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Received: date / Accepted: date

Abstract This paper sheds new light on regularity of multifunctions through various characterizations of directional

Hölder/Lipschitz metric regularity, which are based on the concepts of slope and coderivative. By using these charac-

terizations, we show that directional Hölder/Lipschitz metric regularity is stable, when the multifunction under consid-

eration is perturbed suitably. Applications of directional Hölder/Lipschitz metric regularity to investigate the stability

and the sensitivity analysis of parameterized optimization problems are also discussed.
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1 Introduction

Throughout the last three decades, metric regularity has been significantly developed and has become one of the

central concepts of modern variational analysis.The terminology “metric regularity” was coined by Borwein [1], but

the roots of this notion can be traced back to the classical open mapping theorem and its subsequent generaliza-

tion to nonlinear mappings known as the Lyusternik-Graves theorem. The theory of metric regularity is extraordi-
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nary useful for investigating the behavior of solutions of a nonlinear equation under small perturbations of the data,

or more generally the behavior of the solution set of generalized equations associated with a set-valued mapping.

As a result, metric regularity plays an important role in many aspects of optimization, differential inclusions, con-

trol theory, numerical methods and in many problems of analysis. According to the long history of metric regular-

ity there is an abundant literature on conditions ensuring this property. We refer the reader to the basic monographs

[2, 3, 4, 5, 6], to the excellent survey of A. Ioffe [7] (in preparation) and to some (non exhaustives) references

[1, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25].

Apart from the study of the usual (Lipschitz) metric regularity, Hölder metric regularity or more generally nonlinear

metric regularity have been studied over the years 1980−1990s by several authors, including for example Borwein and

Zhuang [1], Frankowska [16], Penot [25], and recently, for instance, Frankowska and Quincampoix [17], Ioffe [26], Li

and Mordukhovich [27], Oyang and Mordukovhich [28].

Recently, several directional versions of metric regularity notions were considered. In [29, 30], Arutyunov et al

have introduced and studied a notion of directional metric regularity. This notion is an extension of an earlier notion

used by Bonnans and Shapiro [10] to study sensitivity analysis. Later, Ioffe [31] has introduced and investigated an

extension called relative metric regularity which covers many notions of metric regularity in the literature. In particular,

another version of directional metric regularity/subregularity has been introduced and extensively studied by Gfrerer

in [32, 33] where some variational characterizations of this concept have been established and successfully applied to

study optimality conditions for mathematical programs. In fact, this directional regularity property has been earlier used

by Penot [34] to study second order optimality conditions. In the line of the directional version of metric subregularity

considered by Gfrerer [32], Huynh, Nguyen and Tinh [35] have studied directional Hölder metric subregularity in order

to investigate tangent cones to zero sets in degenerate cases.

It is our aim in the present article to study a directional version of Hölder metric regularity. The structure of the

article is as follows. In the Section 2, we establish slope-based characterizations of directional Hölder/Lipschitz met-

ric regularity. In Section 3, we present a stability property for directional Lipschitz metric regularity. In Section 4, a

sufficient condition for directional Hölder/Lipschitz metric regularity based on the Fréchet coderivative is established

in Asplund spaces. This condition becomes necessary when, either the multifunction under consideration is convex, or

when considering directional Lipschitz metric regularity. It was silmultaneously showed that under this condition, di-

rectional Hölder/Lipschitz metric regularity persists when the multifunction is perturbed by a Hadamard differentiable

mapping. Applications to the study of the stability and the sensitivity analysis of parameterized optimization problems

are discussed in Section 4. The last section contains concluding remarks.
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2 Notations and Preliminaries

Throughout we let X and Y denote metric spaces endowed with metrics both denoted by d(·, ·). We denote the open and

closed balls with center x and radius r > 0 by B(x,r) and B̄(x,r), respectively. For a given set C, we write intC for its

topological interior. A set-valued mapping (also called multifunction) F : X ⇉ Y is a mapping assigning, to each point

x ∈ X , a subset (possibly empty) F(x) of Y . We use the notations

gph F := {(x,y) ∈ X ×Y : y ∈ F(x)} and Dom F := {x ∈ X : F(x) 6= /0}

for the graph of and the domain of F , respectively. For each set-valued mapping F : X ⇉ Y , we define the inverse of

F , as the mapping F−1 : Y ⇉ X defined by F−1(y) := {x ∈ X : y ∈ F(x)}, y ∈ Y} and satisfying

(x,y) ∈ gph F ⇐⇒ (y,x) ∈ gph F−1.

We use the standard notation d(x,C) to denote the distance from x to a set C ; it is defined by d(x,C) = infz∈C d(x,z),

with the convention that d(x,S) =+∞ whenever S is the empty set. As pointed out in the introduction, main attention in

this contribution is paid to the study of the concept of metric regularity. Recall that a mapping F is said to be metrically

regular at (x̄, ȳ) ∈ gph F with modulus τ > 0, if there exists a neighborhood U ×V of (x̄, ȳ) such that

d(x,F−1(y))≤ τd(y,F(x)) for all (x,y) ∈U ×V. (1)

In other words, metric regularity allows to estimate the dependence of the distance of a trial point x∈ X from the solution

set F−1(y) in terms of the residual quantity d(y,F(x)) for all pairs (x,y) around the reference pair (x̄, ȳ) ∈ gph F . The

infinum of all moduli τ is denoted by reg F(x̄, ȳ).

If in the above definition we fix y = ȳ in (1), then we obtain a weaker notion called metric subregularity, see e.g.

[4, 6, 36]. Observe that this latter property is equivalent to the existence of some neighborhood U of x̄ such that

d(x,F−1(ȳ))≤ τd(ȳ,F(x)) for all x ∈U.

It is also well known that metric subregularity can be treated in the framework of the theory of error bounds of extended-

real-valued functions, see e.g. [37, 38].

An Hölder version of metric regularity is defined as follows (Frankowska and Quincampoix [17], Ioffe [26]). Let

q ∈ (0,1] be given. A mapping F is said to be metrically q-regular or Hölder metrically regular of order q at (x̄, ȳ) ∈

gph F with modulus τ > 0 if there exists a neighborhood U ×V of (x̄, ȳ) such that

d(x,F−1(y))≤ τ[d(y,F(x))]q for all (x,y) ∈U ×V. (2)

The infimum of all moduli τ satisfying (2) is denoted by regq F(x̄, ȳ), i.e.,

regqF(x̄, ȳ) = inf{τ > 0 : ∃δ > 0 s.t. d(x,F−1(y))≤ τ(d(y,F(x)))q for all (x,y) ∈ B(x̄,δ )×B(ȳ,δ )}.
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Fixing y = ȳ in the above definition, gives the concept of q-Hölder metric subregularity of the set-valued mapping F at

(x̄, ȳ).

In the present paper, we are interested in a directional version of Hölder metric regularity, defined as follows.

Definition 2.1 Let X ,Y be normed linear spaces. Let a real γ ∈]0,1] and (u,v) ∈ X ×Y be given. A multifunction F

is said to be (directionally) metrically γ-regular at (x̄, ȳ) ∈ gph F in the direction (u,v) with a modulus τ > 0 iff there

exists δ ,ε,η > 0 such that

d(x,F−1(y))≤ τ[d(y,F(x))]γ (3)

for all (x,y)∈B((x̄, ȳ),δ ) with (x,y)∈ (x̄, ȳ)+cone B((u,v),ε); d(y,F(x))≤η‖(x,y)−(x̄, ȳ)‖1/γ . Here cone B((u,v),ε)

stands for the conic hull of B((u,v),ε), i.e., cone B((u,v),ε) = ∪λ≥0λ B((u,v),ε).

Remark 2.1 In Definition 2.1, the triple δ ,ε,η > 0 may be replaced by just a single positive number.

If (3) is required to be verified only at y = ȳ, and x ∈ B(x̄,δ ) with x ∈ x̄+ cone B(u,ε), we say that F is directionally

Hölder metrically subregular at (x̄, ȳ) in the direction u. When γ = 1, one refers to the (Lipschitz) directional metric

regularity, as equivalently introduced by Gfrerer [32].

Since in the definition above, the gauge condition d(y,F(x)) ≤ η‖(x,y)− (x̄, ȳ)‖1/γ is added, when (u,v) = (0,0),

the version of Hölder/Lipschitz metric regularity in Definition 2.1 is even weaker than the usual ones defined by (2).

For example, obviously, the function f (x) = x2, x ∈R is Hölder metrically regular of order 1/2 at (0,0) in the direction

(0,0) in the sense of Definition 2.1, but is not in the usual sense of (2). The added gauge conditions in concepts of metric

regularity are really needed when the usual regularity is not satisfied (see, e.g., Ioffe [26]). Let us mention that directional

Hölder/Lipschitz metric regularity is obviously stronger than Hölder/Lipschitz metric subregularity. The main purpose

of the present paper is to show that the tools of variational analysis such as the f and the concept of coderivative can be

used to efficiently characterize directional Hölder/Lipschitz metric regularity. Our aim is to show that this directional

version of Hölder/Lipschitz metric regularity, although weaker than the usual metric regularity, possesses the suitable

stability properties which are lost in the case of metric subregularity.

3 Slope Characterizations of Directional Hölder Metric Regularity

Let X be a metric space. Let f : X →R∪{+∞} be a given extended-real-valued function. As usual, dom f := {x ∈ X :

f (x) <+∞} denotes the domain of f .

Recall from [39], (see also [40] and the discussion in [38]) that the local slope and the nonlocal slope (see, e.g.,

[41]) of the function f at x ∈ dom f , are the quantities denoted respectively by |∇ f |(x) and |Γ f |(x). Using the notation

[a]+ for max{a,0}, they are defined by |∇ f |(x) = |Γ f |(x) = 0 if x is a local minimum of f and otherwise by

|∇ f |(x) = limsup
y→x, y6=x

f (x)− f (y)

d(x,y)
(4)
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and

|Γ f |(x) = sup
y6=x

[ f (x)− f (y)]+
d(x,y)

. (5)

For x /∈ dom f , we set |∇ f |(x) = |Γ f |(x) = +∞. Obviously, |∇ f |(x) ≤ |Γ f |(x) for all x ∈ X .

