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Mistuning analysis and uncertainty quantification of an industrial
bladed disk with geometrical nonlinearity.

Abstract

This paper deals with the dynamical analysis and uncertainty quantification of a mistuned industrial ro-

tating integrally bladed disk, for which the operating regime under consideration takes into account the

nonlinear geometrical effects induced by large displacements and deformations. First, a dedicated mean

nonlinear reduced-order model of the tuned structure is explicitly constructed using the finite element

method. The random nature of the mistuning is then modeled byusing the nonparametric probabilistic

approach extended to the nonlinear geometric context. Secondly, a detailed dynamic analysis and uncer-

tainty propagation are conducted in order to quantify the impact of the nonlinear geometrical effects on

the mistuned structure. The results show that the dynamic amplification in the frequency band is signif-

icant outside the frequency band of excitation due to the presence of geometric nonlinearities combined

with mistuning effects.
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1. Introduction

This paper proposes a detailed dynamic analysis of industrial rotating integrally bladed disks

with respect to the nonlinear geometrical effects in presence of an uncertain mistuning. Very few

works have been published in this particular field that seemsmore and more important for an-

alyzing exceptional operating regime in turbomachinery. In the framework of linear mistuning

analysis, amplifications of the response are observed in thefrequency band of excitation while

in presence of geometric nonlinearities, there is a transfer of vibrational energy outside the fre-

quency band of excitation with complex uncertainty propagation mechanisms. Hereinafter, we

begin this introduction with a brief history concerning themistuning and nonlinearities effects

in structural dynamics and in turbomachinery.

A main challenge in structural dynamics is the development of advanced numerical method-

ologies for the construction of robust computational models in order to efficiently predict the
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dynamical behavior of structures. The present manuscript investigates, more particularly, the

aeronautical area for which the mistuning of turbomachinery-bladed disks has to be taken into

account in the computational models. It is well known that the natural cyclic symmetry of such

structures is broken due to manufacturing tolerances and material dispersions, which create

small discrepancies from one blade to another one. Such phenomena, referred to mistuning,

can generate localization effects combined to a dynamic amplification of the forced response

[1]. Many research efforts have been carried out on this subject, including the construction of

reduced-order models with probabilistic approaches for taking into account the random char-

acter of the mistuning in the computational models (seee.g. [2, 3]). For the robust design of

such mistuned structures, different strategies have then been considered (seee.g.[4, 5, 6, 7, 8]).

Most of these works have been carried out in a linear context.

Nevertheless, another essential aspect is to pay a particular attention to the various nonlinear ef-

fects that need to be taken into account in the computationalmodels. It should be underlined that

large research efforts have been made in order to include thelocal nonlinearities such as nonlin-

ear contact interfaces [9, 10, 11]. Furthermore, given the constant growing of the computational

capabilities, including the possibility of using parallelcomputations, it seems quite appropriate

to consider the geometrically nonlinear effects in the computational models [12, 13]. Indeed,

the recent improvements in turbomachinery design, combined to the unavoidable requirements

of kerosene savings, require to analyze the exceptional operating regime of bladed disks, for

which large deformations can occur [14, 15, 16, 17]. It corresponds, for instance, to nearly

unstable situations induced by the aerodynamic coupling that can lead flutter and thus inducing

very low damping levels. In a way, such situation is equivalent to the case of severe loading and

the usual linearized elastodynamic theory cannot be used any more. In such a case, the geo-

metrically nonlinear effects induced by the large displacements/deformations cannot be ignored

and need to be taken into account in the computational models.

A special attention has to be first given to the case of geometrically nonlinear tuned bladed

disks, which have the perfect symmetry. The large set of nonlinear coupled differential equa-

tions issued from the computational model of the tuned structure has to necessarily be solved

in the time domain, leading for introducing a reduced-ordermodel. This requires first the se-

lection of an appropriate deterministic basis for constructing the representation of the nonlinear
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dynamical response. Such basis could be obtained by the Proper Orthogonal Decomposition

method [18], known to be particularly efficient for nonlinear static cases (seee.g. [19] and in-

cluded references) and that requires a particular attention in nonlinear structural dynamics, or

by using appropriately selected natural linear elastic modes of vibration (see the review pre-

sented in [20]). The operators of the corresponding nonlinear reduced-order model can then be

deduced from the STEP method [12, 13] or from an explicit construction as proposed in [21] us-

ing three-dimensional solid finite elements or proposed in [22] using shell finite elements. One

also have to focus on the modeling of the external load, corresponding to a chosen frequency

band of excitation, which has to be selected according to usual turbomachinery criterions. The

external load has to be defined in the time domain and must represent a uniform sweep in the

frequency domain. After having established the mean nonlinear reduced-order model (MEAN-

NL-ROM) that allows the geometrically nonlinear dynamicalanalysis of the tuned structure

to be performed, we propose to implement the mistuning uncertainties using the nonparamet-

ric probabilistic framework [23]. The uncertainty inducedby mistuning is implemented for

each operator. The mistuning level is then controlled by a limited number of hyperparameters

controlling the amount of uncertainties for each random operator. A stochastic reduced-order

model (STOCH-NL-ROM) is then obtained, which leads for solving a reasonable number of un-

certain nonlinear coupled differential equations in the time domain, requiring the construction

of efficient and dedicated algorithms.

In this paper, such a computational strategy provides an efficient tool, which is applied to a

computational model of an industrial centrifugal compressor with a large number of degrees of

freedom. This allows for putting in evidence some new complex dynamical behaviors. Indeed,

some complex mechanisms can be observed for the energy transfer through both geometric

nonlinearities and mistuning uncertainties outside the frequency band of excitation. Different

criterions are constructed (1) for detecting the thresholdfrom which geometric nonlinear effects

arise and (2) for quantifying the energy transfer that can occur in the frequency band. A careful

and detailed analysis is carried out because unexpected dangerous situations, which can alter

the life duration of the bladed disks, can potentially exist.

The paper is organized as follows. Section1 summarizes a complete description of the com-

putational methodology and of its numerical aspects allowing the nonlinear dynamic analy-
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sis of mistuned bladed disks to be done. The MEAN-NL-ROM corresponding to the tuned

structure is explicitly constructed following the approach presented in [21]. Once the uncer-

tainties induced by mistuning are modeled through the nonparametric probabilistic approach,

the numerical strategy is discussed for the resolution of the STOCH-NL-ROM. Section2 that

constitutes the main objective of this paper, is devoted to adetailed dynamic analysis and to

uncertainty propagation in order to quantify the impact of the nonlinear geometrical effects on

an industrial centrifugal compressor. The nonlinear tuneddynamic analysis is investigated in

both time domain and frequency domain. A sensitivity analysis is conducted with respect to

the load intensity (amplitude) in order to quantify the effects of the geometric nonlinearities.

