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In this article we establish some fixed point (known also as critical point, invariant point)
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1. Introduction

The celebrated Ekeland variational principle has been recognized as a fundamental
tool in the study of various aspects of optimization theory and variational analysis.
Since it has been established, it has found many applications in different fields in
Analysis. For instance, it has been used to prove the infinite-dimensional mountain
path theorem of Ambrosetti and Rabinowitz [1] and has been the key ingredi-
ent for proving new variational principles such as the Borwein-Preiss variational
principle [2]. It has provided simple and elegant proofs of known results such as
the Caristi fixed point theorem in complete metric spaces [3] (in fact the two re-
sults are equivalent). It is well established that Dancs-Hegedüs-Medvegyev’s fixed
point theorem [4, Theorem 3.1] has served as a significant tool in proving Eke-
land’s variational principle [5] and its extensions to vector and set optimization;
the reader is referred for instance to [6–13]. It is important to emphasize that the
Dancs-Hegedüs-Medvegyev fixed point theorem is equivalent to Ekeland’s varia-
tional principle [5] in the sense that one implies the other. The plan of the paper
is organized as follows. We begin in section 2 with recalling the Dancs-Hegedüs-
Medvegyev fixed point theorem and some of its recent developments. Through this
section we recall also some concepts and notations that we will use in the rest of
the paper. Our work requires the concept of quasi-metric space, which we review in
section 3. Armed with the previous results and such quasi-metric tools, in section
4, we establish in Theorem 4.1 an unified version of Dancs-Hegedüs-Medvegyev
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fixed point theorem, as well as an “all sequences” version of Theorem 4.1 .Finally,
remarks on further research topics are given in section 5.

2. Some recent developments: a brief survey

For convenience of the reader, let us recall the Dancs-Hegedüs-Medvegyev fixed
point theorem and some of its recent developments. Throughout, we will use the
notation“Φ : X ⇉ X” to denote a set-valued mapping, that is a mapping assigning
to each point x ∈ X, a subset (possibly empty) Φ(x) ofX and we say that {xn} ⊂ X
is a generalized Picard sequence of Φ, if xn+1 ∈ Φ(xn) for all n ∈ N.

theorem 2.1 ([4, Theorem 3.1]). Let (X, d) be a complete metric space, and

let Φ : X →→ X be a set-valued mapping satisfying the following conditions:

(A1) Φ(x) is a closed set for all x ∈ X;

(A2) x ∈ Φ(x) for all x ∈ X;

(A3) x2 ∈ Φ(x1) =⇒ Φ(x2) ⊂ Φ(x1) for all x1, x2 ∈ X;

(A4) For each generalized Picard sequence {xn} ⊂ X of Φ, lim
n→+∞

d(xn, xn+1) = 0.

Then, for every starting point x0 ∈ X, there is a convergent sequence {xn} ⊂ X
whose limit x∗ is a fixed point of Φ, i.e., Φ(x∗) = {x∗}.

In [10, 11], Khanh and Quy presented an extension of Theorem 2.1 in order to
establish a new version of Ekeland’s variational principle for weak τ -functions.

Definition 1 (τ-functions and weak τ-functions [10, 11]). Let (X, d) be a
metric space. A bifunction p : X × X → R+ is called a τ -function whenever the
following four conditions hold:

(τ1) p(x, z) ≤ p(x, y) + p(y, z) (triangle inequality);
(τ2) for all x ∈ X, p(x, ·) is lower semicontinuous (lower semicontinuity);
(τ3) for all sequences {xn}, {yn} with lim

n→∞

p(xn, yn) = 0 and lim
n→∞

sup
m>n

p(xn, xm) =

0, one has lim
n→∞

d(xn, yn) = 0 (p-convergence implies d-convergence);

(τ4) p(x, y) = 0 and p(x, z) = 0 imply that y = z (indistancy implies coincidence).

A bifunction p : X × X → R+ is called weak τ -function whenever it satisfies
conditions (τ1), (τ3), and (τ4).

theorem 2.2 ([11, Lemma 3.4]) Let (X, d) be a metric space, p be a weak

τ -function on X, and Φ : X →→ X be a set-valued mapping. Suppose given a

generalized Picard sequence {xn} ⊂ X of Φ convergent to x̄ with respect to p in the

sense that lim
n→∞

p(xn, x̄) = 0 with the following properties:

(B1) Φ(xn+1) ⊂ Φ(xn) for all n ∈ N;

(B2) lim
n→∞

sup
u∈Φ(xn)

p(xn, u) = 0;

(B3) x̄ ∈ Φ(xn) for all n ∈ N.

