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BIG IMAGE OF GALOIS REPRESENTATIONS ASSOCIATED WITH FINITE

SLOPE p-ADIC FAMILIES OF MODULAR FORMS

ANDREA CONTI∗, ADRIAN IOVITA, JACQUES TILOUINE∗

1. Introduction

It is known by the works of Ribet [Ri2], [Ri3] and Momose [Mo], that the `-adic Galois representation
ρf,` associated with a non-CM cuspidal eigenform f has large image for any prime `, and that for almost
all ` it satisfies
(cong`) Im ρf,` contains the conjugate of a principal congruence subgroup Γ(`m) of SL2(Z`).
For instance, if Im ρf,` contains an element with eigenvalues in Z×` distinct modulo `, then (cong`) holds.
In [Hi], Hida proved an analogous statement for p-adic families of non-CM ordinary cusp eigenforms.
Let Λ = Zp[[T ]] be the Iwasawa algebra and m = (p, T ) be its maximal ideal. A special case of his first
Theorem [Hi, Th.I] is the following

Theorem 1.1. Let f be a non-CM Hida family of ordinary cusp eigenforms defined over a finite extension
I of Λ, and let ρf : Gal(Q/Q)→ GL2(I) be the associated Galois representation. Let us assume that it is
residually irreducible and that there exists an element d in the image of Galois with eigenvalues α, β ∈ Z×p
such that α2 6≡ β2 (mod p). Then there exists a non zero ideal l ⊂ Λ and an element g ∈ GL2(I) such
that

gΓ(l)g−1 ⊂ Im ρf

where Γ(l) denotes the principal congruence subgroup of SL2(Λ) of level l.

Moreover, under mild technical assumptions, he showed [Hi, Th. II] that if the residual representation
contains a conjugate of SL2(Fp), then l is trivial or m-primary, and if the residual representation is
dihedral “of CM type”, the height one prime factors P of l are exactly those of the g.c.d. of the adjoint
p-adic L function of f and of anticyclotomic specializations of Katz p-adic L functions associated with
certain Hecke characters of an imaginary quadratic field. This set of primes is precisely the set of
congruence primes between the given non-CM family and CM families.

In her PhD dissertation (see her paper [La]), J. Lang improved upon Hida’s Theorem I. Let T be
Hida’s big ordinary cuspidal Hecke algebra; it is finite and flat over Λ. Let Spec I be an irreducible
component of T. It corresponds to a surjective Λ-algebra homomorphism θ : T → I (a Λ-adic Hecke
eigensystem). We also call θ a Hida family. Assume that it is not residually Eisenstein. It gives rise to a
residually irreducible continuous Galois representation ρθ : GQ → GL2(I) that is p-ordinary. We suppose
for simplicity that I is normal. Consider the Λ-algebra automorphisms σ of I for which there exists a
finite order character ησ : GQ → I× such that for any prime ` prime to the level, σ ◦ θ(T`) = ησ(`)θ(T`)
(see [Ri3] and [La]). These morphisms form a finite abelian 2-group Γ. Let I0 be the subring fixed by
Γ. Let H0 =

⋂
σ∈Γ Ker ησ; it is a normal open subgroup of GQ. Then, by Carayol’s theorem, one can

assume, up to conjugation by an element of GL2(I), that ρθ|H0
takes values in GL2(I0).

Theorem 1.2. ([La] Th.2.4) Let θ : T→ I be a non-CM Hida family such that ρθ is absolutely irreducible.
Assume after conjugation that ρθ(H0) ⊂ GL2(I0) and that there exists d ∈ ρθ(Dp ∩H0) with eigenvalues
α, β ∈ Z×p such that α2 6≡ β2 (mod p). Then there exists a non zero ideal l ⊂ I0 and an element
g ∈ GL2(I) such that

gΓ(l)g−1 ⊂ Im ρθ

where Γ(l) denotes the principal congruence subgroup of SL2(I0) of level l.

For all these results, it is important to assume the ordinarity of the family as it implies the ordinarity
of the Galois representation, and in particular that some element of the image of the inertia at p is
conjugate to

A =

(
u−1(1 + T ) ∗

0 1

)
∗Supported by the Programs ArShiFo ANR-10-BLAN-0114 and PerColaTor ANR-14-CE25-0002-01.
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Hida and Lang use Pink’s theory of Lie algebras of pro-p subgroups of SL2(I). Conjugation by the
element above defines a Λ-module structure on the Lie algebra of a pro-p subgroup of Im ρf .

In this paper, we propose a generalization of Hida’s work to the finite slope case. We establish an
analogue of Hida’s Theorem I and Theorem II. These are Theorems 6.2, 7.1 and 7.4 in the text. Moreover,
we put ourselves in the more general setting studied by Lang’s [La] work. In the positive slope case,
the existence of a conjugating matrix analoguous to A above is obtained by applying relative Sen theory
([Se1] and [Se2]) at the expense of extending scalars to the completion Cp of an algebraic closure of Qp.

More precisely, for any h ∈ Q×+, we define an Iwasawa algebra Λh = Oh[[t]] (where T = psh · t
for some sh ∈ Q∩]0, 1

p−1 [ and Oh is a finite extension of Zp containing psh) and a finite torsion free

Λh-algebra Th (see Section 3.1), called an adapted slope ≤ h Hecke algebra. Let θ : Th → I◦ be an
irreducible component; it is finite torsion-free over Λh. The notation I◦ is borrowed from the theory of
Tate algebras. We write I = I◦[p−1]. We assume again for simplicity that I◦ is normal. The finite slope
family θ gives rise to a continuous Galois representation ρθ : GQ → GL2(I◦). We assume that the residual
representation ρθ is absolutely irreducible. We introduce the finite abelian 2-group Γ as above, together
with its fixed ring I◦0 and the open normal subgroup H0 ⊂ GQ. In Section 5.1 we define a ring Br and a
Lie algebra Hr ⊂ sl2(Br,Cp

) attached to the image of ρθ. In the positive slope case, CM families do not
exist (see Section 3.3), hence no “non-CM” assumption is needed in the following.

Theorem 1.3. (Theorem 6.2) Let θ : Th → I◦ be a positive slope family such that ρθ|H0 is absolutely
irreducible. Assume after a suitable conjugation that ρθ(H0) ⊂ GL2(I◦0) and that there exists d ∈ ρθ(Dp∩
H0) with eigenvalues α, β ∈ Z×p such that α2 6≡ β2 (mod p). Then there exists a non zero ideal l ⊂ I◦0
such that

l · sl2(Br) ⊂ Hr

The largest such ideal lθ is called the Galois level of θ. We also introduce the notion of fortuitous CM
congruence ideal for θ (Section 3.4). It is the ideal cθ ⊂ I given by the product of the primary ideals
modulo which a congruence between θ and a slope ≤ h CM form occurs. In this context, following Hida’s
proof, we are also able to show (Section 7) that the set of primes of I0 = I◦0[p−1] containing lθ coincides
with the set of primes containing cθ ∩ I0, except possibly for the primes of I0 above P1 = u−1(1 + T )− 1
(the so-called weight 1 primes).

Several generalizations of the present work, including a generalization of [HT] (which treated the
ordinary case for GSp4, with a residual representation induced from the representation associated to a
Hilbert form) to the finite slope case and to bigger groups and more cases of residual representations,
are currently being studied by one of the authors1.

Acknowledgments. This paper owes much to Hida’s recent paper [Hi]. We also thank Jaclyn
Lang for communicating us her dissertation [La], which proved very useful in writing Section 4, and for
providing us with some helpful remarks.

2. The eigencurve

2.1. The weight space. Let p > 2 be a prime. The Qp-rigid space W = Hom(Z×p ,C×p ) of continuous
homomorphisms is called the weight space.

Remark 2.1. Before Section 3 all the rigid analytic spaces we consider are defined over Qp. Indeed the
weight space and the eigencurve can be admissibly covered by affinoid subdomains defined over Qp. Later
we will need to consider rigid Qp-analytic spaces defined only over a finite extension L/Qp.

For any R > 0, we denote by B(0, R), respectively B(0, R−) the closed, respectively open, disc in Cp
of centre 0 and radius R. The space W is isomorphic to a disjoint union of p − 1 copies of the open
unit disc B(0, 1−) centered in 0 and indexed by the group Z/(p − 1)Z = µ̂p−1. Let u be a topological
generator of 1 + pZp, then an isomorphism is given by

Z/(p− 1)Z×B(0, 1−)→W, (i, v) 7→ χi,v

where χi,v((ζ, u
x)) = ζi(1 + v)x.

We use the following terminology.

Definition 2.2. Let X be a Qp-rigid space and S a subset of X. We say that:

• S is Zariski-dense if for any global analytic function f on X the set S ∩ {f 6= 0} is nonempty;

1A. Conti
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• S is an accumulation subset if for any affinoid domain SpmR ⊂ X the set S ∩SpmR is Zariski-
dense in SpmR.

We say that a point χ ∈ W is classical if there exist k ∈ N and a finite order character ψ : Z×p → C×p
such that χ is the character z 7→ zkψ(z). The set of classical points is an accumulation subset of W.

If SpmR ⊂ W is an affinoid open subset, we denote by κ = κR : Z×p → R× its tautological character
given by κ(t)(χ) = χ(t) for any χ ∈ SpmR. Recall ([Bu, Prop. 8.3]) that κR is r-analytic for any
sufficiently small radius r > 0 (by which we mean it extends to Z×p B(1, r)).

2.2. Adapted pairs and the eigencurve. Let N be a positive integer prime to p. Let us recall a
definition of the spectral curve ZN and of the cuspidal eigencurve CN of tame level Γ1(N). We follow
the presentation of [Bu, Part II]. Let SpmR ⊂ W be an affinoid domain and let r = p−s for s ∈ Q be a
radius smaller than the radius of analyticity of κR. We denote by MR,r the R-module of r-overconvergent
modular forms of weight κR. It is endowed with a continous action of the Hecke operators T`, l - Np,
and Up. The action of Up on MR,r is completely continous, so we can consider its associated Fredholm
series FR,r(T ) = det(1− UpT |MR,r) ∈ R{{T}}. These series are compatible when R and r vary, in the
sense that there exists F ∈ O(W){{T}} that restricts to FR,r(T ) for any R and r.

The series FR,r(T ) converges everywhere over the R-affine line SpmR × A1,an, so it defines a rigid

curve ZN,±R,r = {FR,r(T ) = 0} in SpmR×A1,an. When R and r vary, these curves glue into a rigid space

ZN endowed with a quasi-finite and flat morphism wZ : ZN →W. The curve ZN is called the spectral
curve. For any h ≥ 0, let us consider

ZN,≤hR = ZNR ∩
(
SpmR×B(0, ph)

)
By [Bu, Lemma 4.1] ZN,≤hR is quasi-finite and flat over SpmR.
We recall how to construct an admissible covering of ZN .

Definition 2.3. We denote by C the set of affinoid subdomains Y ⊂ Z such that:

• there exists an affinoid domain SpmR ⊂ W such that Y is a union of connected components of
w−1
Z (SpmR);

• the map wZ |Y : Y → SpmR is finite.

Proposition 2.4. [Bu, Th. 4.6] The covering C is admissible.

Note in particular that an element Y ∈ C must be contained in ZN,≤hR for some h.
For any R and r as above and any Y ∈ C such that wZ(Y ) = SpmR, we can associate to Y a direct

factor MY of MR,r by the construction in [Bu, Sec. I.5]. The abstract Hecke algebra H = Z[T`]`-Np acts
on MR,r and MY is stable with respect to this action. Let TY be the R-algebra generated by the image
of H in EndR(MY ) and let CNY = SpmTY . Note that it is reduced as all Hecke operators are self-adjoint
for a pairing and mutually commute.

For any Y the finite covering CNY → SpmR factors through Y → SpmR. The eigencurve CN is
defined by gluing the affinoids CNY into a rigid curve, endowed with a finite morphism CN → ZN . The
curve CN is reduced and flat over W since it is so locally.

We borrow the following terminology form Belläıche.

Definition 2.5. [Be, Def. II.1.8] Let SpmR ⊂ W be an affinoid open subset and h > 0 be a rational

number. The couple (R, h) is called adapted if ZN,≤hR is an element of C.

The sets of the form ZN,≤hR are actually sufficient to admissibly cover the spectral variety by [Be, Cor.
II.1.13].

Now fix a finite slope h. We want to work with families of slope ≤ h which are finite over a wide
open subset of the weight space. In order to do this it will be useful to know which pairs (R, h) in a
connected component of W are adapted. If SpmR′ ⊂ SpmR are affinoid subdomains of W and (R, h) is
adapted then (R′, h) is also adapted by [Be, Prop. II.1.10]. A lower bound for the radius of an adapted
disc in terms of h is given by a result of Wan. We denote by Fk(T ) the specialization of the Fredholm
characteristic series F (T ) to a classical weight k : t 7→ tk.

