

}vT ´ vF }
p
LppF q

“
ÿ

TPTh

ÿ

FPFT

h1´p
F }vT ´ vF }

p
LppF q ď }vh}

p
1,p,h.
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This shows that
}vh}dG,p À }vh}1,p,h, (5.11)

which, plugged into (5.9), concludes the proof.

5.3 Compactness

The second ingredient for our convergence analysis is a compactness result for sequences bounded
in the }¨}1,p,h-norm. Before establishing compactness, we need an auxiliary result allowing us to

compare, for all vh P U
k
h, the broken polynomial function (4.8) on Th defined by element DOFs and

the potential reconstruction (4.9). Instrumental to the proof is the following Poincaré–Wirtinger–
Sobolev inequality on broken polynomial spaces.

Lemma 5.6 (Poincaré–Wirtinger–Sobolev inequality for broken polynomial functions with local
zero average). Let pThqhPH be an admissible mesh sequence, and let p ď q ď p˚ with p˚ defined
by (2.1). If w P PkpThq satisfies

ş

T
w “ 0 for all T P Th, then there exists C only depending on Ω,

%, k, q and p such that (with ∇h denoting the usual broken gradient),

}w}LqpΩq ď Ch1` dq´
d
p }∇hw}LppΩqd . (5.12)

Remark 5.7. If p ď d, the exponent 1` d
q ´

d
p in h is positive if q ă p˚ and equal to 0 if q “ p˚.

Proof. In this proof, A À B means that A ď MB for some M only depending on Ω, %, k, q and
p. We have π0

Tw “ 0 and therefore, by (3.7) with k “ 0, s “ 1 and m “ 0, using Lemma 5.1 with
m “ p, and recalling that |T | À hdT , we write

}w}LqpT q “ }w ´ π
0
Tw}LqpT q À hT }∇w}LqpT qd

À hT |T |
1
q´

1
p }∇w}LppT qd À h

1` dq´
d
p

T }∇w}LppT qd . (5.13)

If q is finite, we take the the power q of this inequality, sum over T P Th, and use }∇w}q´p
LppT qd

ď

}∇hw}
q´p
LppΩqd

(we have q ě p) to infer

}w}qLqpΩq À hq`d´
dq
p

ÿ

TPTh

}∇w}q
LppT qd

ď hq`d´
dq
p }∇hw}

q´p
LppΩqd

ÿ

TPTh

}∇w}p
LppT qd

“ hq`d´
dq
p }∇hw}

q´p
LppΩqd

}∇hw}
p
LppΩqd

“ hq`d´
dq
p }∇hw}

q
LppΩqd

.

Taking the power 1{q of this inequality concludes the proof. If q “ `8, we apply (5.13) to T P Th
such that }w}L8pT q “ }w}L8pΩq and we obtain }w}L8pΩq À h1´ dp }∇w}LppT qd ď h1´ dp }∇w}LppΩqd .

Corollary 5.8 (Comparison between vh and pk`1
h vh). Let pThqhPH be an admissible mesh sequence,

and let p ď q ď p˚. Then, there exists C only depending on Ω, %, k, q and p such that

@vh P U
k
h : }vh ´ p

k`1
h vh}LqpΩq ď Ch1` dq´

d
p }vh}1,p,h. (5.14)

Proof. Here, A À B means A ď MB for M only depending on Ω, %, k, q and p. By the second
equation in (4.5), the average of vh ´ p

k`1
h vh over each element of Th is zero. Hence, (5.12) gives

}vh ´ p
k`1
h vh}LqpΩq À h1` dq´

d
p }∇hpvh ´ p

k`1
h vhq}LppΩqd . (5.15)

Recalling the definitions (4.8) of vh and (5.1) of the }¨}1,p,h-norm, we have

}∇hvh}
p
LppΩqd

“
ÿ

TPTh

}∇vT }
p
LppT qd

ď }vh}
p
1,p,h. (5.16)
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Moreover, using the definition (4.9) of pk`1
h vh followed by the norm equivalence (5.5), and again

the definition (5.1) of the }¨}1,p,h-norm, it is inferred that

}∇hp
k`1
h vh}

p
LppΩqd

“
ÿ

TPTh

}∇pk`1
T vT }

p
LppT qd

À
ÿ

TPTh

}vT }
p
1,p,T “ }vh}

p
1,p,h. (5.17)

We conclude by using the triangle inequality in the right-hand side of (5.15), and by plugging
(5.16) and (5.17) into the resulting equation.

We are now ready to prove the compactness result.

Proposition 5.9 (Discrete compactness). Let pThqhPH be an admissible mesh sequence and let
vh P Ukh,0 be such that p}vh}1,p,hqhPH is bounded. Then, there exists v P W 1,p

0 pΩq such that, up to
a subsequence as hÑ 0, recalling the definition (2.1) of the Sobolev index p˚,

• vh Ñ v and pk`1
h vh Ñ v strongly in LqpΩq for all q ă p˚,

• Gkhvh Ñ∇v weakly in LppΩqd.

Remark 5.10. If p˚ ă `8, the discrete Sobolev embeddings of [28, Theorem 5.3] (recalled

in (5.9)) and Corollary 5.8 show that both vh and pk`1
h vh are bounded in Lp

˚

pΩq, which proves

that their convergence stated in Proposition 5.9 extends to Lp
˚

pΩq-weak.