Let X ,Y be normed spaces. If not specified otherwise, we assume that the norm on X ×Y is defined by

‖(x,y)‖= ‖x‖+ ‖y‖, (x,y) ∈ X ×Y.

For a closed multifunction F : X ⇉Y , (i.e., when the graph of F is closed in X ×Y ), the lower semicontinuous envelope

of the distance function (x,y)→ d(y,F(x)) is defined, for a given (x,y) ∈ X ×Y , by

ϕ(x,y) := liminf
(u,v)→(x,y)

d(v,F(u)) = liminf
u→x

d(y,F(u)).

In what follows, for u ∈ X , we shall use the notation x →
u

x̄ to mean

x → x̄ if u = 0,
∥

∥

∥

x−x̄
‖x−x̄‖ −

u
‖u‖

∥

∥

∥
→ 0

x → x̄ if u 6= 0.

Obviously, given a sequence {xn} ⊆ X ,u ∈ X the two facts are equivalent:

(C1) : {xn}→
u

x̄;

(C2) : {xn}→ x̄ and there is a sequence of nonnegative reals {δn}→ 0 such that

xn ∈ x̄+ cone B(u,δn),∀n ∈N.

We need the following series of useful lemmas whose proofs are straightforward.

Lemma 3.1 Let X be a Banach space and Y be a normed space. Suppose a closed multifunction F : X ⇉Y and a point

(x̄, ȳ) ∈ gph F are given. Given (u,v) ∈ X ×Y, and γ ∈]0,1], then F is metrically γ−regular at (x̄, ȳ) in the direction

(u,v) with modulus τ > 0, if and only if, there exist real numbers τ,δ > 0 such that

d(x,F−1(y))≤ τϕγ (x,y)

for all (x,y) ∈ B((x̄, ȳ),δ )∩ ((x̄, ȳ)+ cone B((u,v),δ )) with d(y,F(x))≤ δ‖(x,y)− (x̄, ȳ)‖
1
γ .

Lemma 3.2 Let u∈ X and x̄ ∈ X be given as well as a sequence {xn} such that xn →
u

x̄. Then, for any sequence {δn} ↓ 0

of nonnegative reals and any sequence {zn} ⊆ X with

‖zn − xn‖ ≤ δn‖xn − x̄‖, n ∈ N, (6)

one has zn →
u

x̄.
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Proof It suffices to prove the result when ‖u‖= 1. If xn = x̄, then from (6) we have zn = x̄ and we are done. Otherwise,

one has

(1− δn)‖xn − x̄‖ ≤ ‖zn − x̄‖,

and since

‖zn − x̄− u‖zn − x̄‖‖ ≤ 2‖zn − xn‖+ ‖xn− x̄− u‖xn− x̄‖‖

≤ 2δn‖xn − x̄‖+ ‖xn− x̄− u‖xn− x̄‖‖,

it follows that
∥

∥

∥

∥

zn − x̄

‖zn − x̄‖ − u

∥

∥

∥

∥

=
‖zn − x̄− u‖zn − x̄‖‖

‖zn − x̄‖ ≤ (1− δn)
−1

(

2δn +

∥

∥

∥

∥

xn − x̄

‖xn − x̄‖ − u

∥

∥

∥

∥

)

.

As

∥

∥

∥

xn−x̄
‖xn−x̄‖ − u

∥

∥

∥
→ 0 and {δn}→ 0, one obtains

∥

∥

∥

∥

zn − x̄

‖zn − x̄‖ − u

∥

∥

∥

∥

→ 0

as n tends to infinity. Moreover, it is easy to see that zn → x̄. So, one has that zn →
u

x̄. �

Theorem 3.1 Let X be a Banach space and Y be a normed space. Suppose a closed multifunction F : X ⇉ Y and a

point (x̄, ȳ) ∈ gph F are given. Given (u,v) ∈ X ×Y , and γ ∈]0,1], F is directional metrically γ-regular at (x̄, ȳ) in the

direction (u,v), if and only if,

liminf
(x,y) →

(u,v)
(x̄,ȳ), ϕ(x,y)>0

ϕγ (x,y)
‖(x,y)−(x̄,ȳ)‖→0

|Γ ϕγ(·,y)|(x) > 0. (7)

Proof For the sufficiency, assume that (7) holds and assume on the contrary that F fails to be directional metrically

γ-regular in the direction (u,v). Then for every n ∈ N, there exists (xn,yn) with

0 < ‖xn − x̄‖+ ‖yn− ȳ‖< 1

n
; d(yn,F(xn))

γ ≤ 1

n2
‖(xn,yn)− (x̄, ȳ)‖;

(xn,yn) →
(u,v)

(x̄, ȳ)

and such that

d(xn,F
−1(yn))> n2 [d(yn,F(xn))]

γ (≥ n2ϕγ (xn,yn)).

From the relation d(yn,F(xn))
γ ≤ 1

n2 ‖(xn,yn)− (x̄, ȳ)‖, it follows that

ϕγ(xn,yn)≤
1

n2
‖(xn,yn)− (x̄, ȳ)‖. (8)

Applying the Ekeland variational principle to the lower semicontinuous function ϕγ (·,yn) on the Banach space X , one

gets a point zn satisfying the conditions:

‖zn − xn‖ ≤
1

n
‖(xn,yn)− (x̄, ȳ)‖, ϕγ(zn,yn)≤ ϕγ (xn,yn),

and

ϕγ(zn,yn)≤ ϕγ (x,yn)+
1

n
‖x− zn‖, ∀ x ∈ X .
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Consequently,

|Γ ϕγ(·,yn)|(zn)≤
1

n
, (9)

and by

‖(xn,yn)− (x̄, ȳ)‖ ≤ ‖zn − xn‖+ ‖(zn,yn)− (x̄, ȳ)‖ ≤ 1

n
‖(xn,yn)− (x̄, ȳ)‖+ ‖(zn,yn)− (x̄, ȳ)‖,

one obtains

‖(xn,yn)− (x̄, ȳ)‖ ≤ n

n− 1
‖(zn,yn)− (x̄, ȳ)‖. (10)

Hence, combining (8) and (10) we obtain:

ϕγ (zn,yn)≤ ϕγ (xn,yn)≤
1

n2
‖(xn,yn)− (x̄, ȳ)‖ ≤ 1

n(n− 1)
‖(zn,yn)− (x̄, ȳ)‖.

The latter relation implies that

lim
n→∞

ϕγ (zn,yn)

‖(zn,yn)− (x̄, ȳ)‖ = 0.

Moreover, invoking Lemma 3.2, relations (xn,yn) →
(u,v)

(x̄, ȳ) and ‖zn − xn‖ ≤ 1/n‖(xn,yn)− (x̄, ȳ)‖ imply that

(zn,yn) →
(u,v)

(x̄, ȳ). Hence, by (7), zn ∈ F−1(yn) for n large, say, n ≥ n0.

For n ≥ n0, as

ϕγ(xn,yn)<
1

n2
d(xn,F

−1(yn)),

applying again the Ekeland variational principle to the lower semicontinuous ϕγ (·,yn), one gets a point wn ∈X satisfying

the conditions:

‖wn − xn‖<
1

n
d(xn,F

−1(yn)), ϕγ (wn,yn)≤ ϕγ(xn,yn)

and,

ϕγ(wn,yn)≤ ϕγ (x,yn)+
1

n
‖x−wn‖, ∀ x ∈ X .

We deduce that

|Γ ϕγ (·,yn)|(wn)≤
1

n
.

Moreover we claim that

ϕγ (wn,yn)

‖(wn,yn)− (x̄, ȳ)‖ ≤ 1

n2
+

1

n2(n2 − 1)
. (11)

Indeed, as

‖(xn,yn)− (x̄, ȳ)‖ ≤

≤ ‖(xn,yn)− (wn,yn)‖+ ‖(wn,yn)− (x̄, ȳ)‖

= ‖xn −wn‖+ ‖(wn,yn)− (x̄, ȳ)‖

≤ 1

n
d(xn,F

−1(yn))+ ‖(wn,yn)− (x̄, ȳ)‖

≤ 1

n
‖xn − zn‖+ ‖(wn,yn)− (x̄, ȳ)‖

≤ 1

n2
‖(xn,yn)− (x̄, ȳ)‖+ ‖(wn,yn)− (x̄, ȳ)‖,
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we have

‖(xn,yn)− (x̄, ȳ)‖ ≤ n2

n2 − 1
‖(wn,yn)− (x̄, ȳ)‖,

and

ϕγ(wn,yn)≤ ϕγ (xn,yn)≤
1

n2
‖(xn,yn)− (x̄, ȳ)‖

≤ 1

n2
‖(wn,yn)− (x̄, ȳ)‖+ 1

n2
‖xn −wn‖

≤ 1

n2
‖(wn,yn)− (x̄, ȳ)‖+ 1

n3
d(xn,F

−1(yn))≤
1

n2
‖(wn,yn)− (x̄, ȳ)‖+ 1

n3
‖xn − zn‖

≤ 1

n2
‖(wn,yn)− (x̄, ȳ)‖+ 1

n4
‖(xn,yn)− (x̄, ȳ)‖.

Therefore,

ϕγ (wn,yn)≤
(

1

n2
+

1

n2(n2 − 1)

)

‖(wn,yn)− (x̄, ȳ)‖,

and (11) is established. By virtue of Lemma 3.2, since (xn,yn) →
(u,v)

(x̄, ȳ) and ‖wn − xn‖ ≤ 1
n2 ‖(xn,yn)− (x̄, ȳ)‖, one has

(wn,yn) →
(u,v)

(x̄, ȳ).

