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Abstract 

Computer technology is widely used for the multimodal image analysis of the prostate gland. 

Several techniques have been developed, most of which incorporate the a priori knowledge 

extracted from organ features. Knowledge extraction and modelling are multi-step tasks. 

Here, we review these steps and classify the modelling according to the data analysis methods 

employed and the features used. We conclude with a survey of some clinical applications 

where these techniques are employed. 
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1. Introduction 

 In the past few years, much research has been undertaken and many procedures have been 

developed to assist clinicians in managing prostate cancer. Diagnostic techniques have 

significantly improved through the combination of prostate-specific antigen (PSA), digital 

rectal examination (DRE), and biopsies guided by trans-rectal ultrasound (TRUS) or magnetic 

resonance imaging (MRI).  

 Currently, the entire prostate gland can be assessed by multiparametric imaging 

protocols, particularly those using MRI (Puechet al., 2009). Multiparametric MRI, a 

combination of multiple complementary morphological (T2W) and functional imaging 

sequences (such as dynamic contrast-enhanced (DCE-MRI), and diffusion-weighted (DWI) 

and MR spectroscopic imaging (MRSI)), generates a large amount of data. These data 

requirean integrated interpretation to increase the reproducibility, and some authors have also 

suggested that new standardized reporting toolsare needed (Kozlowski et al., 2006; Haideret 

al., 2007).  

 Semi-automatic or automatic image analysis is essential for managing and treating the 

large amount of generated data. Currently, one of the important diagnostic challenges for the 

optimal detection and staging of cancer is developing computer-aided diagnosis (CAD) 

software based on multimodal and multiparametric images (Chan et al., 2003; Voset al., 

2008). For treatment, the challenges involve developing tools that enable efficient treatment 

planning, guidance, and monitoring.  

 In all these procedures, one of the most important tasks is prostate gland detection and 

segmentation, which have been the subject of many studies and for which related surveys 

have been published. Shao et al. (2003) presented a survey on the prostate segmentation 

methodologies developed for TRUS images. In addition, Noble et al. (2006) offered a survey 

on US segmentation methods for different organs (prostate, heart, and breast) and for 

detecting vascular diseases. Zhu et al. (2006) conducted a survey on the computerized 

techniques developed for prostate cancer detection and staging, including prostate 

segmentation, prostate staging, computerized visualization and simulation of prostate biopsy, 

volume estimation and registration between the US and MR modalities. More recently, 

Ghoseet al. (2012a) classified, reviewed and compared different segmentation methods to 

provide an overall qualitative estimation of their performance. 

 However, the prostate is a movable and deformable organ; thus, automatic analysis of 

prostate images has quickly concentrated on integrating all available information about its 
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properties to guide the algorithms. The accurate integration of these data requires a 

standardized representation through a modelling process. Atypical modelling process consists 

of the following steps:  

 Extraction of characteristics and knowledge  

 Analysis of characteristics  

 Generation of a model and an atlas. 

The previous steps involve knowledge from different specialties, such as medicine, physics 

and mathematics. The aim of this paper is to summarize all the techniques used for prostate 

modelling in a unique document, which will be helpful for this large scientific community. 

Thus, we review the different types of extracted knowledge (section 2) and the modelling 

techniques (section 3) employed in developing computer technology for prostate image 

analysis. Section 3 provides a synthetic mathematical description of each technique and the 

application of these techniques to generate a model. Each part concludes with a brief analysis 

summary. Section 4 describes the most representative clinical applications where these 

techniques and models were employed. 

2. Extraction of characteristics and knowledge 

 Accurate modelling of the prostate depends first on the definition of the 

characteristicsthat will be analyzed and the database that will be used to extract these 

characteristics. The anatomy must be defined correctlyfor any of the considered 

characteristics. As described by Mac Neal (McNeal, 1981), the prostate gland is divided into 

four zones: the peripheral zone (PZ), the central zone (CZ), the transition zone (TZ), and the 

anterior fibromuscularstroma (AFMS). This anatomy could be affected by different 

parameters, such as the prostate volume, the presence of a tumor, the PSA level, the tumor 

stage, the tumor location and the Gleason score. All these variables must thus be considered 

when constructing a statistically representative sample of the population. In addition, the 

development and growth of benign prostatic hyperplasia (BPH) can lead to a variety of 

deformation models within the same volume range,thus illustrating the complexity of the 

organ.  

 Of the various methods used to image the prostate, TRUS and MRI are the most effective 

for measuring volume and describing zonal anatomy. In addition, TRUS is widely used for 

needle biopsies and for guiding manipulations in subsequent treatments, such as 

brachytherapy and HIFU and laser therapies. TRUS helps to ensure that specific parts of the 
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prostate are sampled or targeted, but its role in identifying tumor foci is very limited 

(Beerlageet al., 2001).Currently, MRI is the gold standard for the morphometric evaluation of 

the prostate because it provides the best depiction of both the gland contours and the internal 

zonal anatomy. In addition, performing multiparametric MRI of the prostate prior to biopsy in 

patients with suspected prostate cancer is effective in detecting significant tumor foci in both 

anterior and posterior locations (Ouzzane and Villers, 2011). 