Then,

⋂

n∈N

Φ(xn) = {x̄}.

Assume, in addition, that

2



August 8, 2015 Optimization gOPTBao˙TheraR4

(B4) Φ(x̄) 6= ∅ and Φ(x̄) ⊂ Φ(xn) for all n ∈ N.

Then x̄ is an invariant point of Φ, i.e., Φ(x̄) = {x̄}.

Remark 1 In [11, Lemma 3.4], Khanh and Quy imposed assumptions on one
generalized Picard sequence under consideration instead of all sequences in the
original or similar results. It is important to emphasize that Dancs et al.’s proof
in [4, Theorem 3.1] also holds under the validity of conditions (B1)–(B4). In fact,
conditions (A1)–(A4) ensure the existence of a generalized Picard sequence of Φ
which satisfies condition (B1)–(B4). It is worth emphasizing that the proof of [11,
Lemma 3.4] is nothing but the middle part of Khanh-Quy’s version of Ekeland’s
variational principle.

In [12], Qiu established a general preorder principle from which most of the known
set-valued Ekeland variational principles and their improvements were derived.
However, it could not imply Khanh and Quy’s EVP in the afore-mentioned papers
[11] in which a weak τ -function plays the role of the metric in the original principle
since the generalized distance between two distinct points x and y of a weak τ -
function p(x, y) may be zero. Then, Qiu further revised it to a more general version
in [13, Theorem 2.1].

Definition 2 (preordered and ordered sets) Let Ξ be a nonempty set and
Q ⊂ Ξ × Ξ be a subset of the cartesian product Ξ × Ξ. Let us define a binary
relation � associated to Q on Ξ by

v � z :⇐⇒ (v, z) ∈ Q.

The binary relation � is a preorder ; known also as a quasiorder, whenever it
satisfies the following properties:

[

∀ z ∈ Ξ, z � z
]

(reflexivity) and
[

∀ z, z′, z′′ ∈ Ξ, z � z′ ∧ z′ � z′′ =⇒ z � z′′
]

(transitivity).

A set equipped with a preorder is called a preordered set. When Ξ = Z is a
vector space, we call the pair (Z,�) a preordered vector space. If a preorder is also
antisymmetric, i.e.,

— z � v ∧ v � z =⇒ v = z (antisymmetry),

then it is a partial order.

theorem 2.3 ([13, Theorem 2.1]) Let (X,�) be a preordered set and consider

the level-set mapping S : X →→ X of the set X with respect to the preorder �
defined by

S(x) := {u ∈ X| u � x}. (2.1)

Let x0 ∈ X be such that S(x0) 6= ∅ and consider ϕ : (X,�) → R ∪ {±∞} an

extended real-valued function which is monotone with respect to �. Suppose that

(C1) −∞ < inf{ϕ(x)| x ∈ S(x0)} < +∞;

(C2) For any x ∈ S(x0) with −∞ < ϕ(x) < +∞ and for any z1, z2 ∈ S(x) with

z1 6= z2, one has ϕ(x) > min{ϕ(z1), ϕ(z2)};
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(C3) For any generalized Picard sequence {xn} ⊂ S(x0) of S satisfying

ϕ(xn)− inf
x∈S(xn−1)

ϕ(x) → 0 as n → ∞,

there exists x∗ ∈ X such that x∗ ∈ S(xn) for all n ∈ N.

Then, there exists x̄ ∈ X such that

(i) x̄ ∈ S(x0);
(ii) S(x̄) ⊂ {x̄} which holds as equality provided that S(x̄) 6= ∅.

Remark 2 Since � is a preorder, the level-set mapping S defined by (2.1) automat-
ically satisfies conditions (A2) and (A3). It plays the role of the set-valued mapping
Φ in Theorems 2.1 and 2.2. The function ϕ is nothing but a utility function as-
sociated to the preorder �. It allows the author not to impose some topological
properties on X. Later, we will show that some relaxation of the completeness and
separation properties of the metric space (X, d) in Dansc et al.’s result are fulfilled
under the imposed assumptions (C1)–(C3).

