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BIG IMAGE OF GALOIS REPRESENTATIONS ASSOCIATED WITH FINITE
SLOPE p-ADIC FAMILIES OF MODULAR FORMS

ANDREA CONTI*, ADRIAN IOVITA, JACQUES TILOUINE*

1. INTRODUCTION

It is known by the works of Ribet [Ri2], [Ri3] and Momose [Mo], that the f-adic Galois representation

py.¢ associated with a non-CM cuspidal eigenform f has large image for any prime ¢, and that for almost
all ¢ it satisfies
(congy) Im py ¢ contains the conjugate of a principal congruence subgroup I'(¢™) of SLa(Zy).
For instance, if Im ps ¢ contains an element with eigenvalues in Z;* distinct modulo £, then (cong,) holds.
In [Hi], Hida proved an analogous statement for p-adic families of non-CM ordinary cusp eigenforms.
Let A = Z,[[T]] be the Iwasawa algebra and m = (p,T) be its maximal ideal. A special case of his first
Theorem [Hi, Th.I] is the following

Theorem 1.1. Let f be a non-CM Hida family of ordinary cusp eigenforms defined over a finite extension
I of A, and let pg: Gal(Q/Q) — GLo(I) be the associated Galois representation. Let us assume that it is
residually irreducible and that there exists an element d in the image of Galois with eigenvalues o, B € Z,
such that o* # 3% (mod p). Then there exists a non zero ideal | C A and an element g € GLa(I) such
that

gr(Ng™" C Im pg
where T'(I) denotes the principal congruence subgroup of SLa(A) of level L.

Moreover, under mild technical assumptions, he showed [Hi, Th. II] that if the residual representation
contains a conjugate of SLa(F,), then [ is trivial or m-primary, and if the residual representation is
dihedral “of CM type”, the height one prime factors P of [ are exactly those of the g.c.d. of the adjoint
p-adic L function of f and of anticyclotomic specializations of Katz p-adic L functions associated with
certain Hecke characters of an imaginary quadratic field. This set of primes is precisely the set of
congruence primes between the given non-CM family and CM families.

In her PhD dissertation (see her paper [La]), J. Lang improved upon Hida’s Theorem I. Let T be
Hida’s big ordinary cuspidal Hecke algebra; it is finite and flat over A. Let Specl be an irreducible
component of T. It corresponds to a surjective A-algebra homomorphism 6: T — I (a A-adic Hecke
eigensystem). We also call 6 a Hida family. Assume that it is not residually Eisenstein. It gives rise to a
residually irreducible continuous Galois representation pg: Gg — GL2(I) that is p-ordinary. We suppose
for simplicity that I is normal. Consider the A-algebra automorphisms o of I for which there exists a
finite order character n,: Gg — I* such that for any prime ¢ prime to the level, o 0 8(T}) = 1 (£)0(Ty)
(see [Ri3] and [La]). These morphisms form a finite abelian 2-group I'. Let Iy be the subring fixed by
I'. Let Hy = (), cr Kerng; it is a normal open subgroup of Gg. Then, by Carayol’s theorem, one can
assume, up to conjugation by an element of GLy(I), that pg|m, takes values in GLa(Ip).

Theorem 1.2. ([La] Th.2.4) Let 0: T — I be a non-CM Hida family such that py is absolutely irreducible.
Assume after conjugation that pe(Ho) C GLa(Io) and that there exists d € pg(D, N Hy) with eigenvalues
a,B € Z; such that a? # (% (mod p). Then there exists a non zero ideal | C Iy and an element
g € GLo(I) such that

gL(g™" C Im py
where T'(I) denotes the principal congruence subgroup of SLa(Iy) of level .

For all these results, it is important to assume the ordinarity of the family as it implies the ordinarity
of the Galois representation, and in particular that some element of the image of the inertia at p is

conjugate to
ut(1+T) =
a= (N
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Hida and Lang use Pink’s theory of Lie algebras of pro-p subgroups of SLs(I). Conjugation by the
element above defines a A-module structure on the Lie algebra of a pro-p subgroup of Im ps.

In this paper, we propose a generalization of Hida’s work to the finite slope case. We establish an
analogue of Hida’s Theorem I and Theorem II. These are Theorems 6.2, 7.1 and 7.4 in the text. Moreover,
we put ourselves in the more general setting studied by Lang’s [La] work. In the positive slope case,
the existence of a conjugating matrix analoguous to A above is obtained by applying relative Sen theory
([Sel] and [Se2]) at the expense of extending scalars to the completion C, of an algebraic closure of Q,,.

More precisely, for any h € Q**, we define an Iwasawa algebra A, = Oy[[t]] (where T = p*r - ¢
for some s; € QN|0, Iﬁ[ and Op, is a finite extension of Z, containing p**) and a finite torsion free
Ap-algebra T} (see Section 3.1), called an adapted slope < h Hecke algebra. Let 6: Tp, — I° be an
irreducible component; it is finite torsion-free over Aj. The notation I° is borrowed from the theory of
Tate algebras. We write I = I°[p~!]. We assume again for simplicity that I° is normal. The finite slope
family 6 gives rise to a continuous Galois representation pg: Gg — GL2(I°). We assume that the residual
representation pg is absolutely irreducible. We introduce the finite abelian 2-group I" as above, together
with its fixed ring I§ and the open normal subgroup Hy C Gg. In Section 5.1 we define a ring B, and a
Lie algebra ), C slz(B,.c,) attached to the image of py. In the positive slope case, CM families do not
exist (see Section 3.3), hence no “non-CM” assumption is needed in the following.

Theorem 1.3. (Theorem 6.2) Let 6: T}, — I° be a positive slope family such that pylm, is absolutely
irreducible. Assume after a suitable conjugation that pg(Ho) C GL2(I§) and that there exists d € pg(DpN
Hy) with eigenvalues a, 8 € Z,5 such that a? # 3% (mod p). Then there exists a non zero ideal | C I
such that

[- E[Q(Br) - .V)r

The largest such ideal [y is called the Galois level of §. We also introduce the notion of fortuitous CM
congruence ideal for 6 (Section 3.4). It is the ideal ¢y C I given by the product of the primary ideals
modulo which a congruence between 6 and a slope < h CM form occurs. In this context, following Hida’s
proof, we are also able to show (Section 7) that the set of primes of Iy = I$[p~!] containing [y coincides
with the set of primes containing ¢y N1y, except possibly for the primes of Iy above Py = u=}(1+7T) -1
(the so-called weight 1 primes).

Several generalizations of the present work, including a generalization of [HT] (which treated the
ordinary case for GSp,, with a residual representation induced from the representation associated to a
Hilbert form) to the finite slope case and to bigger groups and more cases of residual representations,
are currently being studied by one of the authors'.

Acknowledgments. This paper owes much to Hida’s recent paper [Hi]. We also thank Jaclyn
Lang for communicating us her dissertation [La], which proved very useful in writing Section 4, and for
providing us with some helpful remarks.

2. THE EIGENCURVE

2.1. The weight space. Let p > 2 be a prime. The Q,-rigid space W = Hom(Z,C) of continuous
homomorphisms is called the weight space.

Remark 2.1. Before Section 3 all the rigid analytic spaces we consider are defined over Q,. Indeed the
weight space and the eigencurve can be admissibly covered by affinoid subdomains defined over Q,. Later
we will need to consider rigid Qp-analytic spaces defined only over a finite extension L/Qy,.

For any R > 0, we denote by B(0, R), respectively B(0, R~) the closed, respectively open, disc in C,
of centre 0 and radius R. The space W is isomorphic to a disjoint union of p — 1 copies of the open
unit disc B(0,17) centered in 0 and indexed by the group Z/(p — 1)Z = [i,—1. Let u be a topological
generator of 1 4 pZ,, then an isomorphism is given by

Z/(p—1)Zx B(0,17) =W, (i,v) = Xin

where xi.0((¢,u”)) = ¢*(1 +v)*.
We use the following terminology.

Definition 2.2. Let X be a Q,-rigid space and S a subset of X. We say that:
e S is Zariski-dense if for any global analytic function f on X the set SN {f # 0} is nonempty;
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e S is an accumulation subset if for any affinoid domain Spm R C X the set SNSpm R is Zariski-
dense in Spm R.

We say that a point x € W is classical if there exist k € N and a finite order character ¢ : Z; — C
such that y is the character z + 2% (z). The set of classical points is an accumulation subset of W.

If Spm R C W is an affinoid open subset, we denote by k = kg: Z,; — R* its tautological character
given by k(t)(x) = x(t) for any x € Spm R. Recall ([Bu, Prop. 8.3]) that kg is r-analytic for any
sufficiently small radius r > 0 (by which we mean it extends to Z, B(1,7)).

2.2. Adapted pairs and the eigencurve. Let N be a positive integer prime to p. Let us recall a
definition of the spectral curve ZV and of the cuspidal eigencurve CV of tame level I'; (V). We follow
the presentation of [Bu, Part II]. Let Spm R C W be an affinoid domain and let » = p~* for s € Q be a
radius smaller than the radius of analyticity of kg. We denote by Mg , the R-module of r-overconvergent
modular forms of weight k. It is endowed with a continous action of the Hecke operators Ty, [ t Np,
and U,. The action of U, on Mg, is completely continous, so we can consider its associated Fredholm
series Fr ,(T) = det(1 — Up,T|Mg,) € R{{T}}. These series are compatible when R and r vary, in the
sense that there exists F € OW){{T'}} that restricts to Fg,(T) for any R and r.

The series Fg,.(T) converges everywhere over the R-affine line Spm R x AV so it defines a rigid
curve Zﬁf = {Fg,(T) =0} in Spm R x A»*". When R and r vary, these curves glue into a rigid space
ZN endowed with a quasi-finite and flat morphism wy : Z¥ — W. The curve Z% is called the spectral
curve. For any h > 0, let us consider

Z]J;’,Sh =zZNn (Sme X B(U,Ph))

By [Bu, Lemma 4.1] Zg’gh’ is quasi-finite and flat over Spm R.
We recall how to construct an admissible covering of Z%.

Definition 2.3. We denote by C the set of affinoid subdomains Y C Z such that:

o there exists an affinoid domain Spm R C W such that Y is a union of connected components of
w' (Spm R);
e the map wyzly : Y — Spm R is finite.

Proposition 2.4. [Bu, Th. 4.6] The covering C is admissible.

Note in particular that an element Y € C must be contained in Zg’gh for some h.

For any R and r as above and any Y € C such that wz(Y) = Spm R, we can associate to Y a direct
factor My of Mg, by the construction in [Bu, Sec. 1.5]. The abstract Hecke algebra H = Z[Ty]yny acts
on Mg, and My is stable with respect to this action. Let Ty be the R-algebra generated by the image
of # in Endg(My) and let C = Spm Ty . Note that it is reduced as all Hecke operators are self-adjoint
for a pairing and mutually commute.

For any Y the finite covering C% — Spm R factors through ¥ — Spm R. The eigencurve CV is
defined by gluing the affinoids C{ into a rigid curve, endowed with a finite morphism C — ZN. The
curve CV is reduced and flat over W since it is so locally.

We borrow the following terminology form Bellaiche.

Definition 2.5. [Be, Def. I1.1.8] Let Spm R C W be an affinoid open subset and h > 0 be a rational
number. The couple (R,h) is called adapted if Zg’gh is an element of C.

