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Abstract This work addresses the question of building useful and valid models of
anisotropic variograms for spatial data that go beyond classical anisotropy models,
such as the geometric and zonal ones. Using the concept of principal irregular term,
variograms are considered, in a quite general setting, having regularity and scale para-
meters that can potentially vary with the direction. It is shown that if the regularity
parameter is a continuous function of the direction, it must necessarily be constant.
Instead, the scale parameter can vary in a continuous or discontinuous fashion with
the direction. A directional mixture representation for anisotropies is derived, in order
to build a very large class of models that allow to go beyond classical anisotropies. A
turning band algorithm for the simulation of Gaussian anisotropic processes, obtained
from the mixture representation, is then presented and illustrated.

Keywords Anisotropy · Covariance · Isotropy · Spatial statistics ·
Turning band method · Variogram

1 Introduction

In spatial statistics the assumption of isotropy is very common despite being very
restrictive for describing the rich variety of interactions that can characterize spatial
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processes. This is probably due to a combination of at least two reasons. Isotropic
models are obviously mathematically easier to build than anisotropic ones and, being
more parsimonious, the estimation of their parameters is more feasible, in particular
when the sample size is small. When anisotropy is modeled, anisotropic models are
in the vast majority of cases restricted to the classical geometric and zonal anisotropy
models, which in essence amounts to transform the coordinates by means of a transfor-
mation matrix (Chilès and Delfiner 2012). The literature on anisotropy models evading
from these two classical models is very sparse, at the exception of the approaches based
on componentwise anisotropy (Ma 2007; Porcu et al. 2006).

The present work has been prompted by the following question, not uncommon
in geostatistics. Suppose that, when exploring a given spatial dataset, the empirical
variograms computed in different directions show not only varying ranges and/or sills,
but also significantly different behaviors at the origin, for example close to a quadratic
behavior in one direction and close to a linear behavior in the perpendicular direction.
It is well known that the presence of a linear trend in one direction induces a quadratic
behavior of the empirical variogram along that direction. The scientist modeling such
data is thus faced with the following problem: should these variations of regularity
be modeled by adding a linear trend, or can they be modeled within the random field
model using a variogram model whose regularity parameter changes with the direction
as proposed in Eriksson and Siska (2000) and Dowd and Igúzquiza (2012)? Providing
a definitive answer to this question requires to first address a collection of theoretical
issues. Is such a model admissible? Can we find necessary and sufficient validity
conditions for anisotropy models? Can we find a full characterization of admissible
anisotropy models, having zonal and geometrical models as special cases? Can we
easily simulate from those?

The purpose of this paper is to provide a full characterization of admissible
anisotropy models and, based on this, to propose a large class of anisotropy mod-
els that includes all known models of anisotropy. Section 2 sets the notations and
makes general reminders on variograms that will be useful for the presentation of our
findings. In particular, spectral representation and characterization of the regularity at
the origin by means of the principal irregular term are recalled. In Sect. 3 the usual
anisotropy models are reviewed. Section 4 is the theoretical core of our work. From
a result on fractal dimensions of surface roughness in Davies and Hall (1999), it is
shown that when the regularity of a variogram in R

d varies continuously with the
direction, it must be equal to a given constant in all directions. As a consequence, on
the plane, the regularity parameter of a variogram must be the same in all directions,
with the exception of one single direction where it can be larger than the common
value. Then, a full characterization of admissible anisotropies is obtained, based on a
result in Matheron (1975). This result is revisited, and its equivalence with directional
mixtures of zonal anisotropies is shown. Through parametric or non-parametric con-
structions, it allows to evade from the classical anisotropy models and it provides the
basis for simulating anisotropic random fields using a modified turning band algorithm.
New anisotropy models are presented on the plane, along with realizations from these
models.
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2 Covariance Functions and Variograms

2.1 Stationarity and Spectral Representations

Second-order properties of Gaussian fields which are necessary for the rest of this paper
are briefly recalled. This part is largely expository and the reader is referred to Chilès
and Delfiner (2012), Gneiting et al. (2001), and the more recent paper by Porcu and
Schilling (2011) for a thorough overview. Gaussian fields, that are either second-order
or intrinsically stationary, will be denoted {Z(s)}, s ∈ R

d . The former assumes that
the first-order moment is finite and constant, and that the covariance cov{Z(s), Z(s′)}
depends exclusively on the lag vector s − s′, thus defining the covariance function
C : R

d → R

C(h) = cov{Z(s), Z(s + h)}, s, h ∈ R
d .

The assumption of intrinsic stationarity is more relaxed. A Gaussian field is called
intrinsically stationary if first and second moments of differences Z(s +h)− Z(s) are
finite and stationary, thus defining the variogram γ : R

d → R
+

γ (h) = 0.5var{Z(s + h)− Z(s)} = 0.5E[{Z(s + h)− Z(s)}2], s, h,∈ R
d .

For the remainder of the paper, it will be useful to decompose the vector
h = (h1, . . . , hd) ∈ R

d into its modulus r = ‖h‖ and its direction θ ∈ S
d−1, thus

writing h = (r, θ) ∈ R
+×S

d−1. The Euclidean norm of h will be indifferently denoted
r or ‖h‖, depending on the context. For two directions θ and η belonging to S

d−1,
with a slight abuse of notations, we will write cos(η − θ) = cos(η, θ) =< η, θ >,
since ‖η‖ = ‖θ‖ = 1.

Parameters of covariance functions relate in general to variance, scale and regularity
at the origin. Unbounded variograms are associated to intrinsic random functions for
which the variance of Z(·) is infinite. For bounded variograms, it is well known that the
sill of the variogram, σ 2, must be identical in all direction. Without loss of generality,
σ 2 = 1 from now on, except if explicitly stated otherwise. Discontinuities at the origin
of the variogram do not depend on direction. Thus, only variograms continuous at the
origin will be considered from now on. The scale parameter, denoted b, is associated
to the lag vector h or its modulus ‖h‖. In our notations, b is homogeneous to ‖h‖, so
that covariance functions and variograms will be functions of the ratio h/b.