In addition, a nonlinear sensitivity analysis is carried out with respect to the different types of

uncertainties sources induced by the mistuning, in order toqualify and to quantify the different

mistuning effects that can occur in presence of geometric nonlinearities. Finally, a complete

nonlinear dynamical analysis of the mistuned response is carried out and the confidence re-

gion of the response amplifications are compared between thelinear and nonlinear cases on the

whole frequency band of analysis.

2. Methodology

This Section is devoted to the construction of a methodologyfor the nonlinear mistuning anal-

ysis occurring in rotating bladed-disks structures. In thepresent work, the bladed disk under

consideration is assumed (1) to be made up of a linear elasticmaterial and (2) to undergo large

displacements and large deformations inducing geometrical nonlinearities.

2.1. Description of the geometric nonlinear boundary valueproblem

The structure under consideration is a bladed-disk structure with aM-order cyclic symmetry.

Thus, the geometrical domain, the material constitutive equation, and the boundary conditions

related to the generating sector are invariant under the2π/M rotation around its axis of sym-

metry. Moreover, the bladed disk undergoes a rotational motion around the axis of symmetry

with constant angular speedΩ. The structure is made up of a linear elastic material and is as-

sumed to undergo large deformations inducing geometrical nonlinearities. A total Lagrangian

formulation is chosen, which means that the dynamical equations are expressed in the rotating
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frame of an equilibrium configuration considered as a natural configuration. LetΩ be the three-

dimensional bounded domain corresponding to such reference configuration and subjected to

the body force fieldg(x, t), in which x denotes the position of a given point belonging to do-

mainΩ. The boundary∂Ω is such that∂Ω = Γ ∪ Σ with Γ ∩ Σ = ∅ and the external unit

normal to boundary∂Ω is denoted byn. The boundary partΓ corresponds to the fixed part of

the structure (in the local rotating frame(x1, x2, x3)) whereas the boundary partΣ is subjected

to the external surface force fieldG(x, t). Note that the external force fields are derived from the

Lagrangian transport into the reference configuration of the physical body/surface force fields

applied in the deformed configuration. The external load canrepresent, for instance, the un-

steady pressures applied to the blades. The displacement field expressed with respect to the

reference configuration is denoted asu(x, t).

2.2. Construction of the MEAN-NL-ROM related to the tuned structure

Let C be the admissible space defined by

C = {v ∈ Ω , v sufficiently regular, v = 0 onΓ} . (1)

The vectorq = (q1, . . . , qN) of the generalized coordinates is then introduced as a new set of

unknown variables by projecting the reference nonlinear responseu(x, ·) on the vector space

spanned by the finite familyϕ1, · · · ,ϕN} of a given vector basis ofC. The MEAN-NL-ROM

is then described by the approximationuN (x, t) of orderN of u(x, t) such that

uN(x, t) =
N∑

β=1

ϕβ(x) qβ(t) , (2)

in whichq is solution of the nonlinear differential equation

mαβ q̈β + (dαβ+c(Ω)αβ) q̇β + (k
(e)
αβ+k

(c)(Ω)αβ+k
(g)
αβ ) qβ + k

(2)
αβγ qβ qγ + k

(3)
αβγδ qβ qγ qδ = fα .

(3)

In all the paper, the usual convention of summation over Greek or Latin repeated indices is

used. Letρ(x) be the mass density field expressed in the reference configuration and let

a = {aijkℓ}ijkℓ be the fourth-order elasticity tensor, which satisfies the usual symmetry, bound-

edness, and positive-definiteness properties. In Eq. (3), the reduced operators[m], [k(g)] and

6



[k(e)] are the mass, geometrical stiffness, and elastic stiffnessreal (N × N) matrices with

positive-definiteness property, for which entries are defined by

mαβ =

∫

Ω

ρϕαi ϕ
β
i dx . (4)

k
(e)
αβ =

∫

Ω

ajkℓm ϕ
α
j,k ϕ

β
ℓ,m dx , (5)

k
(g)
αβ =

∫

Ω

σ
(g)
ij ϕαs,i ϕ

β
s,j dx , (6)

where the second-order symmetric tensor fieldσ
(g) = {σ

(g)
ij }ij represents the Cauchy con-

straints acting on the reference configuration, and whereψi,j = ∂ψi

∂xj
. The rotational effects

are taken into account through the reduced operators[c(Ω)] and[k(c)(Ω)], which represent the

gyroscopic coupling term with antisymmetry property and the centrifugal stiffness term with

negative-definiteness property, which are written as

cαβ(Ω) =

∫

Ω

2 ρ rijϕ
α
j ϕ

β
i dx , (7)

k
(c)
αβ(Ω) =

∫

Ω

ρ rik rkjϕ
α
j ϕ

β
i dx , (8)

where the(3×3) matrix [r] is such thatrij = −Ω εij3, whereεijk is the Levi-Civita symbol such

thatεijk = ±1 for an even or odd permutation andεijk = 0 otherwise. It should be noted that

the centrifugal effects are assumed to be sufficiently smallso that the linear stiffness reduced

matrix [k(Ω)] = [k(e)] + [k(c)(Ω)] + [k(g)] is positive definite, yielding only stable dynamical

systems to be considered. The geometric nonlinearities aretaken into account through the

quadratic and cubic stiffness contributionsk(2)αβγ andk(3)αβγδ which are written as

k
(2)
αβγ =

1

2

(
k̂
(2)
αβγ + k̂

(2)
βγα + k̂

(2)
γαβ

)
, (9)

k̂
(2)
αβγ =

∫

Ω

ajkℓm ϕ
α
j,k ϕ

β
s,ℓ ϕ

γ
s,m dx , (10)

k
(3)
αβγδ =

1

2

∫

Ω

ajkℓm ϕ
α
r,j ϕ

β
r,k ϕ

γ
s,ℓ ϕ

δ
s,m dx . (11)
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It can easily be shown that tensork(2)αβγ has permutation-invariance property and that tensor

k
(3)
αβγδ has positive-definiteness property. Concerning the reduced damping operator, a modal

damping model is added. Finally, the reduced external load is written as

fα =

∫

Ω

giϕ
α
i dx +

∫

Σ

Giϕ
α
i ds +

∫

Ω

ρ rij rjk (x0)k ϕ
α
k dx , (12)

in whichx0 is the current position in the natural configuration [24].