The sets of the form Zg’ﬁh are actually sufficient to admissibly cover the spectral variety by [Be, Cor.
11.1.13].

Now fix a finite slope h. We want to work with families of slope < h which are finite over a wide
open subset of the weight space. In order to do this it will be useful to know which pairs (R, h) in a
connected component of W are adapted. If Spm R’ C Spm R are affinoid subdomains of W and (R, h) is
adapted then (R’,h) is also adapted by [Be, Prop. I1.1.10]. A lower bound for the radius of an adapted
disc in terms of h is given by a result of Wan. We denote by Fj(T') the specialization of the Fredholm
characteristic series F((T) to a classical weight k: t s t*,

Theorem 2.6. [Wa, Th. 2.5] There exist constants A, B € Q such that the following is true for m(h) =
Ah? + Bh: if k1 and ky are two non-negative integers such that ky = ko(mod p™™ (p — 1)), then the
slope < h parts of the Newton polygons of Fy, (T) and Fy,(T) coincide.
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Remark 2.7. In Wan’s result about the dimension of spaces of classical forms a constant C appears in
the quadratic polynomial for m(h), but the proof of his Corollary 4.2 shows that we can take C = 0.

We deduce from this theorem the estimate we need about the radius of a disc adapted to h:

Corollary 2.8. If h € R is a slope and m(h) = Ah? + Bh is the polynomial defined by Wan’s theorem,
the disc B(0,p~™") is adapted to h.

Proof. Let Z be the spectral variety defined as the locus {F = 0} in W x Al and Z, = Z¥ n
B(0,p~™"M) x B(0,p"). By definition B(0,p~™") is adapted to h if and only if the map Z, —
B(0,p~™M) is finite; this is equivalent by [Bu, Lemma 4.3] to the fact that all fibres of Zj, over points
x € B(0,p~™™) have the same degree. Since the map Zj, — B(0,p~™") is locally finite (every point
in W has a neighborhood adapted to h), the degree of its fibres is locally constant. We know that on
the accumulation subset of B(0,p~ (") consisting of classical weights this degree is constant by Wan’s
theorem. We conclude that the degree of the fibre of Z;, is constant everywhere on B(O,p*m(h)), hence
this disc is adapted to h. ([

We work for simplicity with discs centered in 0, but the corollary above is clearly true for a disc
B(x,p*m(h)) of radius given by Wan’s estimate and centered in any point x € W.

2.3. Pseudocharacters and Galois representations. Let K be a finite extension of Q,, with valuation
ring Ok . Let X be a rigid Q,-analytic variety defined over K. We denote by O(X) the ring of global
analytic functions on X equipped with the coarsest locally convex topology making the restriction map
O(X) — O(U) continuous for any affinoid U C X. It is a Fréchet space isomorphic to the inverse limit
over all affinoid domains U of the K-Banach spaces O(U). We denote by O(X)° the Og-algebra of
functions bounded by 1 on X, equipped with the topology induced by that on O(X). The question of
the compactness of this ring is related to the following property of X:

Definition 2.9. [BC, Def. 7.2.10] We say that a rigid Qp-analytic variety X defined over K is nested
if there is an admissible covering X = |JX; by open affinoids X; defined over K such that the maps
O(Xit1) = O(X;) induced by the inclusions are compact.

As anticipated we have:

Lemma 2.10. [BC, Lemma 7.2.10] We equip the ring O(X)° with the topology induced by that on
O(X) = Jim, O(X;). If X is reduced and nested, then O(X)® is a compact (hence profinite) Ok -algebra.

Furthermore we have:
Proposition 2.11. [BC, Cor. 7.2.12] The eigenvariety CN is nested for K = Q,.

Given any reduced nested subvariety X of CN defined over a finite extension K of Qp, we have a
pseudocharacter on X obtained by interpolating classical ones.

Proposition 2.12. [Be, Th. IV.4.1] There exists a unique pseudocharacter

T : Go,np = O(X)°

of dimension 2 such that for every l prime to Np 7(Froby) = ¥x(Ty), where ¢x is the composition of
¥ H — O(CN)° with the restriction map O(CN)° — O(X)°.

Remark 2.13. One can take as an example of X a union of irreducible components of CV, in which
case K = Q. Later, we’ll take other examples where K # Q.

3. THE FORTUITOUS CONGRUENCE IDEAL

In this section we will define families with slope bounded by a finite constant and coefficients in a
suitable profinite ring. We will show that any such family admits at most a finite number of classical
specialization which are CM modular forms. Later we will define what it means for a point (not nec-
essarily classical) to be CM and we will associate with a family a congruence ideal describing its CM
points. Contrary to the ordinary case, the non-ordinary CM points do not come in families, so the points
detected by the congruence ideal do not correspond to a crossing between a CM and a non-CM family.
For this reason we call our ideal the “fortuitous congruence ideal”.

4



3.1. The adapted slope < h Hecke algebra. We fix a slope h > 0 throughout this section. Let
CN:=h be the subvariety of C whose points have slope < h. Unlike the ordinary case treated in [Hi
the weight map w=" : CN><" — W is not finite, which means that a family of slope < h is not in general
defined by a finite map over the entire weight space. The best we can do in the finite slope situation is to
place ourselves on the largest possible wide open subdomain U of W such that the restricted weight map
wSh|y : CNSP x, U — U is finite. Finiteness property will be used to apply going-up and going-down
theorems.

Remark 3.1. We work for simplicity with discs centred at 0, but all results hold for any other choice of
a centre in W.

Let us fix a rational number s;, such that for r, = p~*» the closed disc B(0,,) is adapted for h. By
the results of Section 2.2, we can assume s, < m(h). We also assume that s, > 1%' Let np € @p be an
element of p-adic valuation s;. Let Kj = Q,(n;) and let Oy, be its valuation ring. Let Aj, = Op[[n;, *T7).
This is the ring of analytic functions bounded by one on the wide open disc Bj of radius p~*». For
1> 1,let s; = s, + 1/i and B; = B(0,p~®). The open disc By, is the increasing union of the affinoid
discs B;. For each i, a model for B; over K} is given by Berthelot’s construction of By, as the rigid space
associated with the Op-formal scheme Spf Aj,. We recall it briefly, following [dJ, Sec. 7]. Let ¢ = n;lT
and

A7 = On(t, Xi) [ (pXs — 1)

We have B; = Spm A7, [p~1] as rigid space over Kj,. For any i we have a morphism A7, — A7 given

by
Xi+1 — X,'t
t—1

We have induced morphisms A9, [p~] — A7, [p~'], hence open immersions B; — B;;1 defined over
K}. The wide open disc By, is defined as the inductive limit of the affinoids B; with these transition
maps. We also have Ay, = 1'&17, A7

Remark 3.2. Since there is no constant term in Wan’s radius, when the slope h is sufficiently close to
1
0, the wide open subdomain By, can be taken to be the open disk B(0,p~ »=1).

Since the s; are strictly bigger than sp, for each i, B(0,p~*) = Spm Ap, [p~!] is adapted to h.
Therefore, for any r > 0 sufficiently small and for any ¢ > 1, the image of the abstract Hecke algebra
acting on My, - provides a finite affinoid A7, -algebra ’]Tflf‘ . The morphism w; : Spm T%?_ o~ Spm A,

. . ) ) . . < < . _
is finite. For ¢ < j we have natural inclusions Spm ’]I‘Zf o Spm’]I‘Z? , and corresponding restriction
5’ T

<h

< . . . < .- . .
maps TA% P TZ; - We call C'y, the increasing union UiGN,T>O Spm TZ?_ siitisa wide open subvariety
7 J 2

of CV. We denote by T}, the ring of rigid analytic functions bounded by 1 on C,. We have T}, :=
O(Cp)° = I'&n”’ﬂ‘f‘g o We have a natural weight map wy, : C), — Bj, that restricts to the maps

Wag Spm T%g_ — Spm A7.. It is finite since the closed ball of radius 7, is adapted to h.

3.2. The Galois representation associated with a family of finite slope. Since O(B})° = Ay,
the ring T}, gets through wy, a structure of finite Ap-algebra; in particular it is profinite.

Let m be a maximal ideal of T},. The residue field k = T}, /m is finite, say of order ¢q. Let Ty, be the
localization of T} at m. Since Aj is henselian, Ty, is a direct factor or Ty, hence it is finite over Ay; it
is also local noetherian and profinite. Let W = W (k) be the ring of Witt vectors of k. By the universal
property of W, T, is a W-algebra. By density of classical modular points, SpmT,, contains points x
corresponding to cusp eigenforms f,, of weight w(xz) = k, > 2 and level Np. The Galois representations
pr. associated with f, give rise to a residual representation 5: Gg,np — GL2(k) which is independent of
fz. By Proposition 2.12, we have a pseudo-character

TT - GQVN;D — Tm

such that for every classical point x: Ty, — L, defined over some finite extension L/Q,, the specialization
of r,, at x is the trace of the usual representation Gg np — GL2(L) attached to z.

Proposition 3.3. If p is irreducible, there exists a unique continuous irreducible Galois representation
P+ Gonp = GL2(Tw)

lifting p and whose trace is Tr,, .



This follows from a result by Nyssen and Rouquier ([Ro, Cor. 5.2]), since Ty, is local henselian.

In the sequel, we assume that p is irreducible.

Let I° be a finite torsion-free Ap-algebra. By a family, we mean an irreducible component of Spec T},
defined by a surjective morphism 6 : T, — I° of Ap-algebras. By Proposition 3.3 we obtain a Galois
representation p : Go — GLy(I°) associated with 6.

Remark 3.4. If n;, ¢ Q, then the open disc By, is not defined over Q,. In particular Ay, is not a power
series ring over ZLy.

3.3. Finite slope CM modular forms. In this section we study non-ordinary finite slope CM modular
forms. We say that a family is CM if all its classical points are CM. We prove that for any positive slope
h > 0, there are no CM families with positive slope < h. However, contrary to the ordinary case, any
family of finite positive slope may contain classical CM points of weight £ > 2. Let F' be an imaginary
quadratic field, f an integral ideal in F', I} the group of fractional ideals prime to f. Let 01,02 be the
embeddings of F into C (say that o; = Idr) and let (ki, ko) € Z2. A Grossencharacter 1 of infinity
type (k1,k2) defined modulo f is a homomorphism ¢: I; — C* such that ¢((a)) = o1(a)* oa(a)*? for
all « =1 (mod™f) . Consider the g-expansion

> ()@

aCOr(a,f)=1

where the sum is over ideals a C Op and N(a) denotes the norm of a. It is known that for an imaginary
quadratic field F/Q of discriminant D and a Grossencharacter ¢ of exact conductor f and infinity type
(k —1,0) the expansion above defines a cuspidal newform f(F,v) of level N()D.

Ribet proved in [Ril, Th. 4.5] that if a newform g of weight k > 2 and level N has CM by a quadratic
imaginary field F', one has g = f(F, ) for some Grossencharacter ¢ of F' of infinity type (k — 1,0).

Definition 3.5. We say that a classical modular form g of level Np* has CM by an imaginary quadratic
field F if its Hecke eigenvalues for the operators Ty, | ¥ Np coincide with those of f(F,v) for some
Gréssencharacter v of F' of infinity type (k—1,0). We also say that g is CM without specifying the field.