       Due to the variability in prostate morphology and appearance, many works have focused 

on the combination of different image characteristics to define the prostate boundaries. These 

characteristics include variations in volume and shape, appearance on images, and tissue 

properties, such as elasticity and rigidity.  

 Moreover, prostate location is also an important feature that contributes to prostate shape 

characterization. Liao and Shen (Liao and Shen, 2011) used online learning to integrate both 

inter- and intrapatient variations in information to localize the prostate using a sigmoid 

function. Contextual information was considered and is defined as "any information that can 

be used to characterize the situation of an entity". Makniet al. (2011) used the spatial 

neighborhood as the contextual information. Li et al. (2011) obtained context features from 

the classification maps from the previous iterations, as in a previous study (Tu and Bai, 2010). 

 Internal structures are another information source. Zhan et al. (2007b) and Ouet al.(2009) 

used internal salient blob-like structures from histologic and MR images. The interconnection 

of the internal structures was used by Shenet al. (2001, 2004).  

2.1 Shape 

 Shape is the most used feature when extracting characteristics and knowledge because it 

allows the organ limits to be defined. However, voxel intensities, which exploit the 

neighborhood, can also be used to define the geometry. Following image registration 

terminology, we can call the use of shape an „iconic description’, in contrast to a „geometric 

description’. Indeed, the iconic representation describes the shape of the prostate by 

exploiting the differences between its appearance and that of other organs. 

 A geometric description of the prostate can be obtained using various formalisms. The 

simplest and most generic method mostly involves a set of distributed points across the 

surface (Cooteset al., 1992). This modelling is also known as an explicit representation. The 

coordinates for n points are concatenated into one vector,S, that describes the shape: 

(x1 , y1 , z1,… , xn , yn , zn)T (1) 
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This description is called a point distribution model (PDM)(Fig. 1). 

An implicit representation is based on the use of level set functions that can represent 

arbitrary shapes and intrinsically support topology changes during deformation (Tsai et al., 

2003). In the level set formalism, the shape is not parameterized but is implicitly defined 

through a function of a higher dimension defined by Φ. The method involves characterizing 

the shape as one of the level curves (e.g., isovalue 0) of a regular functionΦ, 𝑅3 × 𝑅 → 𝑅. In 

other words, at time t: 

𝑆 𝑡 =   x, y, z ∈ ℝ3|Φ 𝑥,𝑦, 𝑧, 𝑡 = 0  (2) 

Different representations can be considered by different level set functions. The signed 

distance function (Lu et al., 2011) is the most commonly used function due to its simplicity 

and the good results obtained. Other functions have also been used, and their efficiency has 

been proven, particularly for the hyperbolic tangent of the signed distance (Gaoet al.,2010).  

Starting from the two previous representations and adding additional connectivity information 

between the points, a new, more complete representation is obtained, called the mesh model. 

This modelling is obtained by the division of an initial shape, which is represented by points, 

into tetrahedral or triangular facets (Fig. 2) or by a reconstruction based on three-dimensional 

(3D) geometric figures (i.e., sphere, ellipsoid or cube) that closely resemble the organ. This 

modelling also forms the basis for two different variations: the 3D standard deviation surface 

meshes (SDSM) (Wu et al., 2010) and the shape-constrained deformable mesh (SCDM) 

(Ghanei et al., 2001). Gokselet al. (2005) used Nuages, which was developed by Geiger 

(Geiger, 1993), to obtain a surface definition of the prostate. Hu et al. (Hu et al., 2011) 

reconstructed smooth triangular spherical harmonic (SH) surface from manually drawn 

prostate contours. 

Nonlinear representations have also been used. M-reps (medial representation) models 

(Pizeret al., 2003) have been used to represent the 3D shape of the prostate (Crouch et al., 

2007). They are composed of a set of medial atoms, which are linked together to describe an 

object (Fletcher et al., 2002). Another nonlinear representation is theconditional shape 

probability distribution (CSPD) presented by Jeonget al. (2008). 

Other representations, includingellipse (Badieiet al., 2006; Kachouieet al., 2006; Liu et al., 

2009; Mahdaviet al., 2011), catenary curve (Makniet al., 2011), super ellipse (Gong et al., 

2004), tapered super ellipse (Saroulet al., 2008), superquadrics (Tutaret al., 2004), and 
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spherical harmonics (Tutaret al., 2006), have been used and tested. They primarily involve 

parametric curves. 

 An iconic description of the prostate uses all the image content. The Markov model 

used for the description of „pixel being prostate’ allows a shape model to be built (Firjaniet 

al., 2010, 2011). Yin et al. (Yin et al., 2012) presented the layered optimal graph image 

segmentation of multiple objects and surfaces (LOGISMOS) model. The LOGISMOS model 

contains both the shape and topology information during deformation (Yin et al., 2012). 

2.2 Appearance 

 Appearance features can be based on individual pixels (e.g., pixel intensities), areas 

(regions having specific shapes), transformations of the original data (e.g., wavelets), or time 

(changes in the images compared to the previous examination). Typically, appearance features 

include all textural characteristics, which are usually categorized as statistical, structural, 

model-based and transformation-based (Materka and Strzelecki, 1998).  