In conclusion, we have obtained a sequence {wn} which satisfies

wn /∈ F−1(yn); (wn,yn) →
(u,v)

(x̄, ȳ);
ϕγ (wn,yn)

‖(wn,yn)− (x̄, ȳ)‖ → 0 and |Γ ϕγ (·,yn)|(wn)≤
1

n
.

Hence, condition (7) is violated, and the sufficiency is proved.

For the necessary part, suppose that there exist reals τ,δ > 0 such that

d(x,F−1(y))≤ τ[d(y,F(x))]γ

for all (x,y) ∈ B((x̄, ȳ),δ )∩ ((x̄, ȳ)+ cone B((u,v),δ )) with d(y,F(x)) ≤ δ‖(x,y)− (x̄, ȳ)‖
1
γ .

According to Lemma 3.1,

d(x,F−1(y))≤ τϕγ (x,y) ∀(x,y) ∈ B((x̄, ȳ),δ )∩ ((x̄, ȳ)+ cone B((u,v),δ )) with 0 <
ϕγ (x,y)

‖(x,y)− (x̄, ȳ)‖ ≤ δ .

Let (x,y) ∈ B((x̄, ȳ),δ )∩ ((x̄, ȳ)+ cone B((u,v),δ )) with (x,y) 6= (x̄, ȳ) and 0 < ϕγ (x,y)
‖(x,y)−(x̄,ȳ)‖ ≤ δ . Then, for every ε > 0,

there exists an element z ∈ F−1(y) such that

‖x− z‖ ≤ (τ + ε)ϕγ(x,y) = (τ + ε)[ϕγ(x,y)−ϕγ(z,y)].

Consequently,

|Γ ϕγ(·,y)|(x) ≥ 1

(τ + ε)
.

As ε > 0 is arbitrary, one obtains

liminf
(x,y) →

(u,v)
(x̄,ȳ), ϕ(x,y)>0

ϕγ (x,y)
‖x−x̄‖ →0

|Γ ϕγ(·,y)|(x)≥ 1

τ
> 0,

completing the proof. �
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The theorem above yields the following local slope characterization of the directional metric γ−regularity .

Theorem 3.2 Let X be a Banach space and Y be a normed space. Suppose a closed multifunction F : X ⇉ Y and a

point (x̄, ȳ) ∈ X ×Y are given such that ȳ ∈ F(x̄). Let (u,v) ∈ X ×Y, and γ ∈ (0,1] be fixed. If

liminf
(x,y) →

(u,v)
(x̄,ȳ), ϕ(x,y)>0

ϕγ (x,y)
‖(x,y)−(x̄,ȳ)‖→0

|∇ϕγ(·,y)|(x) > 0, (12)

then there exist reals τ,δ > 0 such that

d(x,F−1(y))≤ τ[d(y,F(x))]γ

for all (x,y) ∈ B((x̄, ȳ),δ )∩ ((x̄, ȳ)+ cone B((u,v),δ )) with d(y,F(x))≤ δ‖(x,y)− (x̄, ȳ)‖
1
γ .

That is, F is directionally metrically γ-regular at (x̄, ȳ) in the direction (u,v) with modulus τ .

Remark 3.1 Condition (12) of Theorem 3.2 fails to be a necessary condition when γ ∈]0,1[. To see this, let us consider

the mapping F : R2 → R defined by

F(x) = (x1 − x2)
3, x = (x1,x2) ∈ R

2.

Here, R2 is equipped with the Euclidean norm. For x = (x1,x2) ∈ R
2 and y ∈ R, F−1(y) = {(t + 3

√
y, t) : t ∈ R}.

Therefore, d(x,F−1(y)) = |x1 − x2 − 3
√

y|/
√

2. Noticing that from the inequality 0 ≤ 3(a+ b)2, we deduce that

(a− b)2 ≤ 4(a2 + ab+ b2) and therefore that |a− b|3 ≤ 4|a3 − b3|, for all a,b ∈R. Using the last inequality yields

d(x,F−1(y)) = |x1 − x2 − 3
√

y|/
√

2 ≤ 21/6|(x1 − x2)
3 − y|1/3 = 21/6|y−F(x)|1/3 for all x ∈ R

2, y ∈R.

Consequently, F is metrically 1/3−regular at (0,0) (in the direction (0,0)). However, for any x = (x1,x1) ∈ R
2 and

y ∈ R with y 6= 0, one has |∇ϕ1/3(·,y)|(x) = 0, where, ϕ(x,y) = |y−F(x)|.

As stated in the next theorem, when γ = 1, then condition (12) becomes a necessary condition.

Theorem 3.3 Let X be a Banach space and Y be a normed space. Suppose a closed multifunction F : X ⇉ Y and a

point (x̄, ȳ) ∈ X ×Y are given such that ȳ ∈ F(x̄). Let us fix (u,v) ∈ X ×Y. Then, the following are equivalent:

(i)

liminf
(x,y) →

(u,v)
(x̄,ȳ), ϕ(x,y)>0

ϕ(x,y)
‖(x,y)−(x̄,ȳ)‖→0

|∇ϕ(·,y)|(x) > 0, (13)

(ii) there exist reals τ > 0 and δ > 0 such that

d(x,F−1(y))≤ τd(y,F(x))

for all (x,y) ∈ B((x̄, ȳ),δ )∩ ((x̄, ȳ)+ cone B((u,v),δ )) with d(y,F(x))≤ δ‖(x,y)− (x̄, ȳ)‖.

That is F is directionally metrically regular at (x̄, ȳ) in the direction (u,v) with modulus τ .
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Proof According to Theorem 3.2, condition (13) is sufficient to obtain (ii). Conversely, suppose that there exist τ > 0

and δ ∈]0,1[ such that

d(x,F−1(y))≤ τd(y,F(x)) (14)

for all (x,y) ∈ B((x̄, ȳ),2δ )∩ ((x̄, ȳ)+ cone B((u,v),2δ )) with d(y,F(x))≤ 2δ‖(x,y)− (x̄, ȳ)‖.

Let (x,y) ∈ B((x̄, ȳ),δ )∩ ((x̄, ȳ)+ cone B((u,v),δ )) be such that

0 < d(y,F(x))≤ δ 2

4
‖(x,y)− (x̄, ȳ)‖. (15)

Since ϕ(x,y) = sup
ε>0

inf
w∈B(x,ε)

d(y,F(w)) = liminf
w→x

d(y,F(w)), we have

ϕ(x,y)

‖(x,y)− (x̄, ȳ)‖ ≤ δ 2

4

and we can write ϕ(x,y) = lim
n→+∞

d(y,F(un)) for some sequence {un} in X converging to x. Without loss of generality,

we can suppose that d(y,F(un))> (1− 1
n2 )ϕ(x,y), and

‖un − x‖< 1

n
ϕ(x,y)≤ δ 2‖(x,y)− (x̄, ȳ)‖

4n
≤ δ 3

4n
<

δ

n
(16)

and

d(y,F(un))<

(

1+
1

n

)

ϕ(x,y). (17)

Note also that for every n ∈ N, there exists yn ∈ F(un) such that

d(y,F(un))≤ ‖y− yn‖<
(

1+
1

n

)

d(y,F(un)). (18)

Set zn := 1+n
1
2

1+n
y+ n(1−n

− 1
2 )

1+n
yn.

Claim 3.1

‖y− zn‖<
(

1− 1

n

)

ϕ(x,y) for large n. (19)

Indeed,

‖yn − zn‖ ≤
1+ n1/2

1+ n
‖y− yn‖, (20)

and

‖y− zn‖=
n(1− n−

1
2 )

1+ n
‖y− yn‖<

n(1− n−
1
2 )

1+ n

(

1+
1

n

)

d(y,F(un))

<
(

1− n−
1
2

)

d(y,F(un))<
(

1− n−
1
2

)

(

1+
1

n

)

ϕ(x,y)

≤
(

1− n−
1
2

)(

1+ n−
1
2

)

ϕ(x,y).

Hence, ‖y− zn‖< (1− 1
n
)ϕ(x,y), as claimed.

Claim 3.2 zn /∈ F(un) for large n.
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Indeed, using (19), if we suppose that zn ∈ F(un) (for n ≥ n0), we deduce that

(1− 1

n2
)ϕ(x,y)< d(y,F(un))≤ ‖y− zn‖<

(

1− 1

n

)

ϕ(x,y),

we have a contradiction. Hence, as claimed, for n large, zn /∈ F(un).

Claim 3.3

(⋆⋆) (un,zn) ∈ (x̄, ȳ)+ cone B((u,v),2δ ) for large n.

As (x,y) ∈ (x̄, ȳ)+ cone B((u,v),δ ), there is some λ > 0 such that
(x,y)−(x̄,ȳ)

λ ∈ B((u,v),δ ). Then,

λ ≥ ‖(x,y)− (x̄, ȳ)‖
‖(u,v)‖+ δ

.

Let us observe that

‖zn − y‖
λ

<
by(19)

(1− 1/n)

λ
ϕ(x,y)<

(1− 1/n)δ 2

4nλ
‖(x,y)− (x̄, ȳ)‖ ≤ (1− 1

n
)δ 2

4n
(‖(u,v)‖+ δ )≤ (1− 1

n
)δ 2

4
≤ δ

2
.

Therefore, one has
∥

∥

∥

(un,zn)−(x̄,ȳ)
λ − (u,v)

∥

∥

∥

≤
∥

∥

∥

(un,zn)−(x,y)
λ

∥

∥

∥
+
∥

∥

∥

(x,y)−(x̄,ȳ)
λ − (u,v)

∥

∥

∥

≤ ‖un−x‖+‖zn−y‖
λ + δ

≤ δ
λ n

+ δ
2
+ δ < 2δ .

This yields, (⋆⋆).