Proof. By (5.11), p}vh}dG,pqhPH is bounded. The discrete Rellich–Kondrachov theorem [28, The-
orem 5.6] ensures that, up to a subsequence, vh converges in LqpΩq to some v. Since q ă p˚,
Corollary 5.8 shows that pk`1

h vh also converges in this space to the same v.

It remains to establish that v PW 1,p
0 pΩq and that Gkhvh weakly converges to ∇v. To this end,

we first notice that Gkhvh is bounded in LppΩqd thanks to the norm equivalence (5.5). Hence, up
to a subsequence, it weakly converges in LppΩqd to some G. We take φ P C8pRdqd and observe
that, by definition (4.3a) of GkT vT ,

ż

Ω

Gkhvhpxq¨φpxqdx “
ÿ

TPTh

pGkT vT ,φqT

“
ÿ

TPTh

pGkT vT ´∇vT ,φ´ π
k
TφqT `

ÿ

TPTh

pGkT vT ´∇vT , π
k
TφqT

`
ÿ

TPTh

p∇vT ,φqT

“ T1 `
ÿ

TPTh

ÿ

FPFT

pvF ´ vT , π
k
Tφ¨nTF qF `

ÿ

TPTh

p∇vT ,φqT (cf. (4.3a))

“ T1 `
ÿ

TPTh

ÿ

FPFT

pvF ´ vT , pπ
k
Tφ´ φq¨nTF qF ´

ÿ

TPTh

pvT ,divφqT (cf. (5.18))

“ T1 ` T2 ´

ż

Ω

vhpxqdivφpxqdx.

In the fourth line, we used a element-wise integration by parts, and the relation

ÿ

TPTh

ÿ

FPFT

pvF ,φ¨nTF qF “ 0, (5.18)

which follows from the homogeneous Dirichlet boundary condition incorporated in Ukh,0 (cf. (4.10))

and from nT1F `nT2F “ 0 whenever F P F i
h is an interface between the two elements T1 and T2.

If we prove that, as hÑ 0, T1 ` T2 Ñ 0, then we can pass to the limit and we obtain

ż

Ω

Gpxq ¨ φpxqdx “ ´
ż

Ω

vpxqdivφpxqdx. (5.19)
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Taking φ compactly supported in Ω shows that G “ ∇v, and hence that v P W 1,ppΩq and that
Gkhvh Ñ ∇v weakly in LppΩqd. Taking then any φ P C8pRdqd in (5.19) and using an integration

by parts shows that the trace of v on BΩ vanishes, which establishes that v PW 1,p
0 pΩq.

It therefore only remains to prove that T1 ` T2 Ñ 0. In what follows, A À B means that
A ď MB for some M not depending on h, φ or vT . By Lemma 3.4 (with m “ 0, s “ 1 and p1

instead of p) we have }φ´ πkTφ}Lp1 pT qd À h}φ}W 1,p1 pT qd and thus

|T1| À h

˜

ÿ

TPTh

}GkT vT ´∇vT }
p
LppT qd

¸1{p

}φ}W 1,p1 pΩqd À h
`

}Gkhvh}LppΩqd ` }∇hvh}LppΩqd
˘

.

Since }vT }1,p,h is bounded, the norm equivalence (5.5) together with the definition (5.1) of the
}¨}1,p,h-norm show that both }Gkhvh}LppΩqd and }∇hvh}LppΩqd remain bounded. Hence, T1 Ñ 0 as
h Ñ 0. The convergence analysis of T2 is performed in a similar way. Using Lemma 3.6 (with

p1 instead of p) we have }φ ´ πkTφ}Lp1 pF q À h
1
p

T }φ}W 1,p1 pT qd and thus, since hT À hF whenever
F P FT ,

|T2| À
ÿ

TPTh

ÿ

FPFT

h
1
p

F }vF ´ vT }LppF q}φ}W 1,p1 pT qd À

˜

ÿ

TPTh

ÿ

FPFT

hF }vF ´ vT }
p
LppF q

¸
1
p

}φ}W 1,p1 pΩqd

À h}vT }1,p,h}φ}W 1,p1 pΩqd .

The convergence of T2 to 0 follows.

5.4 Strong convergence of the interpolants

The proof of Theorem 4.5 relies on a weak-strong convergence argument. The following result
shows strong convergence for both the discrete gradient and the stabilization contribution when
their argument is the interpolate of a smooth function.

Proposition 5.11 (Strong convergence of interpolants). Let pThqhPH be an admissible mesh se-
quence, let p P r1,`8s and let IkT be defined by (4.2). Then, as hÑ 0,

@ϕ PW 1,ppΩq : GkhI
k
hϕÑ∇ϕ strongly in LppΩqd (5.20)

and, denoting by W r,8pThq the space of ϕ : Ω ÞÑ R such that, for any T P Th, ϕ|T PW
r,8pT q,

@ϕ PW 1,1pΩq XW k`2,8pThq :
ÿ

TPTh

sT pI
k
Tϕ, I

k
Tϕq Ñ 0. (5.21)

Proof. Step 1: Proof of (5.20). We write A À B for A ďMB where M does not depend on h or
ϕ. Let us first assume that ϕ is smooth, say W 2,ppΩq. By the commuting property (4.4) and the
approximation property (3.7) applied to v “ Biϕ we have }GkT I

k
Tϕ ´∇ϕ}LppT qd À hT }ϕ}W 2,ppT q.