 Statistical approaches represent the texture indirectly using the non-deterministic 

properties that govern the distributions and relationships between the grey levels of an image 

(Materkaand Strzelecki, 1998). First-order statistics measure the likelihood of observing a 

grey value at a randomlychosen location in the image (Tuceryan and Jain, 1998). These 

statistics are computed from the histogram of the grey levels of the image and depend only on 

the individual pixels and not on their neighborhood. In the prostate, first-order statistics have 

been used in the following models: the intensity profile model (Cosio, 2008; Kirschneret al., 

2012), gradient models (Zwiggelaaret al., 2003; Fenget al., 2010), models using the grey level 

threshold of the regions extracted from a neural network (Rafieeet al., 2009), a radial basis 

relief model (Liu et al., 1997), an instantaneous variation coefficient (ICOV) model (Yu et al., 

2004), a model using the local standard deviation in a multi-resolution framework (Aarninket 

al., 1998), posterior probability models (Ghoseet al., 2011a, 2011b),mixture probability 

distribution models (Allen et al., 2006; Makniet al., 2009; Firjaniet al., 2010, 2011), or 

models that are combined in many other ways (Diaz and Castaneda, 2008; Liao and Shen, 

2011; Li et al., 2011; Akabri and Fei, 2012). Fenget al. (2010) proposed a weighted 

combination of gradient and probability distribution functions. Second-order statistics are 

defined as the likelihood of observing a pair of gray values at the endpoints of a dipole (or 

needle) of random length that is placed in the image at a random location and orientation 

(Tuceryan and Jain, 1998). They are calculated from the grey-level co-occurrence matrix 

(GLCM), which is used to extract the texture features of the image (Tahiret al., 2005). Lastly, 
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Richard et al. (1996) defined the microtexture created from the input picture using Laws' 5x5 

feature masks. 

 Structural models of texture are based on well-defined primitives (microtexture) and the 

near-regular repetitive spatial arrangement (macrotexture) of those primitives (Haralick, 

1979). They model the spatial relationships between the primitive elements that constitute the 

image.  

 In the model-based approach, some parameters (such as the fractal dimension (Huang 

and Lee, 2009), the medical texture local binary pattern (MTLBP) feature (Kechouie and 

Fieguth, 2007), and wavelet and spectral features extracted from the radiofrequency time 

series (Mohammad et al., 2009)) are used to characterize the local texture of a region. Zaim 

(2005) conquered neural networks using a feature-based self-organizing map (SOM) formed 

from the spatial information, grey-level and texture information. 

 Transformation-based approaches, such as the Gabor filter response (Shenet al., 2003; 

Zhan and Shen, 2003; Mohamed et al., 2009; Yang and Fei, 2012) and wavelet (Khouzani and 

Soltanian-Zadeh, 2001, 2003; Zaimet al., 2007; Mohamed et al., 2009) methods, represent an 

image in a space in which the coordinate system can be interpreted in a manner that is related 

to the characteristics of the texture, such as the frequency(Prater and Richard, 1992). 

 Finally, note that shape and appearance features can be combined, as in the studies by 

Zouqi and Samarabandu (2008), Song et al. (2010), Yuan et al. (2013) and  Qiuet al. ( 2013). 

2.3 Tissue properties 

 Prostate tissue mobility and deformability may result from many physical and 

physiological phenomena. Deformability may result from long-term physiological processes 

and organ growth,simple bladder filling or the outcome ofclinician actions. Biomechanics 

provides a suitable modelling framework, which can consider these interactions and 

numerically simulate the prostate movement. However, biomechanics must consider the laws 

governing the mechanical parameters of the tissue (e.g., stiffness, elasticity, and 

compressibility), and in vivo orex vivo experimental procedures are required to estimate these 

parameters. In most studies, these parameters are determined from one or more experiments 

(Krouskopet al., 1998) or from numerical simulations where the parameters are the variables 

to be adjusted (Hu et al., 2010, 2011; Risholmet al., 2011). 

 Ex vivo measurements, which are performed on non-living tissues, are easy to set up but 

often lead to an under-estimation of the real parameters, whereas in vivo measurements 

remain invasive with a complex set up. Elastography could provide an intermediate solution. 
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It is a non-invasive imaging modality (Ophiret al., 2002) that permits measurements of tissue 

properties using ultrasound or magnetic resonance images. The aim is to obtain an image of 

the physical distribution of mechanical parameters, such as the Young's modulus, Poisson's 

ratio, and similar factors. 

 Last but not least, for any of the considered features,pre-processing is applied before the 

extraction and the analysis. This pre-processing consists of two essential steps, spatial 

registration and normalization, with the aim of having the same spatial reference for the data. 

These two issues are not discussed in this review because they are related to the registration 

issue for multimodality images, which is widely discussed elsewhere (Maintz and Viergever, 

1998). 

3. Analysis and modelling 

The analysis methods can be grouped into two classes: statistical and biomechanical. 