Remark 3.6. For g as in the definition, the Galois representations pg, ps(ry) : Go — GL2(Q,) asso-
ciated with g and f(F,1) are isomorphic, hence the image of the representation py is contained in the
normalizer of a torus in GLso, if and only if the form g is CM.

Proposition 3.7. Let g be a CM modular form of level Np™ with N prime to p and m > 0. Then its
p-slope is either 0, %, k — 1 or infinite.

Proof. We assume first that g is p-new.

We begin with the case m = 0. We determine the T,-eigenvalue a,. It is equal to 0 if p is inert in F'
If p splits as pp, then a, = 1(p) + ¥(p). We can find an integer h > 0 such that p” is a principal ideal
(a) with @« =1 (mod f). Hence 9 ((a)) = o*~1. Since a is a generator of p" we have o € p and a ¢ p;
moreover o* ! = ¢ ((a)) = ¥(p)", so we also have 1)(p) € p — p. In the same way we find ¥(p) € p — p.
We conclude that ¥ (p) + ¢(p) does not belong to p, so its p-adic valuation is 0.

Let m = 1. If p is split or ramified. If p = pp, the Up,-eigenvalue a, is either ¢(p) or 1 (p) hence the
slope is 0 or k — 1. If p is ramified, a, = 1 (p) and the slope is k%

If m > 1, then either p = p? divides D and f, or p is inert and divides f, or p splits. In the first two
cases, the U,-eigenvalue is 0. If p splits and p™ or p™ divides f, then the U,-eigenvalue has slope 0 or
k—1.

If g is not p-new, it is the p-stabilization of a CM form f(F,v) of level prime to p. If this form is
p-ordinary, that is p splits in F' and is prime to f, the Uy,-eigenvalue of g is 1(p) or 1(p), hence has slope
0 or k— 1. If f(F,) is not ordinary, the Hecke polynomial at p is X2 4 p*~! and the stabilizations have

k=1

slope “5=. O

As a corollary of interest to us we have:
Corollary 3.8. There are no CM families of strictly positive slope.

Proof. We show that the eigencurve C}, contains only a finite number of points corresponding to classical

CM forms. It will follow that almost all classical points of a family in C}, are non-CM. Let f be a classical

CM form of weight k and positive slope. By Proposition 3.7 its slope is at least % If f corresponds to

a point of C}, its slope must be < h, so we obtain an inequality % < h. The set of weights K satisfying

this condition is finite. Since the weight map C}, — By, is finite the set of points of C}; whose weight lies

in K is finite, so the number of CM forms in C}, is also finite. O
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So, in the finite positive slope case, classical CM forms can appear only as isolated points in an
irreducible component of the eigencurve C},. In the ordinary case, the CM congruence ideal of a non-CM
irreducible component is defined as the intersection ideal of CM irreducible components with the given
non-CM component. In the case of a positive slope < h family 6 : T, — 1°, we need to define differently
its CM congruence ideal.

3.4. Construction of the congruence ideal. Let 0 : T;, — I° be a family.

Fix an imaginary quadratic field F' where p is inert or ramified; let —D be its discriminant. Let £ be
a primary ideal of I°[p~!]; then ¢ = Q N Ay, is a primary ideal of Aj[p~!]. The projection A, — An/q
defines a point of B), (possibly non-reduced) corresponding to a weight kg : Zs — (An/q)*. For r >0
denote by B, the ball of centre 1 and radius r in C,. By [Bu, Prop. 8.3] there exists » > 0 and a
character kg, : Z) - B, — (Ay/q)* extending rq.

Let ¢ be an embedding F' < C,,. Let &, r and kg , be as above. For m sufficiently large o(1+p™OF)
is contained in Z, - B,, the domain of definition of rgq -

For an ideal §f C Op let I; be the group of fractional ideals prime to §f. For any prime ¢ not dividing
Np we denote ag o the image of the Hecke operator T, in I°/Q. We say what we mean by a non-classical
CM point of CY,.

Definition 3.9. Let F, 0, Q, k, 7, ka ,r be as above. We say that Q defines a CM point of weight r if
there exist an integer m > 0, an ideal f C Op with norm N(f) such that DN(f) divides N, a quadratic
extension (I°/Q)" of 1°/Q and a homomorphism v : Ijym — (I°/Q)" such that:

(1) o(1+p"OF) C Z; -By;

(2) for any a € Op with a« =1 (mod fp™), Y((«)) = kq  (a)a™;

(3) a0 =0 ifl is a prime inert in F and not dividing Np;

(4) ar.q = ¥(1) + (1) if I is a prime splitting as I in F and not dividing Np.

Note that kg () is well defined thanks to condition 1.

Remark 3.10. If B is a prime of I° corresponding to a classical form f then B is a CM point if and
only if f is a CM form in the sense of Section 3.3.

Proposition 3.11. The set of CM points in Specl is finite.

Proof. By absurd, assume it is infinite. Then we have an injection I — ]_L43 I/} where 8 runs over the
set of CM prime ideals of I. One can assume that the imaginary quadratic field of CM is constant. We
can also assume that the ramification of the associated Galois characters Ap: G — (I/9)* is bounded
(in support and in exponents). On the density one set of primes of F' prime to fp and of degree one, they
take value in the image of I*, hence they define a continuous Galois character A\: Gg — I such that
po = Indgi)\, which is absurd (by specialization at non-CM classical points, which do exist). O

Definition 3.12. The (fortuitous) congruence ideal co associated with the family 0 is defined as the
intersection of all the primary ideals of 1°[p~!] corresponding to CM points.

Note that if we admit the Gouvéa-Mazur conjecture, for any elliptic curve with CM by F' and for any
prime p inert or ramified in F', the corresponding CM modular form is of slope 1/2 and weight 2, hence
fits in a p-adic family of slope < 1/2 over the disc B(0,1/p). This family is not CM, but has a CM
specialization in weight 2.

Remark 3.13. (Characterizations of the CM locus)

1) Assume that py = Indg"f(x for a unique imaginary quadratic field K. Then, the closed subscheme
V(cy) = Specl/cy C Specl is the largest subscheme on which there is an isomorphism of Galois represen-
tations pg = pg @ (K—/Q) Indeed, for any artinian Qp-algebra A, a CM point x: I — A is characterized

by the conditions x(Ty) = x(Tg)(KT/Q) for all primes ¢ prime to Np.

2) Note that N is divisible by the discriminant D of K. Assume that I is N-new and that D is
prime to N/D. Let Wp be the Atkin-Lehner involution associated to D. Conjugation by Wp defines an
automorphism vp of Tj, and of I. Then V (cg) coincides with the (schematic) invariant locus (Spec)*P=1.

4. THE IMAGE OF THE REPRESENTATION ASSOCIATED WITH A FINITE SLOPE FAMILY

It is shown by J. Lang in [La, Th. 2.4] that, under some technical hypotheses, the image of the
Galois representation p: Gg — GLo(I°) associated with a non-CM ordinary family 6 : T — I° contains
a congruence subgroup of SLy(I§), where I is the subring of I° fixed by certain “symmetries” of the
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representation p. We first recall some definitions and results of [La]. As we want to study the Galois
representation associated with a non-ordinary family, we’ll adapt some of the results in [La] to the non-
ordinary case. Since the crucial step [La, Th. 4.3] requires the Galois ordinarity of the representation
(as in [Hi, Lemma 2.9]), the results of this section will not imply the existence of a congruence subgroup
of SLa(I§) contained in the image of p. However, we will prove in later sections the existence of a
“congruence Lie subalgebra” of sl3(If) contained in a suitably defined Lie algebra of the image of p, by
means of relative Sen theory.

4.1. The group of self-twists of a family. We follow [La, Sec. 2] in this subsection. Let h > 0 and
0 : Ty, — I° be a family of slope < h defined over a finite torsion free Ap-algebra I°.

Definition 4.1. We say that o € Aut(Q(I°)) is a conjugate self-twist for 6 if there exists a Dirichlet
character ne : Gg — 1°* such that

o (0(Te)) = no(0)0(T)
for all but finitely many primes £.

Any such o acts on A, = Op|[[t]] by acting trivially on ¢ by an automorphism on Oj. Moreover, given
o, the character 7, is unique; from this it follows that the set I' of elements ¢ in Aut(Q(I°)) which
are conjugate self-twists for 6 is an abelian group. We recall the following result (which holds without
assuming the ordinarity of ):

Lemma 4.2. [La, Lemma 7.1] The group T" is a finite abelian 2-group.

We suppose from now on that I° is normal. The only reason for this hypothesis is that in this case
I° is stable under the action of I" on Q(I), which is not true in general. This makes it possible to define
the subring I§ of elements of I° fixed by I'.

Remark 4.3. The hypothesis of normality of I° is just a simplifying one. We could work without it by
introducing the Ap-order 1°" = AL[0(T}), 0+ Np] C I°: it is an analogous of the A-order I defined in [La,
Sec. 2| and it is stable under the action of . We would define I§ as the fized subring of I° and the
arquments in the rest of the article could be adapted to this setting.

We denote by Oy, the largest integral extension of Z, such that Oy o[[t]] C I§ and we put Ay =
Oh0[[t]]. We also denote by K}, o the field of fractions of Oy, ¢. Note that I§ is a finite extension of Ay o
since I° is a finite Aj-algebra. Moreover, we have K = K h,0) (although the inclusion Ay, - I§ C I° may
not be an equality).

We define two open normal subgroups of Gg by:

o Hy=\,erkern,;
e H = HyNker(detp).
Note that Hj is an open normal subgroup of Gg and that H is a pro-p open normal subgroup of Hy
and of Gg.

4.2. The level of a general ordinary family. We recall the main result of [La]. Denote by T the
big ordinary Hecke algebra, which is finite over A = Z,[[T]]. Let # : T — I° be a ordinary family
with associated Galois representation p : Gg — GL2(I°). The representation p is p-ordinary, that
is, its restriction p|p, to a decomposition subgroup D, C Gq is reducible; there exist two characters
€,0 : D, — I>*, with ¢ unramified, such that p|p, is an extension of € by 4.
Denote by F the residue field of I° and by p the representation Gg — GL2(F) obtained by reducing p.
Lang introduces the following technical condition:

Definition 4.4. The p-ordinary representation p is called Ho-regular if €|p, nm, 7 3|DPQHO.
The following result states the existence of a Galois level for p:

Theorem 4.5. [La, Th. 2.4] Let p : Gg — GL2(I°) be the representation associated with a ordinary
family 0 : T — I°. Assume that p > 2, the cardinality of F is not 3 and the residual representation p is
absolutely irreducible and Hy-regular.

There exists v € GLo(I°) such that v -Imp-~y~! contains a congruence subgroup of SLa(I3).

The proof relies on the analogous result proved by Ribet [Ri2] and Momose [Mo] for the p-adic
representation associated with a classical modular form.
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4.3. An approximation lemma. In this subsection, we prove an analogue of [HT, Lemma 4.5]. It
replaces in our approach the use of Pink’s Lie algebra theory, which is relied on in the case of ordinary
representations in [Hi] and [La]. Let I§ be a domain that is finite torsion free over Aj. It does not need
to be related to a Hecke algebra for the moment.

