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Mistuning analysis and uncertainty quantification of aruistdial
bladed disk with geometrical nonlinearity.

Abstract

This paper deals with the dynamical analysis and unceytgjméantification of a mistuned industrial ro-
tating integrally bladed disk, for which the operating regiunder consideration takes into account the
nonlinear geometrical effects induced by large displacgsmand deformations. First, a dedicated mean
nonlinear reduced-order model of the tuned structure i¢icthp constructed using the finite element
method. The random nature of the mistuning is then modeleasing the nonparametric probabilistic
approach extended to the nonlinear geometric context.régc@ detailed dynamic analysis and uncer-
tainty propagation are conducted in order to quantify thpaot of the nonlinear geometrical effects on
the mistuned structure. The results show that the dynampti&eation in the frequency band is signif-
icant outside the frequency band of excitation due to thegiree of geometric nonlinearities combined
with mistuning effects.

Keywords:

Mistuning, Bladed-disk, Geometric nonlinearities, Urtagtty quantification

1. Introduction

This paper proposes a detailed dynamic analysis of in@listiating integrally bladed disks
with respect to the nonlinear geometrical effects in pres@f an uncertain mistuning. Very few
works have been published in this particular field that seemmise and more important for an-
alyzing exceptional operating regime in turbomachinenythle framework of linear mistuning
analysis, amplifications of the response are observed ifreqeency band of excitation while
in presence of geometric nonlinearities, there is a tramgfeibrational energy outside the fre-
guency band of excitation with complex uncertainty prop@agamechanisms. Hereinafter, we
begin this introduction with a brief history concerning tinéstuning and nonlinearities effects
in structural dynamics and in turbomachinery.

A main challenge in structural dynamics is the developmértdvanced numerical method-

ologies for the construction of robust computational medelorder to efficiently predict the
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dynamical behavior of structures. The present manuscryastigates, more particularly, the
aeronautical area for which the mistuning of turbomaclyifidaded disks has to be taken into
account in the computational models. It is well known thatnlatural cyclic symmetry of such
structures is broken due to manufacturing tolerances artdrialdispersions, which create
small discrepancies from one blade to another one. Suchopiema, referred to mistuning,
can generate localization effects combined to a dynamidiioapion of the forced response
[1]. Many research efforts have been carried out on thisestipincluding the construction of
reduced-order models with probabilistic approaches fkintpinto account the random char-
acter of the mistuning in the computational models @ge[2, 3]). For the robust design of
such mistuned structures, different strategies have teen bonsidered (seeg.[4, 5, 6, 7, 8]).
Most of these works have been carried out in a linear context.

Nevertheless, another essential aspect is to pay a partatténtion to the various nonlinear ef-
fects that need to be taken into account in the computatrmoodekls. It should be underlined that
large research efforts have been made in order to includet¢hénonlinearities such as nonlin-
ear contact interfaces [9, 10, 11]. Furthermore, given tmstant growing of the computational
capabilities, including the possibility of using paral@mputations, it seems quite appropriate
to consider the geometrically nonlinear effects in the cotational models [12, 13]. Indeed,
the recent improvements in turbomachinery design, condkim¢he unavoidable requirements
of kerosene savings, require to analyze the exceptionabbpg regime of bladed disks, for
which large deformations can occur [14, 15, 16, 17]. It cgpands, for instance, to nearly
unstable situations induced by the aerodynamic coupliagdan lead flutter and thus inducing
very low damping levels. In a way, such situation is equintate the case of severe loading and
the usual linearized elastodynamic theory cannot be usgdnamne. In such a case, the geo-
metrically nonlinear effects induced by the large disptaeats/deformations cannot be ignored
and need to be taken into account in the computational models

A special attention has to be first given to the case of geacadyr nonlinear tuned bladed
disks, which have the perfect symmetry. The large set ofineat coupled differential equa-
tions issued from the computational model of the tuned sirechas to necessarily be solved
in the time domain, leading for introducing a reduced-omedel. This requires first the se-

lection of an appropriate deterministic basis for congingcthe representation of the nonlinear



dynamical response. Such basis could be obtained by theP@phogonal Decomposition
method [18], known to be particularly efficient for nonlimesiatic cases (seeg. [19] and in-
cluded references) and that requires a particular attemtioonlinear structural dynamics, or
by using appropriately selected natural linear elastic @soaf vibration (see the review pre-
sented in [20]). The operators of the corresponding noafineduced-order model can then be
deduced from the STEP method [12, 13] or from an explicit taiesion as proposed in [21] us-
ing three-dimensional solid finite elements or propose@#j {ising shell finite elements. One
also have to focus on the modeling of the external load, spoeding to a chosen frequency
band of excitation, which has to be selected according talusdbomachinery criterions. The
external load has to be defined in the time domain and mustsept a uniform sweep in the
frequency domain. After having established the mean neatineduced-order model (MEAN-
NL-ROM) that allows the geometrically nonlinear dynamiealalysis of the tuned structure
to be performed, we propose to implement the mistuning taicgies using the nonparamet-
ric probabilistic framework [23]. The uncertainty inducbg mistuning is implemented for
each operator. The mistuning level is then controlled byratdid number of hyperparameters
controlling the amount of uncertainties for each randonraipe. A stochastic reduced-order
model (STOCH-NL-ROM) is then obtained, which leads for saipva reasonable number of un-
certain nonlinear coupled differential equations in timeetidomain, requiring the construction
of efficient and dedicated algorithms.