A necessary and sufficient condition for a candidate mapping C : R
d → R

to be a covariance function is that of positive definiteness: for any finite dimen-
sional collection of points {si }n

i=1 and any real coefficients {ai }n
i=1, the condition∑n

i=1
∑n

j=1 ai C(si − s j )a j ≥ 0 is verified. The function C is characterized through
Bochner’s theorem as being the Fourier transform of a positive and bounded measure.

A necessary and sufficient condition for γ : R
d → R to be a variogram

is that of conditional negative definiteness, that is, the inequality above reads:
−∑n

i=1
∑n

j=1 aiγ (si − s j )a j ≥ 0, the coefficients {ai }n
i=1 being additionally

restricted to be a contrast, that is
∑n

i=1 ai = 0. The class of variograms being broader
than that of covariance functions, more attention will be given through the manuscript
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to variograms rather than covariances. The set of variograms is a convex cone, closed
under pointwise convergence and linear combinations with non-negative coefficients.
As a result, mixtures of variograms γ (·; ξ) with respect to non negative, finite, mix-
tures μ(dξ) are variograms. The analogue of Bochner’s representation theorem for
variograms is due to Schoenberg (1938), Chilès and Delfiner (2012).

Theorem 1 (Schoenberg 1938) Let γ : R
d → R be a continuous function satisfying

γ (0) = 0. The following three properties are equivalent

(i) γ (·) is a variogram on R
d;

(ii) exp{−ξγ (·)} is a covariance function for all ξ > 0;
(iii) γ (·) is of the form

γ (h) =
∫

Rd

1 − cos(2π < ω, h >)

4π2‖ω‖2 χ(dω), (1)

where χ is a positive symmetric measure with no atom at the origin and satisfying

∫

Rd

χ(dω)

1 + 4π2‖ω‖2 < ∞. (2)

The spectral measure of the variogram is ν(dω) = χ(dω)/4π2‖ω‖2. The condition
in Eq. (2) is equivalent to

∫
‖ω‖≥ε ν(dω) < ∞ and

∫
‖ω‖<ε ‖ω‖2ν(dω) < ∞, for all

ε > 0. As a direct application of Theorem 1, the function γ (h) = c‖h‖β is a valid
variogram for 0 < β < 2 and c > 0 in R

d , for any d ∈ N. It is referred to as the
“power variogram”. Its associated measure χ(dω) is proportional to ‖ω‖2−β−ddω. If
ν(Rd) < ∞, γ (·) is of the form σ 2{1 − ∫

Rd cos(2π < ω, h >)ν(dω)}. In this case
the variogram is bounded and there exists a covariance function C : R

d → R, with
spectral measure ν as above, such that γ (h) = C(0)− C(h).

2.2 Mixture Representation of Isotropic Covariance Functions and Variograms

Covariance functions and variograms are called isotropic or radially symmetric when
there exists mappings ϕ : [0,∞) → R and and ψ : [0,∞) → R

+ such that

C(h) = ϕ(‖h‖), γ (h) = ψ(‖h‖), h ∈ R
d .

Following Daley and Porcu (2014), �d denotes the class of continuous mappings
ϕ : [0,∞) → R with ϕ(0) = 1 and such that there exists a weakly stationary
Gaussian field on R

d whose covariance function is ϕ(‖h‖). The classes�d are nested,
so that �1 ⊃ �2 ⊃ · · · ⊃ �∞ = ⋂

k≥1�k, the inclusion relation being strict,
where �∞ is the class of functions which are isotropic and positive definite on any
d-dimensional Euclidean space. Analogously, the class�d is the set continuous map-
pings ψ : [0,∞) → R

+ such that there exists a weakly or an intrinsically stationary
Gaussian field whose variogram is ψ(‖h‖). The class �d is also strictly nested. If
Z(·) is weakly stationary with covariance function ϕ ∈ �d , the function ψ such that
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Table 1 Some unbounded elements of the class �∞

Variogram Name Parameters

ψ(r) = (r/b)β Power 0 < β ≤ 2, b > 0

ψ(r) = [(r/b)β + 1]α − 1 Gen. power 0 < β ≤ 2, 0 < α < 1, b > 0

ψ(r) = log[(r/b)β + c] − log c Log-power 0 < β ≤ 2, b > 0, c > 1.

ψ(·) = ϕ(0) − ϕ(·) belongs necessarily to �d . There are however functions of �d

without counterpart in�d . Table 1 provides examples of unbounded members of�∞.
A mapping γ from R

d to R is said to be the radial or isotropic version of a member of
the class �d when γ (h) = ψ(‖h‖). Anisotropic covariance functions will be derived
by applying to ψ ∈ �d a scaling factor b(θ) function of the direction θ = h/‖h‖, that
is γ (h) = ψ{‖h‖/b(θ)}.

2.3 Regularity and Principal Irregular Term within the Class �d

Regularity properties are presented under the assumption of isotropy. Characterization
of the regularity of anisotropic variograms is fully addressed in Sect. 4. The behavior
of the variogram near the origin is one of its most important characteristics. It relates
to the regularity of the associated random field and infill asymptotic properties (Stein
1999). Mean squared continuity of the random field is equivalent to the variogram
being continuous at the origin. A variogram that is 2m times differentiable at the
origin corresponds to a random field that is m times mean squared differentiable.