Claim 3.4

(⋆ ⋆ ⋆) d(zn,F(un))< 2δ 2‖(un,zn)− (x̄, ȳ)‖ for large n.

We know that

(♣) d(zn,F(un))<
1+ n1/2

1+ n
(1+

1

n
)2ϕ(x,y)≤ 1+ n1/2

1+ n
(1+

1

n
)2 δ 2

4
‖(x,y)− (x̄, ȳ)‖.

We have:

‖(x,y)− (x̄, ȳ)‖ ≤ ‖(un,zn)− (x,y)‖+ ‖(un,zn)− (x̄, ȳ)‖,

and

‖(un,zn)− (x,y)‖= ‖un − x‖+ ‖zn− y‖< δ 2

4n
‖(x,y)− (x̄, ȳ)‖+(1− 1/n)

δ 2

4n
‖(x,y)− (x̄, ȳ)‖ = δ 2

4n
‖(x,y)− (x̄, ȳ)‖,

it follows

(♥) ‖(x,y)− (x̄, ȳ)‖ < 1

(1− δ 2

4n
)
‖(un,zn)− (x̄, ȳ)‖.

Hence combining (♣) and (♥) we derive

d(zn,F(un))<
1+ n1/2

1+ n
(1+

1

n
)2 δ 2

4
‖(x,y)− (x̄, ȳ)‖ < 1+ n1/2

1+ n
(1+

1

n
)2 δ 2

4(1− δ 2

4n
)
‖(un,zn)− (x̄, ȳ)‖.

Observing that the quantity 1+n1/2

1+n

(1+ 1
n )

2

(1− δ 2

4n )
tends to 0 as n tends to +∞, we obtain (⋆ ⋆ ⋆), as desired.
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Claim 3.5

‖(un,zn)− (x̄, ȳ)‖ ≤ 2δ for large n. (21)

‖(un,zn)− (x̄, ȳ)‖ ≤ ‖(un,zn)− (x,y)‖+ ‖(x,y)− (x̄, ȳ)‖

≤ δ

n
+(1− 1

n
)ϕ(x,y)+ ‖((x,y)− (x̄, ȳ)‖

≤ δ

n
+(2− 1

n
)

δ 2

4
‖(x,y)− (x̄, ȳ)‖

≤ 2δ .

Combining relations (21), (⋆⋆) and (⋆ ⋆ ⋆) we see that the point (un,zn) verifies (14). Hence by assumption we have

d(un,F
−1(zn))≤ τd(zn,F(un).

Next, select x̃n ∈ F−1(zn) such that

‖x̃n − un‖ ≤ (1+ n−
1
2 )d(un,F

−1(zn))

≤ τ(1+ n−
1
2 )d(zn,F(un))

≤ τ(1+ n−
1
2 )‖zn − yn‖

= τ(1+ n−
1
2 )
(1+ n

1
2 )

1+ n
‖y− yn‖

= τ
2+ n

1
2 + n−

1
2

1+ n
‖y− yn‖. (22)

Consequently, ‖x̃n−un‖< τ 2+n1/2+n−1/2

1+n

(

1+ 1
n

)2

ϕ(x,y) and therefore, limn→∞ ‖x̃n−x‖= 0. Next, for large n, we have

the following estimate:

ϕ(x,y)−ϕ(x̃n,y) >
by(17)

n

n+ 1

(

d(y,F(un))− d(y,F(x̃n))
)

>
by(18)

n2

(n+ 1)2
‖y− yn‖−‖y− zn‖,

and by the definition of zn, we derive

ϕ(x,y)−ϕ(x̃n,y)>
n3/2 − n+ n1/2

(n+ 1)2
‖y− yn‖.

Thus, using also (16), we obtain

ϕ(x,y)−ϕ(x̃n,y)

‖x̃n − x‖ ≥ ϕ(x,y)−ϕ(x̃n,y)

‖un − x‖+ ‖x̃n− un‖

>
by(22)

(n3/2 − n+ n1/2)(n+ 1)−2‖y− yn‖
δn−1 + τ(2+ n

1
2 + n−

1
2 )(n+ 1)−1‖y− yn‖

=
n3/2 − n+ n1/2

(2+ n
1
2 + n−

1
2 )(n+ 1)

1

τ + δ (n+1)

n(2+n1/2+n
− 1

2 )
‖y− yn‖−1

.
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Since n3/2−n+n1/2

(2+n
1
2 +n

− 1
2 )(n+1)

→ 1, limn→∞ ‖y− yn‖= ϕ(x,y)> 0 and

δ (n+ 1)

n(2+ n
1
2 + n−

1
2 )

· 1

‖y− yn‖
→ 0,

we deduce that

|∇ϕ(·,y)|(x) = limsup
u→x

ϕ(x,y)−ϕ(u,y)

‖x− u‖ ≥ limsup
n→∞

ϕ(x,y)−ϕ(x̃n,y)

‖x̃n − x‖ ≥ 1

τ
,

establishing the proof. �

4 Directional Metric Regularity under Perturbations

In [42, 43, 19, 44], it was established that metric regularity is stable under Lipschitz (single-valued or set-valued)

perturbations with a suitable Lipschitz modulus. We shall show that directional metric regularity (with γ = 1) is also

stable under suitable Lipschitz perturbations. Recall that a mapping g : X → Y between normed spaces is Hadamard

differentiable at x̄ ∈ X with respect to the direction u ∈ X , if the following limit exists:

lim
t↓0
w→u

g(x̄+ tw)− g(x̄)

t
= Dg(x̄)(u).

Obviously, if g is locally Lipschitz around x̄, then g is Hadamard differentiable at x̄ with respect to the direction 0 and

Dg(x̄)(0) = 0.

Theorem 4.1 Let X be a Banach space, Y be a normed space. For a given (u,v) ∈ X ×Y, suppose F : X ⇉ Y is a

set-valued mapping which is directionally metrically regular at (x̄, ȳ) ∈ gph F in direction (u,v) with modulus τ > 0. If

g : X → Y is locally Lipschitz around x̄ with a constant λ > 0 satisfying λ τ < 1 and if g is Hadamard differentiable at x̄

with respect to the direction u, then the set-valued mapping F + g is directionally metrically regular at (x̄, ȳ+ g(x̄)) in

the direction (u,v+Dg(x̄)(u)).

Proof Since g is locally Lipschitz around x̄ with constant λ and F is directionally metrically regular at (x̄, ȳ) ∈ gph F

in direction (u,v) with modulus τ > 0, take δ ∈ (0,λ ) such that

‖g(x)− g(z)‖ ≤ λ‖x− z‖ ∀x,z ∈ B(x̄,δ ),

and

d(x,F−1(y))≤ τd(y,F(x)) for all (x,y) ∈ B((x̄, ȳ),δ )∩ ((x̄, ȳ)+ cone B((u,v),δ )),

with d(y,F(x)) ≤ 2δ‖(x,y)− (x̄ ȳ)‖.
(23)

Taking into account the Hadamard differentiability of g at x̄ with respect to the direction u, pick some ε ∈
]

0, δ
2

[

and

then some η ∈ (0,1) such that

∥

∥

∥

∥

g(x̄+ tw)− g(x̄)

t
−Dg(x̄)(u)

∥

∥

∥

∥

< ε for all t ∈]0,η [, w ∈ B(u,η). (24)
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Set

ϕF+g(x,y) = liminf
z→x

d(y,F(z)+ g(z)), (x,y) ∈ X ×Y.

Take ρ > 0 such that

ρ <











min
{

δ
λ+3

,δ − ε, η‖u‖
1+η , δ

2τ+1

}

, if u 6= 0

ρ < min
{

δ
λ+3

,δ − ε, δ
2τ+1

}

, if u = 0

and fix

(x,y) ∈ B((x̄, ȳ+ g(x̄)),ρ)∩ ((x̄, ȳ+ g(x̄))+ cone B((u,v+Dg(x̄)(u)),ρ))

with

0 < d(y,F(x)+ g(x))< ρ‖(x,y)− (x̄, ȳ+ g(x̄))‖, (25)

and select a sequence {xn} converging to x such that ϕF+g(x,y) = limn→∞ d(y,F(xn)+ g(xn)).

With the aim of making the proof clearer, we will establish some claims.

Claim 4.1

‖(xn,y)− (x̄, ȳ+ g(x̄))‖ < δ , for n large. (26)

Claim 4.2

(xn,y) ∈ (x̄, ȳ+ g(x̄))+ cone B((u,v+Dg(x̄)(u)),ρ) for n large. (27)

Indeed, since (x,y)− (x̄, ȳ+ g(x̄)) /∈ cone B((u,v+Dg(x̄)(u)),ρ)\ {(0,0)}, for large n, one has

(x,y)− (x̄, ȳ+ g(x̄)) ∈ int(cone B((u,v+Dg(x̄)(u)),ρ ))

It follows that (xn,y)− (x̄, ȳ+ g(x̄)) ∈ cone B((u,v+Dg(x̄)(u)),ρ).

Claim 4.3

0 < d(y,F(xn)+ g(xn))< ρ‖(xn,y)− (x̄, ȳ+ g(x̄))‖ for n large. (28)

Indeed, reasoning ad absurdum, suppose the existence of a subsequence still denoted by {xn} such that

d(y,F(xn)+ g(xn))≥ ρ‖(xn,y)− (x̄, ȳ+ g(x̄))‖.

Since F has closed graph then

0 < ϕF+g(x,y) = lim
n→+∞

d(y,F(xn)+ g(xn))≤ d(y,F(x)+ g(x)),

due to the fact that {xn} converges to x and thanks to (25), we obtain a contradiction.

Claim 4.4 For n sufficiently large,

(xn,y− g(xn)) ∈ B((x̄, ȳ),δ ), (29)

d(y− g(xn),F(xn))≤ 2δ‖(xn,y− g(xn))− (x̄, ȳ)‖. (30)

and

(xn,y− g(xn)) ∈ (x̄, ȳ)+ cone B((u,v),δ ). (31)
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We know that

‖(x− x̄,y− ȳ− g(x̄))‖< ρ .