Let N be an open normal subgroup of Gg and let p: N — GLy(I§) be an arbitrary continuous
representation. We denote by mys the maximal ideal of I§ and by F = I§/mye its residue field, of
cardinality ¢. In the lemma we do not suppose that p comes from a family of modular forms. We will
only assume that it satisfies the following technical condition:

Definition 4.6. Keep notations as above. We say that the representation p : N — GL3(I§) is Zp-regular
if there exists § € N such that
di 0
5 =
=% o)

where the d; are roots of unity of order dividing p — 1 such that di # d3 (mod mye). We call p(8) a Z,-
regular diagonal element. If N' is an open normal subgroup of N then we say that p is (N', Zy)-reqular
if pIn+ is Zy-regular.

Note that p(d) € Im p is of finite order dividing p — 1. Let U* be the unipotent radical of the Borel
B* of upper respectively lower triangular matrices in SLo.

Proposition 4.7. Let I be a finite torsion free Ay g-algebra, N an open normal subgroup of Gg and p
a continous representation N — GLqo(I§) that is (N, Zy)-regular. Let P be an ideal of I§ and pp : N —
GLy(I5/P) be the representation given by the reduction of p modulo P. Let Uy (p), respectively Uy (pp)
be the upper and lower unipotent subgroups of the image Im p, respectively Im pp. Then the natural maps
Uyi(pg) = Us(pp) and U—(pg) — U_(pp) are surjective.

Remark 4.8. The ideal P in the proposition is not necessarily prime. At a certain point we will need
to take P = PIJ for a prime ideal P of Apg.

As in [HT, Lemma 4.5], we need two lemmas. Since the argument is the same for U} and U_, we
treat only the 'upper triangular’ case U = U, and B = By.
For x = U, B, let us define for any j7 > 1 the groups

I.(P7) = {z € SLy(I3)|xr mod PJ € x(I5/P7)}.
Let T'g(P7) be the kernel of the reduction morphism m;: SLa(I§) — SLy(I§/P7). Note that 'y (P7) =

Lpe (P7)U(I§) consists of matrices < CCL d

b > such that a,d = 1 (mod P’), ¢ = 0 (mod P7). Let K =
Im p and
Ky(P') = KNTy(P/), Kp(P’)=KNTp(P?)
Since U (I§) and ' (P) are p-profinite, the groups T'yy(P7) and Ky (P7) for all j > 1 are also p-profinite.

Note that
|:(a ) <e ¥ )] :< bg—cf 2(a,f—be)>
c—a/r\g—e 2(ce—ag) cf—bg

From this, we see that

Lemma 4.9. If X,Y € sly(I3) N (I;Zf 1;’;) withi>j >k, [X,Y] € (lljjl:’; lljjfif,).

This tells us, for the topological commutator subgroup DIy (P?) := (I'ty(P7), Ty (P7)) that

(1) DIy (P?) c Tp(P¥)NTy(P)

Using now the Z,-regularity assumption, we consider a diagonal element d € K, with distinct eigen-
values modulo mys of prime-to-p finite order, say a. Note that d normalizes Ky (P7) and I'p(P7). In a
p-profinite group H, any z € H has a unique a-th root. Recall that a(d) = di/dy € F)S; it can be viewed
in Z,; via the Teichmiiller lift. We define for any p-profinite group normalized by d a map A: H — H
given by

A(z) = [ - ad(d)(x)* ™ - ad(d®) ()" D - ad(d* ) (@) O

Lemma 4.10. Ifu € I'y(P7) (j > 1), then A%(u) € Ty (P?) and 7;(A(u)) = mj(u).
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Proof. If u € Ty(P7), we have m;(A(u)) = mj(u) as A is the identity map on U(A/P7). Let DI'yy(P)
be the topological commutator subgroup of I';y(P7). Since A induces the projection of the Zp-module
'y (P7)/DTy(P7) onto its a-eigenspace for ad(d), it is a projection onto U(I3) DTy (P7) /DIy (P7). The
fact that this is exactly the a-eigenspace comes from the Iwahori decomposition of I';;(P7), hence a
similar direct sum decomposition holds in the abelianization I't;(P7)/ DIy (P7).

By (1) DI'y(P7) Cc Tp(P¥)NI'y(P7). Since the a-eigenspace of I'yy(P7) /DIy (P7) is inside I' g (P),
A projects ul'y (P7) to

A(u) € Tp(P¥)NTy(P?))/DIy(P7)

In particular, A(u) € I'p(P? )Ny (P7). Again apply A. Since I'z(P?)/T'g (P?/) is sent to I'y (P?7) /T’y (P*/)
by A, we get A%(u) € I'y(P?7) as desired. O

Proof. We can now prove Proposition 4.7. Let @ € U(I§/P)NIm(pp). Since the reduction map Im(p) —
Im(pp) induced by 7 is surjective, there exists v € Im(p) such that 71 (v) = u. Take u; € U(I]) such
that m (uy) = (as 71 : U(A) — U(Ay/P) is onto). Then vuy ' € '3 (P), so that v € Ky (P).

By compactness of Ky (P) and by 4.10, starting with v as above, we see that lim,,, o, A™(v) converges
P-adically to A>(v) € U(I§) N K with 71 (A (v)) = . O

Remark 4.11. Proposition 4.7 is true with the same proof if we replace Ay o by Ap and I by a finite
torsion free Ap-algebra.

As a first application of Proposition 4.7 we give a result that we will need in the next subsection.
Given a representation p : Gg — GL2(I°) and any ideal P of I° we define pp, Ui(p) and Ui (pp) as
above, by replacing I by I°.

Proposition 4.12. Let 0 : Ty, — I° be a Hecke family of slope < h and pg: Gg — GL2(I°) be the
representation associated with 0. Suppose that there exists g € GLa(1°) such that g - pg- g~ is (Ho, Zp)-
reqular. Let p=g-pg- g~ 'm,. Then Uy(p) and U_(p) are both non-trivial.

Recall that for a Z,-regular representation p we always work with an element of its GL2(I°) conjugacy
class for which the image of an element giving regularity is diagonal.

Proof. By density of classical points in T} we can choose a prime ideal P C I° corresponding to a
classical modular form f. The mod P representation pp is then the p-adic representation classically
associated with f. By the results of [Ri2] and [Mo], there exists an ideal Ip of Z, such that Im pp
contains the congruence subgroup I'z, (Ip). In particular Uy (pp) and U_(pp) are nontrivial. Since the
maps Uy (p) — Us(pp) and U_(p) — U_(pp) are surjective we find nontrivial elements in U, (p) and
U-(p). O

We now show the following:

Proposition 4.13. Suppose that the representation p : Gg — GLao(I°) is (Ho,Z,)-reqular. Assume
moreover that plg, is absolutely irreducible. Then there exists g € GLo(I°) such that the conjugate
representation gpg~' satisfies the following two properties:

(1) the image of gpg~'|n, is contained in GLa(I5);

(2) the image of gpg~'|m, contains a diagonal Z,-regular element.

Remark 4.14. The hypothesis of irreducibility of plm, s not necessary in [La, Th. 4.1] under the
hypothesis of ordinarity of p. In a subsequent work by one of the authors, it will be removed without
assuming ordinarity.

The existence of a conjugate of p satisfying only (i) is an easy consequence of [Cal. Indeed, by definition
of Hy, the character 1, : Gg — I** is trivial on Hy, and hence

p|H0 = pJ|H0

for any o € I'. By taking traces of both sides we deduce that the pseudocharacter Tr(p|p,): Ho — I°
satisfies Tr(p|u,) = Tr(p|m,)” for any o € T', so Tr(p|n,) takes values in I§. Since p|y, is absolutely
irreducible and I is a local ring, the theorem of Carayol tells us that there is a representation p’: Hy —
GLy(I5) such that Tr(p’) is the pseudocharacter Tr(p|m,); furthermore p’ is unique up to isomorphism.
Since p|m, is a representation Hy — GL2(I°) with the same property we deduce that p|p, and p’ are
isomorphic, so p’ = gp|u,g~* for some g € GLy(I°) and gpg~! satisfies (i).

In order to have (ii) at the same time we will need the following lemma:

Lemma 4.15. If p is (Ho, Z,)-regular then there exists a Z,-reqular element in Im p|g, N GLo(I5).
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Proof. By hypothesis there exists a Z,-regular element p(d) € Im p|g,. By definition p(d) is a diagonal

matrix ( Cél dO >, with d; and ds roots of unity of order dividing p — 1 and d? # d3 (mod mg.). Since
2

pla, = p%| g for any o € T', there exist matrices T, € GLo(I°) satisfying

(2) p” =TopT; "

We prove that the matrices T, are diagonal. Let p(¢) be any non-scalar diagonal element in Im p (for
example p(d)). Evaluating (2) at g = t we find that T, must be either a diagonal or an antidiagonal
matrix. Now by Proposition 4.12 there exists a nontrivial element p(uy) € Imp N Uy (I°). Evaluating
(2) at g = uq we find that T, cannot be antidiagonal.

In particular any diagonal element commutes with T, so by evaluating 2 on § we obtain

g 0 ([ di O
0 d3 )  \ 0 do
for any o € I'. We deduce, for ¢ = 1,2, that d; = d7 for any o €I, so d; € I§. O

We complete now the proof of the proposition.

Proof. Choose a conjugate of p such that p|g, takes values in GLy(If), as given by Carayol’s theorem.
We still denote it by p. Since p is (Hy, Zp)-regular, Im p|g, contains a Z,-regular element p(d). By the
lemma above, the eigenvalues dy, da of p(d) belong to If. Since they are distinct there exists h € GLz(If)
such that hp(6)h~! is diagonal. The representation hph~! satisfies the conditions (i) and (ii) of the
proposition. O

4.4. Fullness of the unipotent subgroups. From now on we write p for the element in its GLo(I°)
conjugacy class such that p|g, € GL2(I§). Recall that H is the open subgroup of Hy defined by the
condition det p(h) =1 for any h € H. As in [La, Sec. 4] we define a representation H — SLy(T§):

po = plu ® @mml
We can take the square root of the determinant thanks to the definition of H.
We will use the results of [La] to deduce that the Aj, g-module generated by the unipotent subgroups
of the image of pg is big. We will later deduce the same for p.
We fix from now on a height one prime P C Ap o with the following properties:

(1) there is an arithmetic prime P, C A}, associated with an integer k > h+1 such that P = P,NAy, o;
(2) every prime B C I° lying above Py corresponds to a non-CM point.
Such a point exists since non-critical classical points form a Zariski dense set in Spm T}, (hence there are
infinitely many of them on every irreducible component) and by the results of Section 3.3 there are only
finitely many classical CM points in Spm Tj,.

Remark 4.16. Since k > h+1 every point of Spm T}, above Py, is classical and non critical. It is known
that the weight map is étale at every such point. In particular since P = P, N Ay o and PI§ = PiI° N 1§
the prime PI§ splits as a product of distinct prime ideals of I3.

Make the technical assumption that the order of the residue field F of I° is not 3. For any ideal P
of I§ over P we let mp be the projection SLa(I§/P) — SLo(I5/P). We still denote by mp the restricted
maps U (I3 /P) — U (I3/P).

Let G = Impg. For any ideal P of I§ we denote by pgp the representation mp(po) and by Gp the
image of pp. Clearly Gp = mp(G)). We state two results from Lang’s work that come over unchanged
to the non-ordinary setting.

Proposition 4.17. [La, Cor. 6.3] Let B be a prime of I§ over P. Then Gy contains a congruence
subgroup I'yg /(@) C SLa(I5/P); in particular it is open.