The regularity properties of isotropic variograms on R
d is given by the behavior

of ψ ∈ �d as r → 0+. All functions in Table 1 behave as a(r/b)β + o(rβ) when
r → 0+, with 0 < β ≤ 2 and a > 0, so that the correspondent radial version γ
will behave as a(‖h‖/b)β + o(rβ), as ‖h‖ → 0. Similar observations can be made
for members of the class �d . In this class, regularity properties are characterized by
the behavior of 1 − ϕ(r) as r → 0+ which, with a slight abuse of language, will be
referred to as the regularity at the origin or the behavior at the origin of the covariance
function. For instance, the powered exponential covariance C(r) = exp{−(r/b)β}
and the Cauchy covariance C(r) = {1 + (r/b)β}−α/β , with 0 < β ≤ 2, α > 0 and
b > 0 also behave as 1 − c(r/b)β + o(rβ) when r → 0+. The behavior at the origin
of the Matérn covariance function

CMat(r) = 1

2κ−1�(κ)

( r

b

)κ
Kκ

( r

b

)
, r ∈ [0,∞),

where b, κ > 0, depends on the parameter κ . It is proportional to (r/b)2κ if 0 < κ < 1;
it is proportional to (r/b)2 log(r/b) if k = 1 and proportional (r/b)2 whenever κ ≥ 1.

Following Stein (1999) the regularity of an isotropic variogram is described using
the concept of principal irregular term which relates to the property ofψ(r)whenψ ∈
�d and r tends to zero from above. Loosely speaking, the principal irregular term is the
term rβ with lowest degree of the series expansion of ψ(r) that is not an even power
(Chilès and Delfiner 2012; Matheron 1970). Stein (1999) defines the principal irregular
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Fig. 1 Examples of geometric (left), zonal (center) and separable anisotropy (right). Each panel shows in
a polar representation the graph of the scale parameter b(θ) as a function of the angle θ , for b1 = 1, b2 = 4
and θ0 = π/6 for an exponential variogram (i.e. β = 1)

term of ψ(r) as the function g such that g(r)r−2n → 0 and |g(r)|r−2n−2 → ∞ for
some n ≥ 0 as r → 0+ and γ (r) = ∑n

j=0 c jr2 j +g(r)+o(|g(r)|) as r → 0+. On the
examples seen so far and for virtually all models used in practice, principal irregular
terms are either of the form g(r) = αrβ , for 0 < β < 2, or g(r) = αr2k log r , for
some positive integer k. Obviously, for power variograms, it is the power variogram
itself.

3 Overview of Anisotropy Models

Anisotropy is usually modeled through geometric, zonal or separable models of
anisotropy. These elementary models of anisotropy can be composed to provide more
complex anisotropies, as in Journel and Froidevaux (1982).These models are briefly
recalled, before being extended in a common framework in Sect. 4. They are illustrated
on the plane in Fig. 1.

3.1 Geometric Anisotropy

A variogram in R
d displays a geometric anisotropy if it is of the form γ (h) =

ψ(‖Ah‖), for ψ ∈ �d , where A is the product between a diagonal matrix of scaling
factors, say D, and a rotation matrix (Chilès and Delfiner 2012). The function γ inher-
its the properties of the associated ψ ∈ �d in terms of regularity in all directions. It
can be shown that the contour lines of this variogram are represented by ellipsoids. If
ψ(r) = r , the inverse of the slope of γ (h) as a function of the direction θ is repre-
sented by an ellipsoid. Figure 1 (left panel) provides an illustration of a geometrical
anisotropy in R

2. It shows, in a polar representation, the graph of the scale parameter
b(θ) of the exponential variogram

γ (h) = 1 − exp{−r/b(θ)}
= 1 − exp

[

−r
{

b−2
1 cos2(θ − θ0)+ b−2

2 sin2(θ − θ0)
}1/2

]

,

with b(θ) = {b−2
1 cos2(θ − θ0) + b−2

2 sin2(θ − θ0)}−1/2. As expected, the shape of
the graph is an ellipse.
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3.2 Zonal Anisotropy

Zonal anisotropy is a degenerate case of geometrical anisotropy, obtained when some
of the diagonal elements of D are equal to 0. Suppose that the d ′ non null components
of D are the d ′ first coordinates of R

d . Then, the variogram is strictly equal to 0 in any
direction perpendicular to R

d ′
. Equivalently, the associated random field is constant

within any subspace of R
d that is perpendicular to R

d ′
. Of particular importance for

the rest of this work will be the case d ′ = 1 for which the variogram depends only on
one component. Fix θ0 ∈ S

d−1. The corresponding zonal anisotropy variogram in a
direction θ is then

γ (h) = ψ{r | cos(θ − θ0)|}, (3)

where ψ ∈ �d . If ψ has sill σ 2 and range b, the variogram γ in a given direction
θ has sill σ 2 and range b/| cos(θ − θ0)|, except in any direction perpendicular to θ0
where the variogram is identically zero. Figure 1 (central panel) is an example of zonal
anisotropy in the plane. It shows b(θ) as a function of θ for the exponential variogram

γ (h) = 1 − exp{−r/b(θ)} = 1 − exp{−r | cos(θ − θ0)|/b1},

where b(θ) = b1/| cos(θ − θ0)|. The graph is made of two parallel lines, which can
be viewed as the degenerate case of an ellipse when the major axis tends to infinity.

In practice, a real phenomenon is rarely modeled through a pure zonal model. In
general, there are several components γ j (h)with γ (h) = ∑J

j=1 γ j (h), some of which
being zonal. There is a large variety of possible situations, which will not be detailed
here. Interested readers are referred to Chilès and Delfiner (2012) for illustrative exam-
ples. With zonal anisotropy, one can model variograms whose regularity varies with
directions, as shown in the following example. In R

2, let γ (h) = γ1(h) + γ2(h),
where γ1(h) has a zonal anisotropy with γ1(h) = (r | cos θ |)β1 and γ2(h) is isotropic
with γ2(h) = rβ2 . Let further assume that β1 < β2. Then, along all directions
θ /∈ {π/2,−π/2} the principal irregular term is equal to rβ1 . For θ ∈ {π/2,−π/2}, it
is equal to rβ2 , which is more regular than rβ1 . In this example, the principal irregular
term of the variogram varies with θ , but only discontinuously along the Y axis.