In this paper, such a computational strategy provides aaiegiti tool, which is applied to a
computational model of an industrial centrifugal compoeseith a large number of degrees of
freedom. This allows for putting in evidence some new comgigmamical behaviors. Indeed,
some complex mechanisms can be observed for the energyetrahsough both geometric
nonlinearities and mistuning uncertainties outside tleguency band of excitation. Different
criterions are constructed (1) for detecting the thresfrolah which geometric nonlinear effects
arise and (2) for quantifying the energy transfer that caouom the frequency band. A careful
and detailed analysis is carried out because unexpecteptaars situations, which can alter
the life duration of the bladed disks, can potentially exist

The paper is organized as follows. Sectibpsummarizes a complete description of the com-

putational methodology and of its numerical aspects algvthe nonlinear dynamic analy-



sis of mistuned bladed disks to be done. The MEAN-NL-ROM egponding to the tuned
structure is explicitly constructed following the apprbamresented in [21]. Once the uncer-
tainties induced by mistuning are modeled through the n@mpetric probabilistic approach,
the numerical strategy is discussed for the resolution ®3MOCH-NL-ROM. Section? that
constitutes the main objective of this paper, is devoted detailed dynamic analysis and to
uncertainty propagation in order to quantify the impacthaf honlinear geometrical effects on
an industrial centrifugal compressor. The nonlinear tudygegimic analysis is investigated in
both time domain and frequency domain. A sensitivity analys conducted with respect to
the load intensity (amplitude) in order to quantify the effeof the geometric nonlinearities.
In addition, a nonlinear sensitivity analysis is carried with respect to the different types of
uncertainties sources induced by the mistuning, in ordgu#dify and to quantify the different
mistuning effects that can occur in presence of geometndimearities. Finally, a complete
nonlinear dynamical analysis of the mistuned responserigedaout and the confidence re-
gion of the response amplifications are compared betwedm#sa and nonlinear cases on the

whole frequency band of analysis.

2. Methodology

This Section is devoted to the construction of a methodofogyhe nonlinear mistuning anal-
ysis occurring in rotating bladed-disks structures. Inghesent work, the bladed disk under
consideration is assumed (1) to be made up of a linear elastierial and (2) to undergo large

displacements and large deformations inducing geometrazdinearities.

2.1. Description of the geometric nonlinear boundary valugblem

The structure under consideration is a bladed-disk streatith a A/-order cyclic symmetry.
Thus, the geometrical domain, the material constitutiveaéiqn, and the boundary conditions
related to the generating sector are invariant unde4ty@/ rotation around its axis of sym-
metry. Moreover, the bladed disk undergoes a rotationalana@round the axis of symmetry
with constant angular speétl The structure is made up of a linear elastic material ang-is a
sumed to undergo large deformations inducing geometrmalimearities. A total Lagrangian

formulation is chosen, which means that the dynamical égpusiare expressed in the rotating



frame of an equilibrium configuration considered as a nhtanafiguration. Let2 be the three-
dimensional bounded domain corresponding to such refereanfiguration and subjected to
the body force field(x, ¢), in which x denotes the position of a given point belonging to do-
main2. The boundaryQ? is such that2 = T'U X with ' N X = () and the external unit
normal to boundaryf2 is denoted byr. The boundary paff' corresponds to the fixed part of
the structure (in the local rotating franfe,, X2, X3)) whereas the boundary pattis subjected

to the external surface force fie@x, t). Note that the external force fields are derived from the
Lagrangian transport into the reference configuration efgghysical body/surface force fields
applied in the deformed configuration. The external load regmesent, for instance, the un-
steady pressures applied to the blades. The displacemkehefieressed with respect to the

reference configuration is denotedwds, t).

2.2. Construction of the MEAN-NL-ROM related to the tunedcttire

Let C be the admissible space defined by
C = {v e Q, vsufficiently regular,v = 0onT'} . (2)

The vectorg = (q1, ..., qx) Of the generalized coordinates is then introduced as a neof se
unknown variables by projecting the reference nonlinespaaseu(x, -) on the vector space
spanned by the finite familp!, - -- | @} of a given vector basis @. The MEAN-NL-ROM

is then described by the approximatiofi(x, ¢) of order N of u(x, t) such that

UN<X7 t) = Z (pﬁ(x> (M(t) ) (2)
=1

in which g is solution of the nonlinear differential equation

Mag G5 + (das+c(Dap) 45 + (kD +E(Q)ap+52D) 45 + 5). a5 4, + ks a5 4y a5 = fa

3
In all the paper, the usual convention of summation over kel atin repeated indices is
used. Letp(x) be the mass density field expressed in the reference cortfgurand let
a = {aijre}ijre be the fourth-order elasticity tensor, which satisfies thealisymmetry, bound-

edness, and positive-definiteness properties. In Eq.{8)reéduced operatofm], k)] and



k)] are the mass, geometrical stiffness, and elastic stiffresis N x N) matrices with

positive-definiteness property, for which entries are aefiny

Mg = / pildx (4)
Q
k((xeﬁ) = / Ajkem ija,k (pf,m dx ) (5)
Q
kffg) = / Oﬁf-’) el (6)
Q

where the second-order symmetric tensor figld = {al.(f)}ij represents the Cauchy con-
straints acting on the reference configuration, and where= 27“’; . The rotational effects
are taken into account through the reduced oper#t(] and k'“ ()], which represent the
gyroscopic coupling term with antisymmetry property aned gentrifugal stiffness term with

negative-definiteness property, which are written as

cap(2) = /QZprij(P]O‘l ol dx (7)
kécg)(Q) = /Q PTik TkjP; Sf?f dx (8)
where the(3 x3) matrix[r] is such that;; = —Q¢;;3, wherez;;; is the Levi-Civita symbol such

thate;;, = £1 for an even or odd permutation ang, = 0 otherwise. It should be noted that
the centrifugal effects are assumed to be sufficiently semathat the linear stiffness reduced
matrix [k(Q)] = k9] + k©(Q)] + k] is positive definite, yielding only stable dynamical
systems to be considered. The geometric nonlinearitiesaden into account through the

quadratic and cubic stiffness contributioﬁtﬁ)ﬂy and kS’gv s Which are written as

@ _lre | 20 | 70
k‘wW o é(ka[ﬁ + kﬂWG + kwaﬁ) ) (9)
kz(f/;w - / Ajkem P5 g @f,z PamdX (20)
Q
3 1 o
kiﬂ)wé - 2 o Ajkem P @gk 903,4 Sog,m dx . (11)



It can easily be shown that tensl;:ofg7 has permutation-invariance property and that tensor
kfgw has positive-definiteness property. Concerning the retideenping operator, a modal

damping model is added. Finally, the reduced external Isaditten as

fo = / gt dx + / Gyl ds+ / pris T (20 ) 2 OX (12)
Q >

Q
in which x, is the current position in the natural configuration [24].

