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This paper sheds new light on regularity of multifunctions through various characterizations of directional Hölder/Lipschitz metric regularity, which are based on the concepts of slope and coderivative. By using these characterizations, we show that directional Hölder/Lipschitz metric regularity is stable, when the multifunction under consideration is perturbed suitably. Applications of directional Hölder/Lipschitz metric regularity to investigate the stability and the sensitivity analysis of parameterized optimization problems are also discussed.

nary useful for investigating the behavior of solutions of a nonlinear equation under small perturbations of the data, or more generally the behavior of the solution set of generalized equations associated with a set-valued mapping.

As a result, metric regularity plays an important role in many aspects of optimization, differential inclusions, control theory, numerical methods and in many problems of analysis. According to the long history of metric regularity there is an abundant literature on conditions ensuring this property. We refer the reader to the basic monographs [START_REF] Klatte | Nonsmooth Equations in Optimization[END_REF][START_REF] Dontchev | Implicit Functions and Solution Mappings[END_REF][START_REF] Mordukhovich | Variational Analysis and Generalized Differentiation. I : Basic Theory, Grundlehren der Mathematischen Wissenschaften[END_REF][START_REF] Mordukhovich | Variational Analysis and Generalized Differentiation. II : Applications, Grundlehren der Mathematischen Wissenschaften[END_REF][START_REF] Penot | Calculus Without Derivatives[END_REF], to the excellent survey of A. Ioffe [START_REF] Ioffe | Metric regularity: Theory and applications -a survey[END_REF] (in preparation) and to some (non exhaustives) references [START_REF] Borwein | Verifiable necessary and sufficient conditions for openness and regularity for setvalued and single-valued maps[END_REF][START_REF] Azé | A survey on error bounds for lower semicontinuous functions[END_REF][START_REF] Azé | A unified theory for metric regularity of multifunctions[END_REF][START_REF] Bonnans | Perturbation Analysis of Optimization Problems[END_REF][START_REF] Borwein | On the Bartle-Graves theorem[END_REF][START_REF] Borwein | Viscosity solutions and viscosity subderivatives in smooth B anach spaces with applications to metric regularity[END_REF][START_REF] Cominetti | Metric regularity, tangent sets, and second-order optimality conditions[END_REF][START_REF] Dmitruk | Metric regularity and systems of generalized equations[END_REF][START_REF] Dmitruk | Extensions of metric regularity[END_REF][START_REF] Frankowska | Some inverse mapping theorems[END_REF][START_REF] Frankowska | Hölder metric regularity of set-valued maps[END_REF][START_REF] Ioffe | Metric regularity and subdifferential calculus[END_REF][START_REF] Ioffe | Towards variational analysis in metric spaces: metric regularity and fixed points[END_REF][START_REF] Jourani | Metric regularity and subdifferential calculus in Banach spaces[END_REF][START_REF] Jourani | Coderivatives of multivalued mappings, locally compact cones and metric regularity[END_REF][START_REF] Lyusternik | On conditional extrema of functionals[END_REF][START_REF] Mordukhovich | Stability of set-valued mappings in infinite dimensions: point criteria and applications[END_REF][START_REF] Huynh | Error bounds and implicit multifunction theorem in smooth Banach spaces and applications to optimization[END_REF][START_REF] Penot | Metric regularity, openness and Lipschitz behavior of multifunctions[END_REF].

Apart from the study of the usual (Lipschitz) metric regularity, Hölder metric regularity or more generally nonlinear metric regularity have been studied over the years 1980 -1990s by several authors, including for example Borwein and Zhuang [START_REF] Borwein | Verifiable necessary and sufficient conditions for openness and regularity for setvalued and single-valued maps[END_REF], Frankowska [START_REF] Frankowska | Some inverse mapping theorems[END_REF], Penot [START_REF] Penot | Metric regularity, openness and Lipschitz behavior of multifunctions[END_REF], and recently, for instance, Frankowska and Quincampoix [START_REF] Frankowska | Hölder metric regularity of set-valued maps[END_REF], Ioffe [START_REF] Ioffe | Nonlinear regularity models[END_REF], Li and Mordukhovich [START_REF] Li | Hölder metric subregularity with applications to proximal point method[END_REF], Oyang and Mordukovhich [START_REF] Mordukhovich | Higher-order metric subregularity and its applications[END_REF].

Recently, several directional versions of metric regularity notions were considered. In [START_REF] Arutyunov | Directional regularity and metric regularity[END_REF][START_REF] Arutyunov | Directional stability theorem and directional metric regularity[END_REF], Arutyunov et al have introduced and studied a notion of directional metric regularity. This notion is an extension of an earlier notion used by Bonnans and Shapiro [START_REF] Bonnans | Perturbation Analysis of Optimization Problems[END_REF] to study sensitivity analysis. Later, Ioffe [START_REF] Ioffe | On regularity concepts in variational analysis[END_REF] has introduced and investigated an extension called relative metric regularity which covers many notions of metric regularity in the literature. In particular, another version of directional metric regularity/subregularity has been introduced and extensively studied by Gfrerer in [START_REF] Gfrerer | On directional metric subregularity and second-order optimality conditions for a class of nonsmooth mathematical programs[END_REF][START_REF] Gfrerer | On directional metric regularity, subregularity and optimality conditions for nonsmooth mathematical programs[END_REF] where some variational characterizations of this concept have been established and successfully applied to study optimality conditions for mathematical programs. In fact, this directional regularity property has been earlier used by Penot [START_REF] Penot | Second-order conditions for optimization problems with constraints[END_REF] to study second order optimality conditions. In the line of the directional version of metric subregularity considered by Gfrerer [START_REF] Gfrerer | On directional metric subregularity and second-order optimality conditions for a class of nonsmooth mathematical programs[END_REF], Huynh, Nguyen and Tinh [START_REF] Ngai | Directional Hölder metric subregularity and application to tangent cones[END_REF] have studied directional Hölder metric subregularity in order to investigate tangent cones to zero sets in degenerate cases.

It is our aim in the present article to study a directional version of Hölder metric regularity. The structure of the article is as follows. In the Section 2, we establish slope-based characterizations of directional Hölder/Lipschitz metric regularity. In Section 3, we present a stability property for directional Lipschitz metric regularity. In Section 4, a sufficient condition for directional Hölder/Lipschitz metric regularity based on the Fréchet coderivative is established in Asplund spaces. This condition becomes necessary when, either the multifunction under consideration is convex, or when considering directional Lipschitz metric regularity. It was silmultaneously showed that under this condition, directional Hölder/Lipschitz metric regularity persists when the multifunction is perturbed by a Hadamard differentiable mapping. Applications to the study of the stability and the sensitivity analysis of parameterized optimization problems are discussed in Section 4. The last section contains concluding remarks.

Notations and Preliminaries

Throughout we let X and Y denote metric spaces endowed with metrics both denoted by d(•, •). We denote the open and closed balls with center x and radius r > 0 by B(x, r) and B(x, r), respectively. For a given set C, we write intC for its topological interior. A set-valued mapping (also called multifunction) F : X ⇉ Y is a mapping assigning, to each point x ∈ X, a subset (possibly empty) F(x) of Y . We use the notations gph F := {(x, y) ∈ X × Y : y ∈ F(x)} and Dom F := {x ∈ X :

F(x) = / 0}
for the graph of and the domain of F, respectively. For each set-valued mapping F : X ⇉ Y , we define the inverse of F, as the mapping F -1 : Y ⇉ X defined by F -1 (y) := {x ∈ X : y ∈ F(x)}, y ∈ Y } and satisfying

(x, y) ∈ gph F ⇐⇒ (y, x) ∈ gph F -1 .
We use the standard notation d(x,C) to denote the distance from x to a set C ; it is defined by d(x,C) = inf z∈C d(x, z), with the convention that d(x, S) = +∞ whenever S is the empty set. As pointed out in the introduction, main attention in this contribution is paid to the study of the concept of metric regularity. Recall that a mapping F is said to be metrically

regular at ( x, ȳ) ∈ gph F with modulus τ > 0, if there exists a neighborhood U × V of ( x, ȳ) such that d(x, F -1 (y)) ≤ τd(y, F(x)) for all (x, y) ∈ U × V. ( 1 
)
In other words, metric regularity allows to estimate the dependence of the distance of a trial point x ∈ X from the solution set F -1 (y) in terms of the residual quantity d(y, F(x)) for all pairs (x, y) around the reference pair ( x, ȳ) ∈ gph F. The infinum of all moduli τ is denoted by reg F( x, ȳ).

If in the above definition we fix y = ȳ in (1), then we obtain a weaker notion called metric subregularity, see e.g. [START_REF] Mordukhovich | Variational Analysis and Generalized Differentiation. I : Basic Theory, Grundlehren der Mathematischen Wissenschaften[END_REF][START_REF] Penot | Calculus Without Derivatives[END_REF]36]. Observe that this latter property is equivalent to the existence of some neighborhood U of x such that

d(x, F -1 ( ȳ)) ≤ τd( ȳ, F(x)) for all x ∈ U.
It is also well known that metric subregularity can be treated in the framework of the theory of error bounds of extendedreal-valued functions, see e.g. [START_REF] Kruger | Error bounds and Hölder metric subregularity[END_REF][START_REF] Kruger | Error bounds and metric subregularity[END_REF].

An Hölder version of metric regularity is defined as follows (Frankowska and Quincampoix [17], Ioffe [START_REF] Ioffe | Nonlinear regularity models[END_REF]). Let q ∈ (0, 1] be given. A mapping F is said to be metrically q-regular or Hölder metrically regular of order q at ( x, ȳ) ∈ gph F with modulus τ > 0 if there exists a neighborhood U × V of ( x, ȳ) such that

d(x, F -1 (y)) ≤ τ[d(y, F(x))] q for all (x, y) ∈ U × V. ( 2 
)
The infimum of all moduli τ satisfying (2) is denoted by reg q F( x, ȳ), i.e.,

reg q F( x, ȳ) = inf{τ > 0 : ∃δ > 0 s.t. d(x, F -1 (y)) ≤ τ(d(y, F(x))) q for all (x, y) ∈ B( x, δ ) × B( ȳ, δ )}.
Fixing y = ȳ in the above definition, gives the concept of q-Hölder metric subregularity of the set-valued mapping F at ( x, ȳ).