Concerning the choice of the projection basis, the one related to the linear eigenvalue problem of

the rotating tuned conservative structure, for which the gyroscopic coupling effects are ignored,

is chosen. Since the tuned structure has a perfect cyclic symmetry, the use of the discrete

Fourier transform allows for rewriting the eigenvalue problem of the whole tuned structure into

uncoupled sub-eigenvalue problems related to the generator sector with appropriate boundary

conditions [25, 26]. The eigenvectors of the whole tuned structure are then reconstructed in its

corresponding physical space. Note that these eigenvectors are ordered by increasing values

of their corresponding eigenvaluesλα, α ∈ {1, . . . , N} and verify the following orthogonality

properties,

mαβ = δαβ , k
(g)
αβ + k(c)(Ω)αβ + k

(e)
αβ = λα δαβ , (13)

whereδαβ is the Kronecker symbol such thatδαβ = 1 if α = β andδαβ = 0 otherwise. It

should be noted that such projection basis issued from a linear eigenvalue problem is used for

the construction of the MEAN-NL-ROM, which means that a systematic convergence analysis

with respect toN is carried out so that the MEAN-NL-ROM is representative of the nonlinear

dynamical behavior of the structure.

2.3. Numerical aspects for the construction of the nonlinear reduced operators

There are many strategies, allowing a MEAN-NL-ROM to be established, depending on the

choice of the vector basis (see for instance [20]) or the way to extract the reduced operators

from explicit construction [21, 22] or from an implicit non intrusive construction [12, 20]. In

the present context, the MEAN-NL-ROM is explicitly constructed from the knowledge of the

projection basis. It is carried out in the context of the three-dimensional finite element method,

for which the finite elements are chosen as isoparametric solid finite elements with8 nodes
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with a numerical integration using8 Gauss integration points. Concerning the construction

of the quadratic and cubic nonlinear stiffness operators, the methodology presented in [21]

is used. In particular, due to the chosen strategy for the mistuning modeling, it should be

underlined that thêk(2)αβγ andk(3)αβγδ nonlinear stiffness entries have to be explicitly known. The

numerical procedure uses the symmetry properties of the reduced operators, combined with

the use of distributed calculations in parallel computer inorder to optimize its efficiency. The

main steps, which can be found in details in [21], require (1)the computation of the elementary

contributions of each type of internal forces projected on the vector basis, (2) the finite element

assembly of these elementary contributions, (3) the computation of the reduced operators by

projecting each assembled internal force on the projectionvector basis.

2.4. Strategy for the construction of the external load

In the present case, the presence of the geometric nonlinearities yields the nonlinear differential

equation Eq. (3) to be solved in the time domain, the frequency content of the nonlinear dynam-

ical response beinga posterioripost-analyzed by using a Fast-Fourier-Transform (FFT). The

reduced excitation issued from the external load is assumedto be splitted according to a spatial

part and to a time-domain part such that

fα(t) = f0 sα g(t) , (14)

in whichf0 is a coefficient characterizing the global load intensity, wheres is aR
N -vector cor-

responding to the spatial modal contribution of the external load, and whereg(t) describes the

time evolution of the load. Similarly to the usual linear analysis of structures withM-order

cyclic symmetry, the excitation is constructed with a cyclic spatial repartition and a constant

phase shift(2π h)/M from one blade to another one, so that only the eigenfrequencies cor-

responding to a givenh circumferential wave number are excited. Note that the use of the

cyclic symmetry property has no real interest for expressing the nonlinear response according

to its harmonic components because a decoupling between theharmonic components cannot

be obtained. Moreover, it should be recalled that the usual linear analysis of bladed-disk struc-

tures requires to display the eigenfrequencies of the structure with respect to its circumferential

wave number. It can be shown that the eigenmodes corresponding to localized blade modes are

characterized by straight lines contrary to the eigenmodescorresponding to global coupled disk-
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blade modes. It is well known that the mistuning important effects of response amplification are

concentrated in ”veering” zones for which the coupling between the disk motion and the blade

motion is high [1, 27, 28, 29]. Indeed, in such veering zones,the tuned responses are known to

be inhibited with respect to the ones corresponding to pure blade mode excitations, due to the

repartition of the mechanical energy between disk and blademodes. This helps to understand

why the mistuning effects yield so strong response amplifications [30]. For this reason, the non-

linear dynamical analysis has to be performed in a chosen frequency band of excitation and not

for a single frequency excitation. Because of the geometricnonlinearities, the use of a harmonic

excitation seems to be inappropriate because the set of nonlinear coupled differential equations

should be solved for each harmonic excitation considered. The strategy is to simultaneously

and uniformly excite all the frequencies of the given frequency band of excitation so that only

one computation of the nonlinear dynamical problem is required. In Eq. (14), the functiong(t)

is defined by

g(t) =
2π∆ν

π
sincπ(t∆ν) cos(2π s∆ν t) , (15)

wherex 7→ sincπ(x) is the function defined by sincπ(x) = sin(π x)/(π x). Note that the

Fourier transform of such function is

ĝ(2πν) = 1
B̃e
(2πν) , (16)

in which1
B̃
(x) = 1 if x ∈ B and0 otherwise, and wherẽBe = {−Bexc}

⋃
{Bexc} with

Bexc = [2π (s− 1/2)∆ν, 2π (s+ 1/2)∆ν] . (17)

It should be noted that such time-evolution excitation allows a forced-response problem and not

a time-evolution problem with initial conditions to be considered. The forced-response problem

is thus approximated by an equivalent time-evolution problem with zero initial conditions over

a finite time interval, which includes almost all of the signal energy of the excitation.

2.5. Uncertainty quantification induced by the mistuning

The random nature of the mistuning is then considered by implementing the nonparametric

probabilistic approach, which presents the capability to include both the system-parameter un-

certainties and the model uncertainties induced by modeling errors (see [23] for a complete

review on the subject). Since the analysis is carried out forthe class of integrated bladed disks
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that are manufactured from a unique solid piece of material,the uncertainties are not consid-

ered to be independent from one blade to another one (in opposite to the case of a fan). The

MEAN-NL-ROM is constructed by modal analysis without any sub-structuring techniques.