Raising this inequality to the power p and summing over T P Th (if p is finite, otherwise taking
the maximum over T P Th) gives

}GkT I
k
Tϕ´∇ϕ}LppΩqd À h}ϕ}W 2,ppΩq, (5.22)

and thus the conclusion follows. If ϕ only belongs to W 1,p
0 pΩq, then we reason by density. We take

pϕεqεą0 Ă W 2,ppΩq that converges to ϕ in W 1,ppΩq as ε Ñ 0 and we write, using the commuting
property (4.4) of GkT I

k
T and the Lp-stability of the L2-projector stated in Lemma 3.2,

}GkT I
k
Tϕ´∇ϕ}LppΩqd ď }G

k
T I
k
T pϕ´ ϕεq}LppΩqd ` }G

k
T I
k
Tϕε ´ ϕε}LppΩqd ` }∇pϕε ´ ϕq}LppΩqd

À }∇pϕ´ ϕεq}LppΩqd ` }GkT I
k
Tϕε ´ ϕε}LppΩqd .
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By (5.22), the second term in this right-hand side tends to 0 as h Ñ 0. Taking (in that order)
the supremum limit as h Ñ 0 and then the supremum limit as ε Ñ 0 concludes the proof that
GkT I

k
TϕÑ∇ϕ in LppΩqd.

Step 2: Proof of (5.21). It is proved in [29, Eq. (46)] that

h
´ 1

2

F }πkF ppI
k
TϕqF ´ P

k`1
T IkTϕq}L2pF q À hk`1

T }ϕ}Hk`2pT q.

Using Lemma 5.1, the admissibility of the mesh (which gives hF |F | « |T | if F P FT ), and the
regularity assumption on ϕ, we infer

h1´p
F }πkF ppI

k
TϕqF ´ P

k`1
T IkTϕq}

p
LppF q À h

1´ p2
F |F |1´

p
2

´

h
´ 1

2

F }πkF ppI
k
TϕqF ´ P

k`1
T IkTϕq}L2pF q

¯p

À phF |F |q
1´ p2 h

pk`1qp
T }ϕ}p

Hk`2pT q

À |T |1´
p
2 h
pk`1qp
T |T |

p
2 }ϕ}p

Wk`2,8pT q

À |T |hpk`1qp}ϕ}p
Wk`2,8pThq.

Summing this over F P FT and T P Th, and recalling the uniform bound (3.2) over cardpFT q, we
get

ÿ

TPTh

sT pI
k
Tϕ, I

k
Tϕq À |Ω|h

pk`1qp}ϕ}p
Wk`2,8pThq,

and the proof is complete.

6 Convergence analysis

The following proposition contains an a priori estimate, uniform in h, on the solution to the
discrete problem (4.11).

Proposition 6.1 (A priori estimates). Under Assumption 3.1, if uh P Ukh,0 solves (4.11) then
there exists C only depending on Ω, λa, %, k and p such that

}uh}1,p,h ď C}f}
1
p´1

Lp1 pΩq
. (6.1)

Proof. We write A À B forA ďMB withM having the same dependencies as C in the proposition.
Plugging vh “ uh into (4.11a) and using the coercivity (2.2d) of a leads to

λa
ÿ

TPTh

}GkT uT }
p
LppT qd

`
ÿ

TPTh

ÿ

FPFT

h1´p
F }πkF puF ´ P

k`1
T uT q}

p
LppF q ď }f}Lp1 pΩq}uh}LppΩq.

Owing to the norm equivalence (5.5), and using the discrete Sobolev embeddings (5.8) with q “ p
to estimate the second factor, this gives

}uh}
p
1,p,h À }f}Lp1 pΩq}uh}LppΩq À }f}Lp1 pΩq}uh}1,p,h,

which concludes the proof since, by assumption, p ą 1.

We can now prove that the discrete problem (4.11) has at least one solution.

Proof of Theorem 4.4. We use [25, Theorem 3.3] (see also [46]): If pE, x¨, ¨yE , }¨}Eq is an Euclidean

space, and Φ : E ÞÑ E is continuous and satisfies xΦpxq,xyE
}x}E

Ñ `8 as }x}E Ñ `8, then Φ is onto.

We take E “ Ukh,0, endowed with an arbitrary inner product, and define Φ : Ukh,0 Ñ Ukh,0 by

@vh,wh P U
k
h,0, xΦpvhq,whyE “ Apvh,whq.
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Assumptions (2.2a) and (2.2b) show that Φ is continuous, and the coercivity (2.2d) of a together
with the norm equivalence (5.5) show that

xΦpvhq, vhyE ě C}vh}
p
1,p,h ě CTh}vh}

p
E ,

where CTh ą 0 may depend on Th but does not depend on vh (we use the equivalence of all norms
on Ukh,0). Hence, Φ is onto. Let now y

h
P Ukh,0 be such that

xy
h
,whyE “

ż

Ω

fpxqwhpxqdx @wh P U
k
h,0,

and take uh P U
k
h,0 such that Φpuhq “ y

h
. By definition of Φ and y

h
, uh is a solution to the discrete

problem (4.11).

Let us now turn to the proof of convergence. To improve the legibility of certain formula, we
drop the variable x in the integral signs.

Proof of Theorem 4.5. Step 1: Existence of a limit. By Propositions 6.1 and 5.9, there exists
u P W 1,p

0 pΩq such that up to a subsequence as h Ñ 0, uh Ñ u and pk`1
h uh Ñ u in LqpΩq for all

q ă p˚, and Gkhuh Ñ ∇u weakly in LppΩqd. Let us prove that u solves (2.3). To this end, we
adapt Minty’s technique [46,49] to the discrete setting, as previously done in [32,37].