3.3 Separability: Componentwise Anisotropy

This case corresponds, possibly after appropriate rotation, to the tensorial product

C(h) =
p∏

i=1

Ci (hi ) =
p∏

i=1

ϕi (‖hi‖) , ϕi ∈ �di ,

where hi ∈ R
di and

∑p
i=1 di = d. These models are also called separable. The

function C is the tensor product of the radial versions of members of the classes
�di , i = 1, . . . , p. It is for example the covariance function of the random field
Z(s) = ∏p

i=1 Zi (si ), where Zi (si ) is any random field with covariance Ci on R
di ,

independent on all other random fields Z j (·), j 
= i .
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Table 2 Possible shapes of the graph of b(θ) for three classical models of anisotropy. The parameter β is
the exponent of the principal irregular term

Model 0 < β < 1 β = 1 1 < β < 2 β = 2

Geometric Ellipse Ellipse Ellipse Ellipse

Zonal Parallel lines Parallel lines Parallel lines Parallel lines

Separable 4-cusp hypocycloïd Rhombus Convex Ellipse

The parameter β is the exponent of the principal irregular term

Separable models can also lead to discontinuities of the regularity parameter with
respect to the direction on a finite set of directions, as illustrated in the following
example. Let us consider, in R

2, the product of the two stable covariance functions
exp{−|h1|β1} and exp{−|h2|β2}, with β1 < β2. Then, the corresponding variogram is

γ (h) = 1 − exp{−|h1|β1} exp{−|h2|β2}
= 1 − exp{−rβ1[| cos θ |β1 + rβ2−β1 | sin θ |β2 ]},

which shows that the principal irregular term is rβ1 in all directions θ /∈ {π/2,−π/2},
whereas it is rβ2 in the directions {π/2,−π/2}. The right panel in Fig. 1 represents
the anisotropy of the following separable model of covariance

γ (h) = 1 − exp{−r/b(θ)} = 1 − exp{−rb−1
1 | cos(θ − θ0)| − rb−1

2 | sin(θ − θ0)|},

with b(θ) = {b−1
1 | cos(θ−θ0)|+b−1

2 | sin(θ−θ0)|}−1. Notice that the same behavior of
the principal irregular term was also obtained with a very different model of variogram
in the previous paragraph.

The shapes of the graph of b(θ) obtained in Fig. 1 differ greatly with the type of
anisotropy model. The possible shapes of the graph of b(θ) that can be obtained for
these three classical models of anisotropy in the plane are summarized in Table 2.
Geometric anisotropies yield always elliptical shapes, whereas graphs associated to
zonal anisotropies are always the union of two parallel lines. For separable anisotropies
the shape of the graph varies with β, from 4-cusp hypocycloïds when 0 < β < 1 to
ellipses when β = 2.

4 A General Characterization of Anisotropy

A complete characterization of anisotropic variograms is now provided. First is
addressed the characterization of the regularity at the origin. It will be shown that
regularity parameters that vary continuously with the direction must be constant. A
complete characterization of the scale parameter is then provided.

4.1 Isotropy of the Regularity at the Origin

Eriksson and Siska (2000) and Dowd and Igúzquiza (2012) proposed the following
anisotropic power variogram model in R

2
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γAP(h) = a(θ)rβ(θ), h = (r, θ) ∈ R
+ × [0, 2π),

in which the scale parameter a(θ) and the power coefficient β(θ) are continuous
functions of θ , with the usual restriction a(θ) > 0 and 0 < β(θ) ≤ 2. The mapping
β(·) relates to the regularity at the origin of the variogram, or equivalently to the
smoothness of the random field (Stein 1999), whilst the function a(·) is a scaling
factor. It was further proposed that β(θ) varies in a way similar to the geometric
anisotropy, that is according to an ellipse.

The model γAP(h) is unfortunately not valid, except in a very particular case. In
Davies and Hall (1999) it was shown that if a random field has a well defined fractal
index in each direction, then the fractal dimensions of its line transect processes are
the same in all directions, except possibly one, whose dimension may be less than in
all others. For power variograms, the fractal dimension in direction θ , D(θ), is related
to β(θ) through D(θ) = d +1− 1

2β(θ).As a direct application, a necessary condition
for the above model to be valid is thus that β(·) = β in all directions, except one where
it can be larger than β, which leads to the following proposition, adapted from Davies
and Hall (1999).

Proposition 1 The function γAP: R+ × S
d−1 → R

+ with h = (r, θ), d ≥ 2 and such
that γAP(h) = a(θ)rβ(θ), where a(θ) > 0 and where β(θ) is a continuous function on
S

d−1 with 0 < β(θ) ≤ 2, is a valid variogram on R
d if and only if β(θ) is constant

on S
d−1.

The proof, shortly sketched here, will be used for the next Theorem. For the sake of
completeness, it is provided in Appendix. The “if” part is straightforward, since the
power variogram γ (h) = a(θ)rβ is valid on R

d , d ≥ 1, provided that a(θ) is a valid
model of anisotropy. The “only if” part is proven by building a simple counter-example
in R

2. It is shown that the conditional definite negativeness condition is not verified
for the contrast Z(0, 0) − Z(−r cos θ, r sin θ)/2 − Z(r cos θ, r sin θ)/2 as r → 0,
unless β(θ) is constant. The proof is then completed by noticing that a function not
c.d.n. in R

2 is necessarily not c.d.n. in R
d , for d > 2.