Concerning the choice of the projection basis, the oneg@latthe linear eigenvalue problem of
the rotating tuned conservative structure, for which th@ggopic coupling effects are ignored,
is chosen. Since the tuned structure has a perfect cyclienggry, the use of the discrete
Fourier transform allows for rewriting the eigenvalue gevb of the whole tuned structure into
uncoupled sub-eigenvalue problems related to the gemesattor with appropriate boundary
conditions [25, 26]. The eigenvectors of the whole tunedcstire are then reconstructed in its
corresponding physical space. Note that these eigengeaterordered by increasing values
of their corresponding eigenvalugs, o € {1,..., N} and verify the following orthogonality

properties,

Mag = 0o+ KD +E)( Qs + k) = Aabas (13)

whered,, s is the Kronecker symbol such thats = 1if « = §andd,s = 0 otherwise. It
should be noted that such projection basis issued from arligigenvalue problem is used for
the construction of the MEAN-NL-ROM, which means that a eysatic convergence analysis
with respect taV is carried out so that the MEAN-NL-ROM is representativeled honlinear

dynamical behavior of the structure.

2.3. Numerical aspects for the construction of the nonlimeduced operators

There are many strategies, allowing a MEAN-NL-ROM to be leigthed, depending on the
choice of the vector basis (see for instance [20]) or the wagxtract the reduced operators
from explicit construction [21, 22] or from an implicit nontrusive construction [12, 20]. In
the present context, the MEAN-NL-ROM is explicitly constted from the knowledge of the
projection basis. It is carried out in the context of the ghdémensional finite element method,

for which the finite elements are chosen as isoparametrid &olte elements with8 nodes



with a numerical integration using Gauss integration points. Concerning the construction
of the quadratic and cubic nonlinear stiffness operatdrs,methodology presented in [21]
is used. In particular, due to the chosen strategy for theumisg modeling, it should be
underlined that th@fgV andkfgw nonlinear stiffness entries have to be explicitly knowneTh
numerical procedure uses the symmetry properties of thecestloperators, combined with
the use of distributed calculations in parallel computeorider to optimize its efficiency. The
main steps, which can be found in details in [21], requirelig#)computation of the elementary
contributions of each type of internal forces projectedl@mvector basis, (2) the finite element
assembly of these elementary contributions, (3) the coatiout of the reduced operators by

projecting each assembled internal force on the projes®ator basis.

2.4. Strategy for the construction of the external load

In the present case, the presence of the geometric noritineaields the nonlinear differential
equation Eq. (3) to be solved in the time domain, the frequenatent of the nonlinear dynam-
ical response being posterioripost-analyzed by using a Fast-Fourier-Transform (FFTg Th
reduced excitation issued from the external load is assumled splitted according to a spatial

part and to a time-domain part such that

fa(t) = fosag(t) (14)

in which f, is a coefficient characterizing the global load intensitigeves is aR™ -vector cor-
responding to the spatial modal contribution of the extelioead, and where(¢) describes the
time evolution of the load. Similarly to the usual linear & of structures with\/-order
cyclic symmetry, the excitation is constructed with a aydpatial repartition and a constant
phase shift2w h)/M from one blade to another one, so that only the eigenfredgesmor-
responding to a given circumferential wave number are excited. Note that the dgbe
cyclic symmetry property has no real interest for exprag#ie nonlinear response according
to its harmonic components because a decoupling betwedmath@onic components cannot
be obtained. Moreover, it should be recalled that the usuedt analysis of bladed-disk struc-
tures requires to display the eigenfrequencies of thetstr@igvith respect to its circumferential
wave number. It can be shown that the eigenmodes correspptaliocalized blade modes are

characterized by straight lines contrary to the eigenmodegsponding to global coupled disk-



blade modes. Itis well known that the mistuning importafeet of response amplification are

concentrated in "veering” zones for which the coupling kesgwthe disk motion and the blade
motion is high [1, 27, 28, 29]. Indeed, in such veering zotlestuned responses are known to
be inhibited with respect to the ones corresponding to plageomode excitations, due to the
repartition of the mechanical energy between disk and btadées. This helps to understand
why the mistuning effects yield so strong response amplifina [30]. For this reason, the non-

linear dynamical analysis has to be performed in a choseuémrcy band of excitation and not

for a single frequency excitation. Because of the geometintinearities, the use of a harmonic
excitation seems to be inappropriate because the set dheankoupled differential equations

should be solved for each harmonic excitation considerdte Strategy is to simultaneously

and uniformly excite all the frequencies of the given fraguieband of excitation so that only

one computation of the nonlinear dynamical problem is negliln Eq. (14), the function(t)

is defined by

Av

g(t) = 2n sinc, (tAv) cos(2m s Avt) (15)

wherez +— sinc.(z) is the function defined by sin¢r) = sin(mz)/(wx). Note that the

Fourier transform of such function is
g(2rv) = 15 (27v) (16)
in which1;(z) = 1if 2 € B and0 otherwise, and whetB, = {—Beyc} | J{Bexc} With
Bexe = [27 (s — 1/2) Av, 27 (s +1/2) Av] . (17)

It should be noted that such time-evolution excitationvadi@ forced-response problem and not
a time-evolution problem with initial conditions to be careyed. The forced-response problem
is thus approximated by an equivalent time-evolution pFobivith zero initial conditions over

a finite time interval, which includes almost all of the sigeaergy of the excitation.

2.5. Uncertainty quantification induced by the mistuning

The random nature of the mistuning is then considered byamphting the nonparametric
probabilistic approach, which presents the capabilityhtthude both the system-parameter un-
certainties and the model uncertainties induced by mogledmors (see [23] for a complete

review on the subject). Since the analysis is carried outherclass of integrated bladed disks

10



that are manufactured from a unique solid piece of matdhaluncertainties are not consid-
ered to be independent from one blade to another one (in apgoshe case of a fan). The

MEAN-NL-ROM is constructed by modal analysis without anypstructuring techniques.