Proposition 4.18. [La, Prop. 5.1] Assume that for any prime B C I§ over P the subgroup Gy is open
in SLa(I§/B). Then the image of G in Hfmp SLo(I5 /B) through the map Hfmpmp contains a product
of congruence subgroups [ Joy p I'tg s (agp)-

Remark 4.19. The proofs of Propositions 4.17 and 4.18 rely on the fact that the big ordinary Hecke
algebra is étale over A at any arithmetic point. In order for these proofs to adapt to the non-ordinary

setting it is essential that the prime P satisfies the properties above Remark 4.16.
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We let Uy (pg) = GNUL(T]) and Uy (pp) = Gp NUL(I5/P) We denote by U(pp) either the upper or
lower unipotent subgroups of Gp (the choice will be fixed throughout the proof). By projecting to the
upper right element we identify Uy (po) with a Z,-submodule of I§ and U4 (po,p) with a Z,-submodule
of I§/P. We make analogous identifications for the lower unipotent subgroups. We will use Proposition
4.18 and Proposition 4.7 to show that for both signs U4 (p) spans I§ over Ay, o.

First we state a version of [La, Lemma 4.10], with the same proof. Let A and B be Noetherian rings
with B integral over A. We call A-lattice any A-submodule of B generated by the elements of a basis
for the total ring of fractions Q(B) over Q(A).

Lemma 4.20. Any A-lattice in B contains a non-zero ideal of B. Conversely, any non-zero ideal of B
contains an A-lattice.

We prove the following proposition by means of Proposition 4.7. We could also use Pink theory as in
[La, Sec. 4].

Proposition 4.21. Consider Uy(pg) as subsets of Q(I5). For each choice of sign the Q(Ap,o)-span of
Us(po) is Q(I3). Equivalently the Ap o-span of Ux(po) contains a Ay, o-lattice in I§.

Proof. Keep notations as above. We omit the sign when writing unipotent subgroups and we refer to
either the upper or lower ones (the choice is fixed throughout the proof). Let P be the prime of Ap o
we chose above. By Remark 4.16 PI§ splits as a product of distinct prime ideals in I§. When 0 varies
among these primes, the map g p T gives embeddings of Ay o/ P-modules 15/ PI§ < @y p 15/P and
U(ppiz) = @y p Ulpp)- The following diagram commutes:

Dy p T
Ulppig) S @q;qp Ulpyp)

3)
o \[ O®($‘Pﬂ'(;3 \[ )
I5/PI§ —— Dy p /B

By Proposition 4.18 there exist ideals ag C I§/9 such that (Do p mp)(Grig) O Doy p Iig/p(ag).
In particular (Byp 73:)(U(porig)) O Dy plagp). By Lemma 4.20 each ideal ag contains a basis for
QIG5 /M) over Q(Ap,o/P), so that the Q(An,0/P)-span of Py p agp is the whole Py p Q(I5/B). Then
the Q(An,o/P)-span of (Dyyp mp)(Gp N U(py)) is also By p Q(I5/PB). By commutativity of diagram
(3) we deduce that the Q(Ayo/P)-span of Gp NU(pprs) is Q(I5/PI5). In particular Gpre N U(pprg)
contains a Ay o/P-lattice, hence by Lemma 4.20 a non-zero ideal ap of I§/PI§.

Note that the representation pg : H — SLo(I§)) satisfies the hypotheses of Proposition 4.7. Indeed we
assumed that p : Gg — GL2(I) is (Ho, Z,)-regular, so the image of p|y, contains a diagonal Z,-regular
element d. Since H is a normal subgroup of Hy, p(H) is a normal subgroup of p(Hp) and it is normalized
by d. By a trivial computation we see that the image of py = p ® (det p)~'/2 : Hy — SLy(I3) is also
normalized by d.

Let a be an ideal of I§ projecting to ap C U(po,p1g). By Proposition 4.7 applied to po we obtain that
the map U(po) — U(po,prg) is surjective, so the Z,-module a N U(po) also surjects to ap. Since Ap g is
local we can apply Nakayama’s lemma to the Ay g-module Ay o(a N U(py) to conclude that it coincides
with a. Hence a C Ay - U(po), so the Ap o-span of U(py) contains a Ay, o-lattice in I§. O

We show that Proposition 4.21 is true if we replace pg by p|g. This is done in [La, Prop. 4.2] for an
ordinary representation by using the description of subnormal sugroups of GLg(I°) presented in [Taz].
We will also follow this approach, but since we cannot induce a Aj g-module structure on the unipotent
subgroups of G we need a preliminary step. For a subgroup G C GLo(If) define G=grn (1+pMy(I5)).
Let G0 be the subgroup of GLo(I°) generated by the set {g*: g € (5, A € Apo} where g* = exp(Alog g).
We have the following.

Lemma 4.22. The group GAro contains a congruence subgroup of SLa(I§) if and only if both the unipo-
tent subgroups GN UL (I§) and G NU_(I§) contain a basis of a Apo-lattice in I§.

Proof. It is easy to see that G N U4 (I§) contains the basis of a A, o-lattice in I if an only if the same is

true for G N U, (I§). The same is true for U_. By a standard argument, used in the proofs of [Hi, Lemma

2.9] and [La, Prop. 4.3], GA»0 C GLy(I3) contains a congruence subgroup of SLy (I5) if and only if both its

upper and lower unipotent subgroup contain an ideal of I5. We have U (I5) N G0 = Ay, o(G N UL (I3)),
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so by Lemma 4.20 U, (I5) N GA»0 contains an ideal of I§ if and only if G N U, (I3) contains a basis of a
Ap o-lattice in I§. We proceed in the same way for U_. O

Now let Gy = Imp|g, G = Impy. Note that Gy N SLy(I§) is a normal subgroup of G. Let f :
GLy(TI3) — SLy(I3) be the homomorphism sending g to det(g)~'/2g. We have G' = f(Gy) by definition
of pg. We show the following.

Proposition 4.23. The subgroups Go N Ux(I§) both contain the basis of a Ay o-lattice in I§ if and only
if GNUL(I§) both contain the basis of a A, o-lattice in I§.

Proof. Since G = f(Gy) we have G = f(éa) This implies GAro = f(CTOAh'O). We remark that

— Ay, . —— A, —~ An,
Go "’ NSLy(I3) is a normal subgroup of GA»0. Indeed Gy NSLy(I3) is normal in Go
F(G™ N SLy(I3)) = Go™° N SLy(I3) is normal in f(GA™°) = GAro,

By [Taz, Cor. 1] a subgroup of GLa(I§) contains a congruence subgroup of SLy(I§) if and only

if it is subnormal in GL2(I§) and it is not contained in the subgroup of scalar matrices. We note that
—~ An,o

Go ' NSLe(I§) = (GN()QSLQ(HS))A’“O is not contained in the subgroup {£1}. Otherwise also CTOOSLQ(HS)
would be contained in {+1} and Im p N SLy(I3) would be finite, since Gy is of finite index in G¥. This
gives a contradiction: indeed if %P is an arithmetic prime of I° of weight greater than 1 and P’ = P NI§,
the image of p modulo 3’ contains a congruence subgroup of SLa(I$ /') by the result of [Ri2].

0 . .
, SO 1ts Image

—~ An, . ~ .
Now since Gy N SLy(I3) is a normal subgroup of G*»¢, we deduce by Tazhetdinov’s result that
—~ Ano

Ay ~
Go "’ NSLy(13) (hence Gy ") contains a congruence subgroup of SLy(I9) if and only if G20 does. By
applying Lemma 4.22 to G = Gy and G = G we obtain the desired equivalence. ([

By combining the above proposition with Proposition 4.21 we obtain the following.
Corollary 4.24. The Ap o-span of each unipotent subgroups Im p N Uy contains a Ay, o-lattice in I§.

Unlike in the ordinary case we cannot deduce from the corollary that Im p contains a congruence
subgroup of SLa(I§), since we are working over Aj, # A and we cannot induce a Ap-module structure
(not even a A-module structure) on Im p N Ux. The proofs of [Hi, Lemma 2.9] and [La, Prop. 4.3] rely
on the existence in the image of Galois of an element inducing by conjugation a A-module structure
on Imp N Uyg; in their situation this is predicted by the condition of Galois ordinarity of p. In the
non-ordinary case we will find an element with a similar property via relative Sen theory. In order to do
this we will need to work with a suitably defined Lie algebra rather than with the group itself.

5. RELATIVE SEN THEORY

We recall the notations of Section 3.1. In particular rp, = p~°», with s, € Q, is the h-adapted
radius (which we also take smaller than p_ﬁ), Ny, is an element in C, of norm 4, Kp = Qpu(n) and
Oy, is the ring of integers in Kj. The ring Ay of analytic functions on the open disc B, = B(0,r},)
is identified to Oy[[t]]. We take a sequence of radii r; = p~*»~!/* converging to r;, and denote by
A, = Kp(t, X;)/(pX; — t") the Kp-algebra defined in Section 3.1 which is a form over K}, of the C,-
algebra of analytic functions on the closed ball B(0,7;) (its Berthelot model). We denote by A7 the
Op-subalgebra of functions bounded by 1. Then A;, = @11 A7, where A7 — A7 for i < j is the
restriction of analytic functions.

We defined in Section 4.1 a subring I§ C I°, finite over A, o C Ap. For r; as above, we write
A5, = Knolt, Xi)/(pX; — t') with maps A3, — Af, for i < j, so that Apo = im Af,. . Let
I2 =1°®4, A2 and [§ . = I3®4, ,A§ ., both endowed with their p-adic topology. Note that (I2)" =1 .

Consider the representation p : Gg — GL2(I°) associated with a family 6 : T;, — I°. We observe that
p is continuous with respect to the profinite topology of I° but not with respect to the p-adic topology.
For this reason we fix an arbitrary radius r among the r; defined above and consider the representation
pr : Gg — GLa(I2) obtained by composing p with the inclusion GLa(I°) < GL2(I?). This inclusion is
continuous, hence the representation p, is continous with respect to the p-adic topology on GLy(I5 ,.).

Recall from Proposition 4.13 that, after replacing p by a conjugate, there is an open normal subgroup
Hy C Gg such that the restriction p|g, takes values in GLy(I§) and is (Ho, Z,)-regular. The restriction
pr| o, then gives a representation Hy — GLg (]I&r) which is continuous with respect to the p-adic topology
on GLQ(HSJ.).
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5.1. Big Lie algebras. Fix a decomposition group G, C Gg at p. Let G, and G'°° be the images
respectively of Hy and G}, N Hy under the representation p,|m,: Ho — GL2(If ). Note that they are
actually independent of 7, since they coincide with the images of Hy and G, N Hy under p.

For any ring R and ideal I C R we denote by I'qr,(r)({) the GLz-congruence subgroup consisting
of elements g € GLa(R) such that g = Idy (mod I). Let G} = G, NTar,ag ) (p) and G°° = Gy*° N
Tar, (IS,r)(p)’ so that G!. and G%:'°¢ are pro-p-groups. Note that the congruence subgroups Lar, 1., (™)
are open in GLa(Ip,) for the p-adic topology. In particular G/ and G2°¢ can be identified with the
image under p of the absolute Galois group of a finite extension respectively of Q and Q,.

Remark 5.1. We remark that we can choose an arbitrary ro and set, for any r, G, = GTOFGLz(H&TO)(p),
which is independent of r since G, is. In particular it is a pro-p and finite index subgroup of G, for any
r. We can identify it to the image under p, (and p) of an open subgroup of Gg which is independent of
r. This will be important in Section 7.1, where we will take projective limits over r of various objects.