Theorem 2.6. [Wa, Th. 2.5] There exist constants A,B ∈ Q such that the following is true for m(h) =
Ah2 + Bh: if k1 and k2 are two non-negative integers such that k1 ≡ k2(mod pm(h)(p − 1)), then the
slope ≤ h parts of the Newton polygons of Fk1(T ) and Fk2(T ) coincide.

3



Remark 2.7. In Wan’s result about the dimension of spaces of classical forms a constant C appears in
the quadratic polynomial for m(h), but the proof of his Corollary 4.2 shows that we can take C = 0.

We deduce from this theorem the estimate we need about the radius of a disc adapted to h:

Corollary 2.8. If h ∈ R is a slope and m(h) = Ah2 +Bh is the polynomial defined by Wan’s theorem,
the disc B(0, p−m(h)) is adapted to h.

Proof. Let ZN be the spectral variety defined as the locus {F = 0} in W × A1 and Zh = ZN ∩
B(0, p−m(h)) × B(0, ph). By definition B(0, p−m(h)) is adapted to h if and only if the map Zh →
B(0, p−m(h)) is finite; this is equivalent by [Bu, Lemma 4.3] to the fact that all fibres of Zh over points
κ ∈ B(0, p−m(h)) have the same degree. Since the map Zh → B(0, p−m(h)) is locally finite (every point
in W has a neighborhood adapted to h), the degree of its fibres is locally constant. We know that on
the accumulation subset of B(0, p−m(h)) consisting of classical weights this degree is constant by Wan’s
theorem. We conclude that the degree of the fibre of Zh is constant everywhere on B(0, p−m(h)), hence
this disc is adapted to h. �

We work for simplicity with discs centered in 0, but the corollary above is clearly true for a disc
B(x, p−m(h)) of radius given by Wan’s estimate and centered in any point x ∈ W.

2.3. Pseudocharacters and Galois representations. LetK be a finite extension of Qp with valuation
ring OK . Let X be a rigid Qp-analytic variety defined over K. We denote by O(X) the ring of global
analytic functions on X equipped with the coarsest locally convex topology making the restriction map
O(X)→ O(U) continuous for any affinoid U ⊂ X. It is a Fréchet space isomorphic to the inverse limit
over all affinoid domains U of the K-Banach spaces O(U). We denote by O(X)◦ the OK-algebra of
functions bounded by 1 on X, equipped with the topology induced by that on O(X). The question of
the compactness of this ring is related to the following property of X:

Definition 2.9. [BC, Def. 7.2.10] We say that a rigid Qp-analytic variety X defined over K is nested
if there is an admissible covering X =

⋃
Xi by open affinoids Xi defined over K such that the maps

O(Xi+1)→ O(Xi) induced by the inclusions are compact.

As anticipated we have:

Lemma 2.10. [BC, Lemma 7.2.10] We equip the ring O(X)◦ with the topology induced by that on
O(X) = lim←−iO(Xi). If X is reduced and nested, then O(X)◦ is a compact (hence profinite) OK-algebra.

Furthermore we have:

Proposition 2.11. [BC, Cor. 7.2.12] The eigenvariety CN is nested for K = Qp.

Given any reduced nested subvariety X of CN defined over a finite extension K of Qp, we have a
pseudocharacter on X obtained by interpolating classical ones.

Proposition 2.12. [Be, Th. IV.4.1] There exists a unique pseudocharacter

τ : GQ,Np → O(X)◦

of dimension 2 such that for every l prime to Np τ(Frob`) = ψX(T`), where ψX is the composition of
ψ : H → O(CN )◦ with the restriction map O(CN )◦ → O(X)◦.

Remark 2.13. One can take as an example of X a union of irreducible components of CN , in which
case K = Qp. Later, we’ll take other examples where K 6= Qp.

3. The fortuitous congruence ideal

In this section we will define families with slope bounded by a finite constant and coefficients in a
suitable profinite ring. We will show that any such family admits at most a finite number of classical
specialization which are CM modular forms. Later we will define what it means for a point (not nec-
essarily classical) to be CM and we will associate with a family a congruence ideal describing its CM
points. Contrary to the ordinary case, the non-ordinary CM points do not come in families, so the points
detected by the congruence ideal do not correspond to a crossing between a CM and a non-CM family.
For this reason we call our ideal the “fortuitous congruence ideal”.
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3.1. The adapted slope ≤ h Hecke algebra. We fix a slope h > 0 throughout this section. Let
CN,≤h be the subvariety of CN whose points have slope ≤ h. Unlike the ordinary case treated in [Hi]
the weight map w≤h : CN,≤h →W is not finite, which means that a family of slope ≤ h is not in general
defined by a finite map over the entire weight space. The best we can do in the finite slope situation is to
place ourselves on the largest possible wide open subdomain U ofW such that the restricted weight map
w≤h|U : CN,≤h ×W U → U is finite. Finiteness property will be used to apply going-up and going-down
theorems.

Remark 3.1. We work for simplicity with discs centred at 0, but all results hold for any other choice of
a centre in W.

Let us fix a rational number sh such that for rh = p−sh the closed disc B(0, rh) is adapted for h. By
the results of Section 2.2, we can assume sh ≤ m(h). We also assume that sh >

1
p−1 . Let ηh ∈ Qp be an

element of p-adic valuation sh. Let Kh = Qp(ηh) and let Oh be its valuation ring. Let Λh = Oh[[η−1
h T ]].

This is the ring of analytic functions bounded by one on the wide open disc Bh of radius p−sh . For
i ≥ 1, let si = sh + 1/i and Bi = B(0, p−si). The open disc Bh is the increasing union of the affinoid
discs Bi. For each i, a model for Bi over Kh is given by Berthelot’s construction of Bh as the rigid space
associated with the Oh-formal scheme Spf Λh. We recall it briefly, following [dJ, Sec. 7]. Let t = η−1

h T
and

A◦ri = Oh〈t,Xi〉/(pXi − ti)
We have Bi = SpmA◦ri [p

−1] as rigid space over Kh. For any i we have a morphism A◦ri+1
→ A◦ri given

by
Xi+1 7→ Xit

t 7→ t

We have induced morphisms A◦ri+1
[p−1] → A◦ri [p

−1], hence open immersions Bi → Bi+1 defined over
Kh. The wide open disc Bh is defined as the inductive limit of the affinoids Bi with these transition
maps. We also have Λh = lim←−iA

◦
ri .

Remark 3.2. Since there is no constant term in Wan’s radius, when the slope h is sufficiently close to

0, the wide open subdomain Bh can be taken to be the open disk B(0, p−
1

p−1 ).

Since the si are strictly bigger than sh, for each i, B(0, p−si) = SpmA◦ri [p
−1] is adapted to h.

Therefore, for any r > 0 sufficiently small and for any i ≥ 1, the image of the abstract Hecke algebra

acting on MAri
,r provides a finite affinoid A◦ri-algebra T≤hA◦ri ,r. The morphism wi : SpmT≤hA◦ri ,r → SpmA◦ri

is finite. For i < j we have natural inclusions SpmT≤hA◦rj ,r → SpmT≤hA◦ri ,r and corresponding restriction

maps T≤hA◦ri ,r → T≤hA◦rj ,r. We call Ch the increasing union
⋃
i∈N,r>0 SpmT≤hA◦ri ,r; it is a wide open subvariety

of CN . We denote by Th the ring of rigid analytic functions bounded by 1 on Ch. We have Th :=

O(Ch)◦ = lim←−i,r T
≤h
A◦ri

,r. We have a natural weight map wh : Ch → Bh that restricts to the maps

wA◦ri ,r
: SpmT≤hA◦ri → SpmA◦ri . It is finite since the closed ball of radius rh is adapted to h.

3.2. The Galois representation associated with a family of finite slope. Since O(Bh)◦ = Λh,
the ring Th gets through wh a structure of finite Λh-algebra; in particular it is profinite.

Let m be a maximal ideal of Th. The residue field k = Th/m is finite, say of order q. Let Tm be the
localization of Th at m. Since Λh is henselian, Tm is a direct factor or Th, hence it is finite over Λh; it
is also local noetherian and profinite. Let W = W (k) be the ring of Witt vectors of k. By the universal
property of W , Tm is a W -algebra. By density of classical modular points, SpmTm contains points x
corresponding to cusp eigenforms fx, of weight w(x) = kx ≥ 2 and level Np. The Galois representations
ρfx associated with fx give rise to a residual representation ρ : GQ,Np → GL2(k) which is independent of
fx. By Proposition 2.12, we have a pseudo-character

τTm
: GQ,Np → Tm

such that for every classical point x : Tm → L, defined over some finite extension L/Qp, the specialization
of τTm

at x is the trace of the usual representation GQ,Np → GL2(L) attached to x.

Proposition 3.3. If ρ is irreducible, there exists a unique continuous irreducible Galois representation

ρTm
: GQ,Np → GL2(Tm)

lifting ρ and whose trace is τTm
.
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This follows from a result by Nyssen and Rouquier ([Ro, Cor. 5.2]), since Tm is local henselian.
In the sequel, we assume that ρ is irreducible.
Let I◦ be a finite torsion-free Λh-algebra. By a family, we mean an irreducible component of SpecTh

defined by a surjective morphism θ : Th → I◦ of Λh-algebras. By Proposition 3.3 we obtain a Galois
representation ρ : GQ → GL2(I◦) associated with θ.

Remark 3.4. If ηh /∈ Qp then the open disc Bh is not defined over Qp. In particular Λh is not a power
series ring over Zp.

3.3. Finite slope CM modular forms. In this section we study non-ordinary finite slope CM modular
forms. We say that a family is CM if all its classical points are CM. We prove that for any positive slope
h > 0, there are no CM families with positive slope ≤ h. However, contrary to the ordinary case, any
family of finite positive slope may contain classical CM points of weight k ≥ 2. Let F be an imaginary
quadratic field, f an integral ideal in F , If the group of fractional ideals prime to f. Let σ1, σ2 be the
embeddings of F into C (say that σ1 = IdF ) and let (k1, k2) ∈ Z2. A Grössencharacter ψ of infinity
type (k1, k2) defined modulo f is a homomorphism ψ : If → C∗ such that ψ((α)) = σ1(α)k1σ2(α)k2 for

all α ≡ 1 (mod×f) . Consider the q-expansion∑
a⊂OF (a,f)=1

ψ(a)qN(a)

where the sum is over ideals a ⊂ OF and N(a) denotes the norm of a. It is known that for an imaginary
quadratic field F/Q of discriminant D and a Grössencharacter ψ of exact conductor f and infinity type
(k − 1, 0) the expansion above defines a cuspidal newform f(F,ψ) of level N(f)D.

Ribet proved in [Ri1, Th. 4.5] that if a newform g of weight k ≥ 2 and level N has CM by a quadratic
imaginary field F , one has g = f(F,ψ) for some Grössencharacter ψ of F of infinity type (k − 1, 0).

Definition 3.5. We say that a classical modular form g of level Npk has CM by an imaginary quadratic
field F if its Hecke eigenvalues for the operators T`, l - Np coincide with those of f(F,ψ) for some
Grössencharacter ψ of F of infinity type (k−1, 0). We also say that g is CM without specifying the field.

Remark 3.6. For g as in the definition, the Galois representations ρg, ρf(F,ψ) : GQ → GL2(Qp) asso-
ciated with g and f(F,ψ) are isomorphic, hence the image of the representation ρg is contained in the
normalizer of a torus in GL2, if and only if the form g is CM.

Proposition 3.7. Let g be a CM modular form of level Npm with N prime to p and m ≥ 0. Then its
p-slope is either 0, k−1

2 , k − 1 or infinite.

Proof. We assume first that g is p-new.
We begin with the case m = 0. We determine the Tp-eigenvalue ap. It is equal to 0 if p is inert in F .

If p splits as pp̄, then ap = ψ(p) + ψ(p̄). We can find an integer h > 0 such that ph is a principal ideal
(α) with α ≡ 1 (mod f). Hence ψ((α)) = αk−1. Since α is a generator of ph we have α ∈ p and α /∈ p̄;
moreover αk−1 = ψ((α)) = ψ(p)h, so we also have ψ(p) ∈ p− p̄. In the same way we find ψ(p̄) ∈ p̄− p̄.
We conclude that ψ(p) + ψ(p̄) does not belong to p, so its p-adic valuation is 0.

Let m = 1. If p is split or ramified. If p = pp̄, the Up-eigenvalue ap is either ψ(p) or ψ(p̄) hence the

slope is 0 or k − 1. If p is ramified, ap = ψ(p) and the slope is k−1
2 .