In the present paper, we are interested in a directional version of Hölder metric regularity, defined as follows.

Definition 2.1 Let X,Y be normed linear spaces. Let a real γ ∈]0, 1] and (u, v) ∈ X × Y be given. A multifunction F is said to be (directionally) metrically γ-regular at ( x, ȳ) ∈ gph F in the direction (u, v) with a modulus τ > 0 iff there exists δ , ε, η > 0 such that

d(x, F -1 (y)) ≤ τ[d(y, F(x))] γ (3) 
for all (x, y) ∈ B((

x, ȳ), δ ) with (x, y) ∈ ( x, ȳ)+ cone B((u, v), ε); d(y, F(x)) ≤ η (x, y)-( x, ȳ) 1/γ . Here cone B((u, v), ε) stands for the conic hull of B((u, v), ε), i.e., cone B((u, v), ε) = ∪ λ ≥0 λ B((u, v), ε).
Remark 2.1 In Definition 2.1, the triple δ , ε, η > 0 may be replaced by just a single positive number.

If ( 3) is required to be verified only at y = ȳ, and x ∈ B( x, δ ) with x ∈ x + cone B(u, ε), we say that F is directionally Hölder metrically subregular at ( x, ȳ) in the direction u. When γ = 1, one refers to the (Lipschitz) directional metric regularity, as equivalently introduced by Gfrerer [START_REF] Gfrerer | On directional metric subregularity and second-order optimality conditions for a class of nonsmooth mathematical programs[END_REF].

Since in the definition above, the gauge condition

d(y, F(x)) ≤ η (x, y) -( x, ȳ) 1/γ is added, when (u, v) = (0, 0),
the version of Hölder/Lipschitz metric regularity in Definition 2.1 is even weaker than the usual ones defined by [START_REF] Klatte | Nonsmooth Equations in Optimization[END_REF].

For example, obviously, the function f (x) = x 2 , x ∈ R is Hölder metrically regular of order 1/2 at (0, 0) in the direction (0, 0) in the sense of Definition 2.1, but is not in the usual sense of (2). The added gauge conditions in concepts of metric regularity are really needed when the usual regularity is not satisfied (see, e.g., Ioffe [START_REF] Ioffe | Nonlinear regularity models[END_REF]). Let us mention that directional Hölder/Lipschitz metric regularity is obviously stronger than Hölder/Lipschitz metric subregularity. The main purpose of the present paper is to show that the tools of variational analysis such as the f and the concept of coderivative can be used to efficiently characterize directional Hölder/Lipschitz metric regularity. Our aim is to show that this directional version of Hölder/Lipschitz metric regularity, although weaker than the usual metric regularity, possesses the suitable stability properties which are lost in the case of metric subregularity.

Slope Characterizations of Directional Hölder Metric Regularity

Let X be a metric space. Let f : X → R ∪ {+∞} be a given extended-real-valued function. As usual, dom f := {x ∈ X :

f (x) < +∞} denotes the domain of f .
Recall from [START_REF] Giorgi | Problems of evolution in metric spaces and maximal decreasing curve[END_REF], (see also [START_REF] Azé | Characterizations of error bounds for lower semicontinuous functions on metric spaces[END_REF] and the discussion in [START_REF] Kruger | Error bounds and metric subregularity[END_REF]) that the local slope and the nonlocal slope (see, e.g., [START_REF] Fabian | About error bounds in metric spaces[END_REF]) of the function f at x ∈ dom f , are the quantities denoted respectively by |∇ f |(x) and |Γ f |(x). Using the notation

[a] + for max{a, 0}, they are defined by

|∇ f |(x) = |Γ f |(x) = 0 if x is a local minimum of f and otherwise by |∇ f |(x) = lim sup y→x, y =x f (x) -f (y) d(x, y) (4) 
and

|Γ f |(x) = sup y =x [ f (x) -f (y)] + d(x, y) . (5) For x / ∈ dom f , we set |∇ f |(x) = |Γ f |(x) = +∞. Obviously, |∇ f |(x) ≤ |Γ f |(x) for all x ∈ X.
Let X,Y be normed spaces. If not specified otherwise, we assume that the norm on X × Y is defined by

(x, y) = x + y , (x, y) ∈ X × Y.
For a closed multifunction F : X ⇉ Y , (i.e., when the graph of F is closed in X ×Y ), the lower semicontinuous envelope

of the distance function (x, y) → d(y, F(x)) is defined, for a given (x, y) ∈ X × Y , by ϕ(x, y) := lim inf (u,v)→(x,y) d(v, F(u)) = lim inf u→x d(y, F(u)).
In what follows, for u ∈ X, we shall use the notation x → u

x to mean

x → x if u = 0, x-x x-x -u u → 0 x → x if u = 0.
Obviously, given a sequence {x n } ⊆ X, u ∈ X the two facts are equivalent:

(C 1 ) : {x n } → u x;
(C 2 ) : {x n } → x and there is a sequence of nonnegative reals {δ n } → 0 such that

x n ∈ x + cone B(u, δ n ), ∀n ∈ N.
We need the following series of useful lemmas whose proofs are straightforward.

Lemma 3.1 Let X be a Banach space and Y be a normed space. Suppose a closed multifunction F : X ⇉ Y and a point ( x, ȳ) ∈ gph F are given. Given (u, v) ∈ X × Y , and γ ∈]0, 1], then F is metrically γ-regular at ( x, ȳ) in the direction (u, v) with modulus τ > 0, if and only if, there exist real numbers τ, δ > 0 such that

d(x, F -1 (y)) ≤ τϕ γ (x, y) for all (x, y) ∈ B(( x, ȳ), δ ) ∩ (( x, ȳ) + cone B((u, v), δ )) with d(y, F(x)) ≤ δ (x, y) -( x, ȳ) 1 γ .
Lemma 3.2 Let u ∈ X and x ∈ X be given as well as a sequence {x n } such that x n → u x. Then, for any sequence {δ n } ↓ 0 of nonnegative reals and any sequence {z n } ⊆ X with

z n -x n ≤ δ n x n -x , n ∈ N, (6) 
one has z n → u

x.

Proof It suffices to prove the result when u = 1. If x n = x, then from (6) we have z n = x and we are done. Otherwise, one has

(1 -δ n ) x n -x ≤ z n -x ,
and since

z n -x -u z n -x ≤ 2 z n -x n + x n -x -u x n -x ≤ 2δ n x n -x + x n -x -u x n -x , it follows that z n -x z n -x -u = z n -x -u z n -x z n -x ≤ (1 -δ n ) -1 2δ n + x n -x x n -x -u .
As x n -x x n -xu → 0 and {δ n } → 0, one obtains

z n -x z n -x -u → 0
as n tends to infinity. Moreover, it is easy to see that z n → x. So, one has that z n → u x.

Theorem 3.1 Let X be a Banach space and Y be a normed space. Suppose a closed multifunction F : X ⇉ Y and a point ( x, ȳ) ∈ gph F are given. Given (u, v) ∈ X × Y , and γ ∈]0, 1], F is directional metrically γ-regular at ( x, ȳ) in the direction (u, v), if and only if,

lim inf (x,y) → (u,v) ( x, ȳ), ϕ(x,y)>0 ϕ γ (x,y) (x,y)-( x, ȳ) →0 |Γ ϕ γ (•, y)|(x) > 0. ( 7 
)
Proof For the sufficiency, assume that (7) holds and assume on the contrary that F fails to be directional metrically γ-regular in the direction (u, v). Then for every n ∈ N, there exists (x n , y n ) with

0 < x n -x + y n -ȳ < 1 n ; d(y n , F(x n )) γ ≤ 1 n 2 (x n , y n ) -( x, ȳ) ; (x n , y n ) → (u,v) ( x, ȳ)
and such that

d(x n , F -1 (y n )) > n 2 [d(y n , F(x n ))] γ (≥ n 2 ϕ γ (x n , y n )). From the relation d(y n , F(x n )) γ ≤ 1 n 2 (x n , y n ) -( x, ȳ) , it follows that ϕ γ (x n , y n ) ≤ 1 n 2 (x n , y n ) -( x, ȳ) . (8) 
Applying the Ekeland variational principle to the lower semicontinuous function ϕ γ (•, y n ) on the Banach space X, one gets a point z n satisfying the conditions:

z n -x n ≤ 1 n (x n , y n ) -( x, ȳ) , ϕ γ (z n , y n ) ≤ ϕ γ (x n , y n ),
and

ϕ γ (z n , y n ) ≤ ϕ γ (x, y n ) + 1 n x -z n , ∀ x ∈ X.
Consequently,

|Γ ϕ γ (•, y n )|(z n ) ≤ 1 n , (9) 
and by

(x n , y n ) -( x, ȳ) ≤ z n -x n + (z n , y n ) -( x, ȳ) ≤ 1 n (x n , y n ) -( x, ȳ) + (z n , y n ) -( x, ȳ) , one obtains (x n , y n ) -( x, ȳ) ≤ n n -1 (z n , y n ) -( x, ȳ) . (10) 
Hence, combining ( 8) and ( 10) we obtain:

ϕ γ (z n , y n ) ≤ ϕ γ (x n , y n ) ≤ 1 n 2 (x n , y n ) -( x, ȳ) ≤ 1 n(n -1) (z n , y n ) -( x, ȳ) .
The latter relation implies that

lim n→∞ ϕ γ (z n , y n ) (z n , y n ) -( x, ȳ) = 0. Moreover, invoking Lemma 3.2, relations (x n , y n ) → (u,v) ( x, ȳ) and z n -x n ≤ 1/n (x n , y n ) -( x, ȳ) imply that (z n , y n ) → (u,v) ( x, ȳ).
Hence, by [START_REF] Ioffe | Metric regularity: Theory and applications -a survey[END_REF],

z n ∈ F -1 (y n ) for n large, say, n ≥ n 0 .
For n ≥ n 0 , as

ϕ γ (x n , y n ) < 1 n 2 d(x n , F -1 (y n )),
applying again the Ekeland variational principle to the lower semicontinuous ϕ γ (•, y n ), one gets a point w n ∈ X satisfying the conditions:

w n -x n < 1 n d(x n , F -1 (y n )), ϕ γ (w n , y n ) ≤ ϕ γ (x n , y n ) and, ϕ γ (w n , y n ) ≤ ϕ γ (x, y n ) + 1 n x -w n , ∀ x ∈ X.
We deduce that

|Γ ϕ γ (•, y n )|(w n ) ≤ 1 n . Moreover we claim that ϕ γ (w n , y n ) (w n , y n ) -( x, ȳ) ≤ 1 n 2 + 1 n 2 (n 2 -1) . (11) 
Indeed, as

(x n , y n ) -( x, ȳ) ≤ ≤ (x n , y n ) -(w n , y n ) + (w n , y n ) -( x, ȳ) = x n -w n + (w n , y n ) -( x, ȳ) ≤ 1 n d(x n , F -1 (y n )) + (w n , y n ) -( x, ȳ) ≤ 1 n x n -z n + (w n , y n ) -( x, ȳ) ≤ 1 n 2 (x n , y n ) -( x, ȳ) + (w n , y n ) -( x, ȳ) ,
we have

(x n , y n ) -( x, ȳ) ≤ n 2 n 2 -1 (w n , y n ) -( x, ȳ) ,
and

ϕ γ (w n , y n ) ≤ ϕ γ (x n , y n ) ≤ 1 n 2 (x n , y n ) -( x, ȳ) ≤ 1 n 2 (w n , y n ) -( x, ȳ) + 1 n 2 x n -w n ≤ 1 n 2 (w n , y n ) -( x, ȳ) + 1 n 3 d(x n , F -1 (y n )) ≤ 1 n 2 (w n , y n ) -( x, ȳ) + 1 n 3 x n -z n ≤ 1 n 2 (w n , y n ) -( x, ȳ) + 1 n 4 (x n , y n ) -( x, ȳ) .
Therefore,

ϕ γ (w n , y n ) ≤ 1 n 2 + 1 n 2 (n 2 -1) (w n , y n ) -( x, ȳ) ,
and ( 11) is established. By virtue of Lemma 3.2, since

(x n , y n ) → (u,v) ( x, ȳ) and w n -x n ≤ 1 n 2 (x n , y n ) -( x, ȳ) , one has (w n , y n ) → (u,v) ( x, ȳ).
In conclusion, we have obtained a sequence {w n } which satisfies

w n / ∈ F -1 (y n ); (w n , y n ) → (u,v) ( x, ȳ); ϕ γ (w n , y n ) (w n , y n ) -( x, ȳ) → 0 and |Γ ϕ γ (•, y n )|(w n ) ≤ 1 n .
Hence, condition ( 7) is violated, and the sufficiency is proved.

For the necessary part, suppose that there exist reals τ, δ > 0 such that

d(x, F -1 (y)) ≤ τ[d(y, F(x))] γ for all (x, y) ∈ B(( x, ȳ), δ ) ∩ (( x, ȳ) + cone B((u, v), δ )) with d(y, F(x)) ≤ δ (x, y) -( x, ȳ) 1 γ .
According to Lemma 3.1,

d(x, F -1 (y)) ≤ τϕ γ (x, y) ∀(x, y) ∈ B(( x, ȳ), δ ) ∩ (( x, ȳ) + cone B((u, v), δ )) with 0 < ϕ γ (x, y) (x, y) -( x, ȳ) ≤ δ . Let (x, y) ∈ B(( x, ȳ), δ ) ∩ (( x, ȳ) + cone B((u, v), δ )) with (x, y) = ( x, ȳ) and 0 < ϕ γ (x,y) (x,y)-( x, ȳ) ≤ δ . Then, for every ε > 0, there exists an element z ∈ F -1 (y) such that x -z ≤ (τ + ε)ϕ γ (x, y) = (τ + ε)[ϕ γ (x, y) -ϕ γ (z, y)].
Consequently,

|Γ ϕ γ (•, y)|(x) ≥ 1 (τ + ε) .
As ε > 0 is arbitrary, one obtains lim inf

(x,y) → (u,v) ( x, ȳ), ϕ(x,y)>0 ϕ γ (x,y) x-x →0 |Γ ϕ γ (•, y)|(x) ≥ 1 τ > 0,
completing the proof.

The theorem above yields the following local slope characterization of the directional metric γ-regularity . Theorem 3.2 Let X be a Banach space and Y be a normed space. Suppose a closed multifunction F : X ⇉ Y and a

point ( x, ȳ) ∈ X × Y are given such that ȳ ∈ F( x). Let (u, v) ∈ X × Y , and γ ∈ (0, 1] be fixed. If lim inf (x,y) → (u,v) ( x, ȳ), ϕ(x,y)>0 ϕ γ (x,y) (x,y)-( x, ȳ) →0 |∇ϕ γ (•, y)|(x) > 0, ( 12 
)
then there exist reals τ, δ > 0 such that

d(x, F -1 (y)) ≤ τ[d(y, F(x))] γ for all (x, y) ∈ B(( x, ȳ), δ ) ∩ (( x, ȳ) + cone B((u, v), δ )) with d(y, F(x)) ≤ δ (x, y) -( x, ȳ) 1 γ .
That is, F is directionally metrically γ-regular at ( x, ȳ) in the direction (u, v) with modulus τ.

Remark 3.1 Condition (12) of Theorem 3.2 fails to be a necessary condition when γ ∈]0, 1[. To see this, let us consider the mapping F : R 2 → R defined by

F(x) = (x 1 -x 2 ) 3 , x = (x 1 , x 2 ) ∈ R 2 .
Here, R 2 is equipped with the Euclidean norm. For

x = (x 1 , x 2 ) ∈ R 2 and y ∈ R, F -1 (y) = {(t + 3 √ y,t) : t ∈ R}. Therefore, d(x, F -1 (y)) = |x 1 -x 2 -3 √ y|/ √ 2.
Noticing that from the inequality 0 ≤ 3(a + b) 2 , we deduce that

(a -b) 2 ≤ 4(a 2 + ab + b 2 ) and therefore that |a -b| 3 ≤ 4|a 3 -b 3 |, for all a, b ∈ R. Using the last inequality yields d(x, F -1 (y)) = |x 1 -x 2 -3 √ y|/ √ 2 ≤ 2 1/6 |(x 1 -x 2 ) 3 -y| 1/3 = 2 1/6 |y -F(x)| 1/3 for all x ∈ R 2 , y ∈ R.
Consequently, F is metrically 1/3-regular at (0, 0) (in the direction (0, 0)). However, for any x = (x 1 , x 1 ) ∈ R 2 and y ∈ R with y = 0, one has

|∇ϕ 1/3 (•, y)|(x) = 0, where, ϕ(x, y) = |y -F(x)|.
As stated in the next theorem, when γ = 1, then condition (12) becomes a necessary condition.

Theorem 3.3 Let X be a Banach space and Y be a normed space. Suppose a closed multifunction F : X ⇉ Y and a

point ( x, ȳ) ∈ X × Y are given such that ȳ ∈ F( x). Let us fix (u, v) ∈ X × Y .
Then, the following are equivalent:

(i) lim inf (x,y) → (u,v) ( x, ȳ), ϕ(x,y)>0 ϕ(x,y) (x,y)-( x, ȳ) →0 |∇ϕ(•, y)|(x) > 0, (13) 
(ii) there exist reals τ > 0 and δ > 0 such that

d(x, F -1 (y)) ≤ τd(y, F(x)) for all (x, y) ∈ B(( x, ȳ), δ ) ∩ (( x, ȳ) + cone B((u, v), δ )) with d(y, F(x)) ≤ δ (x, y) -( x, ȳ) .
That is F is directionally metrically regular at ( x, ȳ) in the direction (u, v) with modulus τ.

Proof According to Theorem 3.2, condition ( 13) is sufficient to obtain (ii). Conversely, suppose that there exist τ > 0

and δ ∈]0, 1[ such that d(x, F -1 (y)) ≤ τd(y, F(x)) (14) for all (x, y) ∈ B(( x, ȳ), 2δ ) ∩ (( x, ȳ) + cone B((u, v), 2δ )) with d(y, F(x)) ≤ 2δ (x, y) -( x, ȳ) . Let (x, y) ∈ B(( x, ȳ), δ ) ∩ (( x, ȳ) + cone B((u, v), δ )) be such that 0 < d(y, F(x)) ≤ δ 2 4 (x, y) -( x, ȳ) . ( 15 
) Since ϕ(x, y) = sup ε>0 inf w∈B(x,ε) d(y, F(w)) = lim inf w→x d(y, F(w)), we have ϕ(x, y) (x, y) -( x, ȳ) ≤ δ 2 4
and we can write ϕ(x, y) = lim n→+∞ d(y, F(u n )) for some sequence {u n } in X converging to x. Without loss of generality, we can suppose that d(y, F(u n )) > (1 -1 n 2 )ϕ(x, y), and

u n -x < 1 n ϕ(x, y) ≤ δ 2 (x, y) -( x, ȳ) 4n ≤ δ 3 4n < δ n (16) 
and

d(y, F(u n )) < 1 + 1 n ϕ(x, y). ( 17 
)
Note also that for every n ∈ N, there exists

y n ∈ F(u n ) such that d(y, F(u n )) ≤ y -y n < 1 + 1 n d(y, F(u n )). ( 18 
)
Set

z n := 1+n 1 2 1+n y + n(1-n -1 2 ) 1+n y n . Claim 3.1 y -z n < 1 - 1 n ϕ(x, y) for large n. (19) 
Indeed,

y n -z n ≤ 1 + n 1/2 1 + n y -y n , (20) 
and

y -z n = n(1 -n -1 2 ) 1 + n y -y n < n(1 -n -1 2 ) 1 + n 1 + 1 n d(y, F(u n )) < 1 -n -1 2 d(y, F(u n )) < 1 -n -1 2 1 + 1 n ϕ(x, y) ≤ 1 -n -1 2 1 + n -1 2 ϕ(x, y). Hence, y -z n < (1 -1 n )ϕ(x, y), as claimed. Claim 3.2 z n / ∈ F(u n ) for large n.
Indeed, using [START_REF] Ioffe | Towards variational analysis in metric spaces: metric regularity and fixed points[END_REF], if we suppose that z n ∈ F(u n ) (for n ≥ n 0 ), we deduce that

(1 - 1 n 2 )ϕ(x, y) < d(y, F(u n )) ≤ y -z n < 1 - 1 n ϕ(x, y),
we have a contradiction. Hence, as claimed, for n large, z n / ∈ F(u n ).