The next step is to make this statement more general, thus leading to our main
theoretical result. It is expected that Proposition 1 holds for a much larger class of
variograms than power variograms, as formally stated below. We first recall that a
function f : R

+ → R
+ is said to be regularly varying at 0 if limr→0 f (αr)/ f (r) < ∞

for all α > 0. Polynomials, power functions and logarithms are regularly varying
functions at 0.

Theorem 2 Let Z(·) be an intrinsic random field on R
d with a continuous variogram

γ (·) in the class �d with a behavior at the origin of the form

g(h) = a(θ)rβ(θ) f (r), (4)

where 0 < β(·) ≤ 2, the function a(·) is a positive, finite, continuous function on S
d−1

and the function f (·) is regularly varying. Then, if β(·) is a continuous function on
S

d−1, it is constant.
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The proof of Theorem 2 is given in Appendix. Particular cases for condition (4) are
f (r) = 1 and f (r) = log r , which lead to principal irregular terms of the form gθ (r) =
rβ(θ), respectively gθ (r) = r2 log r when β = 2. Proposition 1 is thus a special
case of Theorem 2. Conditions of Theorem 2 are quite general, since they include
all known expressions of principal irregular terms. They are verified by virtually all
variograms used in practice: Matérn class, Cauchy variograms, power variograms,
logarithm variogram, etc.

Theorem 2 thus states very generally that the regularity of a variogram, and hence
that of the associated random field cannot vary continuously with the direction. When
the regularity parameter varies, it is only possible along some directions: in the plane,
there is at most one direction corresponding to a zonal anisotropy model along which
the regularity is smoother than in any other direction. In the three-dimensional space,
there is either a single direction, or a single plane on which the regularity is smoother.

4.2 Anisotropy of the Scale Parameter as Directional Mixtures of Zonal
Anisotropies

Let us first go back to variograms behaving near the origin according to

γ (h) = a(θ)rβ + o(rβ), h = (r, θ) ∈ R
+ × S

d−1, (5)

with 0 < β ≤ 2. In order to define a valid model of variogram in R
d , the function

a(θ) has to verify some conditions. Necessary and sufficient conditions for a(θ) were
presented in Matheron (1975). It is rephrased below, using our notations.

Theorem 3 (Matheron 1975) Suppose γ is a variogram on R
d such that, for any

direction θ ∈ S
d−1, Eq. (5) holds with a : S

d−1 → R
+ being a continuous mapping,

and 0 < β < 2. Then, as ‖h‖ → 0, the variogram admits a representation (5) with

a(θ) =
∫

Sd−1
| cos(θ − η)|βν(dη), (6)

where ν is a uniquely determined finite, non negative, symmetric, measure on S
d−1.

Conversely, if the representation (6) exists, the function γ (h) is a variogram.

Readers are referred to Matheron (1975) for the original proof. From Theorem 3, we
are now able to provide a full characterization of the anisotropic variograms when
0 < β < 2.

Theorem 4 Suppose γ is a function such that, for any direction θ , Eq. (5) holds.
Then, γ is a valid variogram in R

d if and only if it is a finite, non negative, directional
mixture of zonal anisotropy versions of a radial variogram ψ ∈ �d

γ (h) =
∫

Sd−1
ψ(r | cos(θ − η)|)ν(dη), (7)

where ν is a finite, non negative, mixture on S
d−1.
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Moreover, the scale parameter is

b(θ) =
{∫

Sd−1
| cos(θ − η)|βν(dη)

}−1/β

, (8)

for some non negative, symmetric, measure ν defined on S
d−1.

Proof The “if” part is straightforward. It follows from the fact that the class �d is a
convex cone closed under pointwise convergence. The “only if part” is a consequence
of Matheron’s theorem, as shown now. Consider the function γ (h) = ψ{‖h‖/b(θ)},
where b(θ) is a continuous function of θ ∈ S

d−1 and where ψ(r) ∼ arβ as r → 0,
with a > 0. Then, Theorem 3 states that the function γ (h) = ψ{‖h‖/b(θ)} is a valid
anisotropic variogram if and only if the scale parameter b(θ) varies with the direction
according to Eq. (8), thus leading to variograms verifying Eq. (6) as r → 0.

On the other hand, this representation actually corresponds to a directional mixture
of zonal anisotropies, as defined in Eq. (3). Let Y (z), z ∈ R, be an intrinsic random
function with radial variogram ψ ∈ �d and let η ∈ S

d−1 be a direction in R
d . Let us

define Zη(s) as the zonal anisotropic random field

Zη(s) = Y {‖s‖ cos(η − ‖s‖−1s)}, s ∈ R
d .

The variogram of Zη(s) is thus

γη(h) = ψ{r | cos(θ − η)|}, h ∈ R
d .

Let us now consider that η is a random direction with probability measure
ν̃(·) = ν(·)/ν([0, 2π [) on S

d−1 and let us define the mixture random field

Z(s) = Zη(s), η ∼ ν̃.

Then, the variogram of Z(·) is

γ (h) = 0.5E[{Z(s)− Z(s + h)}2] = Eν̃[0.5E[{Zη(s)− Zη(s + h)}2 | η]]
= Eν̃[γη(h)] =

∫

Sd−1
ψ(r | cos(θ − η)|)ν̃(dη).