Step 2: Identification of the limit. The growth assumption (2.2b) on a ensures that ap¨, uh, G
k
huhq

is bounded in Lp
1

pΩqd, and converges therefore (upon extracting another subsequence) to some χ
weakly in this space. Let ϕ P C8c pΩq. Plugging vh “ Ikhϕ into (4.11) gives

ż

Ω

apx, uh, G
k
huhq¨G

k
hI
k
hϕ “

ż

Ω

fπkhϕ´
ÿ

TPTh

sT puT , I
k
Tϕq, (6.2)

with πkh denoting the L2-projector on the broken polynomial space PkpThq. Using Hölder’s in-
equality followed by the norm equivalence (5.5) to bound the first factor, we infer

ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

TPTh

sT puT , I
k
Tϕq

ˇ

ˇ

ˇ

ˇ

ˇ

ď

˜

ÿ

TPTh

sT puT , uT q

¸
1
p1
˜

ÿ

TPTh

sT pI
k
Tϕ, I

k
Tϕq

¸
1
p

ď }uh}
1
p1

1,p,h

˜

ÿ

TPTh

sT pI
k
Tϕ, I

k
Tϕq

¸
1
p

.

Recalling the a priori bound (6.1) on the exact solution and the strong convergence property (5.21),
we see that this quantity tends to 0 as h Ñ 0. Additionally, by the approximation properties of
the L2-projector stated in Lemma 3.4 together with the strong convergence property (5.20), we
have πkhϕ Ñ ϕ in LppΩq and GkhI

k
hϕ Ñ ∇ϕ in LppΩqd. We can therefore pass to the limit h Ñ 0

in (6.2) and we find
ż

Ω

χ¨∇ϕ “

ż

Ω

fϕ. (6.3)

By density of C8c pΩq in W 1,p
0 pΩq, this relation still holds if ϕ PW 1,p

0 pΩq.
Let us now take Λ P LppΩqd and write, using the monotonicity (2.2c) of a,

ż

Ω

rapx, uh, G
k
huhq ´ apx, uh,Λqs ¨ rG

k
huh ´Λs ě 0. (6.4)

Use (4.11) and sT puT , uT q ě 0 to write

ż

Ω

apx, uh, G
k
huhq ¨G

k
huh “

ż

Ω

fuh ´
ÿ

TPTh

sT puT , uT q ď

ż

Ω

fuh. (6.5)
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Develop (6.4) and plug this relation:

ż

Ω

fuh ´

ż

Ω

apx, uh, G
k
huhq¨Λ ě

ż

Ω

apx, uh,Λq ¨ rG
k
huh ´Λs. (6.6)

Since uh Ñ u in LqpΩq for all q ă p˚, the Caratheodory and growth properties (2.2a) and (2.2b)
of a show that apx, uh,Λq Ñ apx, u,Λq strongly in Lp

1

pΩqd. We can therefore pass to the limit in
(6.6):

ż

Ω

fu´

ż

Ω

χ ¨Λ ě

ż

Ω

apx, u,Λq ¨ r∇u´Λs. (6.7)

The conclusion then follows classically [46, 49]: take v P W 1,p
0 pΩq, apply this relation to Λ “

∇u ˘ t∇v for some t ą 0, use (6.3) with ϕ “ u ˘ tv, divide by t and let t Ñ 0 using the
Caratheodory and growth properties of a. This leads to

ż

Ω

fv “

ż

Ω

apx, u,∇uq ¨∇v,

and the proof that u solves (2.3) is complete.

Step 3: Convergence of the gradient. It remains to show that if a is strictly monotone, then
Gkhuh Ñ∇u strongly in LppΩqd. Let

Fh “ rapx, uh, G
k
huhq ´ apx, uh,∇uqs ¨ rGkhuh ´∇us ě 0 (6.8)

Developing this expression and using (6.5), we can pass to the limit and use (6.3) to see that

lim sup
hÑ0

ż

Ω

Fh ď

ż

Ω

fu´

ż

Ω

χ¨∇u “ 0.

Hence, Fh Ñ 0 in L1pΩq. Up to a subsequence, it therefore converges almost everywhere. Using
the coercivity and growth assumptions (2.2d) and (2.2b) of a, Young’s inequality gives

Fh ě λa|G
k
huh|

p ´ papxq ` βa|uh|
r ` βa|G

k
huh|

p´1q|∇u| ´ papxq ` βa|uh|
r ` βa|∇u|p´1q|∇u|

ě
λa
2
|Gkhuh|

p ´ 2papxq ` βa|uh|
rq|∇u| ´ βa|∇u|p ´

βpa
p

ˆ

2

p1λa

˙p´1

|∇u|p. (6.9)

Since, up to a subsequence, uh converges a.e., this relation shows that for a.e. x, the sequence
pGkhuhpxqqhPH remains bounded. Let us show that it can only have ∇upxq as adherence value. If
ζ is an adherence value of pGkhuhpxqqhPH, then, passing to the limit in (6.8) gives, since Fh Ñ 0
and uh Ñ u a.e.,

rapx, upxq, ζq ´ apx, upxq,∇upxqqs ¨ rζ ´∇upxqs “ 0.

The strict monotony of a then shows that ζ “ ∇upxq. Hence, for a.e. x, the bounded sequence
pGkhuhpxqqhPH has only ∇upxq as adherence value, and thus Gkhuh Ñ∇u a.e. on Ω.