Claim 3.3 (⋆⋆) (u n , z n ) ∈ ( x, ȳ) + cone B((u, v), 2δ ) for large n. As (x, y) ∈ ( x, ȳ) + cone B((u, v), δ ), there is some λ > 0 such that (x,y)-( x, ȳ) λ ∈ B((u, v), δ ). Then, λ ≥ (x, y) -( x, ȳ) (u, v) + δ .
Let us observe that

z n -y λ < by(19) (1 -1/n) λ ϕ(x, y) < (1 -1/n)δ 2 4nλ (x, y) -( x, ȳ) ≤ (1 -1 n )δ 2 4n ( (u, v) + δ ) ≤ (1 -1 n )δ 2 4 ≤ δ 2 .
Therefore, one has

(u n ,z n )-( x, ȳ) λ -(u, v) ≤ (u n ,z n )-(x,y) λ + (x,y)-( x, ȳ) λ -(u, v) ≤ u n -x + z n -y λ + δ ≤ δ λ n + δ 2 + δ < 2δ .

This yields, (⋆⋆).

Claim 3.4

(⋆ ⋆ ⋆) d(z n , F(u n )) < 2δ 2 (u n , z n ) -( x, ȳ) for large n.
We know that

(♣) d(z n , F(u n )) < 1 + n 1/2 1 + n (1 + 1 n ) 2 ϕ(x, y) ≤ 1 + n 1/2 1 + n (1 + 1 n ) 2 δ 2 4 (x, y) -( x, ȳ) .
We have:

(x, y) -( x, ȳ) ≤ (u n , z n ) -(x, y) + (u n , z n ) -( x, ȳ) , and 
(u n , z n ) -(x, y) = u n -x + z n -y < δ 2 4n (x, y) -( x, ȳ) + (1 -1/n) δ 2 4n (x, y) -( x, ȳ) = δ 2 4n (x, y) -( x, ȳ) , it follows (♥) (x, y) -( x, ȳ) < 1 (1 -δ 2 4n ) (u n , z n ) -( x, ȳ) .
Hence combining (♣) and (♥) we derive

d(z n , F(u n )) < 1 + n 1/2 1 + n (1 + 1 n ) 2 δ 2 4 (x, y) -( x, ȳ) < 1 + n 1/2 1 + n (1 + 1 n ) 2 δ 2 4(1 -δ 2 4n ) (u n , z n ) -( x, ȳ) .
Observing that the quantity 1+n 1/2 1+n

(1+ 1 n ) 2 (1-δ 2 4n )
tends to 0 as n tends to +∞, we obtain (⋆ ⋆ ⋆), as desired.

(u n , z n ) -( x, ȳ) ≤ 2δ for large n. ( 21 
) (u n , z n ) -( x, ȳ) ≤ (u n , z n ) -(x, y) + (x, y) -( x, ȳ) ≤ δ n + (1 - 1 n )ϕ(x, y) + ((x, y) -( x, ȳ) ≤ δ n + (2 - 1 n ) δ 2 4 (x, y) -( x, ȳ) ≤ 2δ .
Combining relations ( 21), (⋆⋆) and (⋆ ⋆ ⋆) we see that the point (u n , z n ) verifies [START_REF] Dmitruk | Metric regularity and systems of generalized equations[END_REF]. Hence by assumption we have

d(u n , F -1 (z n )) ≤ τd(z n , F(u n ). Next, select xn ∈ F -1 (z n ) such that xn -u n ≤ (1 + n -1 2 )d(u n , F -1 (z n )) ≤ τ(1 + n -1 2 )d(z n , F(u n )) ≤ τ(1 + n -1 2 ) z n -y n = τ(1 + n -1 2 ) (1 + n 1 2 ) 1 + n y -y n = τ 2 + n 1 2 + n -1 2 1 + n y -y n . (22) 
Consequently, xn -u n < τ 2+n 1 /2+n 

n n + 1 d(y, F(u n )) -d(y, F( xn ))
> by( 18)

n 2 (n + 1) 2 y -y n -y -z n ,
and by the definition of z n , we derive

ϕ(x, y) -ϕ( xn , y) > n 3/2 -n + n 1/2 (n + 1) 2 y -y n .
Thus, using also [START_REF] Frankowska | Some inverse mapping theorems[END_REF], we obtain

ϕ(x, y) -ϕ( xn , y) xn -x ≥ ϕ(x, y) -ϕ( xn , y) u n -x + xn -u n > by(22) (n 3/2 -n + n 1/2 )(n + 1) -2 y -y n δ n -1 + τ(2 + n 1 2 + n -1 2 )(n + 1) -1 y -y n = n 3/2 -n + n 1/2 (2 + n 1 2 + n -1 2 )(n + 1) 1 τ + δ (n+1) n(2+n 1/2 +n - 1 
2 )

yy n -1

.

Since n 3/2 -n+n 1/2 (2+n

1 2 +n -1 2 )(n+1)
→ 1, lim n→∞ yy n = ϕ(x, y) > 0 and

δ (n + 1) n(2 + n 1 2 + n -1 2 ) • 1 y -y n → 0, we deduce that |∇ϕ(•, y)|(x) = lim sup u→x ϕ(x, y) -ϕ(u, y) x -u ≥ lim sup n→∞ ϕ(x, y) -ϕ( xn , y) xn -x ≥ 1 τ ,
establishing the proof.

Directional Metric Regularity under Perturbations

In [START_REF] Dontchev | The radius of metric regularity[END_REF][START_REF] Dontchev | Perturbations and metric regularity[END_REF][START_REF] Ioffe | Towards variational analysis in metric spaces: metric regularity and fixed points[END_REF][START_REF] Ngai | Error bounds in metric spaces and application to the perturbation stability of metric regularity[END_REF], it was established that metric regularity is stable under Lipschitz (single-valued or set-valued) perturbations with a suitable Lipschitz modulus. We shall show that directional metric regularity (with γ = 1) is also stable under suitable Lipschitz perturbations. Recall that a mapping g : X → Y between normed spaces is Hadamard differentiable at x ∈ X with respect to the direction u ∈ X, if the following limit exists:

lim t↓0 w→u g( x + tw) -g( x) t = Dg( x)(u).
Obviously, if g is locally Lipschitz around x, then g is Hadamard differentiable at x with respect to the direction 0 and Dg( x)(0) = 0.

Theorem 4.1 Let X be a Banach space, Y be a normed space. For a given (u, v) ∈ X × Y, suppose F : X ⇉ Y is a set-valued mapping which is directionally metrically regular at ( x, ȳ) ∈ gph F in direction (u, v) with modulus τ > 0. If g : X → Y is locally Lipschitz around x with a constant λ > 0 satisfying λ τ < 1 and if g is Hadamard differentiable at x with respect to the direction u, then the set-valued mapping F + g is directionally metrically regular at ( x, ȳ + g( x)) in the direction (u, v + Dg( x)(u)).

Proof Since g is locally Lipschitz around x with constant λ and F is directionally metrically regular at

( x, ȳ) ∈ gph F in direction (u, v) with modulus τ > 0, take δ ∈ (0, λ ) such that g(x) -g(z) ≤ λ x -z ∀x, z ∈ B( x, δ ), and 
d(x, F -1 (y)) ≤ τd(y, F(x)) for all (x, y) ∈ B(( x, ȳ), δ ) ∩ (( x, ȳ) + cone B((u, v), δ )), with d(y, F(x)) ≤ 2δ (x, y) -( x ȳ) . (23) 
Taking into account the Hadamard differentiability of g at x with respect to the direction u, pick some ε ∈ 0, δ 2 and then some η ∈ (0, 1) such that

g( x + tw) -g( x) t -Dg( x)(u) < ε for all t ∈]0, η[, w ∈ B(u, η). ( 24 
) Set ϕ F+g (x, y) = lim inf z→x d(y, F(z) + g(z)), (x, y) ∈ X × Y. Take ρ > 0 such that ρ <      min δ λ +3 , δ -ε, η u 1+η , δ 2τ+1 , if u = 0 ρ < min δ λ +3 , δ -ε, δ 2τ+1 , if u = 0 and fix (x, y) ∈ B(( x, ȳ + g( x)), ρ) ∩ (( x, ȳ + g( x)) + cone B((u, v + Dg( x)(u)), ρ)) with 0 < d(y, F(x) + g(x)) < ρ (x, y) -( x, ȳ + g( x)) , (25) 
and select a sequence {x n } converging to x such that ϕ F+g (x, y)

= lim n→∞ d(y, F(x n ) + g(x n )).
With the aim of making the proof clearer, we will establish some claims.