For n sufficiently large, one has ‖xn − x‖< δ and

‖(xn − x̄,y− g(xn)− ȳ)‖= ‖xn − x̄‖+ ‖y− ȳ− g(xn)‖

≤ ‖xn − x‖+ ‖x− x̄‖+ ‖y− ȳ− g(x̄)‖+ ‖g(x̄)− g(xn)‖

≤ ‖xn − x‖+ ‖(x− x̄,y− ȳ− g(x̄))‖+λ‖xn− x‖

= (λ + 1)‖xn − x‖+ 2ρ

< (λ + 3)ρ < δ (since ρ <
δ

λ + 3
).

Thus, one obtains (29). Next, we have

d(y− g(xn),F(xn)) < ρ(‖(xn,y− g(xn))− (x̄, ȳ)‖+ ‖g(xn)− g(x̄)‖)

≤ ρ(‖(xn,y− g(xn))− (x̄, ȳ)‖+λ‖xn− x̄‖)

≤ ρ(λ + 1)‖(xn,y− g(xn))− (x̄, ȳ)‖

< 2δ‖(xn,y− g(xn))− (x̄, ȳ)‖ (since ρ < δ
λ+2

).

(32)

So, we receive (30). By relation (27), for n sufficiently large, say, n ≥ n0, as (xn,yn) 6= (x̄, ȳ+ g(x̄)) we may find tn > 0

and

(un,wn) ∈ B((u,v+Dg(x̄)(u)),ρ) such that

xn = x̄+ tnun, y = ȳ+ g(x̄)+ tnwn.

Set

y− g(xn) = ȳ+ tnvn; vn = wn −
g(x̄+ tnun)− g(x̄)

tn
.

If u = 0 then

‖(un,vn)− (0,v)‖

= ‖(un,(vn −wn +Dg(x̄))+ (wn − v−Dg(x̄)))‖

≤ ‖(unwn − v−Dg(x̄))‖+ ‖wn− vn −Dg(x̄)‖

≤ ρ + ‖ g(x̄+tnun)−g(x̄)
tn

−Dg(x̄)‖

< ρ + ε < δ ;

otherwise, u 6= 0, since un ∈ B(u,ρ), one has

tn =
‖xn − x̄‖
‖un‖

≤ ρ

‖u‖−ρ
< η ,

and therefore, by (24),

‖(un,vn)− (u,v)‖ ≤ ‖(un,wn)− (u,v+Dg(x̄)(u))‖+ ‖wn − vn −Dg(x̄)(u)‖

≤ ρ +
∥

∥

∥

g(x̄+tnun)−g(x̄)
tn

−Dg(x̄)(u)
∥

∥

∥
≤ ρ + ε < δ .
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Now, pick zn ∈ F−1(y− g(xn)) such that

‖xn − zn‖ ≤ (1+ 1/n)d(xn,F
−1(y− g(xn))).

Hence, according to (23), (29), (30), (31), we obtain,

‖xn − zn‖ ≤ (1+ 1/n)τd(y− g(xn),F(xn)). (33)

Consequently,

‖zn − x̄‖ ≤ ‖xn − zn‖+ ‖xn− x̄‖

≤ (1+ 1/n)τρ‖(xn,y)− (x̄, ȳ+ g(x̄))‖+ ‖xn − x̄‖

< (1+ 1/n)τρ2+ρ < (1+ 1/n)τρ+ρ

< 2τρ +ρ = ρ(1+ 2τ)

< δ .

Using the local Lipschitz continuity around x̄ of g gives, ‖g(zn)− g(xn)‖ ≤ λ‖zn − xn‖. As y − g(x) /∈ F(x) and

limn→∞ xn = x, then liminfn→∞ ‖xn − zn‖> 0. Hence, by relation (33), one has

|Γ ϕF+g(·,y)|(x) ≥ limsupn→∞
ϕF+g(x,y)−ϕF+g(zn,y)

‖x−zn‖

≥ limsupn→∞
d(y−g(xn),F(xn))−d(y−g(zn),F(zn))

‖xn−zn‖

≥ limsupn→∞
d(y−g(xn),F(xn))−d(y−g(xn),F(zn))−‖g(xn)−g(zn)‖

‖xn−zn‖

≥ limsupn→∞
d(y−g(xn),F(xn))

‖xn−zn‖ −λ

≥ limsupn→∞ τ−1 n
n+1

−λ = τ−1 −λ .

Therefore,

liminf

(x,y) −→
(u,v+Dg(x̄)(u))

(x̄, ȳ+ g(x̄))

x /∈ (F + g)−1(y),
ϕF+g(x,y)

‖(x,y)−(x̄,ȳ)‖ → 0

|Γ ϕF+g(·,y)|(x) ≥ τ−1 −λ .

Thanks to Theorem 3.1, the proof is complete. �

5 Stability of Directional Hölder Metric Regularity under Mixed Coderivative-Tangency Conditions

For the usual metric regularity, sufficient conditions in terms of coderivatives have been given by various authors,

for instance, in [9, 21, 4, 24]. In this section, we establish a characterization of directional Hölder metric regularity

using the Fréchet subdifferential in Asplund spaces, i.e., in Banach spaces in which every convex continuous function is

generically Fréchet differentiable. There are many equivalent descriptions of Asplund spaces, see, e.g., Mordukhovich’s

book [4] and its bibliography. In particular, any reflexive space is Asplund, as well as each Banach space such that each

of its separable subspaces has a separable dual. We shall show that the proposed characterization also ensures the
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stability of directional Hölder metric regularity under suitable differentiable perturbations. In this section, in order to

formulate some coderivative characterizations of directional Hölder metric regularity, some additional definitions are

required. Let X be a Banach space. Consider now an extended-real-valued function f : X → R∪{+∞}. The Fréchet

subdifferential of f at x̄ ∈ Dom f is given as

∂ f (x̄) =

{

x∗ ∈ X∗ : liminf
x→x̄, x6=x̄

f (x)− f (x̄)−〈x∗,x− x̄〉
‖x− x̄‖ ≥ 0

}

.

For the convenience of the reader, we would like to mention that the terminology regular subdifferential instead of

Fréchet subdifferential is also popular due to its use in Rockafellar and Wets [36]. Every element of the Fréchet subdif-

ferential is termed as a Fréchet (regular) subgradient. If x̄ is a point where f (x̄) = ∞, then we set ∂ f (x̄) = /0. In fact one

can show that an element x∗ is a Fréchet subgradient of f at x̄ iff

f (x) ≥ f (x̄)+ 〈x∗,x− x̄〉+ o(‖x− x̄‖) where lim
x→x̄

o(‖x− x̄‖)
‖x− x̄‖ = 0.

It is well-known that the Fréchet subdifferential satisfies a fuzzy sum rule in Asplund spaces (see [4], Theorem 2.33).

More precisely, if X is an Asplund space and f1, f2 : X → R∪{∞} are such that f1 is Lipschitz continuous around

x ∈ Dom f1 ∩Dom f2 and f2 is lower semicontinuous around x, then for any γ > 0 one has

∂ ( f1 + f2)(x)⊂
⋃

{∂ f1(x1)+ ∂ f2(x2) | xi ∈ x+ γBX , | fi(xi)− fi(x)| ≤ γ, i = 1,2}+ γBX∗. (34)

For a nonempty closed set C ⊆ X , denote by δC the indicator function associated with C (i.e. δC(x) = 0, when x ∈C and

δC(x) = ∞ otherwise). The Fréchet normal cone to C at x̄ is denoted by N(C, x̄). It is a closed and convex object in X∗

which is defined as ∂δC(x̄). Equivalently a vector x∗ ∈ X∗ is a Fréchet normal to C at x̄ if

〈x∗,x− x̄〉 ≤ o(‖x− x̄‖), ∀x ∈C,

where limx→x̄
o(‖x− x̄‖)
‖x− x̄‖ = 0. Let F : X ⇉ Y be a set-valued map and (x,y) ∈ gph F. Then the Fréchet coderivative at

(x,y) is the set-valued map D∗F(x,y) : Y ∗ ⇉ X∗ given by

D∗F(x,y)(y∗) :=
{

x∗ ∈ X∗ | (x∗,−y∗) ∈ N(gph F,(x,y))
}

.

In the spirit of Gfrerer [45], see also Kruger [38], Ngai-Tinh [46] we introduce the following limit set for directional

Hölder metric regularity of order γ (γ ∈ (0,1]).

Definition 5.1 Let F : X ⇉Y be a closed multifunction and (x̄, ȳ) ∈ gph F be fixed. For a given (u,v) ∈ X ×Y and each

γ ∈ (0,1], the critical limit set for metric regularity of order γ of F in the direction (u,v) at (x̄, ȳ) ∈ gph F is denoted

by CrγF((x̄, ȳ),(u,v)) and is defined as the set of all (w,x∗) ∈Y ×X∗ such that there exist sequences {tn} ↓ 0, {εn} ↓ 0,

(un,vn) ∈ cone B((u,v),εn) with ‖(un,vn)‖= 1, wn ∈ Y , y∗n ∈ SY ∗(the unit sphere of Y ∗),

x∗n ∈ D∗F(x̄+ tnun, ȳ+ tnvn + t
1/γ
n wn)(y

∗
n) with

〈y∗n,wn〉
‖wn‖

→ 1 and
(

wn, t
(γ−1)/γ
n ‖wn‖γ−1x∗n

)

→ (w,x∗).
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For a closed multifunction F : X ⇉ Y, we define the coderivative slope of F at (x,y) ∈ gph F as the following quantity:

mF(x,y) = inf{‖x∗‖ : x∗ ∈ D∗F(x,y)(y∗), y∗ ∈ S
∗

Y } .