3.1 Statistical analysis  

A. Techniques 

Statistical analysis of the extracted features is mainly performed using methods inspired from 

data analysis and reduction techniques: 

  Principal component analysis (PCA) 

PCA is a statistical technique for dimensionality reduction (Jolliffe, 2002). The aim is 

to reduce the dimensionality of multivariate data while preserving the relevant 

information. In practice, this is achieved by computing the covariance matrix for the 

full data set. The eigenvectors and eigenvalues of this matrix are computed and sorted 

according to decreasing eigenvalues (Pasquieret al., 2007). The most significant 

eigenvalues and their associated eigenvectors are then kept. 

 Principal geodesic analysis (PGA) 

PGA is a variant of PCA using geodesic distances on symmetric spaces (Fletcher et 

al., 2004). PCA has been proven to be effective both in characterizing anatomical 

shape variability using mean point positions and their modes of variation and in easing 

the considerable problem of low sample size in shape analysis. However, PCA cannot 

be directly applied to m-reps due to their nonlinearity. In this case, principal geodesic 

analysis could be applied (Fletcher et al., 2004; Jeonget al., 2008). Given a data 

distribution, the aim of PGA is to find a set of geodesic directions, called „principal 
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geodesic directions‟ or „principal geodesics‟, that best represent the variability of the 

data and that allow the precise reconstruction of the data (Said et al., 2007). Unlike the 

linear case of PCA, the number of principal geodesics is not, in general, limited by the 

dimension of the space where the data are taken (Smith and Hancock, 2008).  

 Multiple linear regression (MLR) 

In regression analysis, the aim is to identify a predictive relationship (the „regression 

function‟) between a set of p predictor variables 𝑥 =  𝑥1,𝑥2 ,… , 𝑥𝑝 
𝑇
 (the „independent 

variables‟) and a set of q response variables 𝑦 =  𝑦1 ,𝑦2 ,… , 𝑦𝑞  
𝑇
(the „dependent 

variables‟), given a set of N training observations (p=q=k number of pixels/voxels in 

the images). In linear regression, data are modelled using linear predictor functions, and 

unknown model parameters are estimated from the data (Castelanet al., 2009). Every 

single observation 𝑦𝑖 is defined as: 

𝑦𝑖 = 𝑥𝑖
𝑇𝐵 + 𝜀𝑖  (3) 

where B is a (k + 1)-dimensional column vector of parameters, 𝑥𝑖
𝑇is a (k + 1)-

dimensional row vector, and εi is a scalar (the „error term‟). The entire sample of N 

observations can be expressed in matrix notation: 

𝑌 = 𝑋𝐵 + 𝜀  (4) 

where Y is anN-dimensional column vector, X is anN × (k + 1) matrix, and  ε is anN-

dimensional column vector of error terms. B is estimated by minimizing the following 

expression (Castelan et al., 2009): 

𝑡𝑟𝑎𝑐𝑒  𝑋𝐵 − 𝑌  𝑋𝐵 − 𝑌 𝑇  (5) 

 

  (5) 

The most well-known estimation techniques for linear regression are ordinary least 

squares (OLS) (Lai et al., 1978), generalized least squares (GLS) (Del Pino, 1989), 

percentage least squares (PLS) (Tofallis, 2009),optimal linear estimation (OLE), total 

least squares (TLS) (Nievergelt, 1994), maximum-likelihood estimation (Stone, 1975), 

ridge regression (RR) (Hoerlet al., 1985), least absolute deviation (LAD), principal 

component regression (PCR) (Jolliffe, 1982), and least-angle regression (LAR) 

(Efronet al., 2004). Shi et al. (2011) were inspired by the particular applications of 

multiple linear regression (MLR). Using and comparing three different MLR methods 

(ridge regression (RR), canonical correlation analysis (CCA) and principal component 



11 
 

regression (PCR)), the authors elucidated the statistical deformation correlation 

between the prostate boundary and non-boundary regions. 

Brief summary:Most prostate statistical modelling techniques are based on the principal 

component analysis method. PCA is usednot only because it is straightforward and intuitive 

but also because prostate characteristics are often represented in a linear space (as in the point 

distribution model). For the characteristics represented in a non-linear space as a conditional 

shape probability distribution, the most suitable technique is certainly principal geodesic 

analysis, which is a generalization of the principal component analysis method. 

Statistical modelling is not only focused on the variations of a characteristic but may also 

include the relationship between two or more features and the influences of one feature over 

another. Regression analysis can be used to address this issue. 

B. Model generation 

Once the data have been analyzed, models can be generated. The most popular ones are the 

following: 

  Active Shape Model 

Applying PCA to the corresponding PDM (equation (1)) allows the main variation 

modes to be determined, as in Cootes et al. (1992, 1994): 

𝑆 = 𝑆 + 𝐸𝑠𝑑𝑠 (6) 

with𝑆 as the estimated shape, 𝑆 as the average shape, and Es and 𝑑𝑠as the n eigenvectors 

corresponding to the largest eigenvalues and all the shape deformation parameters, 

respectively. 

Tsai et al. (2001) proposed a representation of the estimated shape as the zero level 

curve of a function Φ, which is defined as the weighted sum of the k linear principal 

modes (eigenshapes 𝛷1 ,𝛷2 ,… ,𝛷𝑘 ) plus their average shape: 

𝛷 𝑤 = 𝛷 +  𝑤𝑖𝛷𝑖

𝑘

𝑖=1

 
(7) 

where w =  w1, w2 ,… , wk  are the weights of the k principal modes.  