2.5.1. Nonparametric probabilistic model for the mistugin
It is assumed that only the linear operators of the strucimeeconcerned with the mistuning
phenomenon. The linear reduced operafors [d], [c(Q)], k9], k©(Q)], and[k®)] of the

MEAN-NL-ROM are replaced by the random matridés], D], [C(Q)], [K9], [K©(Q)], and
[K(©)] defined on the probability spa¢® , 7, P) such that EM]|} = [m], E{[D]} = [d],
E{[CQ)} = [c()], E{[K®]} = k9], E{[KO@Q)]} = k)], and K]} = [k,

in which E is the mathematical expectation.
Let [a] be a(N x N) matrix issued from the MEAN-NL-ROM with positive-definitegperty.
For instance, it represents, the mass, the damping, theejgoah stiffness, the linear elastic

stiffness or the centripetal stiffness. The correspondamgiom matriXA] is then written as

[A] = [14]" [Ga(da)] L] (18)

in which [l 4] is the (N x N) upper triangular matrix issued from the Cholesky factdiira
of [a], and wherdG 4] is a full random matrix with values in the set of all the pagtdefinite
symmetric(N x N) matrices.

When([a] is the gyroscopic coupling matrix, the corresponding randaatrix|A] is then written

as

[A] = [ta] L7 [Ga(da)] La] (19)
in which the matricest 4] and[l 4] are the(N x N) matrices defined bjf4] = [sv4]'/? [b4]"
and[t,] = [a] [ba] [sva] [b4]", in which the( N x N) full matrix [b 4] is constituted of the eigen-

vectors of{a] [a]T and where thé N x N) diagonal matrix{sv,] is the singular values, issued
from the single value decomposition (SVD) of matja. Note that the probability distribution
and the random generator [ 4(0,)] is detailed in [23]. The dispersion of random matrix
(G 4] is controlled by the hyperparamet&r belonging an admissible se&t. Consequently,
the mistuning level of the bladed-disk is entirely contdllby theR®-valued hyperparameter

8 = (0m,0p, ¢, 0k, Ox,, 6x), belonging to the admissible sAL’.

11



2.5.2. STOCH-NL-ROM of the mistuned bladed-disk
For constructing the STOCH-NL-ROM, the deterministic rneas in Eq. (3) are replaced by
the random matrices. The deterministic displacement fiél¢,¢) becomes a random field

U™ (-, ) that is written, for allx € 2, as

UV 1) = Y @’(x)Qa(t) (20)
B=1

in which theR" -valued random variabl®(t) = (Q:(t),--- ,Qn(t)) is solution of the follow-

ing set of stochastic nonlinear differential equations,

Mags Qs+ (Dag+C(Q)ag) Qs + (KK (Q)ap+K9D) Qs+ KO Qs Qy + KL, Q5Q, Qs = fa
(21)

2.5.3. Numerical aspects for solving the STOCH-NL-ROM

The solution of the STOCH-NL-ROM is calculated using the MoGarlo numerical simu-
lation. For each realizatiofi belonging to©, the set of N deterministic nonlinear coupled
differential equations is considered and solved with anlicii@and unconditionally stable in-
tegration scheme (Newmark method with the averaging a@tea scheme). Introducing the
notationQ,(0) = Q(t;; 0), related to each sample timg the following set of NV deterministic

nonlinear equations is solved for computi@g¢)

KEO)]Qu(0) + FM(Qi(0)) = F(0) (22)
in which the effectivé N' x N) matrix [K #(#)] and the effective force vect®®"(9) are easily
computed at each timg. Note that matrixK £(6)] has no particular signature due to the
presence of the gyroscopic coupling matrix. The nonlineenFN-(Q;(#)), issued from the

presence of the geometric nonlinearities, is written as

FNY(Qi(0)) = KU} Qi,(0) Qi (0) + K& 5 Qi,(0) Qi (0)Qi,(6) (23)

For each sampling timg, the computation of solutioQ,(¢) is addressed by the fixed point
method because this iterative scheme is few time consumithg@es not require the evaluation

of the tangential matrix. Nevertheless, when the algorittoms not converge, it is replaced

12



by the Crisfield arc-length method [31]. Such algorithmadiices a new additional scalar
parametefl; that multiplies the right-hand side member of the nonliregaration. In this case,

at each sampling timg, this nonlinear equation is written as

[K(0)] Q(0) + FN(Q,(0)) = IL(O)F"(6) . (24)

The nonlinear equation is solved step by step, each incriaingtiep being characterized by a
given arc length. For a given step, an iterative scheme negune evaluation of the tangential
matrix allows a solutio{Q;(#),I1;()) to be computed. Note that the tangential matrix can
algebraically evaluated from Eq. (23). An adaptive arc tengepending on the number of
iterations necessary to obtain the convergence of the giregencrement is also implemented
according to [32] in order to accelerate the computationuAasual procedure is then added to
the algorithm, because Eg. (22) has to be solved instead.¢2E) In the nonlinear dynamical
context, parametdr; is deterministic and has to be controlled in order to reaehviduel.
This implies that the state of the algorithm correspondmghe preceding increment has to
be stored. Whetl;(0) is found to be upper thah, the algorithm is rewind to the preceding
increment and the computation is set again with the half efatc-length. Such additional
procedure is repeated until parameitie(d) reached within a numerical tolerance set t6°.
Even if such procedure is time consuming, because of theseapeevaluations of the tangential
matrix and due to the procedure controlling the value of patarll;, its main advantage is its

capability of capturing high-nonlinear mechanical bebesi

3. Application to an industrial bladed-disk

3.1. Nonlinear deterministic analysis

3.1.1. Description of the external load

The structure under consideration in an industrial cargaf compressor belonging to the class
of integrated bladed disks. Due to proprietary reasonsytineber)/ of blades characterizing
the order of the cyclic symmetry of the structure cannotgivehe finite element model of the
structure is constructed with solid finite elements and istituted of abou?, 000, 000 degrees
of freedom. Fig. 1 displays a part of the finite element mesthefinvestigated bladed disk.