In [6, 7], Bao, Mordukhovich and Soubeyran established a far going extension of
Dancs-Hegedüs-Medvegyev’s fixed point theorem for parametric multifunctions in
quasi-metric spaces. This extension can also be interpreted as an existence theorem
of minimal points with respect to reflexive and transitive preferences for sets in
products spaces with possible applications to behavioral sciences. Below is a simple
version of [6, Theorem 2.3].

3. Quasi-metric spaces: definition, basic properties and examples

Definition 3 (quasi-metric spaces) A quasi-metric space (also called quasi-
pseudo-metric space by Reilly et al. [14]) is a pair (X, q) consisting of a set X
and a function q : X ×X 7−→ R+ := [0,∞) on X ×X having the following three
properties:

(i) q(x, x′) ≥ 0 for all x, x′ ∈ X and q(x, x) = 0 for all x ∈ X (positivity);
(ii) q(x, x′′) ≤ q(x, x′) + q(x′, x′′) for all x, x′, x′′ ∈ X (triangle inequality).

There is an abundant literature devoted to “distances” where the requirement
of symmetry is omitted. Quasi-metrics are common in real life. For example, given
a set X of mountain villages, the typical walking times between elements of X
form a quasi-metric because traveling up hill takes longer than traveling down hill.
Another example is a geometry topology having one-way streets, where a path
from point A to point B comprises a different set of streets than a path from B
to A. These “metrics” have some interest in topology, but they are also used in
applied mathematics in the calculus of variation. Recently, Bao et al. studied in
[8, 15, 16] some mathematical models arising in some areas of behavioral sciences
(called sometimes “theories of stability/stay and change”). It seems that everyone
agrees that the cost to change in these models does not satisfy the symmetry
property. Note that several terminologies are used for the concept of what we call
in this paper, quasi-metric: Mennuci [17] uses the term asymmetric semidistance,
Cobzaş [18] and Reilly et al. [14] speak about quasi-pseudo-metrics, while Deza et
al. [19], use the name quasi semi-metric and Mainik and Mielke [20] employ the
name of dissipation distance.
As well-known, if in addition, a quasi-metric satisfies the symmetry property

4



August 8, 2015 Optimization gOPTBao˙TheraR4

q(x, x′) = q(x′, x) for all x, x′ ∈ X, then q is a metric. Part (ii) in the previous
definition of a quasi-metric was formalized by Hausdorff in the celebrated monog-
raphy “Grundzüge der Mengenlehre” [21, p. 145–146] which is considered as the
foundation of the theory of topological and metric spaces (see details in [19] and
[22]). Part (ii) was first formalized by Fréchet [23] and later treated by Hausdorff
[21]. Some examples of quasi-metrics are listed below:

• the Sorgenfrey quasi-metric on R, defined by q(x, y) = y − x if y ≥ x and
q(x, y) = 1 otherwise. This quasi-metric describes the process of filing down
a metal stick: it is easy to reduce its size, but it is difficult or impossible to
grow it;

• the quasi-metric on R defined by q(x, y) = max(y − x, 0);
• the real half-line quasi-semi-metric defined by q(x, y) = max(0, ℓn y

x
) on the

set of strictly positive reals;
• the circular-railroad distance, see, [24, Example 2.2]. Imagine a circular rail-

road line which moves only in a counterclockwise direction around a circular
track, represented by the unit circle S1. The circular-railroad quasi-metric
from any point, x ∈ S1, to any other point, y ∈ S1, is simply the counter-
clockwise circular arc length from x to y in S1;

• the dissipation distance related to the energetic formulation of energetic mod-
els for rate-independent systems [20]: consider X := {u ∈ L1(Ω,Rp) :
‖u‖∞ ≤ 1} equipped with the weak L1- topology and the dissipation dis-
tance defined by q(u1, u2) = ‖u1 − u2‖L1 .

• the Minkowski gauge function defined on R
n by qB(x, y) = inf{α > 0 : y−x ∈

αB}, where B is a convex compact subset of Rn.

Since the conjugate bifunction q : X × X → R+ of a quasi-metric defined by
q(x, y) = q(y, x) is also a quasi-metric. Following Kelly [25], the space (X, q, q) is
called a bitopological spaces with two topologies:

• the topology τq generated by the balls with center x ∈ X and radius ε and
defined by Bq(x; r) := {y ∈ X : q(x, y) < ε};

• the topology τq generated by the balls with center x ∈ X and radius ε and
defined by Bq(x; r) := {y ∈ X : q(x, y) < ε} = {y ∈ X : q(y, x) < ε}.