We set Ao = A ,[p~!] and Lo, =I5 .[p~*]. We consider from now on G, and G} as subgroups of
GLa(Iy,-) through the inclusion GLo(I§ ,.) < GLa(Io,,)-

We want to define big Lie algebras associated with the groups G’. and G%'°°. For any non zero ideal
a of the principal ideal domain Ay ,, we denote by G;,a and Glr(fﬁ’/ the images respectively of G and
G!°%" under the natural projection GLg(Ip,) — GLa(Ip,/aly ). The pro-p groups G, and Glffﬁ’/ are
topologically of finite type, so we can define the corresponding Q,-Lie algebras $), o and .V)}f’fl using the
p-adic logarithm map: )., = Q, - Log G/, , and $'°¢ = Q, - Log G;%". They are closed Lie subalgebras
of the finite dimensional Q,-Lie algebra M (I ,/aly ).

Let B, = lim (a,P)=1 Apr/a- Ap, where the inverse limit is taken over non zero ideals ideals a C Ay,
prime to P; = (u=}(147T) — 1) (the reason for excluding P; will become clear later). We endow B, with
the projective limit topology coming from the p-adic topology on each quotient. We have a topological
isomorphism of K}, o-algebras

Br = H (AO,r)p
P£P,

—

where the product is over primes P and (Ag,)p, = mle Ap,r/P™Ay, denotes the Kj, o-Fréchet

space inverse limit of the finite dimensional K, o-vector spaces Ag,/P™Aj,. Similarly, let B, =

im (a.Py)=1 Iy, /aly -, where as before a varies over all non-zero ideals of Ag, prime to P;. We have
41 )=
B, = | | (HO,r)pHOJ, = I I (HO,T)rp

P#P; PPy

where the second product is over primes P of I, and (f()\ﬂ‘)fp denotes the projective limit of finite
dimensional K}, g-algebras (endowed with the p-adic topology). The last isomorphism follows from the

—

fact that Iy, is finite over Ao, so that there is an isomorphism lp, @ (Ao,,) p = Hqs (HO,r)gp where P is
any prime of Ay, and ‘P varies among the primes of Iy, above P. We have natural continous inclusions
Ao = B, and Iy, — B,, both with dense image. The map Ag, < Iy, induces an inclusion B, — B,
with closed image. Note however that B, is not finite over B,. We will work with B, for the rest of this
section, but we will need B, later.

For any a we have defined Lie algebras $, o and f;‘rog associated with the finite type Lie groups G7. ,

and GITOSI We take the projective limit of these algebras to obtain Lie subalgebras of My(B,.).

Definition 5.2. The Lie algebras associated with G'. and G'°*' are the closed Lie subalgebras of Ma(B,.)
given respectively by
S, = lm $a
(a,P1)=1
and
9= lm 97
(a,P)=1
where as usual the products are taken over non zero ideals a C Ag, prime to P.
For any ideal a prime to P;, we have continuous homomorphisms §,, — ;. and floe — ﬁlrog Since

the transition maps are surjective, these homomorphisms are surjective.
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5.2. The Sen operator associated with a Galois representation. Recall that there is a finite
extension K/Q, such that G%'°¢ is the image of p|Gal(?/K) and, for any ideal P C Ap, and any m > 1,
Glrolcpin is the image of pr pm|g. 7, k). Following [Sel] and [Se2] we can define a Sen operator associated
with pT\Gal(?/K) and ,OT’Pm|Ga1(?/K) for any ideal P C Ay, and any m > 1. We will see that these
operators satisfy a compatibility property. We write for the rest of the section p, and p, pm while
implicitly taking the domain to be Gal(K /K).

We begin by recalling the definition of the Sen operator associated with a representation 7 : Gal(K /K) —
GL;,,(R) where R is a Banach algebra over a p-adic field L. We follow [Se2]. We can suppose L C K if
not we just restrict 7 to the open subgroup Gal(K/KL) C Gal(K/K).

Let Lo be a ramified Z,-extension of L. Let v be a topological generator of I' = Gal(L /L),

I, C T the subgroup generated by v*" and L, = L;st, so that Lo = UpL,. Let L), = L,K and
G, = Gal(L/L.,). If R™ is the R-module over which Gal(K/K) acts via 7, define an action of Gal(K/K)
on R®1,C, by letting o € Gal(K/K) map z®y to 7(0)(x) @ a(y). Then by the results in [Sel] and [Se2)]
there is a matrix M € GL,, (R@LCP), n > 0 and a representation ¢ : T';, = GL,,(R ®r, L)) such that
for all o € G), we have

M7 (0)o(M) = §(0)

Definition 5.3. The Sen operator associated with T is
_ log(6(o))
o—1log(x(0))
log(5(a))
log(x(c))
that ¢ does not depend on the choice of § and M. o
If L =R = Q, we define the Lie algebra g associated with 7(Gal(K/K)) as the Q,-vector space

generated by the image of the Log map in M,,,(Q,). In this situation the Sen operator ¢ associated with
7 has the following property, which will be essential in the following.

€ M, (R@)L(Cp)

The limit exists as for o close to 1 the map o — is constant. It is proved in [Se2, Sec. 2.4]

Theorem 5.4. [Sel, Th. 1] For any continuous representation 7: Gx — GL,,,(Q,), the Lie algebra g
of the group T7(Gal(K/K)) is the smallest Q,-subspace of M,,(Qp) such that g@C,, contains ¢.

This theorem is valid in the absolute case above, but relies heavily on the fact that the image of Galois
is a finite dimensional Lie group. In the relative case, it is doubtful that its proof can be generalized.

5.3. The Sen operator associated with p,. Set Iy, c, = HO’TQAKJKM(CP. It is a Banach space for the
natural norm. Let B, c, = ]Br@Kh,,OCp; it is the topological C,-algebra completion of B, ®, , C, for the
(uncountable) set of nuclear seminorms p, given by the norms on lo,rc, / allp,»,c, via the specialization
morphisms 74: B, @k, , C, — ]Io,r,(cp/ﬂ]lo,r,ccp- Let 9;.a,c, = 9,0 @k, , Cp and 5'31;,)3,@) = ﬁlrog ®Ky.0 Cp-
Then, we define 9, ¢, = 5r®Kh,,o C,, as the topological Cj-Lie algebra completion of ), ®, , C, for the
(uncountable) set of seminorms p, given by the norms on $), 4, and similar specialization morphisms
Ta: 9r, Ok, 0 Cp — Hrac,- We define in the same way 5’)?&? in terms of the norms on 531;,)3,@,; Note

that by definition, we have
ﬁr,Cp = ]&n ﬁr,a,va and 'ﬁ}f:((cjp = 1&1 ﬁ%«?;cp-

(a,P1)=1 (a,P1)=1

We apply the construction of the previous subsection to L = Kp o, R = Iy, which is a Banach
L-algebra with the p-adic topology, and 7 = p,. We obtain an operator ¢, € M(loc,). Recall that
we have a natural continous inclusion Iy, < B,., inducing inclusions o ,c, < B,c, and Mz(lo,.c,) —
M;(B,c,). We denote all these inclusions by ¢g, since it will be clear each time to which we are referring.
We'll prove in this section that g, (¢,) is an element of ﬁifj(%p.

Let a be a non zero ideal of Ag,. Let us apply Sen’s construction to L = K} 9, R = o, /aly, and
T = pra: Gal(K/K) — GLx(Iy - /alp ); we obtain an operator ¢, , € MQ(HO,T/G]IQ’T@K}LOCP).

Let

o : Ma(lor @i, ,Cp) = Ma(lor/alo, B, ,Cp)
and
75 GLa(Io+®k, ,Cp) = GLa(lo,+/aly Bk, ,Cp)

be the natural projections.
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Proposition 5.5. We have ¢, o = wa(¢py) for all a.

Proof. Recall from the construction of ¢, that there exist M € GLg (H07r7¢;p), n>0andd: T, —
GLQ(]I(M@K}L‘OK;L’O’“) such that for all o € G/, we have

(4) M~ pp(o)o(M) = 6(0)
and
(5) ¢, = lim log(é(a))

o1 log(x(0))
Let My = 7 (M) € GLa(Ig ¢, /alo,rc,) and §q = 7 06 : ')y — GLa2((Io,/alo )k, o5, 0.n) Denote
by ¢rq € M2((Hoyr/aﬂom)@’Kh,oK;/z,om) the Sen operator associated with p, 4. Now (4) gives

(6) M7 pra(0)o(Ma) = 8a(0)

so we can calculate ¢, 4 as

log(da(0))
7 bra = lim —o0\ 7))
g 2 Tog(x(@))
By comparing with (5) we see that ¢, q = 7q(ér). O

M3 (R®1C,)

Let ¢, B, = B, (¢r). For any non zero ideal a of Ay, let 7p, o be the natural projection B, — I T/a]IO -
Clearly g, o(érB,.) = Ta(¢r) and ¢q = ma(¢y) by Proposition 5.5, so we have ¢, p, I&H(a Piy=1 Or.a
1) —
We apply Theorem 5.4 to show the following.
Proposition 5.6. Let a be any non zero ideal of Ao prime to Pi. The operator ¢, o belongs to the Lie

algebra Sﬁlﬁg’cp.

Proof. Let n be the dimension over Q, of Iy ,./aly,; by choosing a Q,-basis (w1, ...,w,) of this algebra,
we can define an injective ring morphism « : Ms (I ,./alp ) < M2, (Q,) and an injective group morphism
% GL2(Ip,/Qlp,-) = GL2y, (Q,). In fact, an endomorphism f of the (Iy ,-/aly ,-)-module (Io . /aly - )? =
(Io,r/aly ) - e1 B (Lo /aly ) - €2 is Qp-linear, so it induces an endomorphism «(f) of the Q,-vector space
(Io,,/alp )% = @D, ; Qp - wiej; furthermore if o is an automorphism then a(f) is one too. In particular
Pr.a induces a representation pf, = a* o p,.q : Gal(K/K) — GL3,(Q,). The image of p?, is the group
GYo® = a*(G%). We consider its Lie algebra 920 = Q, - Log (G9®) C My, (Q,). The p-adic
logarithm commutes with o in the sense that a(Logz) = Log (o (x)) for every = € I'y /a1, (), s0 We

have $,70% = a(H1°) (recall that HI°¢ = Q, - Log GI%).
Let ¢&, be the Sen operator associated with p&, : Gal(K/K) — GL2,(Q,). By Theorem 5.4 we have
. € .6:"028 = 5L°§ “®C,. Denote by ac, the map a®1: My (T, rc, /0o rc,) = M2, (Cp). We show

loc,acp

that qﬁna = ac, (¢r,a), from which it follows that ¢, € f_) aC, since 9, c,’ =ac, (53%2;37@?) and ac, is
a\,

injective. Now let M, d, be as in (6) and Mg = Oz(cp(Ma), da © = ac, 0 64. By applying ac to (4) we
obtain (Mg *) ™ ppd (0)a(Mg ™) = 84 7 () for every o € G, so we can calculate

acp li Log(dgcp (U))

" e Tog(x(0)
which coincides with ac, (¢ a)- O

Proposition 5.7. The element ¢, g, belongs to 5'3100

Proof. By definition of the space 551% as completion of the space $!°¢ ® Kn.o Cp, for the seminorms p,

loc loc

given by the norms on i, ¢, We have .V)loc @(a PO=1 a, C, By Proposition 5.5, we have ¢, 5, =
L ¢r.a and by Proposition 5.6 we have for any a, ¢rq € Hr,a,c,. We conclude that ¢.p, € ﬁloc O

Since f)if?(f:p C $rc, we also have ¢, 5, € H,c,-

From now on we identify Iy ¢, with a subring of B,.c, via tp,, so we also identify Ms(Io,,) with a
subring of Ms(B,) and GL2(Ilo,c,) with a subgroup of GLa(B,.c,). In particular we identify ¢, with
érp, and we say that ¢, € H,.c, N Ma(lorc,). Now consider ®, = exp(¢,) € GLa(loc,). Since
ér € 9 c, the matrix ®, normalizes 9, c, .
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5.4. The characteristic polynomial of the Sen operator. Sen proved the following result.