Claim 4.1

(x n , y) -( x, ȳ + g( x)) < δ , for n large. ( 26 
)
Claim 4.2

(x n , y) ∈ ( x, ȳ + g( x)) + cone B((u, v + Dg( x)(u)), ρ) for n large. (27) 
Indeed, since (x, y) -( x, ȳ + g( x)) / ∈ cone B((u, v + Dg( x)(u)), ρ) \ {(0, 0)}, for large n, one has

(x, y) -( x, ȳ + g( x)) ∈ int (cone B((u, v + Dg( x)(u)), ρ )) It follows that (x n , y) -( x, ȳ + g( x)) ∈ cone B((u, v + Dg( x)(u)), ρ). Claim 4.3 0 < d(y, F(x n ) + g(x n )) < ρ (x n , y) -( x, ȳ + g( x)) for n large. (28) 
Indeed, reasoning ad absurdum, suppose the existence of a subsequence still denoted by {x n } such that

d(y, F(x n ) + g(x n )) ≥ ρ (x n , y) -( x, ȳ + g( x)) .
Since F has closed graph then

0 < ϕ F+g (x, y) = lim n→+∞ d(y, F(x n ) + g(x n )) ≤ d(y, F(x) + g(x)),
due to the fact that {x n } converges to x and thanks to [START_REF] Penot | Metric regularity, openness and Lipschitz behavior of multifunctions[END_REF], we obtain a contradiction.

Claim 4.4

For n sufficiently large,

(x n , y -g(x n )) ∈ B(( x, ȳ), δ ), (29) 
d(y -g(x n ), F(x n )) ≤ 2δ (x n , y -g(x n )) -( x, ȳ) . (30) 
and

(x n , y -g(x n )) ∈ ( x, ȳ) + cone B((u, v), δ ). ( 31 
)
We know that (xx, yȳg( x)) < ρ.

For n sufficiently large, one has x nx < δ and

(x n -x, y -g(x n ) -ȳ) = x n -x + y -ȳ-g(x n ) ≤ x n -x + x -x + y -ȳ-g( x) + g( x) -g(x n ) ≤ x n -x + (x -x, y -ȳ -g( x)) + λ x n -x = (λ + 1) x n -x + 2ρ < (λ + 3)ρ < δ (since ρ < δ λ + 3
).

Thus, one obtains [START_REF] Arutyunov | Directional regularity and metric regularity[END_REF]. Next, we have

d(y -g(x n ), F(x n )) < ρ( (x n , y -g(x n )) -( x, ȳ) + g(x n ) -g( x) ) ≤ ρ( (x n , y -g(x n )) -( x, ȳ) + λ x n -x ) ≤ ρ(λ + 1) (x n , y -g(x n )) -( x, ȳ) < 2δ (x n , y -g(x n )) -( x, ȳ) (since ρ < δ λ +2 ). (32) 
So, we receive [START_REF] Arutyunov | Directional stability theorem and directional metric regularity[END_REF]. By relation [START_REF] Li | Hölder metric subregularity with applications to proximal point method[END_REF], for n sufficiently large, say, n ≥ n 0 , as (x n , y n ) = ( x, ȳ + g( x)) we may find t n > 0 and (u n , w n ) ∈ B((u, v + Dg( x)(u)), ρ) such that

x n = x + t n u n , y = ȳ + g( x) + t n w n . Set y -g(x n ) = ȳ + t n v n ; v n = w n - g( x + t n u n ) -g( x) t n . If u = 0 then (u n , v n ) -(0, v) = (u n , (v n -w n + Dg( x)) + (w n -v -Dg( x))) ≤ (u n w n -v -Dg( x)) + w n -v n -Dg( x) ≤ ρ + g( x+t n u n )-g( x) t n -Dg( x) < ρ + ε < δ ;
otherwise, u = 0, since u n ∈ B(u, ρ), one has

t n = x n -x u n ≤ ρ u -ρ < η,
and therefore, by [START_REF] Huynh | Error bounds and implicit multifunction theorem in smooth Banach spaces and applications to optimization[END_REF],

(u n , v n ) -(u, v) ≤ (u n , w n ) -(u, v + Dg( x)(u)) + w n -v n -Dg( x)(u) ≤ ρ + g( x+t n u n )-g( x) t n -Dg( x)(u) ≤ ρ + ε < δ . Now, pick z n ∈ F -1 (y -g(x n )) such that x n -z n ≤ (1 + 1/n)d(x n , F -1 (y -g(x n ))).
Hence, according to ( 23), ( 29), ( 30), [START_REF] Ioffe | On regularity concepts in variational analysis[END_REF], we obtain,

x n -z n ≤ (1 + 1/n)τd(y -g(x n ), F(x n )). (33) 
Consequently,

z n -x ≤ x n -z n + x n -x ≤ (1 + 1/n)τρ (x n , y) -( x, ȳ + g( x)) + x n -x < (1 + 1/n)τρ 2 + ρ < (1 + 1/n)τρ + ρ < 2τρ + ρ = ρ(1 + 2τ) < δ .
Using the local Lipschitz continuity around x of g gives, g(z n )g(x n ) ≤ λ z nx n . As yg(x) / ∈ F(x) and lim n→∞ x n = x, then lim inf n→∞ x nz n > 0. Hence, by relation [START_REF] Gfrerer | On directional metric regularity, subregularity and optimality conditions for nonsmooth mathematical programs[END_REF], one has

|Γ ϕ F+g (•, y)|(x) ≥ lim sup n→∞ ϕ F+g (x,y)-ϕ F+g (z n ,y) x-z n ≥ lim sup n→∞ d(y-g(x n ),F(x n ))-d(y-g(z n ),F(z n )) x n -z n ≥ lim sup n→∞ d(y-g(x n ),F(x n ))-d(y-g(x n ),F(z n ))-g(x n )-g(z n ) x n -z n ≥ lim sup n→∞ d(y-g(x n ),F(x n )) x n -z n -λ ≥ lim sup n→∞ τ -1 n n+1 -λ = τ -1 -λ . Therefore, lim inf (x, y) -→ (u,v+Dg( x)(u)) ( x, ȳ + g( x)) x / ∈ (F + g) -1 (y), ϕ F+g (x,y) (x,y)-( x, ȳ) → 0 |Γ ϕ F+g (•, y)|(x) ≥ τ -1 -λ .
Thanks to Theorem 3.1, the proof is complete.

Stability of Directional Hölder Metric Regularity under Mixed Coderivative-Tangency Conditions

For the usual metric regularity, sufficient conditions in terms of coderivatives have been given by various authors, for instance, in [START_REF] Azé | A unified theory for metric regularity of multifunctions[END_REF][START_REF] Jourani | Coderivatives of multivalued mappings, locally compact cones and metric regularity[END_REF][START_REF] Mordukhovich | Variational Analysis and Generalized Differentiation. I : Basic Theory, Grundlehren der Mathematischen Wissenschaften[END_REF][START_REF] Huynh | Error bounds and implicit multifunction theorem in smooth Banach spaces and applications to optimization[END_REF]. In this section, we establish a characterization of directional Hölder metric regularity using the Fréchet subdifferential in Asplund spaces, i.e., in Banach spaces in which every convex continuous function is generically Fréchet differentiable. There are many equivalent descriptions of Asplund spaces, see, e.g., Mordukhovich's book [START_REF] Mordukhovich | Variational Analysis and Generalized Differentiation. I : Basic Theory, Grundlehren der Mathematischen Wissenschaften[END_REF] and its bibliography. In particular, any reflexive space is Asplund, as well as each Banach space such that each of its separable subspaces has a separable dual. We shall show that the proposed characterization also ensures the stability of directional Hölder metric regularity under suitable differentiable perturbations. In this section, in order to formulate some coderivative characterizations of directional Hölder metric regularity, some additional definitions are required. Let X be a Banach space. Consider now an extended-real-valued function f : X → R ∪ {+∞}. The Fréchet subdifferential of f at x ∈ Dom f is given as

∂ f ( x) = x * ∈ X * : lim inf x→ x, x = x f (x) -f ( x) -x * , x -x x -x ≥ 0 .
For the convenience of the reader, we would like to mention that the terminology regular subdifferential instead of Fréchet subdifferential is also popular due to its use in Rockafellar and Wets [36]. Every element of the Fréchet subdifferential is termed as a Fréchet (regular) subgradient. If x is a point where f ( x) = ∞, then we set ∂ f ( x) = / 0. In fact one can show that an element x * is a Fréchet subgradient of f at x iff

f (x) ≥ f ( x) + x * , x -x + o( x -x ) where lim x→ x o( x -x ) x -x = 0.
It is well-known that the Fréchet subdifferential satisfies a fuzzy sum rule in Asplund spaces (see [START_REF] Mordukhovich | Variational Analysis and Generalized Differentiation. I : Basic Theory, Grundlehren der Mathematischen Wissenschaften[END_REF], Theorem 2.33).

More precisely, if X is an Asplund space and f 1 ,

f 2 : X → R ∪ {∞} are such that f 1 is Lipschitz continuous around x ∈ Dom f 1 ∩ Dom f 2
and f 2 is lower semicontinuous around x, then for any γ > 0 one has which is defined as ∂ δ C ( x). Equivalently a vector x * ∈ X * is a Fréchet normal to C at x if

∂ ( f 1 + f 2 )(x) ⊂ {∂ f 1 (x 1 ) + ∂ f 2 (x 2 ) | x i ∈ x + γB X , | f i (x i ) -f i (x)| ≤ γ, i = 1, 2} + γB X * . ( 34 
x * , x -x ≤ o( x -x ), ∀x ∈ C,
where lim x→ x o( xx )

xx = 0. Let F : X ⇉ Y be a set-valued map and (x, y) ∈ gph F. Then the Fréchet coderivative at (x, y) is the set-valued map D * F(x, y) : Y * ⇉ X * given by

D * F(x, y)(y * ) := x * ∈ X * | (x * , -y * ) ∈ N(gph F, (x, y)) .
In the spirit of Gfrerer [START_REF] Gfrerer | First order and second order characterizations of metric subregularity and calmness of constraint set mappings[END_REF], see also Kruger [START_REF] Kruger | Error bounds and metric subregularity[END_REF], Ngai-Tinh [START_REF] Ngai | Metric subregularity of multifunctions and applications[END_REF] we introduce the following limit set for directional Hölder metric regularity of order γ (γ ∈ (0, 1]).