Since pFhqhPH is 1-equi-integrable (it converges in L1pΩq) and p|uh|
rqhPH is p1-equi-integrable

(p1r ă p˚ and puhqhPH therefore converges in Lp
1rpΩq), (6.9) shows that pGkhuhqhPH is p-equi-

integrable. Vitali’s theorem then gives the strong convergence of this sequence to ∇u in LppΩqd.

7 Other boundary conditions

We briefly discuss here how the HHO scheme is written for non-homogeneous Dirichlet and ho-
mogeneous Neumann boundary conditions.
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7.1 Non-homogeneous Dirichlet boundary conditions

Non-homogeneous Dirichlet boundary conditions consist in replacing (1.1b) with

u “ g on BΩ (7.1)

with g P W 1´ 1
p ,ppBΩq. Denoting by γ : W 1,ppΩq ÞÑ W 1´ 1

p ,ppBΩq the trace operator, the weak
formulation becomes:

Find u PW 1,ppΩq such that γpuq “ g and, for all v PW 1,p
0 pΩq,

ż

Ω

apx, upxq,∇upxqq ¨∇vpxq dx “

ż

Ω

fpxqvpxq dx.
(7.2)

As in Remark 4.1 we notice that πkF g is well defined for any F P Fb
h . Hence, we can define the

vector ug,h P U
k
h such that

ug,T “ 0 @T P Th, ug,F “ 0 @F P F i
h, ug,F “ πkF g @F P Fb

h .

We then set
Ukh,g :“ Ukh,0 ` ug,h,

and write the discrete problem corresponding to (7.2) as

Find uh P U
k
h,g such that, for any vh P U

k
h,0, Apuh, vhq “

ż

Ω

fvh, (7.3)

with A defined by (4.11b)–(4.11c). The convergence analysis for non-homogeneous Dirichlet
boundary conditions is performed as usual by utilizing a lifting of the boundary conditions. We take
rg PW 1,ppΩq and let g

h
“ Ikhrg. Making vh “ uh´ g

h
P Ukh in (7.6) and using }g

h
}1,p,h À }g}W 1,ppΩq

(see Proposition 7.1 below) enables us to prove a priori estimates on }uh ´ g
h
}1,p,h.

Proposition 5.11 does not rely on the homogeneous boundary conditions and therefore shows
that GkT gh Ñ ∇rg in LppΩqd as h Ñ 0. Since πkhrg Ñ rg in LppΩq (see Lemma 3.4), applying

Proposition 5.9 to vh “ uh ´ g
h

shows that, for some u PW 1,ppΩq such that u´ rg PW 1,p
0 pΩq (i.e.

γpuq “ g), up to a subsequence uh Ñ u in LppΩq and GkT uh Ñ∇u in LppΩqd as hÑ 0. The proof
that u is a solution to (7.2) is then done in a similar way as for homogeneous boundary conditions.

Proposition 7.1 (Discrete norm estimate for interpolate of W 1,p functions). Let pThqhPH be an
admissible mesh sequence, and let k P N. Let v P W 1,ppΩq and let Ikhv P Ukh be the interpolant
defined by (4.7) and (4.2). Then }IkT v}1,p,T À }v}W 1,ppT q and thus }Ikhv}1,p,h À }v}W 1,ppΩq.

Proof. Let vh “ Ikhv. Since vT “ πkT v, Corollary 3.7 with s “ 1 shows that }∇vT }LppT q À
}v}W 1,ppT q. This takes care of the first term in }vT }1,p,T . To deal with the second term, we use
Lemma 3.2 with U “ F and then Lemma 3.6 with m “ 0 and s “ 1 to write

}vF ´ vT }LppF q “ }π
k
F v ´ π

k
T v}LppF q “ }π

k
F pv ´ π

k
T vq}LppF q À }v ´ π

k
T v}LppF q À h

1´ 1
p

T }v}W 1,ppT q.

Raising this to the power p and using hT À hF gives h1´p
F }vF ´ vT }

p
LppF q À }v}

p
W 1,ppT q.

7.2 Homogeneous Neumann boundary conditions

We assume that
ż

Ω

fpxq dx “ 0.

Homogeneous Neumann boundary conditions for elliptic Leray–Lions problems consist in replacing
(1.1b) with

ap¨, u,∇uq¨n “ 0 on BΩ, (7.4)
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where n is the outer normal to BΩ. The weak formulation of (1.1a)–(7.4) is

Find u PW 1,ppΩq such that
ş

Ω
upxq dx “ 0 and, for all v PW 1,ppΩq,

ż

Ω

apx, upxq,∇upxqq ¨∇vpxq dx “

ż

Ω

fpxqvpxq dx.
(7.5)

The HHO scheme for (7.5) reads

Find uh P U
k
h such that

ż

Ω

uhpxq dx “ 0 and, for any vh P U
k
h, Apuh, vhq “

ż

Ω

fvh (7.6)

with A still defined by (4.11b)–(4.11c).
To carry out the convergence analysis from Section 6, we need a few results. The first one

is a discrete Poincaré–Wirtinger–Sobolev inequality, which bounds to the Lp
˚

-norm of discrete
functions by their discrete norm. This immediately gives a priori estimates on the solution to
the scheme (Proposition 6.1). The second result is a discrete Rellich theorem for functions with
zero average and bounded discrete norm (this is the equivalent of Proposition 5.9). The proofs of
both results are based on Lemma 5.6 and on a decomposition of functions in Ukh into low-order
(piecewise-constant) vectors in U0

h, and their higher order variation.