The balls Bq(x; r) and Bq(x; r) are called forward and backward balls by Menucci
[17] and left and right balls by Cabzaş [18]. These two topologies allow us to define

two notions of convergences associated to the quasi-metric q:

Definition 4 (convergences in quasi-metric spaces).

(i) A sequence {xn} is said to be backward convergent to x∞, if it is convergent
with respect to the topology τq, i.e., lim

n→+∞

q(x∞, xn) = 0.

(ii) A sequence {xn} is said to be forward convergent to x∞, if it is convergent
with respect to the topology τq, i.e., limn→+∞ q(xn, x∞) = 0.

Since a quasi-metric may fail to be symmetric, the quasi-distances q(xn, xm) and
q(xm, xn) are different. The definition of Cauchy sequences in metric spaces takes
two following forms.

Definition 5 (Cauchy sequences in quasi-metric spaces).

(i) A sequence {xn} is said to be forward Cauchy if for every ε > 0, there is some
Nε ∈ N such that for every n ≥ Nε and every k ∈ N, then q(xn, xn+k) < ε.

(ii) A sequence {xn} is said to be backward Cauchy if for every ε > 0, there
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is some Nε ∈ N such that for every n ≥ Nε and and every k ∈ N, then
q(xn+k,xn) < ε.

Note that in a metric space the two concepts coincide with the usual concept of
a Cauchy-sequence.

Remark 3 At this point, it is important for the reader to to be aware of the
differences bettwen our definitions and the ones previously used. The backward
convergence is termed either q-convergence or convergence w.r.t. τq in [25, 26]. The
forward convergence is called as q-convergence or convergence w.r.t. the topology
τr in the aforementioned references, and left sequential convergence in [6–8, 15] and
many references therein. The forward Cauchy sequence is known as left-sequential
Cauchy (also as lelf Cauchy or Cauchy) sequence in Bao et al. [6–8], left-K-Cauchy
in Reilly et al. [26]. The backward Cauchy notion is known as p-Cauchy in [25,
Definition 2.10], right-K-Cauchy in Reilly et al. [26]. The forward completeness
is used in [6–8, 15] as left-sequential completeness and in Reilly [26] as left-K-
completness. The backward completeness was studied in Kelly [25] under the name
of p-completness and in Reilly [26] as right-K-completness.

This change of notation is motivated by the following consideration (private
communication with A. Soubeyran): denoting the state of an object at the time
n by xn, then the future (forward) state is xn+1. Then, q(xn, xn+1) is the cost
to change from xn to xn+1. If the expected /ideal state is x∞, then the cost to
change from the current state to the ideal state isq(xn, x∞) which should be called
a forward cost.

According to Reilly et al., [14, Example 1. p. 130], a sequence could be forward
convergent without being backward convergent and a sequence could be convergent
without being forward or backward convergent.

Definition 6 (completeness in quasi-metric spaces).

(i) The space (X, q) is forward (resp. backward) Hausdorff, if every forward
(resp. backward) converging sequence has a unique forward (resp. backward)
limit point.

(ii) The space (X, q) is forward (resp. backward) complete, if every forward (resp.
backward) Cauchy sequence is forward (resp. backward) convergent.

(iiii) The space (X, q) is forward-backward (resp. backward-forward) complete, if
every forward (resp. backward) Cauchy sequence is backward (resp. forward)
convergent.

theorem 3.1 ([7, Corollary 4.5]) Let (X, q) be a forward complete and forward

Hausdorff 1 quasi-metric space, and let Φ : X →→ X be a set-valued mapping

satisfying the conditions:

(D1) x ∈ Φ(x) for all x ∈ X;

(D2) u ∈ Φ(x) =⇒ Φ(u) ⊂ Φ(x) for all x, u ∈ X;

(D3) For each generalized Picard sequence {xn} of Φ being forward convergent 2to

x∗, then x∗ ∈ Φ(xn) for all n ∈ N;

(D4) For each generalized Picard sequence {xn} ⊂ X, lim
n→+∞

q(xn, xn+1) = 0.

Then, for every point x0 ∈ X there is a generalized Picard sequence {xn} ⊂ X
of Φ starting from x0 and forward converging 3to an invariant point x̄ of Φ, i.e.,

1,2,3 the adjective ‘forward’ (i.e., ‘left-sequential’ in the original version) was obmitted for simplicity.
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Φ(x̄) = {x̄}.