If m > 1, then either p = p2 divides D and f, or p is inert and divides f, or p splits. In the first two
cases, the Up-eigenvalue is 0. If p splits and pm or p̄m divides f, then the Up-eigenvalue has slope 0 or
k − 1.

If g is not p-new, it is the p-stabilization of a CM form f(F,ψ) of level prime to p. If this form is
p-ordinary, that is p splits in F and is prime to f, the Up-eigenvalue of g is ψ(p) or ψ(p̄), hence has slope
0 or k− 1. If f(F,ψ) is not ordinary, the Hecke polynomial at p is X2± pk−1 and the stabilizations have
slope k−1

2 . �

As a corollary of interest to us we have:

Corollary 3.8. There are no CM families of strictly positive slope.

Proof. We show that the eigencurve Ch contains only a finite number of points corresponding to classical
CM forms. It will follow that almost all classical points of a family in Ch are non-CM. Let f be a classical
CM form of weight k and positive slope. By Proposition 3.7 its slope is at least k−1

2 . If f corresponds to

a point of Ch its slope must be ≤ h, so we obtain an inequality k−1
2 ≤ h. The set of weights K satisfying

this condition is finite. Since the weight map Ch → Bh is finite the set of points of Ch whose weight lies
in K is finite, so the number of CM forms in Ch is also finite. �
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So, in the finite positive slope case, classical CM forms can appear only as isolated points in an
irreducible component of the eigencurve Ch. In the ordinary case, the CM congruence ideal of a non-CM
irreducible component is defined as the intersection ideal of CM irreducible components with the given
non-CM component. In the case of a positive slope ≤ h family θ : Th → I◦, we need to define differently
its CM congruence ideal.

3.4. Construction of the congruence ideal. Let θ : Th → I◦ be a family.
Fix an imaginary quadratic field F where p is inert or ramified; let −D be its discriminant. Let Q be

a primary ideal of I◦[p−1]; then q = Q ∩ Λh is a primary ideal of Λh[p−1]. The projection Λh → Λh/q
defines a point of Bh (possibly non-reduced) corresponding to a weight κQ : Z∗p → (Λh/q)∗. For r > 0
denote by Br the ball of centre 1 and radius r in Cp. By [Bu, Prop. 8.3] there exists r > 0 and a
character κQ,r : Z×p · Br → (Λh/q)× extending κQ.

Let σ be an embedding F ↪→ Cp. Let κ, r and κQ,r be as above. For m sufficiently large σ(1+pmOF )
is contained in Z×p · Br, the domain of definition of κQ,r.

For an ideal f ⊂ OF let If be the group of fractional ideals prime to f. For any prime ` not dividing
Np we denote a`,Q the image of the Hecke operator T` in I◦/Q. We say what we mean by a non-classical
CM point of Ch.

Definition 3.9. Let F , σ, Q, κ, r, κQ,r be as above. We say that Q defines a CM point of weight κ if
there exist an integer m > 0, an ideal f ⊂ OF with norm N(f) such that DN(f) divides N , a quadratic
extension (I◦/Q)′ of I◦/Q and a homomorphism ψ : Ifpm → (I◦/Q)′× such that:

(1) σ(1 + pmOF ) ⊂ Z×p · Br;
(2) for any α ∈ OF with α ≡ 1 (mod fpm), ψ((α)) = κQ,r(α)α−1;
(3) al,Q = 0 if l is a prime inert in F and not dividing Np;
(4) al,Q = ψ(l) + ψ(̄l) if l is a prime splitting as l̄l in F and not dividing Np.

Note that κQ,r(α) is well defined thanks to condition 1.

Remark 3.10. If P is a prime of I◦ corresponding to a classical form f then P is a CM point if and
only if f is a CM form in the sense of Section 3.3.

Proposition 3.11. The set of CM points in Spec I is finite.

Proof. By absurd, assume it is infinite. Then we have an injection I ↪→
∏

P I/P where P runs over the
set of CM prime ideals of I. One can assume that the imaginary quadratic field of CM is constant. We
can also assume that the ramification of the associated Galois characters λP : GF → (I/P)× is bounded
(in support and in exponents). On the density one set of primes of F prime to fp and of degree one, they
take value in the image of I×, hence they define a continuous Galois character λ : GF → I× such that

ρθ = Ind
GQ
GF
λ, which is absurd (by specialization at non-CM classical points, which do exist). �

Definition 3.12. The (fortuitous) congruence ideal cθ associated with the family θ is defined as the
intersection of all the primary ideals of I◦[p−1] corresponding to CM points.

Note that if we admit the Gouvêa-Mazur conjecture, for any elliptic curve with CM by F and for any
prime p inert or ramified in F , the corresponding CM modular form is of slope 1/2 and weight 2, hence
fits in a p-adic family of slope ≤ 1/2 over the disc B(0, 1/p). This family is not CM, but has a CM
specialization in weight 2.

Remark 3.13. (Characterizations of the CM locus)

1) Assume that ρθ = Ind
GQ
GK

λ for a unique imaginary quadratic field K. Then, the closed subscheme
V (cθ) = Spec I/cθ ⊂ Spec I is the largest subscheme on which there is an isomorphism of Galois represen-

tations ρθ ∼= ρθ ⊗ (K/Q• ). Indeed, for any artinian Qp-algebra A, a CM point x : I → A is characterized

by the conditions x(T`) = x(T`)(
K/Q
` ) for all primes ` prime to Np.

2) Note that N is divisible by the discriminant D of K. Assume that I is N -new and that D is
prime to N/D. Let WD be the Atkin-Lehner involution associated to D. Conjugation by WD defines an
automorphism ιD of Th and of I. Then V (cθ) coincides with the (schematic) invariant locus (Spec I)ιD=1.

4. The image of the representation associated with a finite slope family

It is shown by J. Lang in [La, Th. 2.4] that, under some technical hypotheses, the image of the
Galois representation ρ : GQ → GL2(I◦) associated with a non-CM ordinary family θ : T → I◦ contains
a congruence subgroup of SL2(I◦0), where I◦0 is the subring of I◦ fixed by certain “symmetries” of the
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representation ρ. We first recall some definitions and results of [La]. As we want to study the Galois
representation associated with a non-ordinary family, we’ll adapt some of the results in [La] to the non-
ordinary case. Since the crucial step [La, Th. 4.3] requires the Galois ordinarity of the representation
(as in [Hi, Lemma 2.9]), the results of this section will not imply the existence of a congruence subgroup
of SL2(I◦0) contained in the image of ρ. However, we will prove in later sections the existence of a
“congruence Lie subalgebra” of sl2(I◦0) contained in a suitably defined Lie algebra of the image of ρ, by
means of relative Sen theory.

4.1. The group of self-twists of a family. We follow [La, Sec. 2] in this subsection. Let h ≥ 0 and
θ : Th → I◦ be a family of slope ≤ h defined over a finite torsion free Λh-algebra I◦.

Definition 4.1. We say that σ ∈ Aut(Q(I◦)) is a conjugate self-twist for θ if there exists a Dirichlet
character ησ : GQ → I◦,× such that

σ(θ(T`)) = ησ(`)θ(T`)

for all but finitely many primes `.

Any such σ acts on Λh = Oh[[t]] by acting trivially on t by an automorphism on Oh. Moreover, given
σ, the character ησ is unique; from this it follows that the set Γ of elements σ in Aut(Q(I◦)) which
are conjugate self-twists for θ is an abelian group. We recall the following result (which holds without
assuming the ordinarity of θ):

Lemma 4.2. [La, Lemma 7.1] The group Γ is a finite abelian 2-group.

We suppose from now on that I◦ is normal. The only reason for this hypothesis is that in this case
I◦ is stable under the action of Γ on Q(I), which is not true in general. This makes it possible to define
the subring I◦0 of elements of I◦ fixed by Γ.

Remark 4.3. The hypothesis of normality of I◦ is just a simplifying one. We could work without it by
introducing the Λh-order I◦,′ = Λh[θ(T`), ` - Np] ⊂ I◦: it is an analogous of the Λ-order I′ defined in [La,
Sec. 2] and it is stable under the action of Γ. We would define I◦0 as the fixed subring of I◦,′ and the
arguments in the rest of the article could be adapted to this setting.

We denote by Oh,0 the largest integral extension of Zp such that Oh,0[[t]] ⊂ I◦0 and we put Λh,0 =
Oh,0[[t]]. We also denote by Kh,0 the field of fractions of Oh,0. Note that I◦0 is a finite extension of Λh,0
since I◦ is a finite Λh-algebra. Moreover, we have KΓ

h = Kh,0) (although the inclusion Λh · I◦0 ⊂ I◦ may
not be an equality).

We define two open normal subgroups of GQ by:

• H0 =
⋂
σ∈Γ ker ησ;

• H = H0 ∩ ker(det ρ).

Note that H0 is an open normal subgroup of GQ and that H is a pro-p open normal subgroup of H0

and of GQ.

4.2. The level of a general ordinary family. We recall the main result of [La]. Denote by T the
big ordinary Hecke algebra, which is finite over Λ = Zp[[T ]]. Let θ : T → I◦ be a ordinary family
with associated Galois representation ρ : GQ → GL2(I◦). The representation ρ is p-ordinary, that
is, its restriction ρ|Dp to a decomposition subgroup Dp ⊂ GQ is reducible; there exist two characters
ε, δ : Dp → I◦,×, with δ unramified, such that ρ|Dp is an extension of ε by δ.

Denote by F the residue field of I◦ and by ρ the representation GQ → GL2(F) obtained by reducing ρ.
Lang introduces the following technical condition:

Definition 4.4. The p-ordinary representation ρ is called H0-regular if ε|Dp∩H0
6= δ|Dp∩H0

.

The following result states the existence of a Galois level for ρ:

Theorem 4.5. [La, Th. 2.4] Let ρ : GQ → GL2(I◦) be the representation associated with a ordinary
family θ : T → I◦. Assume that p > 2, the cardinality of F is not 3 and the residual representation ρ is
absolutely irreducible and H0-regular.

There exists γ ∈ GL2(I◦) such that γ · Im ρ · γ−1 contains a congruence subgroup of SL2(I◦0).

The proof relies on the analogous result proved by Ribet [Ri2] and Momose [Mo] for the p-adic
representation associated with a classical modular form.
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4.3. An approximation lemma. In this subsection, we prove an analogue of [HT, Lemma 4.5]. It
replaces in our approach the use of Pink’s Lie algebra theory, which is relied on in the case of ordinary
representations in [Hi] and [La]. Let I◦0 be a domain that is finite torsion free over Λh. It does not need
to be related to a Hecke algebra for the moment.

Let N be an open normal subgroup of GQ and let ρ : N → GL2(I◦0) be an arbitrary continuous
representation. We denote by mI◦0 the maximal ideal of I◦0 and by F = I◦0/mI◦0 its residue field, of
cardinality q. In the lemma we do not suppose that ρ comes from a family of modular forms. We will
only assume that it satisfies the following technical condition:

Definition 4.6. Keep notations as above. We say that the representation ρ : N → GL2(I◦0) is Zp-regular
if there exists δ ∈ N such that

ρ(δ) =

(
d1 0
0 d2

)
where the di are roots of unity of order dividing p− 1 such that d2

1 6≡ d2
2 (mod mI◦0 ). We call ρ(δ) a Zp-

regular diagonal element. If N ′ is an open normal subgroup of N then we say that ρ is (N ′,Zp)-regular
if ρ|N ′ is Zp-regular.

Note that ρ(δ) ∈ Im ρ is of finite order dividing p − 1. Let U± be the unipotent radical of the Borel
B± of upper respectively lower triangular matrices in SL2.

Proposition 4.7. Let I◦0 be a finite torsion free Λh,0-algebra, N an open normal subgroup of GQ and ρ
a continous representation N → GL2(I◦0) that is (N,Zp)-regular. Let P be an ideal of I◦0 and ρP : N →
GL2(I◦0/P) be the representation given by the reduction of ρ modulo P. Let U±(ρ), respectively U±(ρP)
be the upper and lower unipotent subgroups of the image Im ρ, respectively Im ρP. Then the natural maps
U+(ρθ)→ U+(ρP) and U−(ρθ)→ U−(ρP) are surjective.

Remark 4.8. The ideal P in the proposition is not necessarily prime. At a certain point we will need
to take P = P I◦0 for a prime ideal P of Λh,0.

As in [HT, Lemma 4.5], we need two lemmas. Since the argument is the same for U+ and U−, we
treat only the ’upper triangular’ case U = U+ and B = B+.

For ∗ = U,B, let us define for any j ≥ 1 the groups

Γ∗(P
j) = {x ∈ SL2(I◦0)|x mod Pj ∈ ∗(I◦0/P j)}.