The structure is in rotation around its revolution axis vattonstant velocity. = 30, 750 rpm.

13



Since the dynamic analysis is carried out in the rotatinm&af the structure, the rigid body
motion due to the rotation of the structure corresponds taead fboundary condition at the
inner radius of the structure. The bladed disk is made up @mnadgeneous isotropic material.

A modal damping model is added for the bladed disk.

Figure 1: Finite element mesh of a part of the structure

The cyclic symmetry is first used for constructing the reduc®atrices of the mean linear
reduced-order model. The linear generalized eigenvaloklgm related to the tuned bladed-
disk is then solved using this cyclic symmetry property [26]. Lety, be the first eigenfre-
quency. Figure 2 displays the dimensionless eigenfregeeng v, of the tuned structure with
respect to the circumferential wave numbeiThe graph is truncated fo = 5 because only a
5 — th engine-order excitation is needed to be considered in tegept industrial application.
Two dimensionless frequency excitation barfils. = [0.97, 1.10] andBZ,. = [1.78, 2.34]

are investigated. Frequency excitation bég. contains an insulated resonance whereas fre-

2
exc

guency bandB;, . contains a veering that is known to intensify the importdfeats of linear
mistuning yielding the dynamical response to be usually|&dieqb.

The excitation frequency bands are defined by parametend Av given in Table 1, for which
the time domain function(¢) is defined by Eq. (15) The initial instant of integratiep,, and
the total time duration’, are summarized in Table 1. Concerning the spatial digtabwf the
load, the point excitations are distributed at the tip ofreblade along the rotational axis and
verify the cyclic geometry. The intensiffy of the external load is located in the range 6] IV,
which induces a range of small to large amplitudes of theaiesgs corresponding to a sweep
from a linear response until a very high rate of geometrioalinearities. A high load intensity

can be viewed as a situation for which the total damping ofttlagled disk structure would

14



Dimensionless eigenfrequency

0.5+

Circumferential wave number

Figure 2: Natural frequencies with respect to circumfaegmtave number

Table 1: Numerical parameters related to the excitation

s|Av/vy | wotimi | 0T

8|1 0.13 | —46.23 | 184
41 051 | =11.79 | 184

reach very small values due to aeroelastic phenomenon$. &tieme situations are realistic
when approaching flutter regimes. The frequency band ofyaisals a broad frequency band
corresponding to the dimensionless intef@a:= [0, 3.34]. The sample frequency is /vy =
11.12, yielding the numben, of time steps to be; = 4,096. The frequency resolution is then
v/vy, = 0.0054. Letg(27v) be the Fourier transform of functigrit). Figures 3 and 4 show the
graphst/ty — g¢(t) andv /vy — g(2mwv) for both cases corresponding to excitation frequency

bandsB.,.andB?

exc exct

3.1.2. Nonlinear tuned analysis

For the construction of the MEAN-NL-ROM, the vector basicigsen as explained in [21].
The nonlinear equations are solved in the subspace spagried bsual linear basis constituted
of the N modal shapes related to the firétincreasing natural eigenfrequencies. A convergence
analysis is carried out by increasing the vaieof the reduced-order model. It can be shown

that N = 65 yields a reasonable convergence, corresponding fo, = 3.34 From now on,

15



2000

1000 [

a(t)
o

Wil

-40 -20 0 20 40 60
Dimensionless time (t/to)

-1000
-2000

15

9(2rv)
[N

0 0.5 1 1.5 2 25 3
Dimensionless frequency (v/v 0)

Figure 3: Representation of the external load in the timealomnd in the frequency domain: graphtofy — ¢g(t)

(upper graph) and /vy — g(27v) (lower graph) for{BéxC = [0.97, 1.10].
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Figure 4: Representation of the external load in the timealomnd in the frequency domain: graphtofy — ¢g(t)

(upper graph) and/vy — g(27v) (lower graph) for{BixC = [1.78, 2.34].

the converged solution corresponding to the observatgurers from the MEAN-NL-ROM is
denoted byu(t). For clarity, when confusion is possible, superscripts d Bt will be added
for distinguishing the linear case from the geometric nogdr one. The two excitation cases

are successively investigated.

Nonlinear tuned analysis related to excitation frequenagdB,,.

Being interested in the blade yielding the highest vibra@onplitude, letj, be defined as

jo = arg max; (max, u(t)). The observatiom(t) corresponding to the selected blade out-
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plane displacement is defined byt) = w;,(¢). Figure 5 displays the grapht, — v"(t)
(upper graph) and/t, — vN-(¢) (lower graph), corresponding to a load intengffy= 2.5 N.
Since the dynamical response related to these two casessit\say different, it can be deduced
that f, = 2.5 N corresponds to a load intensity for which the geometric imear effects are
significant, yielding a blade softening characterized bglative long duration amplification
of the blade displacement with respect to the linear casererare no reasons to think that
the frequency contents of the blade response shape be agpdifferent in view of the time

domain nonlinear response.
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Figure 5: Time domain observatioft, — v(t) related to the linear (upper graph) and the nonlinear (I@saph)
cases fofBL,. = [0.97, 1.10] andfy = 2.5N.