In this paper, we establish an unified version for the afore-mentioned results. It
takes the ‘one sequence’ form of Theorem 2.2 in the setting of Theorem 3.1.

4. Main Results

theorem 4.1 (a unified version of DHM’s fixed point theorem). Let (X, q)
be a quasi-metric space, Φ : X →→ X be a set-valued mapping, and {xk} ⊂ X be a

generalized Picard sequence of Φ, i.e., xn+1 ∈ Φ(xn) for all n ∈ N. Assume that

the following conditions hold:

(E1) Φ(xn+1) ⊂ Φ(xn) for all n ∈ N;

(E2) lim
n→∞

sup
x∈Φ(xn)

q(xn, x) = 0;

(E3) there is some x̄ ∈ X such that x̄ ∈ Φ(xn) for all n ∈ N;

(E4) {xn} has at most one forward limit;

Then,

⋂

n∈N

Φ(xn) = {x} (4.2)

where x is taken from (E3). Assume, in addition, that

(E5) Φ(x) ⊂ Φ(xn) for all n ∈ N.

Then, x̄ is a nonvariant point of Φ, i.e., Φ(x̄) ⊂ {x̄}; it becomes an invariant point

of Φ provided that Φ(x) 6= ∅.

Proof. Suppose given a sequence {xn} ⊂ X satisfying conditions (E1)–(E4). Obvi-
ously, condition (E3) says that

{x} ⊂
⋂

n∈N

Φ(xn). (4.3)

Next, we will prove that the intersection is a singleton. Assume, in addition to x,
that an element x also belongs to the left-hand side of (4.3). By condition (E2), we
have lim

n→∞

q(xn, x) = lim
n→∞

q(xn, x) = 0 which ensures that x = x due to condition

(E4) and thus (4.3) holds as an equality, i.e., the common point condition (4.2)
holds. Employing now condition (E5) to (4.2) we obtain

Φ(x̄) ⊂
⋂

n∈N

Φ(xn) = {x̄}.

The proof is complete.

Proposition 4.2 The fulfilment of (E1)–(E2) implies that the sequence {xn} is

a forward Cauchy sequence with respect to the quasi-metric q in X.

Proof. Condition (E2) tells us that for every ε > 0, there exists Nε ∈ N such that

sup
u∈Φ(xn)

q(xn, u) < ε whenever n ≥ Nε.

7
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Picking now any n ≥ m ≥ Nε, we have xm ∈ Φ(xm) ⊂ Φ(xn) due to (E1) and thus

q(xm, xn) ≤ sup
u∈Φ(xn)

q(xn, u) < ε,

which verifies that the sequence {xn} is forward Cauchy in the quasi-metric space
(X, q). The proof is complete.

Proposition 4.3 Assume that conditions (E1) and (E2) hold. Assume also that

the quasi-metric space (X, q) is forward complete and the quasi-metric enjoys the

condition q(x, y) = 0 ⇐⇒ x = y. Then, condition (E3′)

(E3′) there is a backward limit x̄ ∈ X of the sequence {xn} such that x̄ ∈ Φ(xn) for
all n ∈ N

implies both conditions (E3) and (E4) in Theorem 4.1.

Proof. Obviously, (E3′) =⇒ (E3). Therefore, it remains to prove the implication
(E3′) =⇒ (E4). By Proposition 4.2, every generalized Picard sequence is forward
Cauchy. By the assumed forward completeness property of X, it is forward con-
vergent to some forward limit x ∈ X. The fulfillness of (E3′) ensures the existence
of some backward limit x̄ of {xn}, i.e., lim

n→∞

q(x̄, xn) = 0 such that

x̄ ∈ Φ(xn) for all n ∈ N.

Taking into account condition (E2), x̄ is also a forward limit, i.e., q(xn, x̄) → 0
as n → N. Taking into account the triangular inequality to estimate the quasi-
distance between x̄ and x, we have q(x̄, x) ≤ q(x̄, xn) + q(xn, x) for all n ∈ N and
thus q(x̄, x) = 0. The additional condition imposed on the quasi-metric implies
x̄ = x. Therefore, condition (E4) holds. The proof is complete.

Proposition 4.4 Assume that conditions (E1)-(E2) hold and the quasi-metric

space (X, q) is forward complete. Then, condition (E3′′)

(E3′′) there is x̄ ∈ X is a forward limit of the sequence {xn} such that x̄ ∈ Φ(xn)
for all n ∈ N

is equivalent to condition (E3) in Theorem 4.1.