Definition 5.1 Let F : X ⇉ Y be a closed multifunction and ( x, ȳ) ∈ gph F be fixed. For a given (u, v) ∈ X ×Y and each γ ∈ (0, 1], the critical limit set for metric regularity of order γ of F in the direction (u, v) at ( x, ȳ) ∈ gph F is denoted by Cr γ F(( x, ȳ), (u, v)) and is defined as the set of all (w, x * ) ∈ Y × X * such that there exist sequences {t n } ↓ 0, {ε n } ↓ 0,

(u n , v n ) ∈ cone B((u, v), ε n ) with (u n , v n ) = 1, w n ∈ Y , y * n ∈ S Y * (the unit sphere of Y * ), x * n ∈ D * F( x + t n u n , ȳ + t n v n + t 1/γ n w n )(y * n ) with y * n , w n w n → 1 and w n ,t (γ-1)/γ n w n γ-1 x * n → (w, x * ).
For a closed multifunction F : X ⇉ Y, we define the coderivative slope of F at (x, y) ∈ gph F as the following quantity:

m F (x, y) = inf { x * : x * ∈ D * F(x, y)(y * ), y * ∈ S * Y } .
By applying Theorem 4.1, we receive the following result.

Theorem 5.1 Let X and Y be Asplund spaces and suppose given a closed multifunction F : X ⇉ Y , as well as

( x, ȳ) ∈ gph F, (u, v) ∈ X ×Y and γ ∈]0, 1[. If (0, 0) / ∈ Cr γ F(( x, ȳ), (u, v))
, then for any mapping g : X → Y , differentiable in a neighborhood of x, and verifying for some c ∈]0, 1[, δ > 0

Dg(x) ≤ cm F (x, y) ∀(x, y) ∈ gph F ∩ B(( x, ȳ), δ ) ∩ (( x, ȳ) + cone B((u, v), δ )) , ( 35 
)
the multifunction F + g is directionally Hölder metrically regular of order γ at ( x, ȳ + g( x)) in the direction

(u, v + Dg( x)(u)).
In particular, F is directionally Hölder metrically regular of order γ at ( x, ȳ) in the direction (u, v).

Proof gAssume on the contrary that there is a differentiable function g : X → Y, verifying [START_REF] Ngai | Directional Hölder metric subregularity and application to tangent cones[END_REF] for some c ∈ (0, 1) and δ > 0, such that Hölder metric regularity of order γ at ( x, ȳ + g( x)) in the direction (u, v + Dg( x)(u)) fails for F + g.

According to Theorem 3. 

δ n = 1 n ) such that ϕ(x n , y n ) > 0, δ n ↓ 0, x n -x < δ n , y n -ȳ -g( x) < δ n ; (x n , y n ) ∈ ( x. ȳ + g( x)) + cone B((u, v + Dg( x)(u)), δ n ); (36) lim n→∞ ϕ γ (x n , y n ) (x n , y n ) -( x, ȳ + g( x)) = 0,
and

|∇ϕ γ (•, y n )|(x n ) < δ n , ; ∀n ∈ N.
We can assume that δ n ∈ (0, δ /4) for all n ∈ N. Then, for each n ∈ N, there is η n ∈ (0, δ n ) with

η n /ϕ(x n , y n ) → 0; 2η n < ϕ(x n , y n )(1 -δ n ); η 2 n /4 + 5η n /4 < (x n , y n ) -( x, ȳ + g( x)) ∀n ∈ N (37) such that d(y n -g(z), F(z)) ≥ ϕ(x n , y n )(1 -δ n ), ∀z ∈ B(x n , 4η n ),
and

δ n ≥ ϕ γ (x n , y n ) -ϕ γ (z, y n ) x n -z for all z ∈ B(x n , η n ).
Equivalently,

ϕ γ (x n , y n ) ≤ ϕ γ (z, y n ) + δ n z -x n for all z ∈ B(x n , η n ). Since η n /ϕ(x n , y n ) → 0 and lim n→∞ ϕ γ (x n , y n ) (x n , y n ) -( x, ȳ + g( x)) = 0, one has lim n→∞ η γ n (x n , y n ) -( x, ȳ + g( x)) = 0. ( 38 
)
Take

z n ∈ B(x n , η 2 n /4), w n ∈ F(z n ) + g(z n ) such that y n -w n γ ≤ ϕ(x n , y n ) γ + η 2 n /4.
Then,

y n -w n γ ≤ ϕ γ (z, y n ) + δ n z -x n + η 2 n /4, ∀z ∈ B(x n , η n ). By ϕ γ (z, y n ) ≤ [d(y n , (F + g)(z))] γ ≤ y n -w γ + δ gph(F+g) (z, w), ∀w ∈ Y.
one has

y n -w n γ ≤ y n -w γ + δ gph(F+g) (z, w) + δ n z -z n + (δ n + 1)η 2 n /4 for all (z, w) ∈ B(x n , η n ) × Y.
Applying the Ekeland variational principle to the function

(z, w) → y n -w γ + δ gph(F+g) (z, w) + δ n z -z n on B(x n , η n ) × Y, we can select (z 1 n , w 1 n ) ∈ (z n , w n ) + η n 4 B X×Y with (z 1 n , w 1 n ) ∈ gph(F + g) such that |y n -w 1 n γ + δ n z 1 n -z n ≤ y n -w n γ (≤ ϕ γ (x n , y n ) + η 2 n /4); (39) 
and such that the function

(z, w) → y n -w γ + δ gph(F+g) (z, w) + δ n z -z n + (δ n + 1)η n (z, w) -(z 1 n , w 1 n ) attains a minimum on B(x n , η n ) × Y at (z 1 n , w 1 n ).
Observing that the functions

(z, w) → y n -w γ , (z, w) → z -z n and (z, w) → (z, w) -(z 1 n , w 1 n )
are locally Lipschitz around (z 1 n , w 1 n ), thanks to the fuzzy sum rule, we can select

w 2 n ∈ B Y (w 1 n , η n ); (z 3 n , w 3 n ) ∈ B X×Y ((z 1 n , w 1 n ), η n ) ∩ gph(F + g); w 2 * n ∈ ∂ ( y n -• γ )(w 2 n ); (z 3 * n , -w 3 * n ) ∈ N(gph(F + g), (z 3 n , w 3 n ))
satisfying

w 3 * n = w 2 * n + (δ n + 2)η n w 4 * n , w 2 * n -w 3 * n < (δ n + 2)η n , (40) 
and,

z 3 * n ≤ δ n + (δ n + 2)η n . Since y n -w 2 n ≥ y n -w n -w 2 n -w n ≥ ϕ(x n , y n )(1 -δ n ) -2η n > 0, then w 2 * n ∈ ∂ ( y n -• γ )(w 2 n ) = γ y n -w 2 n γ-1 ∂ ( y n -• )(w 2 n ),
and therefore,

w 2 * n = γ y n -w 2 n γ-1 t 2 * n with t 2 * n = 1 and t 2 * n , w 2 n -y n = y n -w 2 n .
Thus, from [START_REF] Azé | Characterizations of error bounds for lower semicontinuous functions on metric spaces[END_REF], it follows that

w 3 * n ≥ w 2 * n -(δ n + 2)η n = γ y n -w 2 n γ-1 t 2 * n -(δ n + 2)η n = γ y n -w 2 n γ-1 -(δ n + 2)η n > 0, w 3 * n ≤ w 2 * n + (δ n + 2)η n = γ y n -w 2 n γ-1 t 2 * n + (δ n + 2)η n = γ y n -w 2 n γ-1 + (δ n + 2)η n .
Since

t n ≥ (x n , y n ) -( x, ȳ + g( x)) -z 3 n -x n ≥ (x n , y n ) -( x, ȳ + g( x)) -η 2 n /4 -5η n /4 > 0, it makes sense to set t n = (z 3 n , y n ) -( x, ȳ + g( x)) ; (u n , v n ) = (z 3 n -x, y n -ȳ -g( x))/t n ; ζ n = (w 3 n -y n )/t 1 γ n , (41) 
and

y * n = w 3 * n / w 3 * n ; x * n = z 3 * n / w 3 * n . As (z 3 n , y n ) → ( x, ȳ + g( x)) and (z 3 n , y n ) = ( x, ȳ + g( x)) for n sufficiently large, then (t n ) ↓ 0 as n → ∞. Since ϕ(x n , y n )(1 -δ n ) ≤ d(y n , (F + g)( x + t n u n )) ≤ t 1 γ n ζ n ≤ y n -w 1 n + η n ≤ ϕ(x n , y n ) + η 2 n /4 + η n , one has ζ n ≤ ϕ(x n , y n ) + η 2 n /4 + η n ( (x n , y n ) -( x, ȳ + g( x)) -η 2 n /4 -5η n /4) 1/γ . As ϕ γ (x n , y n )/ (x n , y n ) -( x, ȳ + g( x)) → 0 as well as η γ n / (x n , y n ) -( x, ȳ + g( x)) → 0, one obtains lim n→∞ ζ n = 0. (42) 
Next, by using the standard formula for the Fréchet coderivative of F + g, one has

x * n ∈ D * (F + g)( x + t n u n , ȳ + g( x) + t n v n + t 1 γ n ζ n )(y * n ) = D * F( x + t n u n , ȳ + g( x) -g( x + t n u n ) + t n v n + t 1 γ n ζ n )(y * n ) + Dg * ( x + t n u n )y * n .
In other words,

z * n := x * n -Dg * ( x + t n u n )y * n ∈ D * F( x + t n u n , ȳ + g( x) -g( x + t n u n ) + t n v n + t 1 γ n ζ n )(y * n ). (43) 
From [START_REF] Fabian | About error bounds in metric spaces[END_REF] and relations

(36), lim n→∞ ζ n = 0; g( x + t n u n ) -g( x) = t n Dg( x)(u n ) + 0(t n ),
by checking directly, we derive that

u n , g( x) -g( x + t n u n ) t n + v n ∈ cone B((u, v), ε n ), (44) 
and

(t n u n , g( x) -g( x + t n u n ) + t n v n + t 1 γ n ζ n ) ∈ cone B((u, v), ε n ),
for some sequence {ε n } ↓ 0.