Since ψ(r) ∼ arβ as r → 0, we thus have

γ (h) = rβ
∫

Sd−1
| cos(θ − η)|βaν̃(dη),

as ‖h‖ → 0, which is equivalent to Eq. (6) with ν = aν̃. As a conclusion, Theorem 3
is equivalent to a directional mixture representation. �
Remark Positive, finite directional mixtures of zonal anisotropies of variograms
ψ ∈ �d also define valid anisotropic variograms for a larger class of variograms
than those verifying the conditions of Theorem 3. It is in particular the case for vari-
ograms whose principal irregular term are proportional to r2 log r or proportional to
r2 as r → 0.
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4.3 Simulations of Anisotropic Fields

The above representation provides the basis for simulating anisotropic random fields,
using an anisotropic version of the turning band simulation algorithm (Lantuéjoul
2002). The general idea is to reduce the simulation of Z to the simulations of N inde-
pendent processes with variogram ψ . The expectation with respect to the measure
ν̃ in Eq. (7) is replaced by the arithmetic mean taken on the N independent realiza-
tions of Zηi (·), where (ηi )i=1,...,N are independent directions drawn according to the
probability distribution ν̃. The pseudo-code for generating an anisotropic model is the
following:

Algorithm Simulate_Anistropic_Random_Field

1. Set N
2. Compute ν0 = ν([0, 2π [)
3. For i = 1, . . . , N

(a) Draw a random direction ηi ∼ ν̃ = ν/ν0
(b) On the real line simulate a Gaussian process Yi (·) with variogram ψ ∈ �d .

4. For all sites s j = (r j , θ j ), j = 1, . . . , n on which the simulation is to be per-
formed, compute

Z(s j ) = 1√
N

N∑

i=1

Yi

(
r jν

1/β
0 cos(θ j − ηi )

)
.

5. Return (Z(s1), . . . , Z(sn)).

Variograms ψ and γ are related by Eq. (7). Thanks to Theorem 3 the behavior at
the origin of γ is the same as that of ψ , but the mixture representation changes the
behavior ofψ away from the origin. Let us denote γiso an isotropic version of γ . Then,
Eq. (7) can be re-written (Lantuéjoul 2002)

γiso(r) = 2
(d − 1)vd−1

dvd

∫ 1

0

ψ(tr)

(1 − t2)(d−3)/2
dt, (9)

where vd is the d-volume of the unit ball in R
d .

When d = 2, Eq. (9) becomes γiso(r) = π−1
∫ π

0 ψ(r sin u)du after the change of
variable t = sin u, thus leading to

ψ(r) = 1 + r
∫ π/2

0
γ ′

iso(r sin u)du, (10)

where γ ′
iso denotes the derivative of γiso. These formulas are still in integral form and

not easily handled. Gneiting (1998) derives ψ explicitly for the most commonly used
covariances. When d = 3, Eq. (9) reduces to

γiso(r) =
∫ 1

0
ψ(tr)dt, or ψ(r) = γiso(r)+ rγ ′

iso(r). (11)
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Remark 1. It is important to re-emphasize that contrarily to the usual turning band
algorithm, the directions of the lines are not uniform but must be drawn according
to the directional measure ν.

2. As apparent from Eqs. (10) and (11), the regularity at the origin is the same for ψ
and γ . The mixture representation does not alter the regularity at the origin.

3. A similar idea has been recently proposed in Biermé, Moisan and Richard (2014) to
simulate anisotropic fractional Brownian fields in two dimensions for a restricted
class of anisotropy. Biermé, Moisan and Richard (2014) proposes a dynamic
programming algorithm for optimizing the directions of the turning bands. Our
implementation is thus slightly less efficient but much more general since the above
algorithm is valid for any variogram, any dimension and all anisotropies.

5 Illustration: A Class of Anisotropy Models on the Plane

5.1 Classical Models of Anisotropy Revisited

In this section, it is illustrated how to use Theorem 4 in order to build anisotropic
models. The case d = 2 will be retained for ease of exposition, but extension to higher
dimensional spaces is straightforward, although cumbersome in terms of notation and
difficult to represent. In R

2, Eq. (6) simplifies to

b(θ)−β =
∫ 2π

0
| cos(θ − η)|βν(dη). (12)

Since ν is symmetric on [0, 2π [, the function b(·) is π -periodic, i.e. b(θ +π) = b(θ).
Moreover, if the measure ν is symmetric around a principal direction θ0, so will be
the function b(·). Specific cases of Eq. (12) correspond to the well known models of
anisotropy reviewed in Sect. 3.

5.1.1 Isotropy

Obviously, if ν is rotationally invariant, that is if it is constant on [0, 2π), the function
b(θ) is also rotationally invariant and thus constant. The associated covariance is thus
isotropic.

5.1.2 Zonal Anisotropy

When the measure ν in Eq. (6) is the sum of two Dirac measures in opposite directions

ν(dη) = 0.5
(
b−βδθ0 + b−βδ−θ0

)
(dη),

direct inspection shows that b(θ) = b/| cos(θ − θ0)| which corresponds to the zonal
anisotropy model γ (h) = ψ{r | cos(θ − θ0)|/b}, with ψ ∈ �2.
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5.1.3 Anisotropy Corresponding to Separable Covariances

This case is obtained by setting the measure ν as the sum of two Dirac measures in
perpendicular directions

ν(dη) = 0.5
(

b−β
1 δθ0 + b−β

1 δπ+θ0

)
(dη)+ 0.5

(
b−β

2 δθ0+π/2 + b−β
2 δθ0+3π/2

)
(dη).

Direct inspection shows that

b(θ) = {| cos(θ − θ0)/b1|β + | sin(θ − θ0)/b2|β
}−1

, (13)

which corresponds to separable covariance functions, that is covariance functions
that are the product of two covariances defined on the real line, along the directions
θ0 and θ0 + π/2, that is γ (h) = 1 − {1 − ψ(|h1|/b1)}{1 − ψ(|h2|/b2)}, where
h1 = r cos(θ − θ0) and h2 = r sin(θ − θ0), and ψ ∈ �2. The first row of Fig. 2 shows
in a polar representation the scale parameter b(θ) as a function of θ for different values
of β. Let g(r) = rβ be the principal irregular term ofψ . Then, direct inspection shows
that the principal irregular term of γ in the direction θ is

gθ (r) = 1 − [
1 − rβ{| cos(θ − θ0)|/b1}β

] [
1 − rβ{| sin(θ − θ0)|/b2}β

]

= rβ{cos(θ − θ0)|/b1}β + rβ{| sin(θ − θ0)|/b2}β

which shows clearly that the principal irregular term arising from separable covariances
is similar to that arising from the sum of zonal anisotropies in perpendicular directions.