2.5.1. Nonparametric probabilistic model for the mistuning

It is assumed that only the linear operators of the structureare concerned with the mistuning

phenomenon. The linear reduced operators[m], [d], [c(Ω)], [k(g)], [k(c)(Ω)], and[k(e)] of the

MEAN-NL-ROM are replaced by the random matrices[M], [D], [C(Ω)], [K(g)], [K(c)(Ω)], and

[K(e)] defined on the probability space(Θ , T , P) such that E{[M]} = [m], E{[D]} = [d],

E{[C(Ω)]} = [c(Ω)], E{[K(g)]} = [k(g)], E{[K(c)(Ω)]} = [k(c)(Ω)], and E{[K(e)]} = [k(e)],

in which E is the mathematical expectation.

Let [a] be a(N ×N) matrix issued from the MEAN-NL-ROM with positive-definite property.

For instance, it represents, the mass, the damping, the geometrical stiffness, the linear elastic

stiffness or the centripetal stiffness. The correspondingrandom matrix[A] is then written as

[A] = [lA]T [GA(δA)] [lA] , (18)

in which [lA] is the(N × N) upper triangular matrix issued from the Cholesky factorization

of [a], and where[GA] is a full random matrix with values in the set of all the positive-definite

symmetric(N ×N) matrices.

When[a] is the gyroscopic coupling matrix, the corresponding random matrix[A] is then written

as

[A] = [tA] [lA]T [GA(δA)] [lA] , (19)

in which the matrices[tA] and[lA] are the(N × N) matrices defined by[lA] = [svA]1/2 [bA]T

and[tA] = [a] [bA] [svA] [bA]T, in which the(N×N) full matrix [bA] is constituted of the eigen-

vectors of[a] [a]T and where the(N × N) diagonal matrix[svA] is the singular values, issued

from the single value decomposition (SVD) of matrix[a]. Note that the probability distribution

and the random generator of[GA(δA)] is detailed in [23]. The dispersion of random matrix

[GA] is controlled by the hyperparameterδA belonging an admissible set∆. Consequently,

the mistuning level of the bladed-disk is entirely controlled by theR6-valued hyperparameter

δ = (δM , δD, δC , δKg , δKc, δK), belonging to the admissible set∆
6.
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2.5.2. STOCH-NL-ROM of the mistuned bladed-disk

For constructing the STOCH-NL-ROM, the deterministic matrices in Eq. (3) are replaced by

the random matrices. The deterministic displacement fielduN(·, t) becomes a random field

UN (·, t) that is written, for allx ∈ Ω, as

UN (x, t) =

N∑

β=1

ϕβ(x)Qβ(t) , (20)

in which theR
N -valued random variableQ(t) = (Q1(t), · · · , QN(t)) is solution of the follow-

ing set of stochastic nonlinear differential equations,

Mαβ Q̈β + (Dαβ+C(Ω)αβ) Q̇β + (K
(e)
αβ+K

(c)(Ω)αβ+K
(g)
αβ )Qβ +K

(2)
αβγ Qβ Qγ +K

(3)
αβγδ Qβ Qγ Qδ = fα .

(21)

2.5.3. Numerical aspects for solving the STOCH-NL-ROM

The solution of the STOCH-NL-ROM is calculated using the Monte Carlo numerical simu-

lation. For each realizationθ belonging toΘ, the set ofN deterministic nonlinear coupled

differential equations is considered and solved with an implicit and unconditionally stable in-

tegration scheme (Newmark method with the averaging acceleration scheme). Introducing the

notationQi(θ) = Q(ti; θ), related to each sample timeti, the following set ofN deterministic

nonlinear equations is solved for computingQi(θ)

[K eff
i (θ)]Qi(θ) + F NL(Qi(θ)) = F eff

i (θ) , (22)

in which the effective(N ×N) matrix [K eff
i (θ)] and the effective force vectorF eff

i (θ) are easily

computed at each timeti. Note that matrix[K eff
i (θ)] has no particular signature due to the

presence of the gyroscopic coupling matrix. The nonlinear termF NL(Qi(θ)), issued from the

presence of the geometric nonlinearities, is written as

F NL
α (Qi(θ)) = K

(2)
αβγ Qiβ(θ)Qiγ (θ) + K

(3)
αβγδ Qiβ(θ)Qiγ (θ)Qiδ(θ) . (23)

For each sampling timeti, the computation of solutionQi(θ) is addressed by the fixed point

method because this iterative scheme is few time consuming and does not require the evaluation

of the tangential matrix. Nevertheless, when the algorithmdoes not converge, it is replaced
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by the Crisfield arc-length method [31]. Such algorithm introduces a new additional scalar

parameterΠi that multiplies the right-hand side member of the nonlinearequation. In this case,

at each sampling timeti, this nonlinear equation is written as

[K eff
i (θ)]Qi(θ) + F NL(Qi(θ)) = Πi(θ)F eff

i (θ) . (24)

The nonlinear equation is solved step by step, each incremental step being characterized by a

given arc length. For a given step, an iterative scheme requiring one evaluation of the tangential

matrix allows a solution(Qi(θ),Πi(θ)) to be computed. Note that the tangential matrix can

algebraically evaluated from Eq. (23). An adaptive arc length, depending on the number of

iterations necessary to obtain the convergence of the preceding increment is also implemented

according to [32] in order to accelerate the computation. Anunusual procedure is then added to

the algorithm, because Eq. (22) has to be solved instead of Eq. (24). In the nonlinear dynamical

context, parameterΠi is deterministic and has to be controlled in order to reach the value1.

This implies that the state of the algorithm corresponding to the preceding increment has to

be stored. WhenΠi(θ) is found to be upper than1, the algorithm is rewind to the preceding

increment and the computation is set again with the half of the arc-length. Such additional

procedure is repeated until parameterΠi(θ) reaches1 within a numerical tolerance set to10−6.

Even if such procedure is time consuming, because of the necessary evaluations of the tangential

matrix and due to the procedure controlling the value of parameterΠi, its main advantage is its

capability of capturing high-nonlinear mechanical behaviors.

3. Application to an industrial bladed-disk

3.1. Nonlinear deterministic analysis

3.1.1. Description of the external load

The structure under consideration in an industrial centrifugal compressor belonging to the class

of integrated bladed disks. Due to proprietary reasons, thenumberM of blades characterizing

the order of the cyclic symmetry of the structure cannot given. The finite element model of the

structure is constructed with solid finite elements and is constituted of about2, 000, 000 degrees

of freedom. Fig. 1 displays a part of the finite element mesh ofthe investigated bladed disk.

The structure is in rotation around its revolution axis witha constant velocityΩ = 30, 750 rpm.
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Since the dynamic analysis is carried out in the rotating frame of the structure, the rigid body

motion due to the rotation of the structure corresponds to a fixed boundary condition at the

inner radius of the structure. The bladed disk is made up of a homogeneous isotropic material.