Theorem 5.8. Let Ly and Lo be two p-adic fields, and let C, = L. Let us assume for simplicity that
Ly contains the normal closure of L. Let 7 : Gal(L1/Ly) — GLy,(L2) be a continuous representation.
For each embedding o: L1 — Lo, we have a Sen operator ¢, , € Mp,(Cp, ®p, » L2) associated to 7 and
o. If T is Hodge-Tate with o-Hodge-Tate weights hi o,..., hpm s (with multiplicities, if any), then the
characteristic polynomial of ¢r o is [11-1 (X — hig).

Now let k € N and P, = u*(1 + T) — 1 be the corresponding arithmetic prime of Apr. Let
P a prime of I above P, associated with the system of Hecke eigenvalues of a classical modular
form f. Let p : Gg — GL2(I,) be as usual. The specialization of p modulo P is the representation
pr: Gg — GLa(I./B) classically associated with f, defined over the field Ky = I,./BL,. By a theorem
of Faltings [Fa], when the weight of the form f is k, the representation py is Hodge-Tate of Hodge-
Tate weights 0 and k — 1; hence, by Th. 5.8 the Sen operator ¢ associated with p; has characteristic
polynomial X (X — (k—1)). Let By = P Nly,. With the notations of the previous subsection, the
specialization of p, modulo Py s gives a representation pq,, : Gal(K/K) — GLz(Io/FBys,0), which
coincides with pg|q. 7/ x)- In particular the Sen operator ¢, g, , associated with p,.g, , coincides with
¢r-
By Proposition 5.5 the Sen operator ¢, € Ms(lp,) specializes modulo QIy, to the operator ¢, g
associated with p, g for any primary ideal @} of Ap,. In the exact same way we can show that it
specializes to p, g, , for a prime Py o C .o as above. The characteristic polynomial of its Sen operator
Grop;o 18 X(X — (k—1)) . Since the primes of the form By o are dense in I, ¢ the eigenvalues of p.y,
can be interpolated in a unique way. The two elements obtained via this interpolation are the eigenvalues
of ¢r.q. In particular we deduce the following.

Proposition 5.9. The eigenvalues of the matriz ®, = exp ¢, are u=(1+T) and 1. In particular ®, is
a conjugate in GLy(By.c,) of the diagonal matriz Cr with entries w=*(1+T) and 1.

Remark 5.10. The second assertion in the proposition is true because in the definition

B, = &lﬂ HO,'r/a]IO,r
(a,P1)=1
we have asked that a is prime to Py. Indeed, the difference of the eigenvalues of ®, is the generator
w Y (1+T) —1 of P1, which is invertible in B,.

6. EXISTENCE OF THE (GALOIS LEVEL FOR A FAMILY WITH FINITE POSITIVE SLOPE

Let r, € pQﬁ]O,pfp%l] be the radius chosen in Section 3. Recall that $),. C M3(B,) is the Lie algebra
attached to the image of p, (see Definition 5.2) and $¢,rc, = H,®C,. Let ut, resp. ué[p, be the upper
and lower nilpotent subalgebras of $;, resp. of 9,.c,.

Remark 6.1. The commutative Lie algebra u™ is independent of r because it is equal to Q,-Log(U (1) N
G!) which is independent of r, provided ro < r < rp.

We fix 79 € p@N]0, r,[ and we work from now on with 79 < r < 7. All subsequent rings in this section
are indexed by r, with > r5. As in Remark 5.1, this fixes a finite extension of Q corresponding to the

inclusion G}, C G,. For r < v’ we have a natural inclusion Iy, < Iy ,. Since B, = EL“(ap )=1 To,r/allo,r
)=

this induces an inclusion B,, < B,.. We will consider from now on B, as a subring of B, for any r < r’.
We will also consider My (Il c,) and My (B,) as subsets respectively of M(lo,c,) and Ma(B,). These
inclusions still hold after taking completed tensors with C,.

For r <’ the maps A, — A, and Iy ,» < Iy, induce injections B, — B,. We identify B,» with a
subring of B, (so every B, is a subring of B,,).

Recall that ¢, € Ma(lo,c,) is the Sen operator associated with p, and ®, € GL(I,.) is its exponential.
The operator ¢, is independent of r in the following sense: if r < r’ < 7}, and Ls.c, — I.c, is the natural
inclusion then the image of ¢, under the induced map My (I,v c,) = Ma(lo,rc,) is ép.

We deduce that the exponential @, is also independent of 7 (in the same sense).

By Proposition 5.9, for any r < 7, we see that there exists an element 3, € GL2(B,.c,) such that
Br-®,.81 = Cr. Since ®, normalizes 9rc,, Or = B-®B;71 normalizes ﬁrﬁncpﬁr_l .

We denote by 4* the upper and lower unipotent subalgebras of sly. The action of C7 on Hrc, by
conjugation is semisimple and we can decompose 3,9.c, 3, ! as a sum of eigenspaces for Cr:

ﬂ?‘ﬁr,@pﬂ;l = (@«»@gcpﬂfl) [1} S2) (ﬂrﬁ?‘,cpﬁyjl) [uil(T =+ 1)] D (/Br@r,(cpﬁfl) [U(T + 1)71]
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with
(Brﬁr,(cpﬁr_l) [u_l(T + 1)] C u+ (BT,CP) and (ﬁrﬁr,(cpﬁr_l) [U(T + 1)_1] cu- (BKCP)
Note that (8,9rc, ;") [u™ (T +1)] # 0 and (8,9, 87 ") [u(T +1)7] # 0 because otherwise 9, ¢,
would be solvable, and this is not the case as $3, N U* # 0 by the approximation lemma.
Moreover, the formula

<u1(10+T) 2)(3 i)(ul(lo—kT) 2)‘1:((1) u1(11+T))\)

shows that the action of C7 by conjugation coincides with multiplication by u=!(1 + 7). By linearity
this gives an action of the polynomial ring C,[T] on 3,9.c, 5, Loyt (Br.c,), compatible with the action
of C,[T] on il"‘(IB%T)Cp) given by the inclusions C[T] C Anoc, C Brc, C B.c,. Since C,[T7] is dense
in Ay o,c, for the p-adic topology, it is also dense in B,.c,. Since $),c, is closed in My(B, c,), we can
define by continuity a structure of B¢, -module on 3,9, c, 8, LAyt (Br,cp), compatible with that on
UT(Bc,). Similarly we have

(757 ) (74T 2 (b )

We note that 1+7 is invertible for the p-adic topology in Ag , since T = p**t where 1}, = p~*». Therefore
Crp is invertible and by twisting by (1 +T) — (1 +T)~! we can also give 3,9,c,B8, ' NU™ (B,.c,) a
structure of B, c,-module compatible with that on ™ (Br,cp)~

By combining the previous remarks with Proposition 4.24, we prove the following ’fullness’ result for
the big Lie algebras $),..

Theorem 6.2. There exists a non-zero ideal | of Iy independent of r < 1, such that for any such r the
Lie algebra 9, contains - sly(B,.).

Proof. Since U%(B,) = B,, we can and shall identify ut = Q, - LogG’. N 4 (B,) with a Q,-vector
subspace of B, (actually of Iy), resp. ugp with a Cp-vector subspace of B, c,. We repeat that these
spaces are independent of r since G. is, provided ro < r < r, (see Remark 5.1). By Proposition 4.24,
u* N1y contains a basis {e; + }ier for Q(Ip) over Q(Ano). The set {e; +}icr C ut is a basis for Q(I)
over Q(Ap0), so ut contains the basis of a A g-lattice in Iy. By Lemma 4.20 we deduce that the span
Ah,0u+ contains an ideal at of Iy. Hence we also have Br,cpugp ) BT’(CP at. Now a™ is an ideal of I and
B,c,loc, = B.c,, so B.c,at = a™B, ¢, is an ideal in B,.c,. We conclude that B¢, -u™ D a*B,c,
for a non zero ideal a™ of Iy. We proceed in the same way for the lower unipotent subalgebra, obtaining
B¢, -u” D a B, c, for some non zero ideal a~ of Io.

Consider now the Lie algebra B, c, 9c, C MQ(BT,(CP). Its unipotent subalgebras are B,.,cpu“' and
B,.c,u, and we showed B, c,ut D a*B, ¢, and B, c,u” D a B, c,. Denote by t C sly the subalgebra
of diagonal matrices over Z. By taking the Lie bracket, we see that [{*(a*B,.c ), U (a”B,c,)] spans
at-a”t(B,c,) over By c,. We deduce that B,.c ¢, D at-a7sly(B,c,). Let a =a™-a”. Now a-slx(B,c,)
is a B, c,-Lie subalgebra of sly(B,c,). Recall that 3, € GL2(B, c,); hence by stability by conjugation
we have (3, (a 10 (Br,cp)) Bl =a- sl (Brc,). Thus, we constructed a such that B, c, (@J)T,Cpﬁ;l) D

a-sly(B,.c,), In particular, BT’CPUE;’B " D aBc¢, for both signs. By the discussion preceding the proposition
the subalgebras uaﬂ " have a structure of B, c,-modules, which means that uaﬂ = Br,cpuaﬂ ". We

conclude that uaﬁ "D By (a-iljE (]B,.@p)) B! for both signs, so by the usual argument of taking the

bracket, we have (3,.9.c,B3, ) a25[2(BT7(Cp). We can then untwist by the invertible matrix 3, to
conclude that for [ = a?, we have $,¢, D [-sly(B,c,).

Now let us get rid of the completed extension of scalars to C,. For any ideal a C Iy not dividing P,
let ;o be the image of §, in M>(Iy/a)ly, ; consider the two finite dimensional Qp-vector subspaces
Hra and [-slo(Io . /aly ) of gly(Ip/a). After extending scalars to C,, we have

[- S[Q(Hoyr/al[o’r) ® (Cp C f)r,a & (Cp
Therefore, we have
[- 5[2 (HO,T/Q]IO,T) C ~6r,u
By taking projective limit over a, we conclude

[- 5[2(Br) C Y)r
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Definition 6.3. The Galois level of the family 6 : Ty, — 1° is the largest ideal ly of ]Io[Pfl] such that
Hr Dl sla(B,).

It follows by the previous remarks that [y is non-zero.