Let ΓI◦0 (Pj) be the kernel of the reduction morphism πj : SL2(I◦0) → SL2(I◦0/P j). Note that ΓU (Pj) =

ΓI◦0 (Pj)U(I◦0) consists of matrices

(
a b
c d

)
such that a, d ≡ 1 (mod Pj), c ≡ 0 (mod Pj). Let K =

Im ρ and

KU (Pj) = K ∩ ΓU (Pj), KB(Pj) = K ∩ ΓB(Pj)

Since U(I◦0) and ΓI◦0 (P) are p-profinite, the groups ΓU (Pj) andKU (Pj) for all j ≥ 1 are also p-profinite.
Note that [(

a b
c −a

)
,
(
e f
g −e

)]
=
(

bg−cf 2(af−be)
2(ce−ag) cf−bg

)
From this, we see that

Lemma 4.9. If X,Y ∈ sl2(I◦0) ∩
(

Pj Pk

Pi Pj

)
with i ≥ j ≥ k, [X,Y ] ∈

(
Pi+k Pj+k

Pi+j Pi+k

)
.

This tells us, for the topological commutator subgroup DΓU (Pj) := (ΓU (Pj),ΓU (Pj)) that

(1) DΓU (Pj) ⊂ ΓB(P2j) ∩ ΓU (Pj)

Using now the Zp-regularity assumption, we consider a diagonal element d ∈ K, with distinct eigen-
values modulo mI◦0 of prime-to-p finite order, say a. Note that d normalizes KU (Pj) and ΓB(Pj). In a

p-profinite group H, any x ∈ H has a unique a-th root. Recall that α(d) = d1/d2 ∈ F×p ; it can be viewed

in Z×p via the Teichmüller lift. We define for any p-profinite group normalized by d a map ∆: H → H
given by

∆(x) = [x · ad(d)(x)α(d)−1

· ad(d2)(x)α(d)−2

· · · ad(da−1)(x)α(d)1−a

]1/a

Lemma 4.10. If u ∈ ΓU (Pj) (j ≥ 1), then ∆2(u) ∈ ΓU (P2j) and πj(∆(u)) = πj(u).
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Proof. If u ∈ ΓU (Pj), we have πj(∆(u)) = πj(u) as ∆ is the identity map on U(Λh/P
j). Let DΓU (Pj)

be the topological commutator subgroup of ΓU (Pj). Since ∆ induces the projection of the Zp-module
ΓU (Pj)/DΓU (Pj) onto its α-eigenspace for ad(d), it is a projection onto U(I◦0)DΓU (Pj)/DΓU (Pj). The
fact that this is exactly the α-eigenspace comes from the Iwahori decomposition of ΓU (Pj), hence a
similar direct sum decomposition holds in the abelianization ΓU (Pj)/DΓU (Pj).

By (1) DΓU (Pj) ⊂ ΓB(P2j)∩ΓU (Pj). Since the α-eigenspace of ΓU (Pj)/DΓU (Pj) is inside ΓB(P2j),
∆ projects uΓU (Pj) to

∆(u) ∈ (ΓB(P2j) ∩ ΓU (Pj))/DΓU (Pj)

In particular, ∆(u) ∈ ΓB(P2j)∩ΓU (Pj). Again apply ∆. Since ΓB(P2j)/ΓI◦0 (P2j) is sent to ΓU (P2j)/ΓI◦0 (P2j)

by ∆, we get ∆2(u) ∈ ΓU (P2j) as desired. �

Proof. We can now prove Proposition 4.7. Let u ∈ U(I◦0/P)∩ Im(ρP). Since the reduction map Im(ρ)→
Im(ρP) induced by π1 is surjective, there exists v ∈ Im(ρ) such that π1(v) = u. Take u1 ∈ U(I◦0) such
that π1(u1) = u (as π1 : U(Λh)→ U(Λh/P ) is onto). Then vu−1

1 ∈ ΓI◦0 (P), so that v ∈ KU (P).
By compactness of KU (P) and by 4.10, starting with v as above, we see that limm→∞∆m(v) converges

P-adically to ∆∞(v) ∈ U(I◦0) ∩K with π1(∆∞(v)) = u. �

Remark 4.11. Proposition 4.7 is true with the same proof if we replace Λh,0 by Λh and I◦0 by a finite
torsion free Λh-algebra.

As a first application of Proposition 4.7 we give a result that we will need in the next subsection.
Given a representation ρ : GQ → GL2(I◦) and any ideal P of I◦ we define ρP, U±(ρ) and U±(ρP) as
above, by replacing I◦0 by I◦.

Proposition 4.12. Let θ : Th → I◦ be a Hecke family of slope ≤ h and ρθ : GQ → GL2(I◦) be the
representation associated with θ. Suppose that there exists g ∈ GL2(I◦) such that g · ρθ · g−1 is (H0,Zp)-
regular. Let ρ = g · ρθ · g−1|H0

. Then U+(ρ) and U−(ρ) are both non-trivial.

Recall that for a Zp-regular representation ρ we always work with an element of its GL2(I◦) conjugacy
class for which the image of an element giving regularity is diagonal.

Proof. By density of classical points in Th we can choose a prime ideal P ⊂ I◦ corresponding to a
classical modular form f . The mod P representation ρP is then the p-adic representation classically
associated with f . By the results of [Ri2] and [Mo], there exists an ideal lP of Zp such that Im ρP
contains the congruence subgroup ΓZp

(lP). In particular U+(ρP) and U−(ρP) are nontrivial. Since the
maps U+(ρ) → U+(ρP) and U−(ρ) → U−(ρP) are surjective we find nontrivial elements in U+(ρ) and
U−(ρ). �

We now show the following:

Proposition 4.13. Suppose that the representation ρ : GQ → GL2(I◦) is (H0,Zp)-regular. Assume
moreover that ρ|H0

is absolutely irreducible. Then there exists g ∈ GL2(I◦) such that the conjugate
representation gρg−1 satisfies the following two properties:

(1) the image of gρg−1|H0 is contained in GL2(I◦0);
(2) the image of gρg−1|H0

contains a diagonal Zp-regular element.

Remark 4.14. The hypothesis of irreducibility of ρ|H0
is not necessary in [La, Th. 4.1] under the

hypothesis of ordinarity of ρ. In a subsequent work by one of the authors, it will be removed without
assuming ordinarity.

The existence of a conjugate of ρ satisfying only (i) is an easy consequence of [Ca]. Indeed, by definition
of H0, the character ησ : GQ → I◦,× is trivial on H0, and hence

ρ|H0
∼= ρσ|H0

for any σ ∈ Γ. By taking traces of both sides we deduce that the pseudocharacter Tr(ρ|H0) : H0 → I◦
satisfies Tr(ρ|H0

) = Tr(ρ|H0
)σ for any σ ∈ Γ, so Tr(ρ|H0

) takes values in I◦0. Since ρ|H0
is absolutely

irreducible and I◦0 is a local ring, the theorem of Carayol tells us that there is a representation ρ′ : H0 →
GL2(I◦0) such that Tr(ρ′) is the pseudocharacter Tr(ρ|H0

); furthermore ρ′ is unique up to isomorphism.
Since ρ|H0

is a representation H0 → GL2(I◦) with the same property we deduce that ρ|H0
and ρ′ are

isomorphic, so ρ′ = gρ|H0g
−1 for some g ∈ GL2(I◦) and gρg−1 satisfies (i).

In order to have (ii) at the same time we will need the following lemma:

Lemma 4.15. If ρ is (H0,Zp)-regular then there exists a Zp-regular element in Im ρ|H0
∩GL2(I◦0).
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Proof. By hypothesis there exists a Zp-regular element ρ(δ) ∈ Im ρ|H0
. By definition ρ(δ) is a diagonal

matrix

(
d1 0
0 d2

)
, with d1 and d2 roots of unity of order dividing p− 1 and d2

1 6≡ d2
2 (mod mI◦). Since

ρ|H0
∼= ρσ|H for any σ ∈ Γ, there exist matrices Tσ ∈ GL2(I◦) satisfying

(2) ρσ = TσρT
−1
σ

We prove that the matrices Tσ are diagonal. Let ρ(t) be any non-scalar diagonal element in Im ρ (for
example ρ(δ)). Evaluating (2) at g = t we find that Tσ must be either a diagonal or an antidiagonal
matrix. Now by Proposition 4.12 there exists a nontrivial element ρ(u+) ∈ Im ρ ∩ U+(I◦). Evaluating
(2) at g = u+ we find that Tσ cannot be antidiagonal.

In particular any diagonal element commutes with Tσ, so by evaluating 2 on δ we obtain(
dσ1 0
0 dσ2

)
=

(
d1 0
0 d2

)
for any σ ∈ Γ. We deduce, for i = 1, 2, that di = dσi for any σ ∈ Γ, so di ∈ I◦0. �

We complete now the proof of the proposition.

Proof. Choose a conjugate of ρ such that ρ|H0
takes values in GL2(I◦0), as given by Carayol’s theorem.

We still denote it by ρ. Since ρ is (H0,Zp)-regular, Im ρ|H0
contains a Zp-regular element ρ(δ). By the

lemma above, the eigenvalues d1, d2 of ρ(δ) belong to I◦0. Since they are distinct there exists h ∈ GL2(I◦0)
such that hρ(δ)h−1 is diagonal. The representation hρh−1 satisfies the conditions (i) and (ii) of the
proposition. �

4.4. Fullness of the unipotent subgroups. From now on we write ρ for the element in its GL2(I◦)
conjugacy class such that ρ|H0

∈ GL2(I◦0). Recall that H is the open subgroup of H0 defined by the
condition det ρ(h) = 1 for any h ∈ H. As in [La, Sec. 4] we define a representation H → SL2(I◦0):

ρ0 = ρ|H ⊗
√

det ρ|H
−1

We can take the square root of the determinant thanks to the definition of H.
We will use the results of [La] to deduce that the Λh,0-module generated by the unipotent subgroups

of the image of ρ0 is big. We will later deduce the same for ρ.
We fix from now on a height one prime P ⊂ Λh,0 with the following properties:

(1) there is an arithmetic prime Pk ⊂ Λh associated with an integer k > h+1 such that P = Pk∩Λh,0;
(2) every prime P ⊂ I◦ lying above Pk corresponds to a non-CM point.

Such a point exists since non-critical classical points form a Zariski dense set in SpmTh (hence there are
infinitely many of them on every irreducible component) and by the results of Section 3.3 there are only
finitely many classical CM points in SpmTh.

Remark 4.16. Since k > h+1 every point of SpmTh above Pk is classical and non critical. It is known
that the weight map is étale at every such point. In particular since P = Pk ∩ Λh,0 and P I◦0 = PkI◦ ∩ I◦0
the prime P I◦0 splits as a product of distinct prime ideals of I◦0.

Make the technical assumption that the order of the residue field F of I◦ is not 3. For any ideal P
of I◦0 over P we let πP be the projection SL2(I◦0/P) → SL2(I◦0/P). We still denote by πP the restricted
maps U±(I◦0/P)→ U±(I◦0/P).

Let G = Im ρ0. For any ideal P of I◦0 we denote by ρ0,P the representation πP(ρ0) and by GP the
image of ρP. Clearly GP = πP(G)). We state two results from Lang’s work that come over unchanged
to the non-ordinary setting.

Proposition 4.17. [La, Cor. 6.3] Let P be a prime of I◦0 over P . Then GP contains a congruence
subgroup ΓI◦0/P(a) ⊂ SL2(I◦0/P); in particular it is open.

Proposition 4.18. [La, Prop. 5.1] Assume that for any prime P ⊂ I◦0 over P the subgroup GP is open
in SL2(I◦0/P). Then the image of G in

∏
P|P SL2(I◦0/P) through the map

∏
P|P πP contains a product

of congruence subgroups
∏

P|P ΓI◦0/P(aP).

Remark 4.19. The proofs of Propositions 4.17 and 4.18 rely on the fact that the big ordinary Hecke
algebra is étale over Λ at any arithmetic point. In order for these proofs to adapt to the non-ordinary
setting it is essential that the prime P satisfies the properties above Remark 4.16.
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We let U±(ρ0) = G ∩U±(I◦0) and U±(ρP) = GP ∩U±(I◦0/P) We denote by U(ρP) either the upper or
lower unipotent subgroups of GP (the choice will be fixed throughout the proof). By projecting to the
upper right element we identify U+(ρ0) with a Zp-submodule of I◦0 and U+(ρ0,P) with a Zp-submodule
of I◦0/P. We make analogous identifications for the lower unipotent subgroups. We will use Proposition
4.18 and Proposition 4.7 to show that for both signs U±(ρ) spans I◦0 over Λh,0.