A modal damping model is added for the bladed disk.

Figure 1: Finite element mesh of a part of the structure

The cyclic symmetry is first used for constructing the reduced matrices of the mean linear

reduced-order model. The linear generalized eigenvalue problem related to the tuned bladed-

disk is then solved using this cyclic symmetry property [25,26]. Let ν0 be the first eigenfre-

quency. Figure 2 displays the dimensionless eigenfrequenciesνi/ν0 of the tuned structure with

respect to the circumferential wave numberh. The graph is truncated toh = 5 because only a

5 − th engine-order excitation is needed to be considered in the present industrial application.

Two dimensionless frequency excitation bandsB
1
exc = [0.97 , 1.10] andB

2
exc = [1.78 , 2.34]

are investigated. Frequency excitation bandB
1
exc contains an insulated resonance whereas fre-

quency bandB2
exc contains a veering that is known to intensify the important effects of linear

mistuning yielding the dynamical response to be usually amplified.

The excitation frequency bands are defined by parameterss and∆ν given in Table 1, for which

the time domain functiong(t) is defined by Eq. (15) The initial instant of integration,tini, and

the total time duration,T , are summarized in Table 1. Concerning the spatial distribution of the

load, the point excitations are distributed at the tip of each blade along the rotational axis and

verify the cyclic geometry. The intensityf0 of the external load is located in the range]0 , 6]N ,

which induces a range of small to large amplitudes of the responses corresponding to a sweep

from a linear response until a very high rate of geometrical nonlinearities. A high load intensity

can be viewed as a situation for which the total damping of thebladed disk structure would
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Figure 2: Natural frequencies with respect to circumferential wave number

Table 1: Numerical parameters related to the excitation

s ∆ν/ν0 ν0 tini ν0 T

B
1
exc 8 0.13 −46.23 184

B
2
exc 4 0.51 −11.79 184

reach very small values due to aeroelastic phenomenons. Such extreme situations are realistic

when approaching flutter regimes. The frequency band of analysis is a broad frequency band

corresponding to the dimensionless intervalB = [0 , 3.34]. The sample frequency isνe/ν0 =

11.12, yielding the numbernt of time steps to bent = 4, 096. The frequency resolution is then

ν/ν0,= 0.0054. Let ĝ(2πν) be the Fourier transform of functiong(t). Figures 3 and 4 show the

graphst/t0 7→ g(t) andν/ν0 7→ ĝ(2πν) for both cases corresponding to excitation frequency

bandsB1
exc andB

2
exc.

3.1.2. Nonlinear tuned analysis

For the construction of the MEAN-NL-ROM, the vector basis ischosen as explained in [21].

The nonlinear equations are solved in the subspace spanned by the usual linear basis constituted

of theN modal shapes related to the firstN increasing natural eigenfrequencies. A convergence

analysis is carried out by increasing the valueN of the reduced-order model. It can be shown

thatN = 65 yields a reasonable convergence, corresponding toνN/ν0 = 3.34 From now on,
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Figure 3: Representation of the external load in the time domain and in the frequency domain: graph oft/t0 7→ g(t)

(upper graph) andν/ν0 7→ ĝ(2πν) (lower graph) forB
1

exc = [0.97 , 1.10] .
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Figure 4: Representation of the external load in the time domain and in the frequency domain: graph oft/t0 7→ g(t)

(upper graph) andν/ν0 7→ ĝ(2πν) (lower graph) forB
2

exc = [1.78 , 2.34] .

the converged solution corresponding to the observation issued from the MEAN-NL-ROM is

denoted bỹu(t). For clarity, when confusion is possible, superscripts L and NL will be added

for distinguishing the linear case from the geometric nonlinear one. The two excitation cases

are successively investigated.

Nonlinear tuned analysis related to excitation frequency bandB
1
exc

Being interested in the blade yielding the highest vibration amplitude, letj0 be defined as

j0 = arg maxj
(
maxt ũ

NL
j (t)

)
. The observationv(t) corresponding to the selected blade out-

16



plane displacement is defined byv(t) = ũj0(t). Figure 5 displays the grapht/t0 7→ vL(t)

(upper graph) andt/t0 7→ v NL(t) (lower graph), corresponding to a load intensityf0 = 2.5N .

Since the dynamical response related to these two cases is sensitively different, it can be deduced

thatf0 = 2.5N corresponds to a load intensity for which the geometric nonlinear effects are

significant, yielding a blade softening characterized by a relative long duration amplification

of the blade displacement with respect to the linear case. There are no reasons to think that

the frequency contents of the blade response shape be especially different in view of the time

domain nonlinear response.
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Figure 5: Time domain observationt/t0 7→ v(t) related to the linear (upper graph) and the nonlinear (lowergraph)

cases forB
1

exc = [0.97 , 1.10] andf0 = 2.5N .

Let k0 = arg maxj
(
maxν/ν0∈B

̂̃u
NL

j (2πν)
)

for which ̂̃u
NL

j (2πν) is the Fourier transform of

ũNL
j (t). In the frequency domain, the observationw(2πν) corresponding to the selected blade

out-plane displacement is defined byw(2πν) = ̂̃uk0(2πν). Figure 6 displays the graphs

ν/ν0 7→ wL(2πν) (upper graph) andν/ν0 7→ wNL(2πν) (lower graph). As expected for the

linear case, it can be seen that the frequency content of the blade response coincides withB1
exc.

One can clearly see that there exist higher frequencies, which are located in dimensionless fre-

quency band[3 , 3.34] which are excited through the geometric nonlinearities. Nevertheless, its

contribution is clearly negligible. Moreover, it is seen that the dimensionless eigenfrequencies

corresponding to the three upper lines in Fig. 2, which are located in dimensionless frequency

band[1.5 , 2.8], are not excited by the energy transferred outside the frequency band of excita-

17



tion (induced by the presence of geometrical nonlinearities).

Finally, a sensitivity analysis is conducted in order to quantify the geometric nonlinear effects

with respect to the load intensity. Letbw,∞ andbν,∞ be the amplitude ratio and frequency ratio

defined by

bw,∞ =
maxν∈B w

NL(2πν)

maxν∈B wL(2πν)

bν,∞ =
argmaxν∈B w

NL(2πν)

argmaxν∈B wL(2πν)
(25)

Figure 7 displays the graphsf0 7→ bw,∞(f0) (upper graph) andf0 7→ bν,∞(f0) (lower graph).