Let kg = arg max; (max,/y,es ﬁ;\IL(%u)) for which @NL(Zm) is the Fourier transform of
"~ (t). In the frequency domain, the observatio2rv) corresponding to the selected blade
out-plane displacement is defined by27rv) = ﬁko(%y). Figure 6 displays the graphs
v/vy — w-(27v) (upper graph) and /v, — wN-(27v) (lower graph). As expected for the
linear case, it can be seen that the frequency content ofldide besponse coincides wit}, ..
One can clearly see that there exist higher frequencieshndre located in dimensionless fre-
quency band3, 3.34] which are excited through the geometric nonlinearitiesextheless, its
contribution is clearly negligible. Moreover, it is seemtlhe dimensionless eigenfrequencies
corresponding to the three upper lines in Fig. 2, which atatked in dimensionless frequency

band[1.5, 2.8], are not excited by the energy transferred outside the émcyuband of excita-
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tion (induced by the presence of geometrical nonlineaitie
Finally, a sensitivity analysis is conducted in order tomjifg the geometric nonlinear effects
with respect to the load intensity. L&t ., andb, ., be the amplitude ratio and frequency ratio

defined by

max,cg w - (27v)

b
0 max,cg w-(27v)

b = arg max,cp w N\ (27v) (25)

’ arg max,cg w-(27v)

Figure 7 displays the graph — b, ~(fo) (upper graph) andy — b, «(fo) (lower graph).
These graphs allow for showing if the analyzed responsenfgslor not to the nonlinear domain.
When the values of observatiobs ., andb, ., are different fromt, the domain is nonlinear. It
can be seen that some geometric nonlinear effects occur fgom 0.5 N. A non-monotonic
amplification (softening followed by hardening effects}ta main resonance peak, combined

to a10 % shift towards the higher frequencies, is also observed.
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Figure 6: Frequency domain observatiofv, — w(27v) related to the linear (upper graph) and the nonlinear

(lower graph) cases deéxc = [0.97, 1.10] andfy = 2.5 N.
Nonlinear tuned analysis related to excitation frequenagidiBZ, .

Figure 8 displays the graphit, — v-(t) (upper graph) and/t, — vN-(t) (lower graph),
corresponding to a load intensify = 2.5 V. On these graphs, significant levels of geometrical

nonlinear effects can be observed and the dynamical respsmisastically different from the
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Figure 7: Sensitivity analysis with respect to the loadnstty f.

previous case. With respect to the linear case, it can bethaethe geometric nonlinearities
induce a blade stiffening characterized by a reduction ®fhration amplitudes of the blades
from 2 mm until 1 mm This stiffening is also combined with a strong irregulantythe blade

response shape in the time domain, which shows an enrichohéim frequency content that

has to be quantified.
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Figure 8: Time domain observatiofit, — v(t) related to the linear (upper graph) and the nonlinear (I@saph)
cases fof32,. = [1.78, 2.34] andfy = 2.5N.

Figure 9 displays the graphsg/v, — w"(27v) (upper graph) and/v, — wN-(27v) (lower

graph). The spreading of the vibrational energy over thelavifrequency band of analysis
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B is due to the nonlinear geometric effects and is charaetribrough secondary response
peaks. Again, for high frequencies that are located outBfgein dimensionless frequency
band[3, 3.34], the dynamical response induced by the geometric nonlitre=ars negligible.
Nevertheless, some new resonances appear with the sameobrdagnitude than the main
resonance in the dimensionless frequency Band.5]. We put then in evidence a complex dy-
namical behavior that can be dangerous because non-eapestmances with non-negligible
amplitudes appear outside excitation frequency zid
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0 Il Il 1 1 1 Il
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(\\I— 1 1
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dimensionless frequency (v/v,)

Figure 9: Frequency domain observatiofv, — w(27v) related to the linear (upper graph) and the nonlinear
(lower graph) cases degxc = [1.78, 2.34] andfy = 2.5N.

It should be noted that the nonlinear dynamical behavioifferént according to the choice
of the frequency band of excitation. It is clearly seen tlng geometric nonlinearities ex-
cite harmonics which are outside the frequency band of &xeit and mainly for frequencies
lower than the ones located in the excitation band. This gatasn why the mechanical en-
ergy remains concentrated B}, with a local amplification. On the contrary, there are many
eigenfrequencies below frequency babg, of excitation, which are excited through the geo-
metric nonlinearities. As a consequence, the energy gatsthese very low eigenfrequencies
is consequent, yielding a consequent spread of energy aplitaade ratios below .

Figure 10 displays the graplfs — b, «(fo) (upper graph) and, — b, .(fo) (lower graph),
which is very different from the previous case. A quick dasiag in the amplitude ratio of

the main resonance located in frequency banisg observed with respect to the load intensity.
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More precisely, we detect that the critical intensity loaaht which the geometric nonlineari-
ties affect the dynamical responsefis = 0.375 N. Concerning the resonance ratio, we can
see a slight shift of the resonance frequency to higher &eges for intensity loads lower than
fo = 2.5 N. Nevertheless, an irregular behavior is put in evidencgfaor 2.75 N. The reso-
nance ratio suddenly falls down to very low values of resgraatio belonging tf0.5, 0.8]. It
can be shown an irregular alternating between small valtidtgeeaesonance ratio and the val-
ues around of the resonance ratio. Such behavior means that theresgtxiations for which
some resonances occur due to geometric nonlinearitiesyhruth correspond to subharmon-
ics that become the most important. Such an observatiors gise to a worrying dynamical
behavior that points out the necessity of taking into acttiumgeometric nonlinearities in the

computational model.
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Figure 10: Sensitivity analysis with respect to load inigng,.

Figure 11 displays the graphit, — v-(t) (upper graph) and/t, — vN-(¢) (lower graph),
corresponding to a load intensify = 2.75 N. No noticeable differences can be seen between
the time-domain nonlinear responses of Figs. 8 and 11, wdnthdiffer by a slight difference

of load intensity. Nevertheless, comparing these nontinesponses in the frequency domain
yield significant differences. Figure 12 displays the gesaph/, — w"(27v) (upper graph) and
v/vy — wN-(27v) (lower graph). It can be seen that the main resonance amelitunearly
twice the resonance amplitude locatedBf).. Moreover, a broad range of frequency band

[1, 1.5] is excited, yielding a large number of resonances with timesarder of magnitude
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than the resonance amplitudes locate®3n.
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Figure 11: Time domain observatiant, — v(t) related to the linear (upper graph) and the nonlinear (lower

graph) cases fdB2,. = [1.78, 2.34] andf, = 2.75 N.
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Figure 12: Frequency domain observatioh, — w(27v) related to the linear (upper graph) and the nonlinear

(lower graph) cases fcﬁ%ixc = [1.78,2.34] andfy = 2.75 N.