Proof. Obviously, (E3′′) =⇒ (E3). To justify the reverse implication it is sufficient
to show that the imposed conditions (E1)-(E3) implies that the element x̄ in (E3) is,
indeed, a forward limit of {xn}. By Proposition 4.2, the sequence {xn} satisfying
(E1)-(E2) is forward Cauchy. Fix an element x̄ satisfying (E3). Condition (E2)
implies that lim

n→∞

q(xn, x̄) = 0 which clearly verifies that x̄ is a forward limit. The

proof is complete.

Next, we derive from Theorem 4.1 an extension of Theorem 3.1; cf. [7, Corol-
lary 4.5] which can be used to further generalize the Ekeland variational principle
and its equivalents.

theorem 4.5 (an ‘all sequences’ version of Theorem 4.1). Let (X, q) be a

quasi-metric space, Φ : X →→ X be a set-valued mapping. Assume that

(F1) if u ∈ Φ(x), then Φ(u) ⊂ Φ(x) for all u, x ∈ X;

(F2) for any generalized Picard sequence {xn} ⊂ X, i.e., xn+1 ∈ Φ(xn) for all

8



August 8, 2015 Optimization gOPTBao˙TheraR4

n ∈ N, if

lim
n→∞

sup
x∈Φ(xn)

q(xn, x) = 0,

then there exists some element x∗ ∈ X such that x∗ ∈ Φ(xn) for all n ∈ N;

(F3) any forward Cauchy generalized Picard sequence {xn} ⊂ X has at most one

forward limit;

(F4) for each generalized Picard sequence {xn} ⊂ X, lim
n→+∞

q(xn, xn+1) = 0.

Then, Φ has a nonvariant point x in the sense that Φ(x̄) ⊂ {x̄}. If, furthermore,

Φ(x̄) 6= ∅, then it is an invariant point of Φ, i.e., Φ(x̄) = {x̄}.

Proof. Without any loss of generality, we may assume that Φ(x) 6= ∅ for all x ∈ X;
otherwise, the result is trivial; any element x̄ ∈ X such that Φ(x̄) = ∅ is an
invariant point of Φ with ∅ = Φ(x̄) ⊂ {x̄}. By Theorem 4.1, it is sufficent to show
the existence of a generalized Picard sequence satisfying

lim
n→∞

sup
x∈Φ(xn)

q(xn, x) = 0.

Such a sequence can be inductively constructed by starting with an arbitrary ele-
ment x0 and then following the iterative process:

xn+1 ∈ Φ(xn) with q(xn, xn+1) ≥ sup
x∈Φ(xn)

q(xn;x)− 2−n for n = 0, 1, 2, . . .(4.4)

It is clear that the sequence {xn} is well defined and that the convergence condition
(F4) tells us that the quasi-distances q(xn, xn+1) tend to zero as n → ∞. Taking
into account the inequality in (4.4) ensures that sup

x∈Φ(xn)
q(xn, x) → 0 as n → ∞.

The proof is complete.

Remark 4 Theorem 4.5 is an extension of [6, Corollary 4.5] (Theorem 3.1) due
to Proposition 2.4 and the fact that forward (left-sequential) Hausdorff property
implies the fulfillment of (F3). The following example illustrates the usage of
Theorem 2.1:
Let X = [0, 1] and the quasi-metric on X defined by

q(x, y) =

{

x− y if x ≥ y,

1 if x < y.

It is not dificult to check that this space is forward complete and forward Haus-
dorff. Given a forward sequence {xn} in X. For n sufficiently large, we have
q(xn, xn+1) < 1. The structure of q yields xn+1 < xn and thus the sequence is
decreasing eventually. Since it is bounded from below by 0, it converges to a unique
number in X = [0, 1].
Next, we will show that the space (X, q) is not forward-backward complete.

Consider the sequence {xn} where xn = n−1. Since q(xn, xm) = n−1 −m−1 < n−1

for all m,n ∈ N with m > n, {xn} is obviously a forward Cauchy sequence. Since
q(0, xn) = 1 for all n ∈ N, the sequence {xn} fails to backward converge to 0. Fix
now an arbitrary number x̄ ∈ (0, 1]. We have q(x̄, xn) = x̄−xn for all n sufficiently
large (n > 1/x̄) and thus lim

n→∞

q(x̄, xn) = x̄ > 0, i.e., x̄ is not a backward limit of

9
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{xn}. Since the chosen forward Cauchy sequence {xn} has no backward limit, the
space is not forward-backward complete.
Consider now a set-valued mapping Φ : X ⇉ X with images Φ(x) = [0, x].