These graphs allow for showing if the analyzed response belongs or not to the nonlinear domain.

When the values of observationsbw,∞ andbν,∞ are different from1, the domain is nonlinear. It

can be seen that some geometric nonlinear effects occur fromf0 = 0.5N . A non-monotonic

amplification (softening followed by hardening effects) atthe main resonance peak, combined

to a10% shift towards the higher frequencies, is also observed.
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Figure 6: Frequency domain observationν/ν0 7→ w(2πν) related to the linear (upper graph) and the nonlinear

(lower graph) cases forB
1

exc = [0.97 , 1.10] andf0 = 2.5N .

Nonlinear tuned analysis related to excitation frequency bandB
2
exc

Figure 8 displays the grapht/t0 7→ vL(t) (upper graph) andt/t0 7→ v NL(t) (lower graph),

corresponding to a load intensityf0 = 2.5N . On these graphs, significant levels of geometrical

nonlinear effects can be observed and the dynamical response is drastically different from the
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Figure 7: Sensitivity analysis with respect to the load intensityf0.

previous case. With respect to the linear case, it can be seenthat the geometric nonlinearities

induce a blade stiffening characterized by a reduction of the vibration amplitudes of the blades

from 2mm until 1mm This stiffening is also combined with a strong irregularityof the blade

response shape in the time domain, which shows an enrichmentof the frequency content that

has to be quantified.

dimensionless time (t/t
0
)

-50 0 50 100 150 200

d
is

p
la

c
e
m

e
n
t 
(m

m
)

-2

-1

0

1

2

dimensionless time (t/t
0
) 

-50 0 50 100 150 200

d
is

p
la

c
e
m

e
n
t 
(m

m
)

-2

-1

0

1

2

Figure 8: Time domain observationt/t0 7→ v(t) related to the linear (upper graph) and the nonlinear (lowergraph)

cases forB
2

exc = [1.78 , 2.34] andf0 = 2.5N .

Figure 9 displays the graphsν/ν0 7→ wL(2πν) (upper graph) andν/ν0 7→ wNL(2πν) (lower

graph). The spreading of the vibrational energy over the whole frequency band of analysis
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B is due to the nonlinear geometric effects and is characterized through secondary response

peaks. Again, for high frequencies that are located outsideB
2
exc in dimensionless frequency

band[3 , 3.34], the dynamical response induced by the geometric nonlinearities is negligible.

Nevertheless, some new resonances appear with the same order of magnitude than the main

resonance in the dimensionless frequency band[1 , 1.5]. We put then in evidence a complex dy-

namical behavior that can be dangerous because non-expected resonances with non-negligible

amplitudes appear outside excitation frequency bandB
2
exc.
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Figure 9: Frequency domain observationν/ν0 7→ w(2πν) related to the linear (upper graph) and the nonlinear

(lower graph) cases forB
2

exc = [1.78 , 2.34] andf0 = 2.5N .

It should be noted that the nonlinear dynamical behavior is different according to the choice

of the frequency band of excitation. It is clearly seen that the geometric nonlinearities ex-

cite harmonics which are outside the frequency band of excitation and mainly for frequencies

lower than the ones located in the excitation band. This can explain why the mechanical en-

ergy remains concentrated inB1
exc with a local amplification. On the contrary, there are many

eigenfrequencies below frequency bandB
2
exc of excitation, which are excited through the geo-

metric nonlinearities. As a consequence, the energy transfer to these very low eigenfrequencies

is consequent, yielding a consequent spread of energy and amplitude ratios below1.

Figure 10 displays the graphsf0 7→ bw,∞(f0) (upper graph) andf0 7→ bν,∞(f0) (lower graph),

which is very different from the previous case. A quick decreasing in the amplitude ratio of

the main resonance located in frequency bandB is observed with respect to the load intensity.
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More precisely, we detect that the critical intensity load from which the geometric nonlineari-

ties affect the dynamical response isf0 = 0.375N . Concerning the resonance ratio, we can

see a slight shift of the resonance frequency to higher frequencies for intensity loads lower than

f0 = 2.5N . Nevertheless, an irregular behavior is put in evidence forf0 ≥ 2.75N . The reso-

nance ratio suddenly falls down to very low values of resonance ratio belonging to[0.5 , 0.8]. It

can be shown an irregular alternating between small values of the resonance ratio and the val-

ues around1 of the resonance ratio. Such behavior means that there existsituations for which

some resonances occur due to geometric nonlinearities, andwhich correspond to subharmon-

ics that become the most important. Such an observation gives rise to a worrying dynamical

behavior that points out the necessity of taking into account the geometric nonlinearities in the

computational model.
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Figure 10: Sensitivity analysis with respect to load intensity f0.

Figure 11 displays the grapht/t0 7→ vL(t) (upper graph) andt/t0 7→ v NL(t) (lower graph),

corresponding to a load intensityf0 = 2.75N . No noticeable differences can be seen between

the time-domain nonlinear responses of Figs. 8 and 11, whichonly differ by a slight difference

of load intensity. Nevertheless, comparing these nonlinear responses in the frequency domain

yield significant differences. Figure 12 displays the graphsν/ν0 7→ wL(2πν) (upper graph) and

ν/ν0 7→ wNL(2πν) (lower graph). It can be seen that the main resonance amplitude is nearly

twice the resonance amplitude located inB
2
exc. Moreover, a broad range of frequency band

[1 , 1.5] is excited, yielding a large number of resonances with the same order of magnitude
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than the resonance amplitudes located inB
2
exc.
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Figure 11: Time domain observationt/t0 7→ v(t) related to the linear (upper graph) and the nonlinear (lower

graph) cases forB
2

exc = [1.78 , 2.34] andf0 = 2.75N .
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Figure 12: Frequency domain observationν/ν0 7→ w(2πν) related to the linear (upper graph) and the nonlinear

(lower graph) cases forB
2

exc = [1.78 , 2.34] andf0 = 2.75N .

3.2. Nonlinear analysis for the mistuned bladed disk

In the present case, the MEAN-NL-ROM is constructed using the linear eigenmodes of vibra-

tions as projection basis. Note that no substructuring methods have been used . This means

that the uncertainties are not considered as independent from one blade to another one, which

is coherent with the structure under consideration belonging to the class of integrated bladed
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disks, that are manufactured from a unique solid piece of metal. In the present analysis, for a

better understanding of the phenomenon, only the matrices related to the linear part are random.

The mistuning level is thus controlled by theR
5-vectorδ = (δM , δD, δC , δKc , δK).