Lemma 7.2 (Discrete Poincaré–Wirtinger–Sobolev inequality for broken polynomial functions
with zero global average). Let pThqhPH be an admissible mesh sequence. Then, there exists C only
depending on Ω, %, k and p such that, for all vh P U

k
h satisfying

ş

Ω
vhpxq dx “ 0, we have, recalling

the definition (2.1) of the Sobolev index p˚,

}vh}Lp˚ pΩq ď C}vh}1,h,p. (7.7)

Proof. Here, A À B means that A ď MB with M only depending on Ω, %, k and p. We define
v0
h P U

0
h and v1

h P PkpThq by:

v0
T “ π0

T vT @T P Th , v0
F “ π0

F vF @F P Fh,
v1
T “ vT ´ π

0
T vT “ vT ´ v0

T @T P Th.

By Lemma 5.6 we have

}v1
h}Lp˚ pΩq À

˜

ÿ

TPTh

}∇vT }
p
LppT q

¸1{p

. (7.8)

We recall the definition of the discrete W 1,p-norm on U0
h from [35]:

}v0
h}W 1,p,Th “

˜

ÿ

TPTh

ÿ

FPFT

|T |

ˇ

ˇ

ˇ

ˇ

v0
T ´ v0

F

hT

ˇ

ˇ

ˇ

ˇ

p
¸

1
p

(the genuine discrete W 1,p-norm in [35] involves a different coefficient than |T | in this sum, but
under Assumption 3.1 this coefficient is « |T |). Since

ř

TPTh |T |v
0
T “

ş

Ω
vhpxqdx “ 0, [35] gives

}v0
h}Lp˚ pΩq À }v

0
h}W 1,p,Th . (7.9)

By noticing that vh “ v0
h ` v1

h, the result follows from (7.8) and (7.9) provided that

}v0
h}W 1,p,Th À }vh}1,h,p. (7.10)

An easy generalisation of [33, Lemma 6.3] and [34, Lemma 6.6] (see [35] for details) shows that

ˇ

ˇπ0
F vT ´ π

0
T vT

ˇ

ˇ

p
“

ˇ

ˇ

ˇ

ˇ

1

|F |

ż

F

vT pxq dspxq ´
1

|T |

ż

T

vT pxqdx

ˇ

ˇ

ˇ

ˇ

p

À
hpT
|T |

ż

T

|∇vT pxq|
pdx.
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Using the triangular and Jensen’s inequalities, and the relations |T | À |F |hF and hF ď hT , we
infer

|v0
F ´ v0

T |
p À

ˇ

ˇπ0
F vF ´ π

0
F vT

ˇ

ˇ

p
`
hpT
|T |

ż

T

|∇vT pxq|
pdx

À
1

|F |

ż

F

|vF pxq ´ vT pxq|
p dspxq `

hpT
|T |
}∇vT }

p
LppT qd

À
hpT
|T |

h1´p
F }vF ´ vT }

p
LppF q `

hpT
|T |
}∇vT }

p
LppT qd

.

Multiplying by |T |
hpT

and summing over F P FT and T P Th gives (7.10).

Proposition 7.3 (Compactness result for broken polynomial function with zero global average).
Let pThqhPH be an admissible mesh sequence and let vT P U

k
h be such that p}vh}1,h,pqhPH is bounded

and, for all h P H,
ş

Ω
vhpxq dx “ 0. Then, there exists v PW 1,ppΩq such that

ş

Ω
vpxqdx “ 0 and,

up to a subsequence as hÑ 0, recalling the definition (2.1) of the Sobolev index p˚,

• vh Ñ v and pk`1
h vh Ñ v strongly in LqpΩq for all q ă p˚,

• Gkhvh Ñ∇v weakly in LppΩqd.

Proof. We use the same decomposition vh “ v0
h` v1

h as in the proof of Lemma 7.2. By Lemma 5.6
we have }v1

h}LqpΩq ď Chθ}vh}1,h,p where C does not depend on h and θ “ 1` d
q ´

d
p ą 0. Hence,

v1
h Ñ 0 in LqpΩq as hÑ 0. By (7.10), p}v0

h}W 1,p,ThqhPH remains bounded. Since
ř

TPTh |T |v
0
h “ 0

for all h P H, the discrete compactness result for Neumann boundary conditions of [35] shows
that there exists a v P W 1,ppΩq with zero average such that v0

h Ñ v strongly in LqpΩq up to a
subsequence. Hence, vh Ñ v in LqpΩq along the same subsequence. We then apply Corollary 5.8,
which is independent of the boundary conditions, to deduce that pk`1

h vh Ñ v in LqpΩq.
To prove that GhT vh Ñ ∇v weakly in LppΩqd, we notice that by Lemma 5.2 the functions

GhT vh remain bounded in LppΩqd and therefore converge weakly to some G in this space. We
prove that G “∇v as in the proof of Proposition 5.9, using test functions φ P C8c pΩq

d instead of
φ P C8pRdqd.