By applying Theorem 4.1, we receive the following result.

Theorem 5.1 Let X and Y be Asplund spaces and suppose given a closed multifunction F : X ⇉ Y , as well as

(x̄, ȳ) ∈ gph F,(u,v)∈ X ×Y and γ ∈]0,1[. If (0,0) /∈ CrγF((x̄, ȳ),(u,v)), then for any mapping g : X →Y , differentiable

in a neighborhood of x̄, and verifying for some c ∈]0,1[, δ > 0

‖Dg(x)‖ ≤ cmF(x,y) ∀(x,y) ∈ gph F ∩B((x̄, ȳ),δ )∩ ((x̄, ȳ)+ cone B((u,v),δ )) , (35)

the multifunction F + g is directionally Hölder metrically regular of order γ at (x̄, ȳ+ g(x̄)) in the direction

(u,v+Dg(x̄)(u)). In particular, F is directionally Hölder metrically regular of order γ at (x̄, ȳ) in the direction (u,v).

Proof gAssume on the contrary that there is a differentiable function g : X → Y, verifying (35) for some c ∈ (0,1) and

δ > 0, such that Hölder metric regularity of order γ at (x̄, ȳ+ g(x̄)) in the direction (u,v+Dg(x̄)(u)) fails for F + g.

According to Theorem 3.2, setting

ϕ(x,y) = liminf
u→x

d(y,F(u)+ g(u)) = liminf
u→x

d(y− g(x),F(u)), (x,y) ∈ X ×Y,

we can find a sequence {(xn,yn)} ⊆ X ×Y and a sequence of nonnegative reals {δn > 0} (we can set δn =
1
n
) such that

ϕ(xn,yn)> 0, δn ↓ 0, ‖xn − x̄‖< δn, ‖yn − ȳ− g(x̄)‖< δn;

(xn,yn) ∈ (x̄.ȳ+ g(x̄))+ cone B((u,v+Dg(x̄)(u)),δn); (36)

lim
n→∞

ϕγ (xn,yn)

‖(xn,yn)− (x̄, ȳ+ g(x̄))‖ = 0,

and

|∇ϕγ(·,yn)|(xn)< δn, ; ∀n ∈ N.

We can assume that δn ∈ (0,δ/4) for all n ∈ N. Then, for each n ∈ N, there is ηn ∈ (0,δn) with

ηn/ϕ(xn,yn)→ 0; 2ηn < ϕ(xn,yn)(1− δn); η2
n/4+ 5ηn/4 < ‖(xn,yn)− (x̄, ȳ+ g(x̄))‖ ∀n ∈ N (37)

such that

d(yn − g(z),F(z)) ≥ ϕ(xn,yn)(1− δn), ∀z ∈ B(xn,4ηn),

and

δn ≥
ϕγ(xn,yn)−ϕγ(z,yn)

‖xn − z‖ for all z ∈ B(xn,ηn).

Equivalently,

ϕγ(xn,yn)≤ ϕγ(z,yn)+ δn‖z− xn‖ for all z ∈ B(xn,ηn).
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Since

ηn/ϕ(xn,yn)→ 0 and lim
n→∞

ϕγ (xn,yn)

‖(xn,yn)− (x̄, ȳ+ g(x̄))‖ = 0,

one has

lim
n→∞

η
γ
n

‖(xn,yn)− (x̄, ȳ+ g(x̄))‖ = 0. (38)

Take zn ∈ B(xn,η
2
n/4), wn ∈ F(zn)+ g(zn) such that

‖yn −wn‖γ ≤ ϕ(xn,yn)
γ +η2

n/4.

Then,

‖yn −wn‖γ ≤ ϕγ(z,yn)+ δn‖z− xn‖+η2
n/4, ∀z ∈ B(xn,ηn).

By

ϕγ(z,yn)≤ [d(yn,(F + g)(z))]γ ≤ ‖yn −w‖γ + δgph(F+g)(z,w), ∀w ∈ Y.

one has

‖yn −wn‖γ ≤ ‖yn −w‖γ + δgph(F+g)(z,w)+ δn‖z− zn‖+(δn + 1)η2
n/4

for all (z,w) ∈ B(xn,ηn)×Y.

Applying the Ekeland variational principle to the function

(z,w) 7→ ‖yn −w‖γ + δgph(F+g)(z,w)+ δn‖z− zn‖

on B(xn,ηn)×Y, we can select (z1
n,w

1
n) ∈ (zn,wn)+

ηn

4
BX×Y with (z1

n,w
1
n) ∈ gph(F + g) such that

|yn −w1
n‖γ + δn‖z1

n − zn‖ ≤ ‖yn −wn‖γ(≤ ϕγ(xn,yn)+η2
n/4); (39)

and such that the function

(z,w) 7→ ‖yn −w‖γ + δgph(F+g)(z,w)+ δn‖z− zn‖+(δn+ 1)ηn‖(z,w)− (z1
n,w

1
n)‖

attains a minimum on B(xn,ηn)×Y at (z1
n,w

1
n). Observing that the functions

(z,w)→‖yn −w‖γ ,(z,w)→ ‖z− zn‖ and (z,w)→ ‖(z,w)− (z1
n,w

1
n)‖

are locally Lipschitz around (z1
n,w

1
n), thanks to the fuzzy sum rule, we can select

w2
n ∈ BY (w

1
n,ηn); (z

3
n,w

3
n) ∈ BX×Y ((z

1
n,w

1
n),ηn)∩gph(F + g);

w2∗
n ∈ ∂ (‖yn −·‖γ)(w2

n); (z
3∗
n ,−w3∗

n ) ∈ N(gph(F + g),(z3
n,w

3
n))

satisfying

w3∗
n = w2∗

n +(δn + 2)ηnw4∗
n ,

‖w2∗
n −w3∗

n ‖< (δn + 2)ηn, (40)
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and,

‖z3∗
n ‖ ≤ δn +(δn + 2)ηn.

Since ‖yn −w2
n‖ ≥ ‖yn −wn‖−‖w2

n −wn‖ ≥ ϕ(xn,yn)(1− δn)− 2ηn > 0, then

w2∗
n ∈ ∂ (‖yn −·‖γ)(w2

n) = γ‖yn −w2
n‖γ−1∂ (‖yn −·‖)(w2

n),

and therefore,

w2∗
n = γ‖yn −w2

n‖γ−1t2∗
n

with ‖t2∗
n ‖= 1 and 〈t2∗

n ,w2
n − yn〉= ‖yn −w2

n‖. Thus, from (40), it follows that

‖w3∗
n ‖ ≥ ‖w2∗

n ‖− (δn + 2)ηn

= γ‖yn −w2
n‖γ−1‖t2∗

n ‖− (δn+ 2)ηn

= γ‖yn −w2
n‖γ−1 − (δn + 2)ηn > 0,

‖w3∗
n ‖ ≤ ‖w2∗

n ‖+(δn + 2)ηn

= γ‖yn −w2
n‖γ−1‖t2∗

n ‖+(δn+ 2)ηn

= γ‖yn −w2
n‖γ−1 +(δn + 2)ηn.

Since

tn ≥ ‖(xn,yn)− (x̄, ȳ+ g(x̄))‖−‖z3
n − xn‖

≥ ‖(xn,yn)− (x̄, ȳ+ g(x̄))‖−η2
n/4− 5ηn/4 > 0,

it makes sense to set

tn = ‖(z3
n,yn)− (x̄, ȳ+ g(x̄))‖; (un,vn) = (z3

n − x̄,yn − ȳ− g(x̄))/tn; ζn = (w3
n − yn)/t

1
γ
n , (41)

and

y∗n = w3∗
n /‖w3∗

n ‖; x∗n = z3∗
n /‖w3∗

n ‖.

As (z3
n,yn)→ (x̄, ȳ+ g(x̄)) and (z3

n,yn) 6= (x̄, ȳ+ g(x̄)) for n sufficiently large, then (tn) ↓ 0 as n → ∞. Since

ϕ(xn,yn)(1− δn) ≤ d(yn,(F + g)(x̄+ tnun))≤ t
1
γ

n ‖ζn‖

≤ ‖yn −w1
n‖+ηn

≤ ϕ(xn,yn)+η2
n/4+ηn,

one has

‖ζn‖ ≤
ϕ(xn,yn)+η2

n/4+ηn

(‖(xn,yn)− (x̄, ȳ+ g(x̄))‖−η2
n/4− 5ηn/4)1/γ

.

As ϕγ(xn,yn)/‖(xn,yn)− (x̄, ȳ+ g(x̄))‖→ 0 as well as η
γ
n/‖(xn,yn)− (x̄, ȳ+ g(x̄))‖→ 0, one obtains

lim
n→∞

ζn = 0. (42)

Next, by using the standard formula for the Fréchet coderivative of F + g, one has

x∗n ∈ D∗(F + g)(x̄+ tnun, ȳ+ g(x̄)+ tnvn + t
1
γ
n ζn)(y

∗
n)

= D∗F(x̄+ tnun, ȳ+ g(x̄)− g(x̄+ tnun)+ tnvn + t
1
γ
n ζn)(y

∗
n)+Dg∗(x̄+ tnun)y

∗
n.
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In other words,

z∗n := x∗n −Dg∗(x̄+ tnun)y
∗
n ∈ D∗F(x̄+ tnun, ȳ+ g(x̄)− g(x̄+ tnun)+ tnvn + t

1
γ
n ζn)(y

∗
n). (43)

From (41) and relations

(36), lim
n→∞

ζn = 0;g(x̄+ tnun)− g(x̄) = tnDg(x̄)(un)+ 0(tn),

by checking directly, we derive that

(

un,
g(x̄)− g(x̄+ tnun)

tn
+ vn

)

∈ cone B((u,v),εn), (44)

and

(tnun,g(x̄)− g(x̄+ tnun)+ tnvn + t
1
γ
n ζn) ∈ cone B((u,v),εn),

for some sequence {εn} ↓ 0.