3.2. Nonlinear analysis for the mistuned bladed disk

In the present case, the MEAN-NL-ROM is constructed usimglitear eigenmodes of vibra-
tions as projection basis. Note that no substructuring ctstthave been used . This means
that the uncertainties are not considered as independentdne blade to another one, which

is coherent with the structure under consideration belangp the class of integrated bladed
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disks, that are manufactured from a unique solid piece oaimét the present analysis, for a
better understanding of the phenomenon, only the matratated to the linear part are random.

The mistuning level is thus controlled by tké-vectors = (4, 0p, d¢, 0xk,, Ok ).

3.2.1. Sensitivity analysis according to the type of uraeties

The mistuning analysis is carried out in the frequency domahich then requires a Fourier
transform of the observation. First, a sensitivity anaysiconducted in order to identify the
dispersion parameters yielding the most significant edfentthe mistuned response represented
by the random variabl&/ (27) corresponding to observatian27v) in the tuned case.

As expected for the linear mistuned case, it can be obsehat@h uncertainty level df.1 for

the gyroscopic coupling, or/and the centrifugal stiffnesand the damping terms, has a very

limited impact on the linear mistuned response, for excitabandBy,,. or B,

Figures 13
and 14 compare the confidence region of observatidt (27rv/) with a probability level set to
0.95, when the frequency excitation bandds,. or BZ,.. In the first case, the nonlinear response
seems to be insensitive to uncertainties on the whole bamadalf/sisB. In the second case,
the nonlinear mistuned behavior is shown to be substantdferent.On one hand, the nonlin-
ear mistuned response behaves almost like its tuned respotise part of the frequency band
corresponding to the frequency band of excitatif. On the other hand, the uncertainties

spread because of the geometrical nonlinearities, yigldirge confidence regions for the non-

2

linear mistuned response B\ Bg,,,

more particularly in the dimensionless rarige 1.2]. The
response in this range shows that some realizations haviiaatpn levels aroun@ while the
mistuned response remains almost unchangeif,in Note that a similar nonlinear mistuned
behavior can be observed for the cases for which centrifstgdess or damping are uncertain.
Figures 15 and 17 (resp. Figs. 16 and 18) display the graptie aonfidence region of obser-
vationW*(2rv) andW Nt (27r1) with a probability level set t0.95 for a mass uncertainty level
Sy = 0.1and aload intensity, = 2.5 N in the excitation bané_,. (resp.BZ,). By compar-
ing Figs. 15 and 16, it can be seen for the usual linear mistaase, that the random response
of the blade is particularly sensitive to uncertaintieddirey important amplification response

levels. For the case corresponding to an excitation locatdy, ., the presence of geometric

XC?

1

nonlinearities drastically improve the robustness of dr&om response B,

since the up-

per confidence region envelope of the confidence region datesxceed the tuned resonance.
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Figure 13: Stochastic analysis: frequency domain observaelated to the nonlinear case @ = 0.1 and
for excitation frequency banBéxcz mean model (thick line), mean of the stochastic model (tashed line),

confidence region (gray region).
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Figure 14: Stochastic analysis: frequency domain observaelated to the nonlinear case f@r = 0.1 and
for excitation frequency banBixcz mean model (thick line), mean of the stochastic model (ttashed line),

confidence region (gray region).

Moreover, the response level outsilig, is one order magnitude smaller, and the presence of
uncertainties does not affect the nonlinear dynamical\iehaf the blades.
By comparing Figs. 17 and 18, it can be seen again that themeef he geometric nonlin-

earities tends to inhibit the nonlinear dynamical amplifmainduced by the mistuning in the
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Figure 15: Stochastic analysis: frequency domain observatlated to the linear case féy; = 0.1 and for ex-
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Figure 16: Stochastic analysis: frequency domain observatlated to the linear case féy;, = 0.1 and for ex-
citation frequency banBixcz mean model (thick line), mean of the stochastic model (@aished line), confidence
region (gray region).

2

frequency bandg,,

corresponding to the excitation frequency band, limitihg tlynamical
amplification level to a magnitude2. Moreover, a widespread of uncertainties is observed
in B\BZ, with dynamic amplification levels of magnitud@es when performing the nonlinear
dynamic analysis in subfrequency babg, = [1, 1.6]. In this band, it can be seen a nonlinear
mistuned response level similar to the nonlinear tunedoms located ifBZ,.. Note that a
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Figure 17: Stochastic analysis: frequency dependent adisen related to the nonlinear case fgf = 0.1 and
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Figure 18: Stochastic analysis: frequency dependent adisen related to the nonlinear case fgf = 0.1 and
for excitation frequency banBixcz mean model (thick line), mean of the stochastic model (tashed line),

confidence region (gray region).
similar behavior is observed for the case of elastic-sgBuncertainties.

3.2.2. Nonlinear dynamical analysis for the mistuned resjgo
The analysis is focussed for the excitation frequency dagdthat exhibits the complex dy-

namic situation described above. The load intensity is fieefii = 2.5 and the uncertainty
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levelis settad = (das,dp,dc, 0k,,0k) = (0,0.2,0.2,0.2,6), inwhich¢ is defined hereinafter.
Thus, the effects of mass and elastic uncertainties cordlimancertainties for the rotational
effects are taken into account in the analysis.

A sensitivity analysis according to parameias carried out in order to establish a comparison
of the mistuning effects between the linear and the nontingstuned cases. For fixedv, €

B, letY (27v) be the random dynamic amplification factor defined by
W (2nv)

Y(27w) = (26)
max, /y,ep W(27V)
1.8 .
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Figure 19: Stochastic analysis: frequency domain observat- (27v) related to the linear case fég = 6y =
0.02 and fordx, = d¢ = op = 0.2: mean model (thick line), mean of the stochastic model (tlzsished line),

confidence region (gray region).

Figures 19 (or 21) and Figs. 20 (or 22) show the confidencemnegfi the linear and nonlinear
observationd’t (27v) andY N-(27v) for 6 = 0.02 (or 6 = 0.16). In frequency bandsZ,, it
can be observed that an increasing of the mistuning yieldsfarm spread in the frequency
domain around the main resonance, yielding a weak robustmigis respect to uncertainties.
It is also clearly seen that the linearized assumption téadscrease the extreme values of
the response levels. The geometric nonlinear effectslglaanibit the amplification of the
random response. More particularly, the extreme valuege®ltoY N-(27v) yield moderate
amplification even if the confidence region remains reltitaeoad.