First we state a version of [La, Lemma 4.10], with the same proof. Let A and B be Noetherian rings
with B integral over A. We call A-lattice any A-submodule of B generated by the elements of a basis
for the total ring of fractions Q(B) over Q(A).

Lemma 4.20. Any A-lattice in B contains a non-zero ideal of B. Conversely, any non-zero ideal of B
contains an A-lattice.

We prove the following proposition by means of Proposition 4.7. We could also use Pink theory as in
[La, Sec. 4].

Proposition 4.21. Consider U±(ρ0) as subsets of Q(I◦0). For each choice of sign the Q(Λh,0)-span of
U±(ρ0) is Q(I◦0). Equivalently the Λh,0-span of U±(ρ0) contains a Λh,0-lattice in I◦0.

Proof. Keep notations as above. We omit the sign when writing unipotent subgroups and we refer to
either the upper or lower ones (the choice is fixed throughout the proof). Let P be the prime of Λh,0
we chose above. By Remark 4.16 P I◦0 splits as a product of distinct prime ideals in I◦0. When P varies
among these primes, the map

⊕
P|P πP gives embeddings of Λh,0/P -modules I◦0/P I◦0 ↪→

⊕
P|P I◦0/P and

U(ρP I◦0 ) ↪→
⊕

P|P U(ρP). The following diagram commutes:

(3)

U(ρP I◦0 )
⊕

P|P U(ρP)

I◦0/P I◦0
⊕

P|P I◦0/P

⊕
P|P πP

⊕
P|P πP

By Proposition 4.18 there exist ideals aP ⊂ I◦0/P such that (
⊕

P|P πP)(GP I◦0 ) ⊃
⊕

P|P ΓI◦0/P(aP).

In particular (
⊕

P|P πP)(U(ρP I◦0 )) ⊃
⊕

P|P (aP). By Lemma 4.20 each ideal aP contains a basis for

Q(I◦0/P) over Q(Λh,0/P ), so that the Q(Λh,0/P )-span of
⊕

P|P aP is the whole
⊕

P|P Q(I◦0/P). Then

the Q(Λh,0/P )-span of (
⊕

P|P πP)(GP ∩ U(ρP)) is also
⊕

P|P Q(I◦0/P). By commutativity of diagram

(3) we deduce that the Q(Λh,0/P )-span of GP ∩ U(ρP I◦0 ) is Q(I◦0/P I◦0). In particular GP I◦0 ∩ U(ρP I◦0 )
contains a Λh,0/P -lattice, hence by Lemma 4.20 a non-zero ideal aP of I◦0/P I◦0.

Note that the representation ρ0 : H → SL2(I◦0) satisfies the hypotheses of Proposition 4.7. Indeed we
assumed that ρ : GQ → GL2(I) is (H0,Zp)-regular, so the image of ρ|H0 contains a diagonal Zp-regular
element d. Since H is a normal subgroup of H0, ρ(H) is a normal subgroup of ρ(H0) and it is normalized
by d. By a trivial computation we see that the image of ρ0 = ρ ⊗ (det ρ)−1/2 : H0 → SL2(I◦0) is also
normalized by d.

Let a be an ideal of I◦0 projecting to aP ⊂ U(ρ0,P I◦0 ). By Proposition 4.7 applied to ρ0 we obtain that
the map U(ρ0) → U(ρ0,P I◦0 ) is surjective, so the Zp-module a ∩ U(ρ0) also surjects to aP . Since Λh,0 is
local we can apply Nakayama’s lemma to the Λh,0-module Λh,0(a ∩ U(ρ0) to conclude that it coincides
with a. Hence a ⊂ Λh,0 · U(ρ0), so the Λh,0-span of U(ρ0) contains a Λh,0-lattice in I◦0. �

We show that Proposition 4.21 is true if we replace ρ0 by ρ|H . This is done in [La, Prop. 4.2] for an
ordinary representation by using the description of subnormal sugroups of GL2(I◦) presented in [Taz].
We will also follow this approach, but since we cannot induce a Λh,0-module structure on the unipotent

subgroups of G we need a preliminary step. For a subgroup G ⊂ GL2(I◦0) define G̃ = Gp ∩ (1 + pM2(I◦0)).

Let G̃Λh,0 be the subgroup of GL2(I◦) generated by the set {gλ : g ∈ G̃, λ ∈ Λh,0} where gλ = exp(λ log g).
We have the following.

Lemma 4.22. The group G̃Λh,0 contains a congruence subgroup of SL2(I◦0) if and only if both the unipo-
tent subgroups G ∩ U+(I◦0) and G ∩ U−(I◦0) contain a basis of a Λh,0-lattice in I◦0.

Proof. It is easy to see that G ∩ U+(I◦0) contains the basis of a Λh,0-lattice in I◦0 if an only if the same is

true for G̃ ∩U+(I◦0). The same is true for U−. By a standard argument, used in the proofs of [Hi, Lemma
2.9] and [La, Prop. 4.3], GΛh,0 ⊂ GL2(I◦0) contains a congruence subgroup of SL2(I◦0) if and only if both its
upper and lower unipotent subgroup contain an ideal of I◦0. We have U+(I◦0)∩GΛh,0 = Λh,0(G ∩U+(I◦0)),
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so by Lemma 4.20 U+(I◦0) ∩ GΛh,0 contains an ideal of I◦0 if and only if G ∩ U+(I◦0) contains a basis of a
Λh,0-lattice in I◦0. We proceed in the same way for U−. �

Now let G0 = Im ρ|H , G = Im ρ0. Note that G0 ∩ SL2(I◦0) is a normal subgroup of G. Let f :
GL2(I◦0) → SL2(I◦0) be the homomorphism sending g to det(g)−1/2g. We have G = f(G0) by definition
of ρ0. We show the following.

Proposition 4.23. The subgroups G0 ∩ U±(I◦0) both contain the basis of a Λh,0-lattice in I◦0 if and only
if G ∩ U±(I◦0) both contain the basis of a Λh,0-lattice in I◦0.

Proof. Since G = f(G0) we have G̃ = f(G̃0). This implies G̃Λh,0 = f(G̃0

Λh,0

). We remark that

G̃0

Λh,0 ∩SL2(I◦0) is a normal subgroup of G̃Λh,0 . Indeed G̃0

Λh,0 ∩SL2(I◦0) is normal in G̃0

Λh,0

, so its image

f(G
Λh,0

0 ∩ SL2(I◦0)) = G
Λh,0

0 ∩ SL2(I◦0) is normal in f(G
Λh,0

0 ) = G̃Λh,0 .
By [Taz, Cor. 1] a subgroup of GL2(I◦0) contains a congruence subgroup of SL2(I◦0) if and only

if it is subnormal in GL2(I◦0) and it is not contained in the subgroup of scalar matrices. We note that

G̃0

Λh,0∩SL2(I◦0) = (G̃0∩SL2(I◦0))Λh,0 is not contained in the subgroup {±1}. Otherwise also G̃0∩SL2(I◦0)

would be contained in {±1} and Im ρ ∩ SL2(I◦0) would be finite, since G̃0 is of finite index in Gp0. This
gives a contradiction: indeed if P is an arithmetic prime of I◦ of weight greater than 1 and P′ = P∩ I◦0,
the image of ρ modulo P′ contains a congruence subgroup of SL2(I◦0/P′) by the result of [Ri2].

Now since G̃0

Λh,0 ∩ SL2(I◦0) is a normal subgroup of G̃Λh,0 , we deduce by Tazhetdinov’s result that

G̃0

Λh,0 ∩SL2(I◦0) (hence G̃0

Λh,0

) contains a congruence subgroup of SL2(I◦0) if and only if G̃Λh,0 does. By
applying Lemma 4.22 to G = G0 and G = G we obtain the desired equivalence. �

By combining the above proposition with Proposition 4.21 we obtain the following.

Corollary 4.24. The Λh,0-span of each unipotent subgroups Im ρ ∩ U± contains a Λh,0-lattice in I◦0.

Unlike in the ordinary case we cannot deduce from the corollary that Im ρ contains a congruence
subgroup of SL2(I◦0), since we are working over Λh 6= Λ and we cannot induce a Λh-module structure
(not even a Λ-module structure) on Im ρ ∩ U±. The proofs of [Hi, Lemma 2.9] and [La, Prop. 4.3] rely
on the existence in the image of Galois of an element inducing by conjugation a Λ-module structure
on Im ρ ∩ U±; in their situation this is predicted by the condition of Galois ordinarity of ρ. In the
non-ordinary case we will find an element with a similar property via relative Sen theory. In order to do
this we will need to work with a suitably defined Lie algebra rather than with the group itself.

5. Relative Sen theory

We recall the notations of Section 3.1. In particular rh = p−sh , with sh ∈ Q, is the h-adapted

radius (which we also take smaller than p−
1

p−1 ), ηh is an element in Cp of norm rh, Kh = Qp(ηh) and
Oh is the ring of integers in Kh. The ring Λh of analytic functions on the open disc Bh = B(0, r−h )

is identified to Oh[[t]]. We take a sequence of radii ri = p−sh−1/i converging to rh and denote by
Ari = Kh〈t,Xi〉/(pXi − ti) the Kh-algebra defined in Section 3.1 which is a form over Kh of the Cp-
algebra of analytic functions on the closed ball B(0, ri) (its Berthelot model). We denote by A◦ri the
Oh-subalgebra of functions bounded by 1. Then Λh = lim←−iA

◦
ri where A◦rj → A◦ri for i < j is the

restriction of analytic functions.
We defined in Section 4.1 a subring I◦0 ⊂ I◦, finite over Λh,0 ⊂ Λh. For ri as above, we write

A◦0,ri = Kh,0〈t,Xi〉/(pXi − ti) with maps A◦0,rj → A◦0,ri for i < j, so that Λh,0 = lim←−iA
◦
0,ri . Let

I◦r = I◦⊗̂Λh
A◦r and I◦0,r = I◦0⊗̂Λh,0

A◦0,r, both endowed with their p-adic topology. Note that (I◦r)Γ = I◦r,0.
Consider the representation ρ : GQ → GL2(I◦) associated with a family θ : Th → I◦. We observe that

ρ is continuous with respect to the profinite topology of I◦ but not with respect to the p-adic topology.
For this reason we fix an arbitrary radius r among the ri defined above and consider the representation
ρr : GQ → GL2(I◦r) obtained by composing ρ with the inclusion GL2(I◦) ↪→ GL2(I◦r). This inclusion is
continuous, hence the representation ρr is continous with respect to the p-adic topology on GL2(I◦0,r).

Recall from Proposition 4.13 that, after replacing ρ by a conjugate, there is an open normal subgroup
H0 ⊂ GQ such that the restriction ρ|H0 takes values in GL2(I◦0) and is (H0,Zp)-regular. The restriction
ρr|H0 then gives a representation H0 → GL2(I◦0,r) which is continuous with respect to the p-adic topology
on GL2(I◦0,r).
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5.1. Big Lie algebras. Fix a decomposition group Gp ⊂ GQ at p. Let Gr and Gloc
r be the images

respectively of H0 and Gp ∩ H0 under the representation ρr|H0
: H0 → GL2(I◦0,r). Note that they are

actually independent of r, since they coincide with the images of H0 and Gp ∩H0 under ρ.
For any ring R and ideal I ⊂ R we denote by ΓGL2(R)(I) the GL2-congruence subgroup consisting

of elements g ∈ GL2(R) such that g ≡ Id2 (mod I). Let G′r = Gr ∩ ΓGL2(I◦0,r)(p) and G′,loc
r = Gloc

r ∩
ΓGL2(I◦0,r)(p), so that G′r and G′,loc

r are pro-p-groups. Note that the congruence subgroups ΓGL2(I0,r)(p
m)

are open in GL2(I0,r) for the p-adic topology. In particular G′r and G′,loc
r can be identified with the

image under ρ of the absolute Galois group of a finite extension respectively of Q and Qp.

Remark 5.1. We remark that we can choose an arbitrary r0 and set, for any r, G′r = Gr∩ΓGL2(I◦0,r0 )(p),

which is independent of r since Gr is. In particular it is a pro-p and finite index subgroup of Gr for any
r. We can identify it to the image under ρr (and ρ) of an open subgroup of GQ which is independent of
r. This will be important in Section 7.1, where we will take projective limits over r of various objects.

We set A0,r = A◦0,r[p
−1] and I0,r = I◦0,r[p−1]. We consider from now on G′r and G′,loc

r as subgroups of
GL2(I0,r) through the inclusion GL2(I◦0,r) ↪→ GL2(I0,r).