Therefore, by (35), one has (for n sufficiently large)

‖x∗n‖= ‖z∗n +Dg∗(x̄+ tnun)y
∗
n‖ ≥ ‖z∗n‖−‖Dg∗(x̄+ tnun)‖ ≥ (1− c)‖z∗n‖.

By (36), one derives that

t
(γ−1)/γ
n ‖ζn‖γ−1‖x∗n‖ = t

(γ−1)/γ
n ‖ζ‖γ−1‖z3∗

n ‖/‖w3∗
n ‖

≤ t
(γ−1)/γ
n ‖ζn‖γ−1(δn+(δn+2)ηn)

γ‖yn−w2
n‖γ−1−(δn+2)ηn

≤ ‖yn−w3
n‖γ−1(δn+(δn+2)ηn)

γ(‖yn−w2
n‖−2ηn)γ−1−(δn+2)ηn

.

(45)

Observing that

‖yn −w2
n‖ ≥ ‖yn −wn‖−‖wn−w2

n‖ ≥ ϕ(xn,yn)− δn − 2ηn > 0,

then,

lim
n→∞

ηn

‖yn −w2
n‖

≤ lim
n→∞

ηn

ϕ(xn,yn)− δn − 2ηn

= 0.

Therefore, (45) yields

lim
n→∞

t
(γ−1)/γ
n ‖ζn‖γ−1‖z∗n‖ ≤ lim

n→∞
(1− c)−1t

(γ−1)/γ
n ‖ζ‖γ−1‖x∗n‖= 0. (46)

Next, one has

〈y∗n,ζn〉
‖ζn‖

=
〈y∗n,w3

n − yn〉
‖w3

n − yn‖
≥ 〈w3∗

n ,w3
n − yn〉

‖w3∗
n ‖‖w3

n − yn‖
≥ 〈w2∗

n ,w2
n − yn〉−‖w2∗

n −w3∗
n ‖‖w2

n − yn‖−‖w2∗
n ‖‖w2

n −w3‖
‖w2∗

n ‖‖w2
n − yn‖+ ‖w2∗

n ‖‖w3
n −w2

n‖+ ‖w3
n−w2

n‖‖w2∗
n −w3∗

n ‖+ ‖w2∗
n −w3∗

n ‖‖w2
n − yn‖

≥ γ‖w2
n − yn‖γ − (δn + 2)ηn(ϕ(xn,yn)+ δn + 2ηn)− 2ηnγ‖yn −w2

n‖γ−1

γ‖w2
n − yn‖γ + 2ηnγ‖yn −w2

n‖γ−1 + 2η2
n (δn + 2)+ (δn+ 2)ηn(ϕ(xn,yn)+ δn + 2ηn)

.

Here, we use the following relations

〈w2∗
n ,w2

n − yn〉= γ‖w2
n − yn‖γ ; ‖w2∗

n ‖= γ‖w2
n − yn‖(γ−1)
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‖yn −w2
n‖ ≥ ‖yn −wn‖−‖wn−w2

n‖ ≥ ϕ(xn,yn)(1− δn)− 2ηn > 0.

Hence, since

ηn

‖yn −w2
n‖

≤ ηn

ϕ(xn,yn)(1− δn)− 2ηn

→ 0, as n → ∞,

one obtains

lim
n→∞

〈y∗n,ζn〉
‖ζn‖

= 1. (47)

Relations (42), (43), (44), (46), (47) show that (0,0) ∈ CrγF((x̄, ȳ),(u,v)), completing the proof. �

An open question is whether the inverse implication is true in general? In the particular case when F is a closed

multifunction and either F is a closed convex multifunction (i.e., gph F is closed convex) or γ = 1, the inverse holds as

shown in the following proposition.

Proposition 5.1 Let X ,Y be Banach spaces and let (u,v) ∈ X ×Y, γ ∈ (0,1] be given.

(i) If F : X ⇉ Y is a closed convex multifunction, which is directionally Hölder metrically regular of order γ at (x̄, ȳ) ∈

gph F in the direction (u,v), then (0,0) /∈ CrγF((x,y),(u,v));

(ii) If a closed multifunction F : X ⇉ Y is directionally metrically regular at (x̄, ȳ) ∈ gph F in the direction (u,v), then

(0,0) /∈ CrF((x,y),(u,v)).

Proof (i). Let us consider sequences {tn} ↓ 0; {εn} ↓ 0; (un,vn)∈ cone B((u,v),εn) with ‖(un,vn)‖= 1; ζn ∈Y ; y∗n ∈SY ∗

and x∗n ∈ X∗ such that

‖ζn‖→ 0;
〈y∗n,ζn〉
‖ζn‖

→ 1 as n → ∞,

x∗n ∈ D∗F(x̄+ tnun, ȳ+ tnvn + t
1/γ
n ζn)(y

∗
n).

Thanks to the convexity of F,

〈x∗n,x− x̄− tnun〉− 〈y∗n,y− ȳ− tnvn − t
1/γ
n ζn〉 ≤ 0 ∀(x,y) ∈ gph F. (48)

Since F is directionally Hölder metrically regular of order γ at (x̄, ȳ) ∈ gph F in the direction (u,v), with some constant

τ > 0, and,

d(ȳ+ tnvn,F(x̄+ tnun))

(tn‖(un,vn)‖)1/γ
≤ ‖ζn‖→ 0,

for n sufficiently large, one has

d(x̄+ tnun,F
−1(ȳ+ tnvn)) ≤ τd(ȳ+ tnvn,F(x̄+ tnun))

γ

≤ τ‖ȳ+ tnvn − ȳ− tnvn − t1/γζn‖γ = τtn‖ζn‖γ .

Thus, we can find xn ∈ F−1(ȳ+ tnvn) such that

‖xn − x̄− tnun‖ ≤ τ(1+ tn)tn‖ζn‖γ .
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Taking into account (48), one obtains

‖x∗n‖τ(1+ tn)tn‖ζn‖γ ≥ ‖x∗n‖‖xn − x̄− tnun‖ ≥ 〈x∗n, x̄+ tnun − xn〉 ≥ t
1/γ
n 〈y∗n,ζn〉.

Therefore,

liminf
n→∞

‖x∗n‖t
(γ−1)/γ
n ‖ζn‖γ−1 ≥ lim

n→∞
τ−1(1+ tn)

−1 〈y∗n,ζn〉
‖ζn‖

= τ−1,

which shows that (0,0) /∈ CrγF((x̄, ȳ),(u,v)).

(ii). Suppose that F is directionally metrically regular at (x̄, ȳ)∈ gph F in the direction (u,v). Let be given sequences

{tn} ↓ 0; {εn} ↓ 0; (un,vn) ∈ cone B((u,v),εn) with ‖(un,vn)‖= 1; ζn ∈ Y ; y∗n ∈ SY ∗ and x∗n ∈ X∗ such that

‖ζn‖→ 0;
〈y∗n,ζn〉
‖ζn‖

→ 1 as n → ∞,

x∗n ∈ D∗F(x̄+ tnun, ȳ+ tnvn + tnζn)(y
∗
n).

Then, there is a sequence of nonnegative reals {δn} with δn ∈]0, tn[ such that

〈x∗n,x− x̄− tnun〉 −〈y∗n,y− ȳ− tnvn − tnζn〉 ≤ εn‖((x,y)− (x̄+ tnun, ȳ+ tnvn + tnζn)‖

for all (x,y) ∈ gph F with ‖(x,y)− (x̄+ tnun, ȳ+ tnvn + tnζn)‖< δn.
(49)

By setting yn = ȳ+ tnvn +(tn − δn)ζn, then (x̄+ tnun,yn) →
(u,v)

(x̄, ȳ). Hence, by the directional metric regularity of F at

(x̄, ȳ) in the direction (u,v) with some constant τ > 0, for n large enough, there is xn ∈ F−1(yn) such that

‖xn − x̄− tnun‖ ≤ τ(1+ tn)d(yn,F(x̄+ tnun))

≤ τ(1+ tn)‖yn − ȳ− tnvn − tnζn‖= τ(1+ tn)δn‖ζn‖.

Thus, ‖(xn,yn)− (x̄+ tnun, ȳ+ tnvn + tnζn)‖< δn for n sufficiently large, and therefore, taking into account of (49), one

derives that

‖x∗n‖τ(1+ tn)δn‖ζn‖ ≥ δn〈y∗n,ζn〉,

which implies liminfn→∞ ‖x∗n‖ ≥ τ−1, and the proof is complete. �

6 Applications to the Directional Differentiability of the Optimal Value Function

Let X ,Y be Banach spaces, f : X ×Y →R and g : X →Y be continuous functions. We suppose that K is a closed convex

subset of Y . In this section, we consider a parameterized optimization problem of the form

(Py) min
x∈X

f (x,y) s.t. y ∈ g(x)−K,

depending on a parameter y ∈ Y. The feasible set of (Py) is denoted by

Φ(y) := {x ∈ X : y ∈ g(x)−K}.
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For y= 0, the corresponding problem (P0) denoted by (P) is viewed as an unperturbed problem. We set f (x) := f (x,0),

Φ0 := Φ(0) and we denote by v(y) the optimal value function of (Py) and by S (y) the associated set of optimal

solutions:

v(y) := inf
x∈Φ(y)

f (x,y);

S (y) := argminx∈Φ(y) f (x,y).

Recall that xε is said to be an ε−optimal solution of (Py) if xε ∈ Φ(y) and f (xε ,y)≤ v(y)+ε. In this section, we apply

the concept of directional metric regularity to discuss the directional differentiability of the optimal value function v(y).