For frequency banis ,that is highly sensitive to uncertainties, it can be seenahancreasing

of § yields a small spread around the resonances located oftrsigleency bandsZ, ., accompa-
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Figure 20: Stochastic analysis: frequency domain observatN-(27v) related to the nonlinear case fog =
oy = 0.02andfordx, = dc = dp = 0.2: mean model (thick line), mean of the stochastic model (@aished

line), confidence region (gray region).

nied by a moderate amplification of the response. In sumrttagygeometric nonlinear effects
seem to mainly act on the uncertainty propagation by spngetie response on the whole band
of analysis without drastically amplifying the amplitudgfghe resonances located®,.. The
consequences of such a result mainly concern subfrequemcyB,,, for which the geometric
nonlinearities act as an internal excitation, yielding tioeurrence of additional resonances.
The wide spread of uncertainties through a large bandwid#ésgise to important amplifica-
tions with respect to these resonances.

For the analysis, the chosen observation is a random anapilofirc factor. Such observation
characterizes the dynamic amplification over the givendeagy band with respect to a refer-
ence level taken as the resonance level of the tuned nonsgstem. In this case, the frequency
band is the whole frequency band of analysis. Yetbe the random amplification factor de-
fined byY,, = max, ;s Y (27v). We then define the second random amplification factor,

7, such that
MAaXy /vy ey, W (270)

maXV/VOEBsubw(Qﬂ-V)
For that case, the chosen frequency band does not contagxtitation band but only sub-
harmonics. In that way, the reference level taken for caloud the amplification factor cor-

responds to the secondary resonance level localized eutssdfrequency band of excitation.
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Figure 21: Stochastic analysis: frequency domain observatlated to the linear cagé- (27v) for 6x = Sy =
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confidence region (gray region).

Figures 23 displays the graph of the quantile¥ &fwith respect to mistuning rate As com-
monly observed, this graph displays a strong sensitivitthefrandom dynamic amplification
with respect to uncertainties. Figure 24 compares the aingitaphs obtained with random
observation&’ Nt and ZN-. Again, it is observed that the geometric nonlinear effeitsd

a limited sensitivity to mistuning uncertainties for obssion Y N\-. Figure 25 displays the
probability density function of’ - for several values of. It can clearly be seen that the proba-
bility density functions (pdf) exhibit a support that[is55 , 1.5]. These pdf are not symmetric,
yielding amplification factors greater tharwith a lower probability level. Furthermore, from
0 > 0.23, the shape of the pdfs seems to be less sensitive to the fawstertainties. In Fig. 24,

a special attention must be givenZg'* that presents similar characteristics¥tg. In partic-
ular, these graphs exhibit a maximum, yielding the posgilib define some robustness areas
that limit the dynamic amplification. It then points out, motly a complex sensitivity to uncer-
tainties, but also high amplification levels that may yiefgexpected amplifications. Figure 26
displays the pdfs of Nt for several values of. These pdfs exhibit a support thafis55 , 3.3].

In particular, contrary to random observatidil-, it can be shown that random observation

Z N is particularly sensitive té. It can also be noticed that these pdfs exhibit a slight biahod
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Figure 23: Quantile analysis of amplification factgk, with respect to mistuning level with 0.5 quantile ¢

symbol),0.9 quantile @ symbol),0.95 quantile @ symbol)

behavior combined to a strong asymmetry with positive ske=sn

4. Conclusion

A detailed dynamic analysis has been conducted in presdnagcertainties induced by mis-

tuning in order to quantify the impact of the nonlinear getmoal effects on the mistuned
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Figure 25: Stochastic analysis: probability density fioreof Y N- for § = 0.03,0.08,0.13,0.18,0.23,0.28.

structure, in terms of dynamic amplification of the respsressd of uncertainty propagation.

In order to achieve such a detailed analysis, an advancdubo@bgy has been applied to an
industrial bladed disk for performing a mistuning analysibladed disks in the context of
high amplitude loads inducing strong geometric nonlindfces. One of the main goal of the
work was to quantify those geometric nonlinear effects arimdom dynamical response of
the uncertain mistuned structure. On this basis, two losg@shave been investigated, that

correspond, for the usual linear mistuned case, to twotsitusthat are known to yield either
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a moderate response or either a response with a large dyaleamglification. The numerical

results presented display new complex dynamical behawiotise dynamical response of the
blades.

Concerning the nonlinear tuned response, in the very legtency range and for an excitation
corresponding to pure blade modes, the response exhigkistamplitude levels, while mainly

remaining located in the frequency band of excitation. k& dpposite, in the low-frequency
range, when the excitation is located around a veeringackenizing a strong coupling between
the blade modes and the disk modes, a sudden decreasingvibtatton motion is observed

and the nonlinear tuned response is spread outside thesfregiand of excitation, yielding

secondary resonances corresponding to sub-harmonicsevdoodribution cannot be longer
neglected. In this case, a sensitivity analysis with respet¢he load level exhibits a load

threshold, from which a chaotic behavior is observed. Tthes main resonance is randomly
located in the frequency band of excitation or in the subvtaric range.

Considering the nonlinear mistuned response with unceigai the geometric nonlinear effects
play an important role for the propagation of uncertaintiesparticular, the robustness of the
random response with respect to uncertainties remainsgstnothe frequency band of excita-
tion, yielding reasonable amplification levels. Howevegtsrobustness suddenly falls in the
sub-harmonic frequency range giving rise to consequeat kroplification levels.

In summary, all the numerical results have demonstratetdtitigalife duration of the indus-
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trial bladed disk can be very sensitive to the presence ofmgéac nonlinearities combined
with mistuning effects. A careful attention has to be paithvihe numerical modeling of the
bladed-disk mistuning when dealing with exceptional opegaregimes for which geometric

nonlinearities have to be taken into account.
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