These two models were called the active shape model (ASM) (Betrouni et al., 2005; 

Pasquieret al., 2007; Cosio, 2008; Zhu et al., 2008; Fenget al., 2009). 

To determine the patient-specific local prostate shape, the incremental subspace 

learning algorithm (Ross et al., 2008) was modified using the incremental shape 
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statistics learning (ISSL) model to incrementally elucidate the shape statistics of the 

deformable contours of the prostate (Yan and Kruecker, 2010). As a result, the shape 

statistics could be updated by incorporating the new observations without having to 

perform another computation using all the training shapes. 

To cope with shadow artifacts, the partial active shape model (ParASM) is used (Yan 

et al., 2009). The statistical model is established using probabilistic PCA (PPCA) 

(Tipping and Bishop, 1999), which allows the optimal shape to be reconstructed and 

the remaining variance in the statistical model to be computed from partial 

information. The idea is to use only the contour points with salient features to estimate 

the shape. To obtain these points, an algorithm incorporating the normal vector profile 

(NVP) is used (Yan et al., 2009). The partial contour can be represented as: 

𝑆𝑝 = 𝑆𝑝 + 𝐸𝑠𝑝𝑑𝑠𝑝 + 𝜀 (8) 

with 𝑆𝑝 , 𝑆𝑝 , 𝐸𝑠𝑝 , 𝑑𝑠𝑝and  ε being the subset of salient contour points, the average item 

shape, the corresponding sub-matrix of the eigenvalues of shape, the parameter vector, 

and the approximation error, respectively.  

The estimated shape resulting from ParASM is the same as in equation (6) with just 

the replacement of𝑑𝑠 by 𝑑𝑠𝑝 (Yan et al., 2010). 

Another variant of ASM has been introduced (Zhou et al., 2010). The model, called 

the anatomy-constrained robust ASM (ACRASM), is a global-to-local deformable 

mesh model (Zhou et al., 2012). 

The 3D standard deviation surface mesh (SDSM) (Wu et al., 2010) model is 

calculated using the perpendicular distances between the individual boundary surface 

meshes and the average surface mesh. This average structure surface mesh is 

generated from the structure contours drawn by different observers. An average 

structure surface mesh is then constructedto be the reference mesh for the population-

based model using ACP. In the same manner, Ghaneiet al. (2001) used a shape-

constrained deformable mesh. This model has a discrete structure that is created from 

a set of vertices that form triangular facets in the 3D space. 

Kirschneret al. (2012) determined the bounding boxfor the prostate and then 

segmented the gland with the probabilistic active shape model (ProASM). The key 

contribution of this work is a new term for the shape energy, thus allowing shapes to 

be constrained in the original data space; the authors simultaneously use PCA to 

reduce the dimensionality of the model (Kirschner and Wesarg, 2011). 
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A probabilistic shape model was used by Akabri and Fei(2012). It is based on 

registration using a principle axis transformation (Alpert et al., 1990). After 

registration, the prostate models overlie each other, and the shape probability model is 

created based on the number of overlying prostates in each voxel. 

  Active Appearance Model 

This appearance model can be described in the same manner as the active shape 

model. However, before applying PCA, the average shape is aligned and normalized 

(Cooteset al., 2001). Let A be a vector representing the appearance of m pixels/voxels: 

𝐴 =  𝑎1 ,𝑎2 ,… ,𝑎𝑚  𝑇 (9) 

PCA allows one to obtain: 

𝐴 = 𝐴 + 𝐸𝑎𝑑𝑎  (10) 

with𝐴  as the estimated grayscale appearance, Aas the average grayscale appearance, 

𝐸𝑎containing the first n principal components, and 𝑑𝑎as all appearance deformation 

parameters. 

Shape and appearance are often correlated; thus, the application of PCA to the two 

models produces a combined model known as the active appearance model (AAM). It 

has parameters, c, that control the shape and texture (in the model frame) as described 

by Cootes et al. (2001): 

 
𝑆 = 𝑆 + 𝑄𝑠𝑐

𝐴 = 𝐴 + 𝑄𝑎𝑐
  

(11) 

whereQs, and Qa are matrices describing the variation modes derived from the training 

set. 

Yang and Duncan (2004) built a shape-intensity model over the distribution of the 

level set function and intensity pair. An estimate of the shape-intensity pair  ΦT , IT T 

can be represented by k principal components and a k-dimensional vector of 

coefficients (where k < n),𝛼: 

 
𝛷
𝐼
 

 
=  

𝛷
𝐼
 

     
+ 𝑈𝑘𝛼 

(12) 

where Uk is a 2Nd × kmatrix consisting of the first k columns of matrix U, whose 

column vectors represent the set of orthogonal modes of the shape-intensity variation. 
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Heimann and Meinzer (2009) present a review of the methods and procedures for 

generating, training and employing statistical models of shape and appearance for 3D 

medical image segmentation. 