3.2.1. Sensitivity analysis according to the type of uncertainties

The mistuning analysis is carried out in the frequency domain, which then requires a Fourier

transform of the observation. First, a sensitivity analysis is conducted in order to identify the

dispersion parameters yielding the most significant effects on the mistuned response represented

by the random variableW (2πν) corresponding to observationw(2πν) in the tuned case.

As expected for the linear mistuned case, it can be observed that an uncertainty level of0.1 for

the gyroscopic coupling, or/and the centrifugal stiffnessor/and the damping terms, has a very

limited impact on the linear mistuned response, for excitation bandB
1
exc or B

2
exc. Figures 13

and 14 compare the confidence region of observationW NL(2πν) with a probability level set to

0.95, when the frequency excitation band isB
1
exc or B

2
exc. In the first case, the nonlinear response

seems to be insensitive to uncertainties on the whole band ofanalysisB. In the second case,

the nonlinear mistuned behavior is shown to be substantially different.On one hand, the nonlin-

ear mistuned response behaves almost like its tuned response in the part of the frequency band

corresponding to the frequency band of excitationB
2
exc. On the other hand, the uncertainties

spread because of the geometrical nonlinearities, yielding large confidence regions for the non-

linear mistuned response inB\B2
exc, more particularly in the dimensionless range[1 , 1.2]. The

response in this range shows that some realizations have amplification levels around2 while the

mistuned response remains almost unchanged inB
2
exc. Note that a similar nonlinear mistuned

behavior can be observed for the cases for which centrifugalstiffness or damping are uncertain.

Figures 15 and 17 (resp. Figs. 16 and 18) display the graphs ofthe confidence region of obser-

vationW L(2πν) andW NL(2πν) with a probability level set to0.95 for a mass uncertainty level

δM = 0.1 and a load intensityf0 = 2.5N in the excitation bandB1
exc (resp.B2

exc). By compar-

ing Figs. 15 and 16, it can be seen for the usual linear mistuned case, that the random response

of the blade is particularly sensitive to uncertainties yielding important amplification response

levels. For the case corresponding to an excitation locatedin B
1
exc, the presence of geometric

nonlinearities drastically improve the robustness of the random response inB1
exc, since the up-

per confidence region envelope of the confidence region does not exceed the tuned resonance.
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Figure 13: Stochastic analysis: frequency domain observation related to the nonlinear case forδC = 0.1 and

for excitation frequency bandB
1

exc: mean model (thick line), mean of the stochastic model (thindashed line),

confidence region (gray region).
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Figure 14: Stochastic analysis: frequency domain observation related to the nonlinear case forδC = 0.1 and

for excitation frequency bandB
2

exc: mean model (thick line), mean of the stochastic model (thindashed line),

confidence region (gray region).

Moreover, the response level outsideB
1
exc is one order magnitude smaller, and the presence of

uncertainties does not affect the nonlinear dynamical behavior of the blades.

By comparing Figs. 17 and 18, it can be seen again that the presence of he geometric nonlin-

earities tends to inhibit the nonlinear dynamical amplification induced by the mistuning in the
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Figure 15: Stochastic analysis: frequency domain observation related to the linear case forδM = 0.1 and for ex-

citation frequency bandB
1

exc: mean model (thick line), mean of the stochastic model (thindashed line), confidence

region (gray region).
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Figure 16: Stochastic analysis: frequency domain observation related to the linear case forδM = 0.1 and for ex-

citation frequency bandB
2

exc: mean model (thick line), mean of the stochastic model (thindashed line), confidence

region (gray region).

frequency bandB2
exc corresponding to the excitation frequency band, limiting the dynamical

amplification level to a magnitude1.2. Moreover, a widespread of uncertainties is observed

in B\B2
exc with dynamic amplification levels of magnitude2.5 when performing the nonlinear

dynamic analysis in subfrequency bandBsub = [1 , 1.6]. In this band, it can be seen a nonlinear

mistuned response level similar to the nonlinear tuned response located inB2
exc. Note that a
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Figure 17: Stochastic analysis: frequency dependent observation related to the nonlinear case forδM = 0.1 and

for excitation frequency bandB
1

exc: mean model (thick line), mean of the stochastic model (thindashed line),

confidence region (gray region).
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Figure 18: Stochastic analysis: frequency dependent observation related to the nonlinear case forδM = 0.1 and

for excitation frequency bandB
2

exc: mean model (thick line), mean of the stochastic model (thindashed line),

confidence region (gray region).

similar behavior is observed for the case of elastic-stiffness uncertainties.

3.2.2. Nonlinear dynamical analysis for the mistuned response

The analysis is focussed for the excitation frequency bandB
2
exc that exhibits the complex dy-

namic situation described above. The load intensity is fixedto f0 = 2.5 and the uncertainty
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level is set toδ = (δM , δD, δC , δKc , δK) = (δ, 0.2, 0.2, 0.2, δ), in whichδ is defined hereinafter.

Thus, the effects of mass and elastic uncertainties combined to uncertainties for the rotational

effects are taken into account in the analysis.

A sensitivity analysis according to parameterδ is carried out in order to establish a comparison

of the mistuning effects between the linear and the nonlinear mistuned cases. For fixedν/ν0 ∈

B, letY (2πν) be the random dynamic amplification factor defined by

Y (2πν) =
W (2πν)

maxν/ν0∈B w(2πν)
. (26)
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Figure 19: Stochastic analysis: frequency domain observationY L(2πν) related to the linear case forδK = δM =

0.02 and forδKc
= δC = δD = 0.2: mean model (thick line), mean of the stochastic model (thindashed line),

confidence region (gray region).

Figures 19 (or 21) and Figs. 20 (or 22) show the confidence region of the linear and nonlinear

observationsY L(2πν) andY NL(2πν) for δ = 0.02 (or δ = 0.16). In frequency bandB2
exc, it

can be observed that an increasing of the mistuning yields a uniform spread in the frequency

domain around the main resonance, yielding a weak robustness with respect to uncertainties.

It is also clearly seen that the linearized assumption tendsto increase the extreme values of

the response levels. The geometric nonlinear effects clearly inhibit the amplification of the

random response. More particularly, the extreme values related toY NL(2πν) yield moderate

amplification even if the confidence region remains relatively broad.