7. COMPARISON BETWEEN THE GALOIS LEVEL AND THE FORTUITOUS CONGRUENCE IDEAL

Let 6 : T;, — I° be a family. We keep all the notations from the previous sections. In particular
p: Gg — GLo(I°) is the Galois representation associated with 6. We suppose throughout this section
that p| g, is irreducible and that the restriction of p to Hy takes values in GLy(I§). As noted in Remark
5.1 we can replace Hy by a finite index subgroup H such that the image of p|g is a pro-p-group. Recall
that I = I°[p~!] and I¢, = I®, C,. Recall that Py is the prime of Ay o generated by (u*(1+T) — 1).
Let ¢ C I be the congruence ideal associated with 8. Set ¢g = ¢ N1y and ¢; = ¢olly [Pl_l]. Let =1y C I
be the Galois level associated with 6. Recall that this ideal is prime to P;. For an ideal a of Io[P; '] we
denote by V(a) the set of prime ideals of Iy[P; ] containing a. We show the following.

Theorem 7.1. Suppose that that there exists no pair (F,v) where F is a real quadratic field and v :
Cal(F/F) — F* is a character, such that b : Gg — GLy(F) = Ind%¢. Then in Specly[P; '] we have
V() =V(e1).

Before giving the proof we make some remarks. Let P be a prime of Iy and @) a prime factor of PI.
We have a representation py g : Gg — GL2(I/Q) obtained by reducing p : Gg — GL2(I) modulo Q. Its
restriction prg|m takes values in GLo(Io/(Q N1y)) = GLa(Iy/P) and coincides with the reduction pp of
pla : H — GL2(Ip) modulo P. In particular prg|q is independent of the chosen prime factor @ of PIL.

We say that a subgroup of GLa(A) for some algebra A finite over a p-adic field K is small if it admits
a finite index abelian subgroup. Let P, @ be as above, Gp be the image of pp : H — GLy(Ip/P) and
G1,o the image of prg : Gg — GL2(I/Q). By our previous remark pp coincides with the restriction
ply,@lH, so Gp is a finite index subgroup of Gy ¢ for any Q. In particular Gp is small if and only if Gy g
is small for all prime factors @ of PI.

Now if @ is a CM point the representation py ¢ is induced by a character of Gal(F'/Q) for an imaginary
quadratic field F. Hence Gt o admits an abelian subgroup of index 2 and Gp is also small.

Conversely, if Gp is small, G ¢ is small for any prime @’ above P. Choose any such @Q'; by the
argument in [Ril, Prop. 4.4] G, has an abelian subgroup of index 2. It follows that py ¢ is induced
by a character of Gal(F¢/Fg) for a quadratic field Fyy. If Fy is imaginary then Q' is a CM point. In
particular, if we suppose that the residual representation g : Gg — GL2(F) is not induced by a character
of Gal(F/F) for a real quadratic field F/Q, then F must be imaginary, hence Q' is CM. The above
argument proves that Gp is small if and only if all points Q' C T above P are CM.

Proof. We prove (i). By absurd, suppose that a prime P { P; of Iy contains ¢y but P does not contain
[. Then there exists a prime factor @ of PI such that ¢ C ). By definition of ¢ we have that Q) is a CM
point in the sense of Section 3.4, hence the representation py g has image contained in the normalizer of
a torus in GLy(I/Q). Then its restriction p; |y = pp has image contained in the normalizer of a torus
in GLy(Io/P). We deduce that there is no non-zero ideal J of I such that the Lie algebra ), p contains
J- 5[2 (BT)

Now by definition of [ we have [-sl3(B,.) C $,. Since reduction modulo P gives a surjection ) — $Hp,
by looking at the previous inclusion modulo P we find [-5ls(Iy ./ Plo.) C $, p. If [ ¢ P we have [/P # 0,
which contradicts our earlier statement. We deduce that [ C P.

We prove (ii). Let P C Iy be a prime containing [. Recall that Iy has Krull dimension one, so
kp =Ip/P is a field. Let Q C I be the P-primary component of [ and let a be an ideal of Iy containing
£ such that the localization at P of a/Q is one dimensional over xp. Let a and $, be the images of a
and £, under reduction modulo Q. Let s = a - sly(Ip - /Qlp ) N 9, Ca-sly (Io,-)/Qlp ). Note that s is
stable under the adjoint action Ad(p) of H, so we consider it as a Galois representation via Ad(p). By
the proof of Theorem 6.2 we can assume, by considering possibly a sub-Galois representation, that ), is
a B,-submodule of sl3(B,) containing [ - sl(B,) but not a - sla(B,.) for any a strictly bigger than [. This
allows to speak of the localization sp of s at P. The localization at P of a - sly(Iy . /Qlo ) is sla(kp), so
sp is contained in sly(kp). It is a kp-submodule of rank at most 3 stable for the action of H via Ad(pp),
where pp : H — GLa(Iy/P) denotes the reduction of p|y modulo P.

Note that, since £ is the P-primary component of [ and ap/Qp = kp, when P-localizing we find
Hrp D Qp-sly(B, p) and H, p 2 ap - sla(B, p).
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In order to get a contradiction, we study the xp-vector space sp.

We cannot have sp = 0. In this case we would obtain (ap -sla(B, p) N9, p)/Qp = 0. By Nakayama’s
lemma ap - sla(B,, p) N9, p = 0 which is absurd since ap - slo(B, p) N H, p D Qp - sla(B, p) # 0.

We also exclude the 3-dimensional case: indeed if sp = sla(kp), we would have by exchanging
the quotient with the localization (ap - slo(B, p) N H,p)/Qp = (ap - sla(lorp))/Qply, p, because
aplo . p/Qplorp = (lorpr/Qply, p) and this is isomorphic to kp. By Nakayama’s lemma we would
conclude that $,. p D a - sla(B, p), which is absurd.

We are left with the 1- and 2-dimensional cases. If sp is two-dimensional we can always replace it by
its orthogonal in sl3(xp) which is one dimensional; indeed the action of Gg via Ad(pp) is isometric with
respect to the scalar product Tr(XY) on sly(kp).

Suppose then that sly(kp) contains a 1-dimensional stable subspace. Let ¢ be a generator of this
subspace over kp. For any g € Gg there must be a character x : H — kp such that pp(g)ppp(g)~! =
x(9)¢. Let Fy be the finite extension of Q fixed by x and Gg, be its absolute Galois group. For
g € Gr, we have pp(9)¢pp(9)~" = ¢, so by Schur’s lemma we deduce that pplcy, acts by scalars,
so pp is induced by a character Gp, — (Ip/Plp)*. In particular the image of pp is small. By the
remarks preceding this proof, if @ C I is any primary component of PI then prg is induced by the
character of a quadratic field F;/Q (which will be a subfield of Fp). Since we supposed that the residual
representation pm, : Gg — GL2(F) is not of the form Ind%z/) for a real quadratic field F' and a character
¥ Gal(F/F) — F*, we deduce that F; must be imaginary. We conclude that @ is a CM point. By
construction of the congruence ideal we conclude that ¢ C @, hence ¢¢ C Q NIy = P. O

We prove two corollaries.
Corollary 7.2. If the residual representation p: Gg — GLo(F) is not dihedral then [ = 1.

Proof. Since p is not dihedral there cannot be any CM point on the family 6 : T, — I. By Theorem 7.1
we deduce that [ has no nontrivial prime factor, hence is trivial (recall that we are not considering the
prime P since [ C To[P;)). O

Remark 7.3. Theorem 7.1 gives another proof of Proposition 3.11. Indeed the CM points of a family
0 : Ty — I° correspond to the prime factors of its Galois level, which are finite in number.

We also give a partial result about the comparison of the exponents of each prime factor in ¢; and
[. This is an analogous of what is proved in [Hi, Th. 8.6] for the ordinary case; our proof also relies on
the strategy there. Denote by P any prime of Iy with P { P;. We denote by ¢ and [© the P-primary
components respectively of ¢; and [.

Theorem 7.4. Suppose that p is not induced by a character of Gg for a real quadratic field F/Q. We
have (¢©)2 C 1P C ¢P.

Proof. The inclusion [F' C ¢¥ is proved in the same way as part (i) of Theorem 7.1.

We show that the inclusion (¢©)2 C ¥ holds. If ¢ is trivial this reduces to Theorem 7.1, so we can
suppose ¢’ # 1. In particular P is a factor of ¢;, hence if P =B N1, [Pl_l] then P is a factor of ¢;. This
means that P is a CM point, so we have an isomorphism pp = Indgw for an imaginary quadratic field
F/Q and a character ¢ : Gp — C,. We keep the notations of the proof of Theorem 7.1. Consider the
Kk p-vector space s.p = 9, NcE - sly(Ip,.) /9O, NP P-sly(lp,.). We see it as a subspace of sly(kp) and it is
stable under the adjoint representation Ad(pp) : Gg — Aut(sla(kp)).

Let xr/q : Gg — C, is the quadratic character defined by the extension F//Q. Let € € Gg be an
element projecting to the generator of Gal(F/Q), ¢ : Gr — C) the character given by ¢(7) = Plere )
and ¥~ =1 /1¢. Since pp = Ind%q/} we have a decomposition Ad(pp) = xp/q © Ind?ﬁdf where the two
factors are irreducible. Now we have three possibilities for the Galois isomorphism class of s.r: either it
is Ad(pp) or it is isomorphic to one of the two irreducible factors.

If s, = Ad(pp), then s.p = sly(kp), and we proceed as in the proof of Theorem 7.1 to obtain
s.p = sly(kp). By Nakayama’s lemma $, O ¢ - sl5(B,.). This implies ¢ C [, hence ¢ = [ in this
case.

If s.r is one-dimensional then we proceed as in the proof of Theorem 7.1 to show that p.rp : Gg —
GL2(Io,/ ¢ P) is dihedral. We deduce that there exists a character ¢.rp : Gp — C, such that p.rp =
Ind?;iz/)cp p. This is a contradiction, since ¢ is the P-primary component of ¢;, hence it is the smallest
P-primary ideal a such that p, : Gg — GL2(Iy ,-/a) is induced by a character of Gp.
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We are left with the two-dimensional case. Suppose then that s.» = Ind%i/}‘. Let d = diag(dy,ds) €
p(Gg) be the image of a Z,-regular element. The image of d modulo P is a nontrivial diagonal element
dp = diag(dy p,da2,p) € pp(Gg), since d; and dy are nontrivial modulo the maximal ideal of I§. We
decompose s.» in eigenspaces for the adjoint action of dp as s.r[a]®s» [1]Bs.»[a!], where a = dy p/d> p.
Now s.r[1] is contained in the diagonal torus, on which the adjoint action of G is given by the character
XF/q- Since x /g does not appear as a factor of s.» we must have s.»[1] = 0. This implies that s5.r[a] # 0
and s.r[a~1] # 0. Since s.r[a] = s.»r NuT(kp) and s.r[a!] = s.r Nu~(kp) we deduce that s.» contains
nontrivial upper and lower unipotent elements %" and @~. Then @' and u~ are the images of some
elements u™ and u~ of ), N ¢? - sly(Ip,.) which are nontrivial modulo ¢ P. The Lie bracket ¢ = [u™, u~]
gives an element in $, N t(Io,) (where t denotes the diagonal torus) and ¢ is nontrivial modulo (¢f)2P.
Hence the kp-vector space s(cry2 = 9, N ()2 - sla(lorc,)/Hr N (¢7)2P - sly(Ig,rc,) contains nontrivial
diagonal, upper and lower unipotent elements, so it is three-dimensional. As before we can conclude
with Nakayama’s lemma that $, D (¢©)? - sly(I,.), so (¢©)2 C IF. O
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