We want to define big Lie algebras associated with the groups G′r and G′,loc
r . For any non zero ideal

a of the principal ideal domain A0,r, we denote by G′r,a and Gloc,′
r,a the images respectively of G′r and

Gloc,′
r under the natural projection GL2(I0,r) → GL2(I0,r/aI0,r). The pro-p groups G′r,a and Gloc,′

r,a are

topologically of finite type, so we can define the corresponding Qp-Lie algebras Hr,a and Hloc
r,a using the

p-adic logarithm map: Hr,a = Qp · LogG′r,a and Hloc
r,a = Qp · LogGloc,′

r,a . They are closed Lie subalgebras
of the finite dimensional Qp-Lie algebra M2(I0,r/aI0,r).

Let Br = lim←−(a,P1)=1
A0,r/a ·A0,r where the inverse limit is taken over non zero ideals ideals a ⊂ A0,r

prime to P1 = (u−1(1 +T )−1) (the reason for excluding P1 will become clear later). We endow Br with
the projective limit topology coming from the p-adic topology on each quotient. We have a topological
isomorphism of Kh,0-algebras

Br ∼=
∏
P 6=P1

(̂A0,r)P

where the product is over primes P and (̂A0,r)P = lim←−m≥1
A0,r/P

mA0,r denotes the Kh,0-Fréchet

space inverse limit of the finite dimensional Kh,0-vector spaces A0,r/P
mA0,r. Similarly, let Br =

lim←−(a,P1)=1
I0,r/aI0,r, where as before a varies over all non-zero ideals of A0,r prime to P1. We have

Br ∼=
∏
P 6=P1

(̂I0,r)P I0,r
∼=
∏
P-P1

(̂I0,r)P

where the second product is over primes P of I0,r and (̂I0,r)P denotes the projective limit of finite

dimensional Kh,0-algebras (endowed with the p-adic topology). The last isomorphism follows from the

fact that I0,r is finite over A0,r, so that there is an isomorphism I0,r ⊗ (̂A0,r)P =
∏

P (̂I0,r)P where P is

any prime of A0,r and P varies among the primes of I0,r above P . We have natural continous inclusions
A0,r ↪→ Br and I0,r ↪→ Br, both with dense image. The map A0,r ↪→ I0,r induces an inclusion Br ↪→ Br
with closed image. Note however that Br is not finite over Br. We will work with Br for the rest of this
section, but we will need Br later.

For any a we have defined Lie algebras Hr,a and Hloc
r,a associated with the finite type Lie groups G′r,a

and Gloc,′
r,a . We take the projective limit of these algebras to obtain Lie subalgebras of M2(Br).

Definition 5.2. The Lie algebras associated with G′r and Gloc,′
r are the closed Lie subalgebras of M2(Br)

given respectively by

Hr = lim←−
(a,P1)=1

Hr,a

and

Hloc
r = lim←−

(a,P1)=1

Hloc
r,a

where as usual the products are taken over non zero ideals a ⊂ A0,r prime to P1.

For any ideal a prime to P1, we have continuous homomorphisms Hr → Hr,a and Hloc
r → Hloc

r,a. Since
the transition maps are surjective, these homomorphisms are surjective.
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5.2. The Sen operator associated with a Galois representation. Recall that there is a finite
extension K/Qp such that G′,loc

r is the image of ρ|Gal(K/K) and, for any ideal P ⊂ A0,r and any m ≥ 1,

Gloc,′
r,Pm is the image of ρr,Pm |Gal(K/K). Following [Se1] and [Se2] we can define a Sen operator associated

with ρr|Gal(K/K) and ρr,Pm |Gal(K/K) for any ideal P ⊂ A0,r and any m ≥ 1. We will see that these

operators satisfy a compatibility property. We write for the rest of the section ρr and ρr,Pm while

implicitly taking the domain to be Gal(K/K).
We begin by recalling the definition of the Sen operator associated with a representation τ : Gal(K/K)→

GLm(R) where R is a Banach algebra over a p-adic field L. We follow [Se2]. We can suppose L ⊂ K; if
not we just restrict τ to the open subgroup Gal(K/KL) ⊂ Gal(K/K).

Let L∞ be a ramified Zp-extension of L. Let γ be a topological generator of Γ = Gal(L∞/L),

Γn ⊂ Γ the subgroup generated by γp
n

and Ln = Lγ
pn

∞ , so that L∞ = ∪nLn. Let L′n = LnK and
G′n = Gal(L/L′n). If Rm is the R-module over which Gal(K/K) acts via τ , define an action of Gal(K/K)
on R⊗̂LCp by letting σ ∈ Gal(K/K) map x⊗y to τ(σ)(x)⊗σ(y). Then by the results in [Se1] and [Se2]

there is a matrix M ∈ GLm
(
R⊗̂LCp

)
, n ≥ 0 and a representation δ : Γn → GLm(R⊗L L′n) such that

for all σ ∈ G′n we have

M−1τ(σ)σ(M) = δ(σ)

Definition 5.3. The Sen operator associated with τ is

φ := lim
σ→1

log(δ
(
σ)
)

log(χ(σ))
∈M2(R⊗̂LCp)

The limit exists as for σ close to 1 the map σ 7→
log(δ

(
σ)
)

log(χ(σ))
is constant. It is proved in [Se2, Sec. 2.4]

that φ does not depend on the choice of δ and M .
If L = R = Qp we define the Lie algebra g associated with τ(Gal(K/K)) as the Qp-vector space

generated by the image of the Log map in Mm(Qp). In this situation the Sen operator φ associated with
τ has the following property, which will be essential in the following.

Theorem 5.4. [Se1, Th. 1] For any continuous representation τ : GK → GLm(Qp), the Lie algebra g

of the group τ(Gal(K/K)) is the smallest Qp-subspace of Mm(Qp) such that g⊗Cp contains φ.

This theorem is valid in the absolute case above, but relies heavily on the fact that the image of Galois
is a finite dimensional Lie group. In the relative case, it is doubtful that its proof can be generalized.

5.3. The Sen operator associated with ρr. Set I0,r,Cp = I0,r⊗̂Kh,0
Cp. It is a Banach space for the

natural norm. Let Br,Cp = Br⊗̂Kh,0
Cp; it is the topological Cp-algebra completion of Br⊗Kh,0

Cp for the
(uncountable) set of nuclear seminorms pa given by the norms on I0,r,Cp

/aI0,r,Cp
via the specialization

morphisms πa : Br ⊗Kh,0
Cp → I0,r,Cp/aI0,r,Cp . Let Hr,a,Cp = Hr,a ⊗Kh,0

Cp and Hloc
r,a,Cp

= Hloc
r,a, ⊗Kh,0

Cp.
Then, we define Hr,Cp

= Hr⊗̂Kh,0
Cp as the topological Cp-Lie algebra completion of Hr ⊗K0,h

Cp for the
(uncountable) set of seminorms pa given by the norms on Hr,a,Cp

and similar specialization morphisms

πa : Hr, ⊗Kh,0
Cp → Hr,a,Cp

. We define in the same way Hloc
r,Cp

in terms of the norms on Hloc
r,a,Cp

. Note

that by definition, we have

Hr,Cp
= lim←−

(a,P1)=1

Hr,a,Cp
, and Hloc

r,Cp
= lim←−

(a,P1)=1

Hloc
r,a,Cp

.

We apply the construction of the previous subsection to L = Kh,0, R = I0,r, which is a Banach
L-algebra with the p-adic topology, and τ = ρr. We obtain an operator φr ∈ M2(I0,r,Cp

). Recall that
we have a natural continous inclusion I0,r ↪→ Br, inducing inclusions I0,r,Cp

↪→ Br,Cp
and M2(I0,r,Cp

) ↪→
M2(Br,Cp

). We denote all these inclusions by ιBr
since it will be clear each time to which we are referring.

We’ll prove in this section that ιBr
(φr) is an element of Hloc

r,Cp
.

Let a be a non zero ideal of A0,r. Let us apply Sen’s construction to L = Kh,0, R = I0,r/aI0,r and

τ = ρr,a : Gal(K/K)→ GL2(I0,r/aI0,r); we obtain an operator φr,a ∈M2(I0,r/aI0,r⊗̂Kh,0
Cp).

Let

πa : M2(I0,r⊗̂Kh,0
Cp)→M2(I0,r/aI0,r⊗̂Kh,0

Cp)
and

π×a : GL2(I0,r⊗̂Kh,0
Cp)→ GL2(I0,r/aI0,r⊗̂Kh,0

Cp)
be the natural projections.
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Proposition 5.5. We have φr,a = πa(φr) for all a.

Proof. Recall from the construction of φr that there exist M ∈ GL2

(
I0,r,Cp

)
, n ≥ 0 and δ : Γn →

GL2(I0,r⊗̂Kh,0
K ′h,0,n) such that for all σ ∈ G′n we have

(4) M−1ρr(σ)σ(M) = δ(σ)

and

(5) φr := lim
σ→1

log(δ
(
σ)
)

log(χ(σ))
.

Let Ma = π×a (M) ∈ GL2(I0,r,Cp
/aI0,r,Cp

) and δa = π×a ◦δ : Γn → GL2((I0,r/aI0,r)⊗̂Kh,0
K ′h,0,n) Denote

by φr,a ∈M2((I0,r/aI0,r)⊗̂Kh,0
K ′h,0,n) the Sen operator associated with ρr,a. Now (4) gives

(6) M−1
a ρr,a(σ)σ(Ma) = δa(σ)

so we can calculate φr,a as

(7) φr,a = lim
σ→1

log(δa
(
σ)
)

log(χ(σ))
∈M2(R⊗̂LCp)

By comparing with (5) we see that φr,a = πa(φr). �

Let φr,Br
= ιBr

(φr). For any non zero ideal a of A0,r let πBr,a be the natural projection Br → I0,r/aI0,r.
Clearly πBr,a(φr,Br

) = πa(φr) and φr,a = πa(φr) by Proposition 5.5, so we have φr,Br
= lim←−(a,P1)=1

φr,a.

We apply Theorem 5.4 to show the following.

Proposition 5.6. Let a be any non zero ideal of A0,r prime to P1. The operator φr,a belongs to the Lie
algebra Hloc

r,a,Cp
.

Proof. Let n be the dimension over Qp of I0,r/aI0,r; by choosing a Qp-basis (ω1, . . . , ωn) of this algebra,
we can define an injective ring morphism α : M2(I0,r/aI0,r) ↪→M2n(Qp) and an injective group morphism
α× : GL2(I0,r/QI0,r) ↪→ GL2n(Qp). In fact, an endomorphism f of the (I0,r/aI0,r)-module (I0,r/aI0,r)2 =
(I0,r/aI0,r) · e1⊕ (I0,r/aI0,r) · e2 is Qp-linear, so it induces an endomorphism α(f) of the Qp-vector space
(I0,r/aI0,r)2 =

⊕
i,j Qp · ωiej ; furthermore if α is an automorphism then α(f) is one too. In particular

ρr,a induces a representation ραr,a = α× ◦ ρr,a : Gal(K/K) → GL2n(Qp). The image of ραr,a is the group

Gloc,α
r,a = α×(Gloc

r,a). We consider its Lie algebra Hloc,α
r,a = Qp · Log (Gloc,α

r,a ) ⊂ M2n(Qp). The p-adic

logarithm commutes with α in the sense that α(Log x) = Log (α×(x)) for every x ∈ ΓI0,r/aI0,r (p), so we

have Hloc,α
r,a = α(Hloc

r,a) (recall that Hloc
r,a = Qp · LogGloc

r,a).

Let φαr,a be the Sen operator associated with ραr,a : Gal(K/K)→ GL2n(Qp). By Theorem 5.4 we have

φαr,a ∈ Hloc,α
r,a,Cp

= Hloc,α
r,a ⊗̂Cp. Denote by αCp the map α⊗̂1: M2(I0,r,Cp/aI0,r,Cp) ↪→ M2n(Cp). We show

that φ
αCp
r,a = αCp

(φr,a), from which it follows that φr,a ∈ Hloc
r,a,Cp

since H
loc,αCp
r,a,Cp

= αCp
(Hloc

r,a,Cp
) and αCp

is

injective. Now let Ma, δa be as in (6) and M
αCp
a = αCp

(Ma), δ
αCp
a = αCp

◦ δa. By applying αC to (4) we

obtain (M
αCp
a )−1ρ

αCp
r,a (σ)σ(M

αCp
a ) = δ

αCp
a (σ) for every σ ∈ G′n, so we can calculate

φ
αCp
r,a = lim

σ→1

log(δ
αCp
a

(
σ)
)

log(χ(σ))

which coincides with αCp
(φr,a). �

Proposition 5.7. The element φr,Br
belongs to Hloc

r,Cp
.