8 Conclusion

We extended the HHO method of [29] to fully non-linear Leray–Lions equations, which include
the p-Laplace model. This method can be interpreted as a higher-order extension of the classical
Mimetic Finite Differences, Hybrid Finite Volumes and Mixed Finite Volumes schemes. We proved
the convergence of the HHO method without assuming unrealistic regularity properties on the so-
lution, or restrictive assumptions on the non-linear operator. To establish this convergence, we
developed discrete functional analysis results that include the analysis of Lp- and W s,p-stability
and approximation properties of L2-projectors on broken polynomial spaces. We provided numer-
ical results which demonstrate the good approximation properties of the method on a variety of
meshes, and for various orders (low as well as high).

A Discrete functional analysis in local polynomial spaces

This appendix collects discrete functional analysis results in local polynomial spaces that are of
general interest for the analysis of polynomial-based methods for linear and nonlinear problems.
Most of these results have already been stated without proof in the paper, but we restate them
for the sake of easy consultation.
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A.1 Estimates in local polynomial spaces

This section collects Lp- and W s,p-estimates in local polynomial spaces including direct and reverse
Sobolev and Lebesgue embeddings.

Lemma 5.1 (Direct and reverse Lebesgue embeddings). Let U be a measurable subset of RN such
that (3.5) holds. Let k P N and q,m P r1,`8s. Then,

@w P PkpUq : }w}LqpUq « |U |
1
q´

1
m }w}LmpUq, (5.3)

where A « B means that there is a real M ą 0 only depending on N , k, δ, q and m such that
M´1A ď B ďMA.

Remark A.1 (Reverse embeddings). If q ď m then this result is a classical (direct) Lebesgue
embedding due to Hölder’s inequality. It holds for m ă q solely because we consider polynomials

(and we notice that the scaling |U |
1
q´

1
m explodes as hU Ñ 0).

Remark A.2 (Sobolev reverse embeddings). Let U be a polyhedral set that admits a simplicial
decomposition such that for any simplex S, if hS is the diameter of S and rS its inradius then
hS ď %rS, and hU ď %hS. The following inverse inequality holds with Cinv depending on %, k and
p, but independent of h (cf. [28, Lemma 1.44] for the case p “ 2 and use use [28, Lemma 1.50] or
Lemma 5.1 to deduce the general case),

@v P PkpUq : }∇v}LppUq ď Cinvh
´1
U }v}LppUq. (A.1)

Using this inequality we can easily deduce from Lemma 5.1 the following reverse Sobolev embed-
dings: Under the assumptions of Lemma 5.1, if U is open and m ě r, then for all w P PkpUq we
have

|w|Wm,ppUq À hr´mU |U |
1
p´

1
q |w|W r,qpUq.

Here À is up to a mulitplicative constant only depending on k, δ, p, q and r. Note that the
result obviously cannot hold if m ă r and m ď k (consider w polynomial of degree exactly m: the
left-hand side does not vanish, but the right-hand side vanishes).

Proof of Lemma 5.1. We obviously only have to prove À since m and q play symmetrical roles in
(5.3). By (3.5), there is xU P U such that BpxU , δhU q Ă U Ă BpxU , hU q. Let U0 “ pU ´xU q{hU .
Using the change of variable x P U ÞÑ px´ xU q{hU P U0, we see that, for ` P r1,`8s,

}w}L`pUq “ h
N
`

U }w0}L`pU0q
« |U |

1
` }w0}L`pU0q

, (A.2)

where we used hNU « |U | (since hU « rU ) and we set w0pyq “ wpxU ` hUyq. Assume that there
exists C0 not depending on the geometry of U0 but solely on δ such that

@v P PkpU0q : }v}LqpU0q ď C0}v}LmpU0q. (A.3)

Then combining this with (A.2), since w0 P PkpU0q,

}w}LqpUq À |U |
1
q }w0}LqpU0q À |U |

1
q }w0}LmpU0q À |U |

1
q´

1
m }w}LmpUq,

and the lemma is proved.
It remains to establish (A.3). To this end, we notice that, by choice of xU , we have Bp0, δq Ă

U0 Ă Bp0, 1q. Since }¨}LqpBp0,1qq and }¨}LmpBp0,δqq are both norms on PkpU0q (any polynomial that

vanishes on a ball vanishes everywhere), and since PkpU0q is a finite-dimensional vector space, we
have

@v P PkpU0q }v}LqpBp0,1qq À }v}LmpBp0,δqq, (A.4)

with constant in À depending on δ but not on the geometry of U0. To prove (A.3), write

}v}LqpU0q ď }v}LqpBp0,1qq À }v}LmpBp0,δqq ď }v}LmpU0q.
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A.2 Lp-stability and W s,p-approximation properties of L2-projectors

This section collects the proofs of Lp- and W s,p-stability and approximation estimates for L2-
projectors on local polynomial spaces stated in Section 3.2.

Lemma 3.2 (Lp-stability of L2-projectors on polynomial spaces). Let U be a measurable subset
of RN , with inradius rU and diameter hU , such that

rU
hU

ě δ ą 0. (3.5)

Let k P N and p P r1,`8s. Then, there exists C only depending on N , δ, k and p such that

@g P LppUq : }πkUg}LppUq ď C}g}LppUq. (3.6)

Proof. In this proof, A À B means that A ďMB for some M only depending on N , δ, k and p.
Step 0: p “ 2. This case is trivial since πkU is an orthogonal projector in L2pUq and therefore

satisfies (3.6) with C “ 1.