For frequency bandBsub that is highly sensitive to uncertainties, it can be seen that an increasing

of δ yields a small spread around the resonances located outsidefrequency bandB2
exc, accompa-
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Figure 20: Stochastic analysis: frequency domain observation Y NL(2πν) related to the nonlinear case forδK =

δM = 0.02 and forδKc
= δC = δD = 0.2: mean model (thick line), mean of the stochastic model (thindashed

line), confidence region (gray region).

nied by a moderate amplification of the response. In summary,the geometric nonlinear effects

seem to mainly act on the uncertainty propagation by spreading the response on the whole band

of analysis without drastically amplifying the amplitudesof the resonances located inB
2
exc. The

consequences of such a result mainly concern subfrequency bandBsub, for which the geometric

nonlinearities act as an internal excitation, yielding theoccurrence of additional resonances.

The wide spread of uncertainties through a large bandwidth gives rise to important amplifica-

tions with respect to these resonances.

For the analysis, the chosen observation is a random amplification factor. Such observation

characterizes the dynamic amplification over the given frequency band with respect to a refer-

ence level taken as the resonance level of the tuned nonlinear system. In this case, the frequency

band is the whole frequency band of analysis. LetY∞ be the random amplification factor de-

fined byY∞ = maxν/ν0∈B Y (2πν). We then define the second random amplification factor,

Z∞, such that

Z∞ =
maxν/ν0∈BsubW (2πν)

maxν/ν0∈Bsubw(2πν)
. (27)

For that case, the chosen frequency band does not contain theexcitation band but only sub-

harmonics. In that way, the reference level taken for calculating the amplification factor cor-

responds to the secondary resonance level localized outside the frequency band of excitation.
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Figure 21: Stochastic analysis: frequency domain observation related to the linear caseY L(2πν) for δK = δM =

0.16 and forδKc
= δC = δD = 0.2: mean model (thick line), mean of the stochastic model (thindashed line),

confidence region (gray region).

Figures 23 displays the graph of the quantiles ofY L
∞

with respect to mistuning rateδ. As com-

monly observed, this graph displays a strong sensitivity ofthe random dynamic amplification

with respect to uncertainties. Figure 24 compares the similar graphs obtained with random

observationsY NL
∞

andZ NL
∞

. Again, it is observed that the geometric nonlinear effectsyield

a limited sensitivity to mistuning uncertainties for observation Y NL
∞

. Figure 25 displays the

probability density function ofY NL
∞

for several values ofδ. It can clearly be seen that the proba-

bility density functions (pdf) exhibit a support that is[0.55 , 1.5]. These pdf are not symmetric,

yielding amplification factors greater than1 with a lower probability level. Furthermore, from

δ ≥ 0.23, the shape of the pdfs seems to be less sensitive to the level of uncertainties. In Fig. 24,

a special attention must be given toZ NL
∞

that presents similar characteristics toY L
∞

. In partic-

ular, these graphs exhibit a maximum, yielding the possibility to define some robustness areas

that limit the dynamic amplification. It then points out, notonly a complex sensitivity to uncer-

tainties, but also high amplification levels that may yield unexpected amplifications. Figure 26

displays the pdfs ofZ NL
∞

for several values ofδ. These pdfs exhibit a support that is[0.55 , 3.3].

In particular, contrary to random observationY NL
∞

, it can be shown that random observation

Z NL
∞

is particularly sensitive toδ. It can also be noticed that these pdfs exhibit a slight bimodal
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Figure 22: Stochastic analysis: frequency domain observation Y NL(2πν) related to the nonlinear case forδK =

δM = 0.16 and forδKc
= δC = δD = 0.2: mean model (thick line), mean of the stochastic model (thindashed

line), confidence region (gray region).
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Figure 23: Quantile analysis of amplification factorY L
∞

with respect to mistuning levelδ with 0.5 quantile (•

symbol),0.9 quantile (� symbol),0.95 quantile (� symbol)

behavior combined to a strong asymmetry with positive skewness.

4. Conclusion

A detailed dynamic analysis has been conducted in presence of uncertainties induced by mis-

tuning in order to quantify the impact of the nonlinear geometrical effects on the mistuned
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Figure 24: Quantile analysis of amplification factorsY NL
∞

(upper graph) andZ NL
∞

(lower graph) with respect to

mistuning levelδ with 0.5 quantile (• symbol),0.9 quantile (� symbol),0.95 quantile (� symbol)
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Figure 25: Stochastic analysis: probability density function of Y NL
∞

for δ = 0.03, 0.08, 0.13, 0.18, 0.23, 0.28.

structure, in terms of dynamic amplification of the responses and of uncertainty propagation.

In order to achieve such a detailed analysis, an advanced methodology has been applied to an

industrial bladed disk for performing a mistuning analysisof bladed disks in the context of

high amplitude loads inducing strong geometric nonlinear effects. One of the main goal of the

work was to quantify those geometric nonlinear effects on the random dynamical response of

the uncertain mistuned structure. On this basis, two load cases have been investigated, that

correspond, for the usual linear mistuned case, to two situations that are known to yield either
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Figure 26: Stochastic analysis: probability density function ofZ NL
∞

for δ = 0.03, 0.08, 0.13, 0.18, 0.23, 0.28.

a moderate response or either a response with a large dynamical amplification. The numerical

results presented display new complex dynamical behaviorsof the dynamical response of the

blades.

Concerning the nonlinear tuned response, in the very low-frequency range and for an excitation

corresponding to pure blade modes, the response exhibits higher amplitude levels, while mainly

remaining located in the frequency band of excitation. In the opposite, in the low-frequency

range, when the excitation is located around a veering, characterizing a strong coupling between

the blade modes and the disk modes, a sudden decreasing of thevibration motion is observed

and the nonlinear tuned response is spread outside the frequency band of excitation, yielding

secondary resonances corresponding to sub-harmonics whose contribution cannot be longer

neglected. In this case, a sensitivity analysis with respect to the load level exhibits a load

threshold, from which a chaotic behavior is observed. Thus,the main resonance is randomly

located in the frequency band of excitation or in the sub-harmonic range.

Considering the nonlinear mistuned response with uncertainties, the geometric nonlinear effects

play an important role for the propagation of uncertainties. In particular, the robustness of the

random response with respect to uncertainties remains strong in the frequency band of excita-

tion, yielding reasonable amplification levels. However, such robustness suddenly falls in the

sub-harmonic frequency range giving rise to consequent local amplification levels.

In summary, all the numerical results have demonstrated that the life duration of the indus-
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trial bladed disk can be very sensitive to the presence of geometric nonlinearities combined

with mistuning effects. A careful attention has to be paid with the numerical modeling of the

bladed-disk mistuning when dealing with exceptional operating regimes for which geometric

nonlinearities have to be taken into account.
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