Proof. By definition of the space Hloc
r,Cp

as completion of the space Hloc
r ⊗Kh,0

Cp, for the seminorms pa

given by the norms on Hloc
r,a,Cp

, we have Hloc
r,Cp

= lim←−(a,P1)=1
Hloc
r,a,Cp

. By Proposition 5.5, we have φr,Br
=

lim←−a
φr,a and by Proposition 5.6 we have for any a, φr,a ∈ Hr,a,Cp . We conclude that φr,Br ∈ Hloc

r,Cp
. �

Since Hloc
r,Cp
⊂ Hr,Cp we also have φr,Br ∈ Hr,Cp .

From now on we identify I0,r,Cp with a subring of Br,Cp via ιBr , so we also identify M2(I0,r) with a
subring of M2(Br) and GL2(I0,r,Cp) with a subgroup of GL2(Br,Cp). In particular we identify φr with
φr,Br

and we say that φr ∈ Hr,Cp
∩ M2(I0,r,Cp

). Now consider Φr = exp(φr) ∈ GL2(I0,r,Cp
). Since

φr ∈ Hr,Cp
the matrix Φr normalizes Hr,Cp

.
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5.4. The characteristic polynomial of the Sen operator. Sen proved the following result.

Theorem 5.8. Let L1 and L2 be two p-adic fields, and let Cp = L̂1. Let us assume for simplicity that

L2 contains the normal closure of L1. Let τ : Gal(L1/L1) → GLm(L2) be a continuous representation.
For each embedding σ : L1 → L2, we have a Sen operator φτ,σ ∈ Mm(Cp ⊗L1,σ L2) associated to τ and
σ. If τ is Hodge-Tate with σ-Hodge-Tate weights h1,σ, . . . , hm,σ (with multiplicities, if any), then the
characteristic polynomial of φτ,σ is

∏m
i=1(X − hi,σ).

Now let k ∈ N and Pk = u−k(1 + T ) − 1 be the corresponding arithmetic prime of A0,r. Let
Pf a prime of Ir above P , associated with the system of Hecke eigenvalues of a classical modular
form f . Let ρ : GQ → GL2(Ir) be as usual. The specialization of ρ modulo P is the representation
ρf : GQ → GL2(Ir/P) classically associated with f , defined over the field Kf = Ir/PIr. By a theorem
of Faltings [Fa], when the weight of the form f is k, the representation ρf is Hodge-Tate of Hodge-
Tate weights 0 and k − 1; hence, by Th. 5.8 the Sen operator φf associated with ρf has characteristic
polynomial X(X − (k − 1)). Let Pf,0 = Pf ∩ I0,r. With the notations of the previous subsection, the

specialization of ρr modulo P0,f gives a representation ρr,Pf,0
: Gal(K/K) → GL2(I0,r/Pf,0), which

coincides with ρf |Gal(K/K). In particular the Sen operator φr,Pf,0
associated with ρr,Pf,0

coincides with

φf .
By Proposition 5.5 the Sen operator φr ∈ M2(I0,r) specializes modulo QI0,r to the operator φr,Q

associated with ρr,Q for any primary ideal Q of A0,r. In the exact same way we can show that it
specializes to ρr,Pf,0

for a prime Pf,0 ⊂ Ir,0 as above. The characteristic polynomial of its Sen operator
φr,Pf,0

is X(X − (k − 1)) . Since the primes of the form Pf,0 are dense in Ir,0 the eigenvalues of ρr,Pf,0

can be interpolated in a unique way. The two elements obtained via this interpolation are the eigenvalues
of φr,Q. In particular we deduce the following.

Proposition 5.9. The eigenvalues of the matrix Φr = expφr are u−1(1 + T ) and 1. In particular Φr is
a conjugate in GL2(Br,Cp

) of the diagonal matrix CT with entries u−1(1 + T ) and 1.

Remark 5.10. The second assertion in the proposition is true because in the definition

Br = lim←−
(a,P1)=1

I0,r/aI0,r

we have asked that a is prime to P1. Indeed, the difference of the eigenvalues of Φr is the generator
u−1(1 + T )− 1 of P1, which is invertible in Br.

6. Existence of the Galois level for a family with finite positive slope

Let rh ∈ pQ∩]0, p−
1

p−1 ] be the radius chosen in Section 3. Recall that Hr ⊂M2(Br) is the Lie algebra
attached to the image of ρr (see Definition 5.2) and H0,r,Cp = Hr⊗̂Cp. Let u±, resp. u±Cp

, be the upper

and lower nilpotent subalgebras of Hr, resp. of Hr,Cp .

Remark 6.1. The commutative Lie algebra u± is independent of r because it is equal to Qp ·Log(U(I◦0)∩
G′r) which is independent of r, provided r0 ≤ r < rh.

We fix r0 ∈ pQ∩]0, rh[ and we work from now on with r0 ≤ r < rh. All subsequent rings in this section
are indexed by r, with r ≥ r0. As in Remark 5.1, this fixes a finite extension of Q corresponding to the
inclusion G′r ⊂ Gr. For r < r′ we have a natural inclusion I0,r′ ↪→ I0,r. Since Br = lim←−(aP1)=1

I0,r/aI0,r
this induces an inclusion Br′ ↪→ Br. We will consider from now on Br′ as a subring of Br for any r < r′.
We will also consider M2(Ir′,Cp

) and M2(Br′) as subsets respectively of M2(I0,r,Cp
) and M2(Br). These

inclusions still hold after taking completed tensors with Cp.
For r < r′ the maps Ar′ ↪→ A0,r and I0,r′ ↪→ I0,r induce injections Br′ ↪→ Br. We identify Br′ with a

subring of Br (so every Br is a subring of Br0).
Recall that φr ∈M2(I0,r,Cp) is the Sen operator associated with ρr and Φr ∈ GL2(Ir) is its exponential.

The operator φr is independent of r in the following sense: if r < r′ < rh and Ir′,Cp
→ Ir,Cp

is the natural
inclusion then the image of φr′ under the induced map M2(Ir′,Cp

)→M2(I0,r,Cp
) is φr.

We deduce that the exponential Φr is also independent of r (in the same sense).
By Proposition 5.9, for any r < rh we see that there exists an element βr ∈ GL2(Br,Cp) such that

βrΦrβ
−1
r = CT . Since Φr normalizes Hr,Cp , CT = βrΦβ

−1
r normalizes βrHr,Cpβ

−1
r .

We denote by U± the upper and lower unipotent subalgebras of sl2. The action of CT on Hr,Cp by

conjugation is semisimple and we can decompose βrHr,Cpβ
−1
r as a sum of eigenspaces for CT :

βrHr,Cp
β−1
r =

(
βrHr,Cp

β−1
r

)
[1]⊕

(
βrHr,Cp

β−1
r

)
[u−1(T + 1)]⊕

(
βrHr,Cp

β−1
r

)
[u(T + 1)−1]
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with (
βrHr,Cp

β−1
r

)
[u−1(T + 1)] ⊂ U+(Br,Cp

) and
(
βrHr,Cp

β−1
r

)
[u(T + 1)−1] ⊂ U−(Br,Cp

)

Note that
(
βrHr,Cp

β−1
r

)
[u−1(T + 1)] 6= 0 and

(
βrHr,Cp

β−1
r

)
[u(T + 1)−1] 6= 0 because otherwise Hr,Cp

would be solvable, and this is not the case as Hr ∩ U± 6= 0 by the approximation lemma.
Moreover, the formula(

u−1(1 + T ) 0
0 1

)(
1 λ
0 1

)(
u−1(1 + T ) 0

0 1

)−1

=

(
1 u−1(1 + T )λ
0 1

)
shows that the action of CT by conjugation coincides with multiplication by u−1(1 + T ). By linearity
this gives an action of the polynomial ring Cp[T ] on βrHr,Cp

β−1
r ∩U+(Br,Cp

), compatible with the action
of Cp[T ] on U+(Br,Cp

) given by the inclusions C[T ] ⊂ Λh,0,Cp
⊂ Br,Cp

⊂ Br,Cp
. Since Cp[T ] is dense

in Ah,0,Cp
for the p-adic topology, it is also dense in Br,Cp

. Since Hr,Cp
is closed in M2(Br,Cp

), we can

define by continuity a structure of Br,Cp -module on βrHr,Cpβ
−1
r ∩ U+(Br,Cp), compatible with that on

U+(Br,Cp). Similarly we have(
u−1(1 + T ) 0

0 1

)(
1 0
µ 1

)(
u−1(1 + T ) 0

0 1

)−1

=

(
1 0

u(1 + T )−1µ 1

)
.

We note that 1+T is invertible for the p-adic topology in A0,r since T = psht where rh = p−sh . Therefore
CT is invertible and by twisting by (1 + T ) 7→ (1 + T )−1 we can also give βrHr,Cp

β−1
r ∩ U−(Br,Cp

) a
structure of Br,Cp

-module compatible with that on U−(Br,Cp
).

By combining the previous remarks with Proposition 4.24, we prove the following ’fullness’ result for
the big Lie algebras Hr.

Theorem 6.2. There exists a non-zero ideal l of I0 independent of r < rh such that for any such r the
Lie algebra Hr contains l · sl2(Br).

Proof. Since U±(Br) ∼= Br, we can and shall identify u+ = Qp · LogG′r ∩ U+(Br) with a Qp-vector
subspace of Br (actually of I0), resp. u+

Cp
with a Cp-vector subspace of Br,Cp

. We repeat that these

spaces are independent of r since G′r is, provided r0 ≤ r < rh (see Remark 5.1). By Proposition 4.24,
u± ∩ I0 contains a basis {ei,±}i∈I for Q(I0) over Q(Λh,0). The set {ei,+}i∈I ⊂ u+ is a basis for Q(I0)
over Q(Λh,0), so u+ contains the basis of a Λh,0-lattice in I0. By Lemma 4.20 we deduce that the span
Λh,0u

+ contains an ideal a+ of I0. Hence we also have Br,Cpu
+
Cp
⊃ Br,Cpa

+. Now a+ is an ideal of I0 and

Br,Cp
I0,Cp

= Br,Cp
, so Br,Cp

a+ = a+Br,Cp
is an ideal in Br,Cp

. We conclude that Br,Cp
· u+ ⊃ a+Br,Cp

for a non zero ideal a+ of I0. We proceed in the same way for the lower unipotent subalgebra, obtaining
Br,Cp

· u− ⊃ a−Br,Cp
for some non zero ideal a− of I0.

Consider now the Lie algebra Br,Cp
HCp

⊂ M2(Br,Cp
). Its unipotent subalgebras are Br,Cp

u+ and
Br,Cp

u−, and we showed Br,Cp
u+ ⊃ a+Br,Cp

and Br,Cp
u− ⊃ a−Br,Cp

. Denote by t ⊂ sl2 the subalgebra
of diagonal matrices over Z. By taking the Lie bracket, we see that [U+(a+Br,Cp

),U−(a−Br,Cp
)] spans

a+ ·a−t(Br,Cp
) over Br,Cp

. We deduce that Br,Cp
HCp
⊃ a+ ·a−sl2(Br,Cp

). Let a = a+ ·a−. Now a·sl2(Br,Cp
)

is a Br,Cp -Lie subalgebra of sl2(Br,Cp). Recall that βr ∈ GL2(Br,Cp); hence by stability by conjugation

we have βr
(
a · sl2(Br,Cp

)
)
β−1
r = a · sl2(Br,Cp

). Thus, we constructed a such that Br,Cp

(
βrHr,Cp

β−1
r

)
⊃

a·sl2(Br,Cp
), In particular, Br,Cp

u±,βr

Cp
⊃ aBCp

for both signs. By the discussion preceding the proposition

the subalgebras u±,βr

Cp
have a structure of Br,Cp

-modules, which means that u±,βr

Cp
= Br,Cp

u±,βr

Cp
. We

conclude that u±,βr

Cp
⊃ βr

(
a · U±(Br,Cp)

)
β−1
r for both signs, so by the usual argument of taking the

bracket, we have βrHr,Cp
β−1
r ⊃ a2sl2(Br,Cp

). We can then untwist by the invertible matrix βr to

conclude that for l = a2, we have Hr,Cp
⊃ l · sl2(Br,Cp

).
Now let us get rid of the completed extension of scalars to Cp. For any ideal a ⊂ I0 not dividing P1,

let Hr,a be the image of Hr in M2(I0,r/a)I0,r ; consider the two finite dimensional Qp-vector subspaces
Hr,a and l · sl2(I0,r/aI0,r) of gl2(I0/a). After extending scalars to Cp, we have

l · sl2(I0,r/aI0,r)⊗ Cp ⊂ Hr,a ⊗ Cp
Therefore, we have

l · sl2(I0,r/aI0,r) ⊂ Hr,a

By taking projective limit over a, we conclude

l · sl2(Br) ⊂ Hr

�
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Definition 6.3. The Galois level of the family θ : Th → I◦ is the largest ideal lθ of I0[P−1
1 ] such that

Hr ⊃ lθ · sl2(Br).