We now assume that f (·, ·) and g are mappings of class C 1. Associated to a given direction d ∈ Y, we consider a path

y(t) of the form y(t) = td+ o(t), with t ∈ R+. Let us recall the notion of feasible direction [10]:

Definition 6.1 Let x0 ∈ Φ(0) be given. A direction h ∈ X is said to be a feasible direction at x0, relative to the direction

d ∈ Y , iff for any path y(t) = td+ o(t) with t ≥ 0 in Y , there exists r(t) = o(t) in X such that x0 + th+ r(t)∈ Φ(y(t)).

Note from [10] that if h is a feasible direction relative to d ∈ Y at x0, then

Dg(x0)h− d ∈ TK(g(x0)), (50)

where, TK(g(x0)) = {d ∈ Y : d(g(x0)+ td,K) = o(t), t ≥ 0} stands for the contingent cone to the convex set K at

g(x0).

Conversely, one has the following:

Lemma 6.1 Let x0 ∈Φ(0) be given. If relation (50) holds, and if in addition, G(x) := g(x)−K is directionally metrically

regular in the direction (h,d) at (x0,0), then h is a feasible direction relative to d.

Proof By the assumption, there exist τ,ε > 0 such that

d(x,Φ(y)) ≤ τd(y,g(x)−K)

∀(x,y) ∈ B((x0,0),ε)∩ [(x0,0)+ cone B((h,d),ε)], d(y,g(x)−K)≤ ε‖(x,y)− (x0,0)‖.
(51)

Let y(t) = td+ o(t) be given and set x(t) = x0 + th, one has

g(x0)+ tDg(x0)h− td+ o(t) ∈ K, as t ↓ 0.

As g(x(t)) = g(x0)+ tDg(x0)h+ o(t), then we have g(x(t))− td+ o(t) ∈ K from which we obtain

d(y(t),g(x(t))−K) = o(t).

Hence, when t > 0 is sufficiently small,

(x(t),y(t)) ∈ B((x0,0),ε)∩ [(x0,0)+ cone B((h,d),ε)], d(y(t),g(x(t))−K)≤ ε‖(x(t),y(t))− (x0,0)‖.

Thus, there is x̄(t) := x0 + th+ o(t)∈ Φ(y(t)), as t > 0. �
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Lemma 6.2 Assume that Y is finite dimensional. Let x0 ∈ Φ(0) and d ∈ Y \ {0}, h ∈ X such that (50) holds. If G is

directionally metrically regular at (x0,0) in the direction (h,d), then one has

d ∈ int{Dg(x0)X −TK(g(x0))}. (52)

Proof Let τ > 0,ε ∈ (0,1) be such that (51) happens. Let 0 < δ < ε‖d‖/2 and fix d̃ ∈ B(d,δ ). Since (50) holds, one

has

g(x0)+ tDg(x0)h− td+ o(t) ∈ K, ast > 0.

Hence,

g(x0 + th)− td+ o(t) ∈ K, ast > 0.

Moreover, one has δ ≤ ε‖d̃‖
2(1−δ/2) < ε‖d̃‖ since δ < εd‖/2 < ε(δ+‖d̃‖)

2
. Consequently, when t is sufficiently small,

d(td̃,g(x0 + th)−K)≤ tδ + o(t)< εt(‖h‖+ ‖d̃‖).

According to (51), we now select x(t) ∈ Φ(td̃) such that

‖x0 + th− x(t)‖≤ τtδ + o(t).

Setting h(t) =
x(t)−x0

t
, one has

‖h− h(t)‖ ≤ τδ +
o(t)

t
.

As x(t) ∈ Φ(td̃), then

td̃ ∈ g(x0 + h(t))−K,

and therefore,

d̃ ∈ Dg(x0)(h(t))+
o(t)

t
− K − g(x0)

t
.

Since Y is finite dimensional, we can take a sequence (tn)n∈N ↓ 0 such that the sequence (Dg(x0)h(tn))n∈N converges to

some w ∈ Dg(x0)X . Then, thanks to the preceding relation we obtain

d̃ ∈ Dg(x0)X −TK(g(x0)),

which completes the proof of the lemma. �

Denote by L(x,λ ,y) and Λ(x0) the Lagrangian of (Py) and the set of Lagrange multipliers of the problem (P0) for

x0 ∈ S(0), respectively. More precisely, if NK(g(x0)) stands for the normal cone to the convex set K at g(x0), we have:

L(x,λ ,y) = f (x,y)+ 〈λ ,g(x)− y〉, (x,λ ) ∈ X ×Y∗;

Λ(x0) = {λ ∈ NK(g(x0)) : DxL(x0,λ ,0) = 0}.
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For a given d ∈Y, we now consider the following linearization of (Py):

(PLd) min
h∈X

D f (x0,0)(h,d) s.t. Dg(x0)h− d ∈ TK(g(x0)).

From [10, p. 278], we observe that relation (52) is exactly Robinson’s constraint qualification for the problem (PLd),

and the dual of (PLd) is

(DLd) max
λ∈Λ(x0)

DyL(x0,λ ,0)d.

According to the standard duality result in extended linear programming (see, e.g., [10, Theorem 2.165]), from Lemma

6.2, one has the following dual result for the linearization problem (DLd):

Lemma 6.3 Let x0 ∈ S(0) and d ∈ Dg(x0)X −TK(g(x0)) be given. Assume that Y is finite dimensional and G = g−K

is directionally metrically regular at (x0,0) in the direction (h,d) for some h ∈ X with Dg(x0)h− d ∈ TK(g(x0)). Then

there is no duality gap between problems (PLd) and (DL Ld). Moreover, the common optimal value is finite, if and

only if, the set Λ(x0) is nonempty; and in this case, the set of optimal solutions of (DLd) is a nonempty compact set.

The following theorem offers a result related to the Hadamard directional differentiability of the optimal value

function v(y). In order to establish this result, we use the concept of directional metric regularity which is weaker than

the Robinson constraint qualification in general used in the literature (see, e.g., [10, Theorem 4.26]).

Theorem 6.1 Let Y be finite dimensional and let d ∈ Y with

{d,−d} ⊆ Dg(x)X −TK(g(x)) for all x ∈ S(x0).

Assume that

(i) the multifunction G = g−K is directionally metrically regular in the directions (0,d) and (0,−d) at all (x,0) with

x ∈ S(0);

(ii) for any sequence yn = tnd + o(tn) with tn ↓ 0, there exists a sequence of o(tn)−optimal solutions (xn) of (Pyn),

converging to some x0 ∈ S(0).

Then denoting by v
′
−(0,d) and v

′
+(0,d), the lower and upper Hadamard directional derivatives of v at 0 in the direction

d, one has

v
′
−(0,d)≥ inf

x∈S(0)
inf

λ∈Λ(x)
DyL(x,λ ,0)d;

v
′
+(0,d)≤ inf

x∈S(0)
sup

λ∈Λ(x)

DyL(x,λ ,0)d.
(53)

As a result, if Λ(x) is a singleton {λ (x)} for all x ∈ S(0), then the Hadamard directional derivative in the direction d

of v(y) at 0 exists and

v
′
(0,d) = inf

x∈S(0)
DyL(x,λ (x),0)d.
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Proof Let x ∈ S(0) and let h ∈ X be such that Dg(x)h− d ∈ TK(g(x)). As G is directionally metrically regular at (x,0)

in the direction (0,d), then it is also directionally metrically regular at (x,0) in the direction (h,d). By Lemma 6.1, h is

a feasible direction relative to d, i.e., , x+ th+ o(t)∈ Φ(td), ↓ 0. Therefore,

v(td)≤ f (x+ th+ o(t), td) = f (x,0)+ tD f (x,0)(h,d)+ o(t),

and consequently,

limsup
t↓0

v(td)− v(0)

t
≤ D f (x,0)(h,d).

Since x is arbitrary in S(0) and h is an arbitrary feasible point of (PLd), the second inequality in (53) is proved.

For the first inequality, let tn ↓ 0; yn = tnd+o(tn) and (xn) be a sequence of o(tn)−solutions of (Pyn) as in (ii), which

converges to x0 ∈ S(0). Pick h ∈ X such that

Dg(x0)h+ d ∈ TK(g(x0));

equivalently,

g(x0)+ tDg(x0)h+ td+ o(t) ∈ K, t ↓ 0.

Since g(xn)− yn ∈ K, and as K is convex, for any t > 0, when n is sufficiently large and such that tn/t < 1, one has

(1− tn/t)[g(xn)− yn]+ tn/t[g(x0)+ tDg(x0)h+ td+ o(t)]

= g(xn)− yn + tn/t[g(x0)− g(xn)]+ tnDg(x0)h+ tnd + tno(t)/t ∈ K.

Therefore, for ε > 0, when n is sufficiently large, one has d(g(xn)+ tnDg(x0)h,K)≤ tnε. Since

g(xn + tnh) = g(xn)+ tnDg(x0)h+ o(tn),

one obtains

d(g(xn + tnh),K)≤ tnε + o(tn).

By the directional metric regularity of G, we get some zn ∈ Φ0 = G−1(0) such that xn + tnh− zn = o(tnε). Thus,

v(yn)− v(0)

tn
≥ f (xn,yn)− f (zn,0)+ o(tn)

tn

=
f (xn,yn)− f (xn + tnh,0)− o(tnε)

tn

=−D f (x0,0)(h,−d)− o(tnε)/tn.

Finally, by Lemma 6.3, there is no duality gap between (PL−d)) and (DL−d); as ε > 0 is arbitrary, one derives that

liminf
n→∞

v(yn)− v(0)

tn
≥ inf

λ∈Λ(x0)
DyL(x0,λ ,0)d,

from which follows the first inequality of (53). �
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7 Conclusions

In this contribution we have tried to demonstrate how Hölder directional metric regularity of set-valued mappings is an

useful concept for studying the stability and the sensitivity analysis of parameterized optimization problems. This has

been achieved in the last section, where we have investigated the Hadamard directional differentiability of the optimal

value function of a general parametrized optimization problem.
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