5.1.4 Geometric Anisotropy

The geometric anisotropy corresponds to

γ (h) = ψ (‖Ah‖) = ψ

(

r
[
{cos(θ − θ0)/b1}2 + {sin(θ − θ0)/b2}2

]1/2
)

,

where ψ ∈ �2. Then, Eq. (12) becomes

b(θ)−β = {[cos(θ − θ0)/b1]2 + [sin(θ − θ0)/b2]2}β/2 =
∫ 2π

0
| cos(θ − η)|βν(dη).

(14)
This equation is a special instance of a Fredholm integral equation of the first kind.
It is easily solved when β = 2. In this case, a simple solution is the sum of Dirac
measures in the directions θ0 and θ0 + π/2

ν(dη) = 0.5
[
b−2

1 δθ0 + b−2
1 δπ+θ0

]
(dη)+ 0.5

[
b−2

2 δθ0+π/2 + b−2
2 δθ0+3π/2

]
(dη),

which is nothing but the anisotropy corresponding to separable covariance functions
seen above with β = 2. Finding exact solutions in the general case 0 < β < 2
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is a task which would lead us beyond the scope of this paper, this section being
meant to be illustrative. Excellent approximate solutions will be shown in the next
section.

5.2 A New Class of Anisotropy Models

5.2.1 General Construction

The directional mixture representation in Eq. (12) opens new avenues for building
a large variety of valid anisotropic models. Anisotropy models are defined by the
directional measure ν, which the modeling as a sum of kernels, wrapped on the circle,
is proposed. Let us consider an even kernel function k(·) of unit mass, and let us
denote kh,x0(x) = h−1k{(x − x0)/h}, with h > 0 and x ∈ R. Since ν must be π -
periodic, anisotropy models will thus be defined as the weighted sum of 2J kernels
characterized by directions θ j and windows h j

ν(dη) =
J∑

j=1

0.5
{

c−β
j kh j ,θ j (η)+ c−β

j kh j ,θ j +π (η)
}

dη. (15)

Each kernel is weighted by factor c−β
j , so that the values c j can be interpreted as

scale factors in the direction θ j . Specific examples with Gaussian, squared cosine
and bi-squared kernels will be shown later. This class includes zonal anisotropies
as well as anisotropies arising from separable models by letting kh j ,θ j → δθ j when
h j → 0.

5.2.2 Two Perpendicular Directions

To illustrate this class of models, first consider anisotropy models obtained when
considering two similar kernels in perpendicular directions θ0 and θ0 + π/2, with
identical window parameter h

ν(dη) = 0.5c−β
1 {kh,θ0(η)+ kh,θ0+π (η)}dη

+ 0.5c−β
2 {kh,θ0+π/2(η)+ kh,θ0+3π/2(η)}dη. (16)

Figures 2 and 3 show a polar representation of the scale parameter b(θ). These plots
demonstrate clearly that it is possible to obtain, for a fixed value of β, a much larger
variety of graphs than those summarized in Table 2. When β ≥ 1, Eq. (12) implies
that the graph of b(θ) as a function θ describes the boundary of a symmetric, closed,
and convex set (see panels in the middle and right columns), tending to an ellipse as
β → 2. On the contrary, the graph is non convex when β < 1, with an increasing
convexity as h increases. When c1 = c2, and kh,θ0 = kh,θ0+π/2 the periodicity of b(θ)
is equal to π/2, as in Fig. 2. When one of these two conditions is not verified, the
periodicity of b(θ) is equal to π . Figure 3 illustrates some anisotropy models when
c2 
= c1 and kh,θ0 = kh,θ0+π/2. As h → ∞, we get that ν(dη) → ν∞ for all η, which
means that the model tends to an isotropic model.
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Fig. 2 Anisotropy models corresponding to the sum of two kernels, as in Eq. (16). Top row sum of two Dirac
measures (corresponding to separable models of covariance). Middle row sum of two Gaussian kernels with
h = π/24. Bottom row same with h = π/6. From left to right β = 0.5, 1, 1.5. For all models, θ0 = 0,
c1 = c2 = 2

Figure 4 shows two realizations of Gaussian random fields with an anisotropy
models corresponding to Eq. (16), for both an exponential covariance func-
tion and a power variogram with β = 1.2. Simulations were performed using
the R package RandomFields (Schlather et al. 2015) according the algorithm
Simulate_Anistropic_Random_Field presented in Sect. 4.3. These realiza-
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Fig. 3 Anisotropy models corresponding to the sum of two kernels. Same as Fig. 2, but here c1 = 1 and
c2 = 4

tions show clearly anisotropic patterns that are very different to those obtained with
geometric or separable anisotropies (not shown here). In contrast to patterns arising
from separable covariances, there is some amount of variability around the two main
anisotropy directions.