It follows by the previous remarks that lθ is non-zero.

7. Comparison between the Galois level and the fortuitous congruence ideal

Let θ : Th → I◦ be a family. We keep all the notations from the previous sections. In particular
ρ : GQ → GL2(I◦) is the Galois representation associated with θ. We suppose throughout this section
that ρ|H0

is irreducible and that the restriction of ρ to H0 takes values in GL2(I◦0). As noted in Remark
5.1 we can replace H0 by a finite index subgroup H such that the image of ρ|H is a pro-p-group. Recall
that I = I◦[p−1] and ICp

= I⊗̂Kh
Cp. Recall that P1 is the prime of Λh,0 generated by (u−1(1 + T )− 1).

Let c ⊂ I be the congruence ideal associated with θ. Set c0 = c ∩ I0 and c1 = c0I0[P−1
1 ]. Let l = lθ ⊂ I0

be the Galois level associated with θ. Recall that this ideal is prime to P1. For an ideal a of I0[P−1
1 ] we

denote by V (a) the set of prime ideals of I0[P−1
1 ] containing a. We show the following.

Theorem 7.1. Suppose that that there exists no pair (F,ψ) where F is a real quadratic field and ψ :

Gal(F/F ) → F× is a character, such that ρ : GQ → GL2(F) ≡ IndQ
Fψ. Then in Spec I0[P−1

1 ] we have
V (l) = V (c1).

Before giving the proof we make some remarks. Let P be a prime of I0 and Q a prime factor of P I.
We have a representation ρI,Q : GQ → GL2(I/Q) obtained by reducing ρ : GQ → GL2(I) modulo Q. Its
restriction ρI,Q|H takes values in GL2(I0/(Q ∩ I0)) = GL2(I0/P ) and coincides with the reduction ρP of
ρ|H : H → GL2(I0) modulo P . In particular ρI,Q|H is independent of the chosen prime factor Q of P I.

We say that a subgroup of GL2(A) for some algebra A finite over a p-adic field K is small if it admits
a finite index abelian subgroup. Let P , Q be as above, GP be the image of ρP : H → GL2(I0/P ) and
GI,Q the image of ρI,Q : GQ → GL2(I/Q). By our previous remark ρP coincides with the restriction
ρI0,Q|H , so GP is a finite index subgroup of GI,Q for any Q. In particular GP is small if and only if GI,Q
is small for all prime factors Q of P I.

Now if Q is a CM point the representation ρI,Q is induced by a character of Gal(F/Q) for an imaginary
quadratic field F . Hence GI,Q admits an abelian subgroup of index 2 and GP is also small.

Conversely, if GP is small, GI,Q′ is small for any prime Q′ above P . Choose any such Q′; by the
argument in [Ri1, Prop. 4.4] GI,Q′ has an abelian subgroup of index 2. It follows that ρI,Q′ is induced

by a character of Gal(FQ′/FQ′) for a quadratic field FQ′ . If FQ′ is imaginary then Q′ is a CM point. In
particular, if we suppose that the residual representation ρ̄ : GQ → GL2(F) is not induced by a character

of Gal(F/F ) for a real quadratic field F/Q, then FQ′ must be imaginary, hence Q′ is CM. The above
argument proves that GP is small if and only if all points Q′ ⊂ I above P are CM.

Proof. We prove (i). By absurd, suppose that a prime P - P1 of I0 contains c0 but P does not contain
l. Then there exists a prime factor Q of P I such that c ⊂ Q. By definition of c we have that Q is a CM
point in the sense of Section 3.4, hence the representation ρI,Q has image contained in the normalizer of
a torus in GL2(I/Q). Then its restriction ρI,Q|H = ρP has image contained in the normalizer of a torus
in GL2(I0/P ). We deduce that there is no non-zero ideal I of I0 such that the Lie algebra Hr,P contains
I · sl2(Br).

Now by definition of l we have l · sl2(Br) ⊂ Hr. Since reduction modulo P gives a surjection H→ HP ,
by looking at the previous inclusion modulo P we find l ·sl2(I0,r/P I0,r) ⊂ Hr,P . If l 6⊂ P we have l/P 6= 0,
which contradicts our earlier statement. We deduce that l ⊂ P .

We prove (ii). Let P ⊂ I0 be a prime containing l. Recall that I0 has Krull dimension one, so
κP = I0/P is a field. Let Q ⊂ I0 be the P -primary component of l and let a be an ideal of I0 containing

Q such that the localization at P of a/Q is one dimensional over κP . Let ã and H̃r be the images of a

and Hr under reduction modulo Q. Let s = ã · sl2(I0,r/QI0,r) ∩ H̃r ⊂ ã · sl2(I0,r)/QI0,r). Note that s is
stable under the adjoint action Ad(ρ) of H, so we consider it as a Galois representation via Ad(ρ). By
the proof of Theorem 6.2 we can assume, by considering possibly a sub-Galois representation, that Hr is
a Br-submodule of sl2(Br) containing l · sl2(Br) but not a · sl2(Br) for any a strictly bigger than l. This
allows to speak of the localization sP of s at P . The localization at P of ã · sl2(I0,r/QI0,r) is sl2(κP ), so
sP is contained in sl2(κP ). It is a κP -submodule of rank at most 3 stable for the action of H via Ad(ρP ),
where ρP : H → GL2(I0/P ) denotes the reduction of ρ|H modulo P .

Note that, since Q is the P -primary component of l and aP /QP
∼= κP , when P -localizing we find

Hr,P ⊃ QP · sl2(Br,P ) and Hr,P 6⊃ aP · sl2(Br,P ).
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In order to get a contradiction, we study the κP -vector space sP .
We cannot have sP = 0. In this case we would obtain (aP · sl2(Br,P )∩Hr,P )/QP = 0. By Nakayama’s

lemma aP · sl2(Br,P ) ∩ Hr,P = 0 which is absurd since aP · sl2(Br,P ) ∩ Hr,P ⊃ QP · sl2(Br,P ) 6= 0.
We also exclude the 3-dimensional case: indeed if sP = sl2(κP ), we would have by exchanging

the quotient with the localization (aP · sl2(Br,P ) ∩ Hr,P )/QP = (aP · sl2(I0,r,P ))/QP I0,r,P , because
aP I0,r,P /QP I0,r,P = (I0,r,P /QP I0,r,P ) and this is isomorphic to κP . By Nakayama’s lemma we would
conclude that Hr,P ⊃ a · sl2(Br,P ), which is absurd.

We are left with the 1- and 2-dimensional cases. If sP is two-dimensional we can always replace it by
its orthogonal in sl2(κP ) which is one dimensional; indeed the action of GQ via Ad(ρP ) is isometric with
respect to the scalar product Tr(XY ) on sl2(κP ).

Suppose then that sl2(κP ) contains a 1-dimensional stable subspace. Let φ be a generator of this
subspace over κP . For any g ∈ GQ there must be a character χ : H → κP such that ρP (g)φρP (g)−1 =
χ(g)φ. Let F0 be the finite extension of Q fixed by χ and GF0

be its absolute Galois group. For
g ∈ GF0

we have ρP (g)φρP (g)−1 = φ, so by Schur’s lemma we deduce that ρP |GF0
acts by scalars,

so ρP is induced by a character GF0 → (I0/P I0)×. In particular the image of ρP is small. By the
remarks preceding this proof, if Q ⊂ I is any primary component of P I then ρI,Q is induced by the
character of a quadratic field F1/Q (which will be a subfield of F0). Since we supposed that the residual

representation ρmI : GQ → GL2(F) is not of the form IndQ
Fψ for a real quadratic field F and a character

ψ : Gal(F/F ) → F×, we deduce that F1 must be imaginary. We conclude that Q is a CM point. By
construction of the congruence ideal we conclude that c ⊂ Q, hence c0 ⊂ Q ∩ I0 = P . �

We prove two corollaries.

Corollary 7.2. If the residual representation ρ : GQ → GL2(F) is not dihedral then l = 1.

Proof. Since ρ is not dihedral there cannot be any CM point on the family θ : Th → I. By Theorem 7.1
we deduce that l has no nontrivial prime factor, hence is trivial (recall that we are not considering the
prime P1 since l ⊂ I0[P−1

1 ]). �

Remark 7.3. Theorem 7.1 gives another proof of Proposition 3.11. Indeed the CM points of a family
θ : Th → I◦ correspond to the prime factors of its Galois level, which are finite in number.

We also give a partial result about the comparison of the exponents of each prime factor in c1 and
l. This is an analogous of what is proved in [Hi, Th. 8.6] for the ordinary case; our proof also relies on
the strategy there. Denote by P any prime of I0 with P - P1. We denote by cP and lP the P -primary
components respectively of c1 and l.

Theorem 7.4. Suppose that ρ is not induced by a character of GF for a real quadratic field F/Q. We
have (cP )2 ⊂ lP ⊂ cP .

Proof. The inclusion lP ⊂ cP is proved in the same way as part (i) of Theorem 7.1.
We show that the inclusion (cP )2 ⊂ lP holds. If cP is trivial this reduces to Theorem 7.1, so we can

suppose cP 6= 1. In particular P is a factor of c1, hence if P = P∩ I0[P−1
1 ] then P is a factor of c1. This

means that P is a CM point, so we have an isomorphism ρP ∼= IndQ
Fψ for an imaginary quadratic field

F/Q and a character ψ : GF → C×p . We keep the notations of the proof of Theorem 7.1. Consider the

κP -vector space scP = Hr ∩ cP · sl2(I0,r)/Hr ∩ cPP · sl2(I0,r). We see it as a subspace of sl2(κP ) and it is
stable under the adjoint representation Ad(ρP ) : GQ → Aut(sl2(κP )).

Let χF/Q : GQ → C×p is the quadratic character defined by the extension F/Q. Let ε ∈ GQ be an

element projecting to the generator of Gal(F/Q), ψε : GF → C×p the character given by ψε(τ) = ψ(ετε−1)

and ψ− = ψ/ψε. Since ρP ∼= IndQ
Fψ we have a decomposition Ad(ρP ) ∼= χF/Q ⊕ IndQ

Fψ
− where the two

factors are irreducible. Now we have three possibilities for the Galois isomorphism class of scP : either it
is Ad(ρP ) or it is isomorphic to one of the two irreducible factors.

If scP ∼= Ad(ρP ), then scP = sl2(κP ), and we proceed as in the proof of Theorem 7.1 to obtain
scP = sl2(κP ). By Nakayama’s lemma Hr ⊃ cP · sl2(Br). This implies cP ⊂ lP , hence cP = lP in this
case.

If scP is one-dimensional then we proceed as in the proof of Theorem 7.1 to show that ρcPP : GQ →
GL2(I0,r/cPP ) is dihedral. We deduce that there exists a character ψcPP : GF → C×p such that ρcPP ∼=
IndQ

FψcPP . This is a contradiction, since cP is the P -primary component of c1, hence it is the smallest
P -primary ideal a such that ρa : GQ → GL2(I0,r/a) is induced by a character of GF .
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We are left with the two-dimensional case. Suppose then that scP ∼= IndQ
Fψ
−. Let d = diag(d1, d2) ∈

ρ(GQ) be the image of a Zp-regular element. The image of d modulo P is a nontrivial diagonal element
dP = diag(d1,P , d2,P ) ∈ ρP (GQ), since d1 and d2 are nontrivial modulo the maximal ideal of I◦0. We
decompose scP in eigenspaces for the adjoint action of dP as scP [a]⊕scP [1]⊕scP [a−1], where a = d1,P /d2,P .
Now scP [1] is contained in the diagonal torus, on which the adjoint action of GQ is given by the character
χF/Q. Since χF/Q does not appear as a factor of scP we must have scP [1] = 0. This implies that scP [a] 6= 0

and scP [a−1] 6= 0. Since scP [a] = scP ∩ u+(κP ) and scP [a−1] = scP ∩ u−(κP ) we deduce that scP contains
nontrivial upper and lower unipotent elements u+ and u−. Then u+ and u− are the images of some
elements u+ and u− of Hr ∩ cP · sl2(I0,r) which are nontrivial modulo cPP . The Lie bracket t = [u+, u−]
gives an element in Hr ∩ t(I0,r) (where t denotes the diagonal torus) and t is nontrivial modulo (cP )2P .
Hence the κP -vector space s(cP )2 = Hr ∩ (cP )2 · sl2(I0,r,Cp

)/Hr ∩ (cP )2P · sl2(I0,r,Cp
) contains nontrivial

diagonal, upper and lower unipotent elements, so it is three-dimensional. As before we can conclude
with Nakayama’s lemma that Hr ⊃ (cP )2 · sl2(I0,r), so (cP )2 ⊂ lP . �
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