Obviously, conditions (E1) and (E2) are satisfied by the chosen sequence with
Φ(xn) = [0, n−1] and sup

x∈Φ(xn)
q(xn, x) = n−1. Condition (E3) is fulfilled for x̄ = 0.

We now show that 0 is the only forward limit of {xn}. Take an arbitrary number
x̄ ∈ (0, 1]. For any interger n ∈ N with n > 1/x̄, one has xn = n−1 < x̄ and thus
q(xn, x̄) = 1 clearly veryfying that x̄ is not a forward limit of {xn}. Theorem 4.1
ensures that 0 is an invariant point of Φ.

Next, we will derive from Theorem 4.1 Qiu’s revised preorder principle in [13].

theorem 4.6 Theorem 4.1 =⇒ Theorem 2.3.

Proof. Assume that all the assumptions in Theorem 2.3 hold. We construct a bi-
function q : X ×X → R+ with

q(x, y) := | ϕ(x) − ϕ(y) | for all x, y ∈ X.

Due to condition (C1) the function ϕ is finite valued over S(x0). The pair (S(x0), q)
is a quasi-metric space since q(x, x) = | ϕ(x)− ϕ(x) | = 0 for all x ∈ X and

q(x, z) = | ϕ(x) − ϕ(z) | = | (ϕ(x) − ϕ(z)) + (ϕ(z) − ϕ(y)) |

≤ | ϕ(x) − ϕ(y) |+ | ϕ(x)− ϕ(y) |

= q(x, y) + q(y, z) for all x, y, z ∈ X.

In order to employ Theorem 4.2 we need to show that the level-set mapping satisfies
all four conditions (E1)–(E5).
First, let us construct a generalized Picard sequence starting with x0 satisfying

condition (E2) as follow:







If S(xn−1) = ∅, then STOP;

If S(xn−1) 6= ∅, then choose xn ∈ S(xn−1) with ϕ(xn) < inf
u∈S(xn−1)

ϕ(u) + 2−n.

If there exists n such that S(xn) = ∅, then we may take x = xn and clearly it
satisfies (i) and (ii). If not, we can obtain a sequence {xn} ⊂ S(x0) with xn+1 ∈
S(xn) for all n ∈ N such that

ϕ(xn) < inf
u∈S(xn−1)

ϕ(u) + 2−n.

Obviously, ϕ(xn)− inf
u∈S(xn−1)

ϕ(u) → 0 as n → ∞.

Fix an arbitrary integer n ∈ N. We get from S(xn) = {x ∈ X| u � xn} that for
any x ∈ S(xn), ϕ(x) ≤ ϕ(xn) ⇐⇒ ϕ(xn) − ϕ(x) ≤ 0 due to the monotonicity of

10
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ϕ. Since

ϕ(xn)− inf
x∈S(xn−1)

ϕ(x)

= ϕ(xn) + sup
x∈S(xn−1)

(

− ϕ(x)
)

= sup
x∈S(xn−1)

(

ϕ(xn)− ϕ(x)
)

= sup
x∈S(xn−1)

∣

∣ϕ(xn)− ϕ(x)
∣

∣ = sup
x∈S(xn−1)

q(xn;S(xn−1)),

passsing to the limit as n → ∞, we derive that

lim
n→∞

sup
x∈S(xn−1)

q(xn;S(xn−1)) = 0,

which establishes that condition (E2) holds for the sequence {xn}. Then, condi-
tion (C3) ensures the existence of an element x satisfying x ∈ S(xn) for all n ∈ N,
i.e., condition (E3).
By the transitivity of � and the structure of S, conditions (E1) and (E5) hold.