Starting from the AAM model, other models have been proposed, such as the 

parametric model, which combines shape and texture (Fenget al., 2010), and the 

multifeatureactive shape model (MFAM) (Tothet al., 2011), which uses an explicit 

representation of the difference of the multifeature landmark-free active appearance 

model (MFLAAM) (Toth and Madabhushi, 2012) (which itself uses the implicit 

representation). MFLAAM was extended for the simultaneous segmentation of 

multiple objects. The extended technique was called multiple-levelset AAM (MLA) 

(Tothet al., 2013) and was used for zonal segmentation of the prostate. 

Another combination was also tested: the shape and a posteriori probability 

distribution (Ghoseet al., 2011a, 2011b, 2012b, 2013). Three types of features were 

employed by Li et al. (2011) to obtain information about the movement of the prostate 

in the pelvis: appearance, the histogram of the oriented gradient, and the coordinates 

of each pixel. 

 Atlas 

An atlas can be constructed in different ways. It can be considered the mean of a given 

feature as a shape (S and Sp
    terms in equations 6 and 8, respectively) or appearance (A 

term in equation 10). It can also be more generic by considering the most 

representative cases in a population:the mean value of a feature and the deviations 

around this mean. For instance, ASM and AAM allow the generation of shape and 

appearance atlases, respectively. 

A labelled image, typically a mean image, where all the structures of interest are 

defined by an expert is also considered an atlas. In this case, it is called a topological 

atlas.  

Topological atlases are mainly used for segmentation purposes through a registration 

process where the image to be segmented (target image) is non-rigidly registered to 

the atlas image. 

Two strategies are considered (Fig. 3). The first involves a single atlas (Hweeet al., 

2011), while in the second, multiple atlases are considered. This multi-atlas approach 

(Klein et al., 2008; Langeraket al., 2010; Acosta et al., 2011; Gaoet al., 2012; Ouet 

al., 2012; Litjeanset al., 2012) implies successive registrations of the target image with 
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the images atlases. A score based on a similarity measure is associated with each 

registration, and the atlas image with the best score serves as a reference to segment 

the target image. 

Another atlas class exists; these atlases are probabilistic. A probabilistic atlas is an 

image containing the a priori probabilities of the distributions of the different 

structures distributions. Figure 4 depicts an example of this type of atlas.  

Brief summary: Starting from the fact that prostate shape variations are limited and known, 

active shape modelling and its derivatives seem to be the most suitable models for generating 

a prostate model. However, adding the appearance makes the model richer. This is possible 

through the active appearance model and its derivatives. Indeed, these techniques allow the 

building of a statistical model that includes both the shape and the texture. Understandably, a 

finer model requires a more complex database that is representative of the real clinical data.In 

this case, atlases (topological or probabilistic) provide a fairly inspired solution. 

Despite their intuitive aspects, statistical models do not consider the behavior of internal 

prostate tissues. Biomechanical modelling provides a solution to this issue. 

3.2 Biomechanical analysis 

A. Techniques 

 Biomechanics modelling unquestionably provides answers when medical applications 

strive to account for tissue deformations (Carter et al., 2005).Biomechanics has been defined 

as the study of the movement of living things using the science of mechanics, which is a 

branch of physics that is concerned with the description of motion and how forces create 

motion (Knudson, 2007).Three steps are usually required to develop a biomechanical model: 

geometric reconstruction; meshing; and the integration of material properties (often Young's 

modulus and Poisson's ratio) and boundary conditions, such as any rigid constraint imposed 

by the pelvic bone and displacement of the rectal wall (Hu et al., 2010). The first step 

concerns the segmentation (manual, semi-automatic or automatic) of the anatomical structure 

in the images (usually CT, MRI or ultrasound). In the second step, the volumes are 

discretized, and the meshes are created. 

 Usually, two broad classes of biomechanical models are defined: discrete and continuous 

models. Discrete models represent the material by a set of discrete elements, such as a system 

of particles (Jailletet al., 1998; Marchalet al., 2007). In continuous modelling, the materials 

are described directly by continuum mechanics equations, which are solved by finite element 
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methods (FEMs) (Mohamed A. et al., 2001; Bharathaet al., 2001; Alterovitzet al., 2006; 

Crouch et al., 2007; Boubakeret al., 2009; Hu et al., 2010; Risholmet al., 2011).  

 Because the prostate deformation caused by the probe pressure in TRUS imaging is 

mostly elastic (Krouskopet al., 1998), some authors (Baumann et al., 2012; Niret al., 2013) 

have introduced a linearized elastic potential for TRUS imaging. 

Brief summary:The basis of continuous models in continuum mechanics leads to a direct link 

between the model parameters and the physical properties of the materials. By assuming that 

the physical properties are known, continuous methods have the advantage of allowing an 

accurate representation of the organs and their deformations. In contrast, in discrete models, 

the parameters are not directly related to the physical properties. However, discrete models 

have the advantage of being easier to implement.  

B. Model generation 

 Jailletet al. (1998) determined the volume of the pelvic organs (rectum, bladder and 

prostate) from cross-sectional CT images and subsequently filled the volume withspherically 

shaped particles. Large particles were reserved for the internal organs. Because of the 

stiffness/elasticity of biological tissue, interactions were often described by the Lennard-Jones 

potential (particle interaction), which simulates the interaction between two atoms. The 

stiffness and viscosity were modelled by springs and dampers, respectively. 