Therefore, by [START_REF] Ngai | Directional Hölder metric subregularity and application to tangent cones[END_REF], one has (for n sufficiently large)

x * n = z * n + Dg * ( x + t n u n )y * n ≥ z * n -Dg * ( x + t n u n ) ≥ (1 -c) z * n .
By (36), one derives that

t (γ-1)/γ n ζ n γ-1 x * n = t (γ-1)/γ n ζ γ-1 z 3 * n / w 3 * n ≤ t (γ-1)/γ n ζ n γ-1 (δ n +(δ n +2)η n ) γ y n -w 2 n γ-1 -(δ n +2)η n ≤ y n -w 3 n γ-1 (δ n +(δ n +2)η n ) γ( y n -w 2 n -2η n ) γ-1 -(δ n +2)η n . (45) 
Observing that

y n -w 2 n ≥ y n -w n -w n -w 2 n ≥ ϕ(x n , y n ) -δ n -2η n > 0, then, lim n→∞ η n y n -w 2 n ≤ lim n→∞ η n ϕ(x n , y n ) -δ n -2η n = 0.
Therefore, (45) yields

lim n→∞ t (γ-1)/γ n ζ n γ-1 z * n ≤ lim n→∞ (1 -c) -1 t (γ-1)/γ n ζ γ-1 x * n = 0. ( 46 
)
Next, one has

y * n , ζ n ζ n = y * n , w 3 n -y n w 3 n -y n ≥ w 3 * n , w 3 n -y n w 3 * n w 3 n -y n ≥ w 2 * n , w 2 n -y n -w 2 * n -w 3 * n w 2 n -y n -w 2 * n w 2 n -w 3 w 2 * n w 2 n -y n + w 2 * n w 3 n -w 2 n + w 3 n -w 2 n w 2 * n -w 3 * n + w 2 * n -w 3 * n w 2 n -y n ≥ γ w 2 n -y n γ -(δ n + 2)η n (ϕ(x n , y n ) + δ n + 2η n ) -2η n γ y n -w 2 n γ-1 γ w 2 n -y n γ + 2η n γ y n -w 2 n γ-1 + 2η 2 n (δ n + 2) + (δ n + 2)η n (ϕ(x n , y n ) + δ n + 2η n )
.

Here, we use the following relations

w 2 * n , w 2 n -y n = γ w 2 n -y n γ ; w 2 * n = γ w 2 n -y n (γ-1) y n -w 2 n ≥ y n -w n -w n -w 2 n ≥ ϕ(x n , y n )(1 -δ n ) -2η n > 0. Hence, since η n y n -w 2 n ≤ η n ϕ(x n , y n )(1 -δ n ) -2η n → 0, as n → ∞, one obtains lim n→∞ y * n , ζ n ζ n = 1. (47) 
Relations ( 42), ( 43), ( 44), ( 46), (47) show that (0, 0) ∈ Cr γ F(( x, ȳ), (u, v)), completing the proof.

An open question is whether the inverse implication is true in general? In the particular case when F is a closed multifunction and either F is a closed convex multifunction (i.e., gph F is closed convex) or γ = 1, the inverse holds as shown in the following proposition.

Proposition 5.1 Let X,Y be Banach spaces and let (u, v) ∈ X × Y, γ ∈ (0, 1] be given.

(i) If F : X ⇉ Y is a closed convex multifunction, which is directionally Hölder metrically regular of order γ at ( x, ȳ) ∈ gph F in the direction (u, v), then (0, 0) / ∈ Cr γ F((x, y), (u, v));

(ii) If a closed multifunction F : X ⇉ Y is directionally metrically regular at ( x, ȳ) ∈ gph F in the direction (u, v), then (0, 0) / ∈ CrF((x, y), (u, v)).

Proof (i). Let us consider sequences {t n } ↓ 0;

{ε n } ↓ 0; (u n , v n ) ∈ cone B((u, v), ε n ) with (u n , v n ) = 1; ζ n ∈ Y ; y * n ∈ S Y * and x * n ∈ X * such that ζ n → 0; y * n , ζ n ζ n → 1 as n → ∞, x * n ∈ D * F( x + t n u n , ȳ + t n v n + t 1/γ n ζ n )(y * n ).
Thanks to the convexity of F,

x * n , x -x -t n u n -y * n , y -ȳ -t n v n -t 1/γ n ζ n ≤ 0 ∀(x, y) ∈ gph F. ( 48 
)
Since F is directionally Hölder metrically regular of order γ at ( x, ȳ) ∈ gph F in the direction (u, v), with some constant τ > 0, and,

d( ȳ + t n v n , F( x + t n u n )) (t n (u n , v n ) ) 1/γ ≤ ζ n → 0,
for n sufficiently large, one has

d( x + t n u n , F -1 ( ȳ + t n v n )) ≤ τd( ȳ + t n v n , F( x + t n u n )) γ ≤ τ ȳ + t n v n -ȳ -t n v n -t 1/γ ζ n γ = τt n ζ n γ .
Thus, we can find

x n ∈ F -1 ( ȳ + t n v n ) such that x n -x -t n u n ≤ τ(1 + t n )t n ζ n γ .
Taking into account (48), one obtains

x * n τ(1 + t n )t n ζ n γ ≥ x * n x n -x -t n u n ≥ x * n , x + t n u n -x n ≥ t 1/γ n y * n , ζ n .
Therefore,

lim inf n→∞ x * n t (γ-1)/γ n ζ n γ-1 ≥ lim n→∞ τ -1 (1 + t n ) -1 y * n , ζ n ζ n = τ -1 ,
which shows that (0, 0) / ∈ Cr γ F(( x, ȳ), (u, v)).

(ii). Suppose that F is directionally metrically regular at ( x, ȳ) ∈ gph F in the direction (u, v). Let be given sequences

{t n } ↓ 0; {ε n } ↓ 0; (u n , v n ) ∈ cone B((u, v), ε n ) with (u n , v n ) = 1; ζ n ∈ Y ; y * n ∈ S Y * and x * n ∈ X * such that ζ n → 0; y * n , ζ n ζ n → 1 as n → ∞, x * n ∈ D * F( x + t n u n , ȳ + t n v n + t n ζ n )(y * n ).
Then, there is a sequence of nonnegative reals {δ n } with δ n ∈]0,t n [ such that

x * n , x -x -t n u n -y * n , y -ȳ -t n v n -t n ζ n ≤ ε n ((x, y) -( x + t n u n , ȳ + t n v n + t n ζ n ) for all (x, y) ∈ gph F with (x, y) -( x + t n u n , ȳ + t n v n + t n ζ n ) < δ n . (49) 
By setting

y n = ȳ + t n v n + (t n -δ n )ζ n , then ( x + t n u n , y n ) → (u,v)
( x, ȳ). Hence, by the directional metric regularity of F at ( x, ȳ) in the direction (u, v) with some constant τ > 0, for n large enough, there is x n ∈ F -1 (y n ) such that

x n -x -t n u n ≤ τ(1 + t n )d(y n , F( x + t n u n )) ≤ τ(1 + t n ) y n -ȳ -t n v n -t n ζ n = τ(1 + t n )δ n ζ n .
Thus, (x n , y n ) -( x + t n u n , ȳ + t n v n + t n ζ n ) < δ n for n sufficiently large, and therefore, taking into account of (49), one derives that

x * n τ(1 + t n )δ n ζ n ≥ δ n y * n , ζ n , which implies lim inf n→∞ x * n ≥ τ -1
, and the proof is complete.

Applications to the Directional Differentiability of the Optimal Value Function

Let X,Y be Banach spaces, f : X ×Y → R and g : X → Y be continuous functions. We suppose that K is a closed convex subset of Y . In this section, we consider a parameterized optimization problem of the form

(P y ) min x∈X f (x, y) s.t. y ∈ g(x) -K,
depending on a parameter y ∈ Y. The feasible set of (P y ) is denoted by

Φ(y) := {x ∈ X : y ∈ g(x) -K}.
For y = 0, the corresponding problem (P 0 ) denoted by (P) is viewed as an unperturbed problem. We set f (x) := f (x, 0), Φ 0 := Φ(0) and we denote by v(y) the optimal value function of (P y ) and by S (y) the associated set of optimal solutions: v(y) := inf Recall that x ε is said to be an ε-optimal solution of (P y ) if x ε ∈ Φ(y) and f (x ε , y) ≤ v(y) + ε. In this section, we apply the concept of directional metric regularity to discuss the directional differentiability of the optimal value function v(y).

We now assume that f ( Note from [START_REF] Bonnans | Perturbation Analysis of Optimization Problems[END_REF] that if h is a feasible direction relative to d ∈ Y at x 0 , then

Dg(x 0 )h -d ∈ T K (g(x 0 )), (50) 
where, T K (g(x 0 )) = {d ∈ Y : d(g(x 0 ) + td, K) = o(t), t ≥ 0} stands for the contingent cone to the convex set K at g(x 0 ).

Conversely, one has the following: Lemma 6.1 Let x 0 ∈ Φ(0) be given. If relation (50) holds, and if in addition, G(x) := g(x)-K is directionally metrically regular in the direction (h, d) at (x 0 , 0), then h is a feasible direction relative to d.