We also have x ∈ S(x) for all x ∈ S(x0) due to the reflexivity of �.
It remains to check condition (E4). Assume now that lim

n→∞

q(xn, x) =

lim
n→∞

q(xn, x) = 0 for two elements x and x in X. Fix n ∈ N, we get from

x, x ∈ S(xk) that ϕ(x) ≤ ϕ(xn) and ϕ(x) ≤ ϕ(xn) due to the definition of S
and the monotonicity of ϕ. Therefore, we have

lim
n→∞

q(xn, x) = lim
n→∞

q(xn, x) = 0

def.
⇐⇒ lim

n→∞

∣

∣ ϕ(xn)− ϕ(x)
∣

∣ = lim
n→∞

∣

∣ϕ(xn)− ϕ(x)
∣

∣ = 0

⇐⇒ lim
n→∞

ϕ(xn)− ϕ(x) = lim
n→∞

ϕ(xn)− ϕ(x) = 0

which clearly implies that ϕ(x) = ϕ(x). By condition (C2), x = x clearly verifying
the fulfilment of condition (E4). Indeed, if x 6= x, then we get from (C2) that
ϕ(x) > min{ϕ(x), ϕ(x)} contradicting to ϕ(x) 6= ϕ(x).

We have checked that the chosen sequence {xk} satisfies all the assumptions in
Theorem 4.1. Employing this result to {xk}, we obtain S(x̄) = {x̄}, i.e., x̄ is an
invariant point of S. The proof is complete.

Finally, let us derive also the Khank-Quy’s result in [10, Lemma 3.4].

theorem 4.7 Theorem 4.1 =⇒ Theorem 2.2.

Proof. Assume that there is a convergent sequence {xn} such that its limit x in
the metric space (X, d) satisfies all three conditions (B1)–(B3) in Theorem 2.2.
Define a function q : X ×X → R+ by

q(x, y) :=

{

p(x, y) if x 6= y,

0 if x = y.
(4.5)

11
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It is clear that q is a quasi-metric on X since the positivity and triangle inequality
properties hold for q defined in (4.5) due to the definition of q and condition (τ1)
respectively. Observe that (B1) ⇐⇒ (E1) and (B3) =⇒ (E3). Observe also that
(B2) =⇒ (E2) since q(x, y) ≤ p(x, y) for all x, y ∈ X and thus

lim
n→∞

sup
u∈Φ(xn)

q(xn, u) ≤ lim
n→∞

sup
u∈Φ(xn)

p(xn, u) = 0.

Observe finally that condition (E4) holds as well. Conditions (B1) and (B2) ensure
that

lim
n→∞

sup
m>n

p(xn, xm) = 0. (4.6)

Define a sequence {yn} by yn = xn+1 for all n ∈ N. Then, we have
limn→∞ p(xn, yn) = 0. This together with (4.6) implies, by (τ3), lim

n→∞

d(xn, xn+1) =

0 clearly implying that {xn} is a Cauchy sequence in the metric space (X, d).
By Proposition 4.2, the sequence {xn} is forward Cauchy in (X, q). Assume now
that it has a forward limit x∗ in (X, q) in the sense that lim

n→∞

q(xn, x∗) = 0.

Then, we have lim
n→∞

p(xn, x∗) = 0 as well. Arguing by contradiction, assume that

lim
n→∞

p(xn, x∗) = γ > 0. Taking into account the definition of q, we get the existance

of a subsequence {xnk
} of {xn} with xnk

≡ x∗. This and condition (B2) lead to a
contradiction:

0 < γ ≤ lim
nk→∞

sup
u∈Φ(xn

k
)
p(xnk

, u) = lim
n→∞

sup
u∈Φ(xn)

p(xn, u) = 0.

Let yn = x∗ for all n ∈ N, we have lim
n→∞

p(xn, yn) = 0. This together with (4.6)

yields lim
n→∞

d(xn, x∗) = 0 by (τ3). Since the sequence {xn} is Cauchy in the complete

metric space (X, d), the limit x∗ is unique. Therefore, condition (E4) is satisfied
for the quasi-metric q defined in (4.5).
We have proved that all the assumptions of Theorem 4.1 are satisfied in the

quasi-metric (X, q). Therefore, the conclusion of Theorem 2.2 follows from that of
Theorem 4.1. The proof is complete.

5. Conclusions

The main result of this paper, Theorems 4.1, provides an extension of Dancs-
Hegedüs-Medvegyev’s fixed point theorem which not only unify several recent gen-
eralized versions of this theorem but also further extend them to the quasi-metric
space setting. This feature allows us to obtain new applications to Ekeland’s vari-
ational principle and Caristi’s fixed point theorem by using our alternative result
(Theorem 4.5). Following this way, we plan to extend this research to the setting
of λ-spaces and to the setting of complete cone metric spaces introduced by Lin et
al. in [27].
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