 Marchalet al. (2007) developed a model to simulate soft tissue behavior. This discrete 

model is composed of particles connected by physical laws and simulates the behavior of 

rigid, elastic or muscular regions. 

 Bharathaet al. (2001) considered the gland to be a heterogeneous linear elastic medium, 

and its deformation was calculated by varying the Young's modulus and Poisson's ratio. The 

authors estimated the boundary condition flow by basing their estimation of the internal 

deformation on an elastic model. However, Risholmet al. (Risholmet al., 2011) estimated the 

boundary conditions and the internal deformation jointly under an elastic constraint.  

 Crouch et al. (2007) modelled prostate deformation using a finite element model with an 

m-rep shape representation.  

 Alterovitz et al. (2006) developed a 2D finite element model of the pelvic area from a 

sagittal section, with optimization of stiffness parameters. Following the previous authors but 

using 3D, Henselet al. (2007) built a finite element model using linear elastic properties based 

on the results of Bharatha et al. (Bharathaet al., 2001).  
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 An „initial‟ biomechanical model that simulates the mobility of the pelvic organs was 

created by Boubaker et al. (2009). The initial model is enhanced by experimental data, i.e., 

the properties of the materials, the internal pressures, and the thickness and geometry of the 

pelvic organs. The finite element method is adopted in the initial model as a mechanical tool  

to calculate the movement of the pelvic organs in real time. Mohammad et al. (2011) 

optimized the “initial” model to create a model that can predict prostate movement in the 

anatomical environment following rectal, bladder and lung distension. 

 Mohamed A. et al. (2001) developed a biomechanical model that simulates the 

movement and deformation of the prostate that resultsfrom the insertion of a transrectal probe. 

They have also presented an approach combining biomechanical and statistical modelling to 

estimate the deformed prostate shape created during TRUS probe insertion. Hu et al. (Hu et 

al., 2010) combined the two approaches. The authors built a statistical motion model (SMM) 

in the same manner as ASM, but the training data reflectthe variability in the position, 

orientation and shape of an organ that results from intra-subject tissue motion and 

deformation rather than inter-subject variability in organ shape alone. To counteract the 

disadvantages of this approach, Crouch et al. (2007) linked medial geometry and 

biomechanics to generate a deformation. 

Brief summary:The biomechanical properties of prostate tissue were modelled and measured 

recently for incorporation into modelling methods for accurate tissue behavior simulations 

under constraints and for movement prediction. For precise and effective values, these 

properties must be measured in vivo. However, due to the complexity of this task, they are 

measured ex vivo on tissue samples. Moreover, an important inter-patient variability exists 

that makes the complete description of these parameters complex and therefore limits their 

real impact in the modelling process. 

Table 1 summarizes the different modelling techniques and their application to the features 

extracted from the images. 

4. Clinical Applications 

 Many clinical applications utilize prostate imaging with different imaging modalities. The 

obtained images are used in various manners based on the final purpose. In general, two main 

treatment techniques are used: segmentation and registration. Segmentation aims to extract 

the gland or sub-gland contours, while registration aims to match different image acquisitions. 

Review articles, which presenta detailed discussion of multimodal prostate image 
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segmentation techniques and cancer staging, have already been published (Zhu et al., 2006; 

Ghoseet al., 2012a). This section summarizes the most common applications and classifies the 

techniques employed (table 2). 

4.1 Diagnosis and cancer staging 

 Prostate cancer diagnosis using multimodality imaging aims to detect and map cancers 

with a focus inside the gland. For this purpose, different imaging modalities and sequences 

are used to enhance both the specificity and sensitivity of the detection (Alterovitzet al., 2006; 

Mohamed et al., 2009). For this application, registration is required to place all the images in 

the same spatial reference. While rigid registration only allows forcompensation of the global 

movements, non-rigid techniques allow for correction of the non-linearity caused by organ 

deformation.  

Segmentation is applied to extract the prostate (Kachouie and Fieguth, 2007; Rafieeet al., 

2009; Kirschneret al., 2012) and to describe its zonal anatomy to permit data reduction and 

the application of different analysis algorithms based on the considered region. 

Another application is the automatic or semi-automatic detection and identification of 

suspicious lesions. As indicated in the introduction section, the most common computer-aided 

detection methods use multiparametric MR images. The current standard paradigm for using 

CAD systems is as a second reader. After the radiologist has evaluated the multiple imaging 

sets, CAD indicates the likelihood that a given suspicious region is malignant. Most of the 

employed methods are based on using supervised classification and clustering algorithms, 

such as the Fisher linear discriminant (Chan et al. 2003), the Bayesian classifier 

(Madabhushiet al. 2005) or support vectors machines (Voset al. 2008, Lopes et al. 2011), to 

group multidimensional voxels into classes. Recently, Tiwariet al. (2013) presented a 

computerized decision support classifier, called semi-supervised multi-kernel graph 

embedding (SeSMiK-GE), for characterizing high-grade prostate cancer.  