Step 1: p ą 2. We use Lemma 5.1 to write }πkUg}LppT q À |T |
1
p´

1
2 }πkUg}L2pT q. Since g P LppT q Ă

L2pT q, we can use (3.6) for p “ 2 and we deduce }πkUg}LppT q À |T |
1
p´

1
2 }g}L2pT q. We then conclude

thanks to Hölder’s inequality, valid since p ą 2,

}πkUg}LppT q À |T |
1
p´

1
2 |T |

1
2´

1
p }g}LppT q “ }g}LppT q.

Step 2: p ă 2. We use a standard duality technique. Let g P LppUq and w P Lp
1

pUq. Then by
definition of πkU and using (3.6) with p1 ą 2 instead of p,

ż

U

πkUgpxqwpxq dx “

ż

U

gpxqπkUwpxq dx ď }g}LppUq}π
k
Uw}Lp1 pUq À }g}LppUq}w}Lp1 pUq.

Taking the supremum of this inequality over all w P Lp
1

pUq such that }w}Lp1 pUq “ 1 shows that

(3.6) holds.

Lemma 3.4 (W s,p-approximation properties of L2-projectors on polynomial spaces). Let U be
an open subset of RN with diameter hU , such that U is star-shaped with respect to a ball of radius
ρhU for some ρ ą 0. Let k P N, s P t1, . . . , k ` 1u and p P r1,`8s. Then, there exists C only
depending on N , ρ, k, s and p such that

@m P t0, . . . , su , @v PW s,ppUq : |v ´ πkUv|Wm,ppUq ď Chs´mU |v|W s,ppUq. (3.7)

Proof. Here, A À B means that A ďMB with M only depending on N , ρ, k, s and p.
The proof combines averaged Taylor polynomials [16, 38] with the Lp-stability of the L2-

projector (Lemma 3.2). Since smooth functions are dense in W s,ppUq, we only need to prove
the result for v P C8pUq XW s,ppUq. The Sobolev representation of v reads [16]

v “ Qsv `Rsv (A.5)

where Qsv is a polynomial of degree less than or equal to k and the remainder Rsv satisfies [16,
Lemma 4.3.8]

@r P t0, . . . , su : |Rsv|W r,ppUq À hs´rU |v|W s,ppUq. (A.6)

Since Qsv is a polynomial of degree ď k, πkU pQ
svq “ Qsv and therefore, from (A.5), πkUv “

Qsv ` πkU pR
svq. Subtracting this from (A.5), we infer v ´ πkUv “ Rsv ´ πkU pR

svq. Hence,

|v ´ πkUv|Wm,ppUq ď |R
sv|Wm,ppUq ` |π

k
U pR

svq|Wm,ppUq. (A.7)

Iterating the inverse inequality (A.1) and using Lemma 3.2 we see that

|πkU pR
svq|Wm,ppUq À h´mU }πkU pR

svq}LppUq À h´mU }Rsv}LppUq. (A.8)
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Estimate (A.6) applied to r “ m and r “ 0 shows that

|Rsv|Wm,ppUq ` h
´m
U }Rsv}LppUq À hs´mU |v|W s,ppUq. (A.9)

The result follows from (A.7), (A.8) and (A.9).

Lemma 3.6 (Approximation properties of traces of L2-projectors on polynomial spaces). Let T
be a polyhedral subset of RN with diameter hT , such that T is the union of disjoint simplices
S of diameter hS and inradius rS such that %2hT ď %hS ď rS for some % ą 0. Let k P N,
s P t1, . . . , k ` 1u and p P r1,`8s. Then, there exists C only depending on N , %, k, s and p such
that

@m P t0, . . . , s´ 1u , @v PW s,ppT q : h
1
p |v ´ πkT v|Wm,ppFT q ď Chs´mT |v|W s,ppT q. (3.8)

Here, Wm,ppFT q is the set of functions that belong to Wm,ppF q for any hyperplanar face F of T ,
with corresponding broken norm.

Proof. As expected A À B is understood here up to a multiplicative constant that only depends
on N , %, k, s and p. We first recall a classical continuous trace inequality:

@w PW 1,ppT q : h
1
p

T }w}LppBT q À }w}LppT q ` hT }∇w}LppT q. (A.10)

For p “ 2 this inequality can be deduced from [28, Lemma 1.49] and many other references. The
case of a general p is less easy to find in the literature, but actually very simple to prove. Since
T is the union of disjoint simplices of inradius and diameter comparable to hT , it is sufficient to
prove the result when T is one of these simplices S. For such a simplex, there exists an affine
mapping A : T ÞÑ T0, where T0 “ tx P Rd : xi ą 0 ,

řd
i“1 xi ă 1u is the reference simplex, such

that the norms of the linear parts of A and A´1 are respectively of order h´1
T and hT . Consider

then w0 PW
1,ppT0q defined by w0pxq “ wpA´1xq. On T0 we have a trace inequality

}w0}LppBT0q ď Cd,pp}w0}LppT0q ` }∇w0}LppT0qq. (A.11)

By noticing that |∇w0pxq| À hT |p∇wqpA´1xq| and using changes of variables x ÞÑ y “ Ax,
(A.11) gives (A.10).

Estimate (3.8) is an immediate consequence of (A.10) and of (3.7). For m ď s´1, by applying
(A.10) to w “ Bαpv ´ πkT vq PW

1,ppT q for all α P NN of total length m we find

h
1
p

T |v ´ π
k
T v|Wm,ppFT q À |v ´ π

k
T v|Wm,ppT q ` hT |v ´ π

k
T v|Wm`1,ppT q.

We then use (3.7) for m and m` 1 on the two terms in the right-hand side to conclude.
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