Proof By the assumption, there exist τ, ε > 0 such that

d(x, Φ(y)) ≤ τd(y, g(x) -K) ∀(x, y) ∈ B((x 0 , 0), ε) ∩ [(x 0 , 0) + cone B((h, d), ε)], d(y, g(x) -K) ≤ ε (x, y) -(x 0 , 0) . (51) 
Let y(t) = td + o(t) be given and set x(t) = x 0 + th, one has

g(x 0 ) + tDg(x 0 )h -td + o(t) ∈ K, as t ↓ 0. As g(x(t)) = g(x 0 ) + tDg(x 0 )h + o(t), then we have g(x(t)) -td + o(t) ∈ K from which we obtain d(y(t), g(x(t)) -K) = o(t).
Hence, when t > 0 is sufficiently small,

(x(t), y(t)) ∈ B((x 0 , 0), ε) ∩ [(x 0 , 0) + cone B((h, d), ε)], d(y(t), g(x(t)) -K) ≤ ε (x(t), y(t)) -(x 0 , 0) . Thus, there is x(t) := x 0 + th + o(t) ∈ Φ(y(t)), as t > 0. Lemma 6.2 Assume that Y is finite dimensional. Let x 0 ∈ Φ(0) and d ∈ Y \ {0}, h ∈ X such that (50) holds. If G is
directionally metrically regular at (x 0 , 0) in the direction (h, d), then one has

d ∈ int{Dg(x 0 )X -T K (g(x 0 ))}. ( 52 
)
Proof Let τ > 0, ε ∈ (0, 1) be such that (51) happens. Let 0 < δ < ε d /2 and fix d ∈ B(d, δ ). Since (50) holds, one has

g(x 0 ) + tDg(x 0 )h -td + o(t) ∈ K, ast > 0.
Hence,

g(x 0 + th) -td + o(t) ∈ K, ast > 0. Moreover, one has δ ≤ ε d 2(1-δ /2) < ε d since δ < εd /2 < ε(δ + d ) 2
. Consequently, when t is sufficiently small,

d(t d, g(x 0 + th) -K) ≤ tδ + o(t) < εt( h + d ).
According to (51), we now select x(t) ∈ Φ(t d) such that

x 0 + th -x(t) ≤ τtδ + o(t). Setting h(t) = x(t)-x 0 t , one has h -h(t) ≤ τδ + o(t) t .
As x(t) ∈ Φ(t d), then

t d ∈ g(x 0 + h(t)) -K,
and therefore,

d ∈ Dg(x 0 )(h(t)) + o(t) t - K -g(x 0 ) t .
Since Y is finite dimensional, we can take a sequence (t n ) n∈N ↓ 0 such that the sequence (Dg(x 0 )h(t n )) n∈N converges to some w ∈ Dg(x 0 )X. Then, thanks to the preceding relation we obtain

d ∈ Dg(x 0 )X -T K (g(x 0 )),
which completes the proof of the lemma.

Denote by L(x, λ , y) and Λ (x 0 ) the Lagrangian of (P y ) and the set of Lagrange multipliers of the problem (P 0 ) for x 0 ∈ S(0), respectively. More precisely, if N K (g(x 0 )) stands for the normal cone to the convex set K at g(x 0 ), we have:

L(x, λ , y) = f (x, y) + λ , g(x)y , (x, λ ) ∈ X × Y * ;

Λ (x 0 ) = {λ ∈ N K (g(x 0 )) : D x L(x 0 , λ , 0) = 0}. Lemma 6.3 Let x 0 ∈ S(0) and d ∈ Dg(x 0 )X -T K (g(x 0 )) be given. Assume that Y is finite dimensional and G = g -K is directionally metrically regular at (x 0 , 0) in the direction (h, d) for some h ∈ X with Dg(x 0 )hd ∈ T K (g(x 0 )). Then there is no duality gap between problems (PL d ) and (DL L d ). Moreover, the common optimal value is finite, if and only if, the set Λ (x 0 ) is nonempty; and in this case, the set of optimal solutions of (DL d ) is a nonempty compact set.

The following theorem offers a result related to the Hadamard directional differentiability of the optimal value function v(y). In order to establish this result, we use the concept of directional metric regularity which is weaker than the Robinson constraint qualification in general used in the literature (see, e.g., [START_REF] Bonnans | Perturbation Analysis of Optimization Problems[END_REF]Theorem 4.26]). Proof Let x ∈ S(0) and let h ∈ X be such that Dg(x)hd ∈ T K (g(x)). As G is directionally metrically regular at (x, 0) in the direction (0, d), then it is also directionally metrically regular at (x, 0) in the direction (h, d). By Lemma 6. By the directional metric regularity of G, we get some z n ∈ Φ 0 = G -1 (0) such that x n + t n h -z n = o(t n ε). Thus,

v(y n ) -v(0) t n ≥ f (x n , y n ) -f (z n , 0) + o(t n ) t n = f (x n , y n ) -f (x n + t n h, 0) -o(t n ε) t n = -D f (x 0 , 0)(h, -d) -o(t n ε)/t n .
Finally, by Lemma 6.3, there is no duality gap between (PL -d )) and (DL -d ); as ε > 0 is arbitrary, one derives that lim inf n→∞ v(y n )v(0) t n ≥ inf λ ∈Λ (x 0 ) D y L(x 0 , λ , 0)d, from which follows the first inequality of (53).

)

  For a nonempty closed set C ⊆ X, denote by δ C the indicator function associated with C (i.e. δ C (x) = 0, when x ∈ C and δ C (x) = ∞ otherwise). The Fréchet normal cone to C at x is denoted by N(C, x). It is a closed and convex object in X *

  2, setting ϕ(x, y) = lim inf u→x d(y, F(u) + g(u)) = lim inf u→x d(yg(x), F(u)), (x, y) ∈ X × Y, we can find a sequence {(x n , y n )} ⊆ X × Y and a sequence of nonnegative reals {δ n > 0} (we can set

S

  (y) := argmin x∈Φ(y) f (x, y).

For a given

  d ∈ Y, we now consider the following linearization of (P y ):(PL d ) min h∈X D f (x 0 , 0)(h, d) s.t. Dg(x 0 )hd ∈ T K (g(x 0 )).From [10, p. 278], we observe that relation (52) is exactly Robinson's constraint qualification for the problem (PL d ), and the dual of (PL d ) is(DL d ) max λ ∈Λ (x 0 ) D y L(x 0 , λ , 0)d.According to the standard duality result in extended linear programming (see, e.g.,[START_REF] Bonnans | Perturbation Analysis of Optimization Problems[END_REF] Theorem 2.165]), from Lemma 6.2, one has the following dual result for the linearization problem (DL d ):

Theorem 6 . 1

 61 Let Y be finite dimensional and let d ∈ Y with {d, -d} ⊆ Dg(x)X -T K (g(x)) for all x ∈ S(x 0 ).Assume that(i) the multifunction G = g -K is directionally metrically regular in the directions (0, d) and (0, -d) at all (x, 0) with x ∈ S(0);(ii) for any sequence y n = t n d + o(t n ) with t n ↓ 0, there exists a sequence of o(t n )-optimal solutions (x n ) of (P y n ), converging to some x 0 ∈ S(0).Then denoting by v′ -(0, d) and v ′ + (0, d), the lower and upper Hadamard directional derivatives of v at 0 in the direction d(x, λ , 0)d; v ′ + (0, d) ≤ inf x∈S(0) sup λ ∈Λ (x) D y L(x, λ , 0)d.(53) As a result, if Λ (x) is a singleton {λ (x)} for all x ∈ S(0), then the Hadamard directional derivative in the direction d of v(y) at 0 exists and v ′ (0, d) = inf x∈S(0) D y L(x, λ (x), 0)d.

  •, •) and g are mappings of class C 1 . Associated to a given direction d ∈ Y, we consider a path y(t) of the form y(t) = td + o(t), with t ∈ R + . Let us recall the notion of feasible direction[START_REF] Bonnans | Perturbation Analysis of Optimization Problems[END_REF]: Definition 6.1 Let x 0 ∈ Φ(0) be given. A direction h ∈ X is said to be a feasible direction at x 0 , relative to the direction

d ∈ Y , iff for any path y(t) = td + o(t) with t ≥ 0 in Y , there exists r(t) = o(t) in X such that x 0 + th + r(t) ∈ Φ(y(t)).

  1, h is a feasible direction relative to d, i.e., , x + th + o(t) ∈ Φ(td), ↓ 0. Therefore,v(td) ≤ f (x + th + o(t),td) = f (x, 0) + tD f (x, 0)(h, d) + o(t),Since x is arbitrary in S(0) and h is an arbitrary feasible point of (PL d ), the second inequality in (53) is proved.For the first inequality, let t n ↓ 0; y n = t n d + o(t n ) and (x n ) be a sequence of o(t n )-solutions of (P y n ) as in (ii), which converges to x 0 ∈ S(0). Pick h ∈ X such that Dg(x 0 )h + d ∈ T K (g(x 0 ));

	and consequently,		
	lim sup t↓0	v(td) -v(0) t	≤ D f (x, 0)(h, d).
	equivalently,		

g(x 0 ) + tDg(x 0 )h + td + o(t) ∈ K, t ↓ 0.

Since g(x n )y n ∈ K, and as K is convex, for any t > 0, when n is sufficiently large and such that t n /t < 1, one has

(1t n /t)[g(x n )y n ] + t n /t[g(x 0 ) + tDg(x 0 )h + td + o(t)] = g(x n )y n + t n /t[g(x 0 )g(x n )] + t n Dg(x 0 )h + t n d + t n o(t)/t ∈ K.

Therefore, for ε > 0, when n is sufficiently large, one has d(g(x n ) + t n Dg(x 0 )h, K) ≤ t n ε. Since

g(x n + t n h) = g(x n ) + t n Dg(x 0 )h + o(t n ), one obtains d(g(x n + t n h), K) ≤ t n ε + o(t n ).
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Conclusions

In this contribution we have tried to demonstrate how Hölder directional metric regularity of set-valued mappings is an useful concept for studying the stability and the sensitivity analysis of parameterized optimization problems. This has been achieved in the last section, where we have investigated the Hadamard directional differentiability of the optimal value function of a general parametrized optimization problem.
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