4.2 Biopsies 

Biopsy remains the gold standard for prostate detection and characterization. TRUS-

guided biopsy is currently the standard diagnostic procedure (Narayanan et al., 2008; 

Baumann et al., 2012; Yang and Fei, 2012; Qiuet al., 2013), and it is used worldwide for 

detection in the presence of an elevated PSA or an abnormal digital rectal examination. This 

type of biopsy usually consists of taking 10 to 12 biopsy samples using a transrectally directed 
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needle, which is visualized using real-time TRUS images of the gland. The cancer burden is 

expressed as the length of the core involved in cancer (cancer core length (CCL), either in 

millimeters (mm) or as a percentage of the whole biopsy core), along with the absolute 

numbers of cores involved. Histological examination is performed by trained pathologists, 

who characterize each biopsy according to the Gleason grading system (Khouzani and 

Soltanian-Zadeh, 2003; Zhan et al., 2007a). 

In some centers, the procedure is guided using TRUS and MR T2W images (Mitraet al., 

2012). In this case, image registration is performed to match the real-time TRUS images to 

the pre-procedure MR images to guide the biopsy instrument to pre-defined lesions.    

In some studies, biomechanical modelling has been applied to simulate tissue interactions 

with needles to enhance the ultrasound imaging-based guidance (Bauer et al. 1999).   

4.3 Radical therapies 

Conventional radical therapies are composed ofradical surgery and radiation therapies 

(brachytherapy and external beam radiation). Cryotherapy, as well as high-intensity focused 

ultrasound (HIFU), is also offered in certain centers. These techniques treat the whole prostate 

regardless of the cancer volume within the prostate, and thus, structures that are in close 

proximity to the prostate (neurovascular bundles, urinary sphincter, bladder neck and rectum) 

could become damaged. 

In the past few years, some technical refinements have been introduced in radiation 

therapy (brachytherapy, intensity-modulated radiation therapy (IMRT), and proton therapy as 

alternatives to external beam radiation) and surgery (laparoscopic and robotic surgery as 

alternatives to radical prostatectomies). 

A. Surgery 

The use of conventional imaging modalities, such as TRUS, MR or CT, is limited during 

surgical procedures. In robotized interventions, biomechanical modelling is used to manage 

gland motion and tissue deformations (Yan et al., 2009, 2010; Hu et al., 2010; Yan and 

Kruecker, 2010; Hu et al., 2011).  

B. Radiotherapy 

Radiotherapy involves two steps: a pre-treatment step consisting of treatment planning 

with structure definition, dose estimation and ballistics optimization and a treatment delivery 

step. In both steps, imaging is used (Fenget al., 2009, 2010; Lu et al., 2011; Acosta et al., 
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2011). In the first step, CT and MR images are used to delineate the prostate and some organs 

at risk, such as the bladder and rectum, while in the second step, the challenge is to manage 

the dose delivery by returning the patient to his planning position and by taking into account 

motions and deformations (Boubaker et al., 2009). For this case, many techniques have been 

based on multimodal imaging and registration (Henselet al., 2007; Zhou et al., 2010; Shi et 

al., 2011; Zhou et al., 2012).  

C. Brachytherapy 

This technique aims to treat the prostate by implanting permanent radioactive seeds into 

the gland or by inserting tiny catheters and then providing a series of radiation treatments 

through these catheters.  

Brachytherapy planning is based on the use of TRUS images that are acquired in the 

treatment room (Mahdaviet al., 2011). The images are used to define the prostate contours 

and the positions of the seeds or the catheters. Modelling is often used to account for tissue 

deformations(Mohamed et al., 2002; Gokselet al., 2005; Marchalet al., 2007). 

In some cases, pre-procedure planning is performed using CT images. Registration 

techniques are thus used to update this planning by matching the CT images to the real-time 

TRUS images (Bharathaet al. 2001; Crouch et al., 2007). 

4.4 Focal therapies 

Focal therapy proposes to treat prostate cancer with a similar approach as that for other 

solid organ malignancies. That is, the treatment, which is delivered by an energy source, is 

directed to the area of cancer and to nearby normal tissue to preserve tissue and consequently 

organ function. By avoiding damage to the whole prostate, damage to the nerves, muscle, 

urinary sphincter, bladder and rectum can be avoided.  

Different energy modalities (e.g., those used in laser therapies, HIFU, and cryotherapy) 

are currently  utilized(Betrouni et al., 2013), and some preliminary results have been 

published (Makniet al., 2012). In all of these techniques, multimodality imaging of the 

prostate plays an important role in addressing two main issues: the issue of dosimetric 

planning to optimize the treatment parameters that will be applied to account for the target 

volume and the issue of typology and monitoring for real-time evaluation of the treatment and 

its outcome. 

In table 2, we have summarized the previously discussed applications and linked them to the 

treatment technique used and the prostate modelling methods applied. 
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5. Conclusion 

 Analyzing multimodal and multiparametric prostate images is an active research field 

where organ modelling has been and still continues to be extensively applied. In this review, 

we have summarized the main steps leading to the construction of a valid prostate model and 

presented the main clinical applications where this modelling has been applied. 

 Due to the extensive literature on the topic, a complete description of all the methods and 

techniques requires a dedicated book. To provide a general overview with a reasonable text 

length for a scientific paper, we have intentionally focused on the modelling process without 

deeply discussing the final applications. Table 1 provides a summary of the features and the 

analysis techniques, while table 2 links these techniques to the clinical applications.    
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