Results and conjectures on the Sandpile Identity on a lattice
Résumé
In this paper we study the identity of the Abelian Sandpile Model on a rectangular lattice.This configuration can be computed with the burning algorithm, which, starting from the empty lattice, computes a sequence of configurations, the last of which is the identity.We extend this algorithm to an infinite lattice, which allows us to prove that the first steps of the algorithm on a finite lattice are the same whatever its size.Finally we introduce a new configuration, which shares the intriguing properties of the identity, but is easier to study.
Origine | Fichiers éditeurs autorisés sur une archive ouverte |
---|
Loading...