5.2.3 Geometric Anisotropy

Excellent approximate solutions to geometric anisotropies can be obtained using the
following sum of kernels in perpendicular directions
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Fig. 4 Realizations of Gaussian
random fields with an anisotropy
model with two squared cosine
kernels as in Eq. (16), with
c1 = 1, c2 = 2, h = π/8 and
θ0 = π/6. Top exponential
covariance function. Bottom
power variogram with power
β = 1.2

ν(dη) =
[

b−β
1 + b−β

2

2
+ b−β

1 − b−β
2

2̂k(2h)

]2/β

kh,θ0(η)dη

+
[

b−β
1 + bβ2

2
− b−β

1 − b−β
2

2̂k(2h)

]2/β

kh,θ0+π/2(η)dη, (17)

where k̂(ω) is the Fourier transform of the kernel function k(η). The coefficients
multiplying the kernel functions correspond to the exact geometric anisotropy model
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Table 3 Some usual kernels and their corresponding Fourier transform

Name Kernel, k(x) Fourier transform, k̂(ω)

Gaussian π−1/2 exp(−x2) exp(−ω2/4)

Squared cosine cos2(xπ/2)1(−1,1) {sin(π − ω)+ 2 sin(ω)+ sin(π + ω)}/2
Bi-squared 15/16(1 − x2)21(−1,1) −15{(ω2 − 3) sinω + 3ω cosω}/ω5

For each kernel, k(x), its Fourier transform is k̂(ω). All kernels have been standardized such that∫
R

k(x)dx = 1. The function sinc(x) is the sine cardinal function: sinc(x) = sin(x)/x
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Fig. 5 Black line scale parameter b(θ) as a function of the angle, for models of anisotropies as defined in
Eq. (17), with c1 = 1 and c2 = 4. From left to right Gaussian kernel with h = π/12; squared cosine kernel
with h = π/6; bi-squared kernel with h = π/6. Red solid line geometric anisotropy with same range for
θ ∈ {0, π/2}. Top row β = 1; bottom row β = 1.5

with scale factors equal to b1 and b2 along directions θ0 and θ0 + π/2 when β = 2.
Table 3 provides the correspondence between the Gaussian, squared cosine and bi-
squared kernels and their respective Fourier transform value k̂(ω).

Figure 5 represents on a polar graph the scale factor b(θ) resulting from this approx-
imation. The corresponding geometrically anisotropic models are also represented. It
can be observed that the match is excellent, well within statistical fluctuations usually
observed on data. As expected the approximation is better for larger values of β in
agreement with the fact that geometric anisotropy is exactly recovered when β → 2.
There are only slight differences from one kernel to the other. On all tested situations,
it was found that the choice of the kernel is secondary as compared to the choice the
bandwidth.
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Fig. 6 Anisotropy models corresponding to the sum of three kernels, as in Eq. (13). Top row sum of Dirac
measures. Middle row sum of squared cosine kernels with h = π/24. Bottom row same with h = π/6.
From left to right β = 0.5, 1, 1.5. For all models, (c1, c2, c3) = (1, 2, 3)

5.2.4 Three Directions

This class of anisotropies is not limited to the sum of two kernels located at θ0 and
θ0 + π/2. In sharp contrast with usual models, anisotropies with more than two
principal directions can easily be defined. Figure 6 shows some anisotropic mod-
els obtained when considering three components in Eq. (15). Figure 7 shows two
realizations of Gaussian random fields with a spherical covariance model and with
a linear variogram. The anisotropy model is the result of the sum of three kernels
along (θ1, θ2, θ3) = (0, π/6, π/3). The three main directions are clearly visible, in
particular in the stationary case. The simulated pattern is very different to any pattern
obtained with usual anisotropy models.
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Fig. 7 Realizations of Gaussian
random fields with an anisotropy
models with three squared
cosine kernels, with
(θ1, θ2, θ3) = (0, π/6, π/3),
(c1, c2, c3) = (1, 2, 3) and
h = π/6. Top spherical
covariance function. Bottom
power variogram with β = 1

6 Conclusion and Discussion

In this paper strategies allowing to go beyond classical anisotropies were explored.
It was first proved that if the regularity parameter of a variogram does not vary dis-
continuously with the direction, it must necessarily be constant. Then, a necessary
and sufficient characterization of the anisotropy of the scale parameter as directional
mixtures of zonal anisotropy variograms is provided. From this characterization, a
straightforward simulation algorithm is derived. Far beyond the classic zonal or geo-
metric models of anisotropy, this representation offers a great variety of anisotropy
models. As a practical way to model anisotropies in this context, a semi-parametric
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class of of the directional mixture, defined as the weighted sum of kernel functions
located at J main directions (θ j ) j=1,...,J , has been proposed.

The findings reported in this work open new avenues for the modeling of anisotropic
random fields. This paper must be seen as a first theoretical step in that direction.
Further work is required in various directions in order build a practical geostatistical
modeling strategy. The mixture representation offers two approaches to estimate a valid
anisotropy model as given in Theorem 4. Ongoing research is undertaken to estimate
the parameters of the semi parametric model proposed in Eq. (15) using the weighted
composite likelihood proposed in Bevilacqua et al. (2012). Other semi-parametric
models and/or competing estimation procedures could be proposed. In particular,
the promising Bayesian approach in Kazianka (2013) could be generalized to our
representation. Alternatively, the mixture measure can be estimated non parametrically
by estimating the scale parameter b(θ) in various directions and inverting Eq. (8). This
work holds the potential to initiate further theoretical work. Two possible research
directions are highlighted. Firstly, relationships with space-time covariance modeling
should be systematically explored, in particular in the light of the recent developments
in Stein (2013), where generalized covariance with different smoothness parameters
in space and time were proposed within the framework of Intrinsic Random Functions
of order k. Secondly, extensions to processes defined over the sphere, for which the
Euclidean distance is no longer a suitable metric, would be of great interest for model
global processes on the planet Earth.

Appendix A: Proofs

Proof of Proposition 1

The “only if” part is proven by building a simple counter-example in R
2. Let (r, θ) be

the polar coordinates of h. Since β(θ) is a continuous function of θ on a compact set,
there exists β1 such that 0 < β1 = minθ {β(θ)} ≤ β(θ). Without loss of generality,
the X-axis is a (non necessarily unique) direction for which β(θ) is minimum, i.e.
β(0) = β1. Recall that β(θ) = β(θ + π) because the variogram is an even function.
Let us consider the points s0 = (0, 0), s1 = (−x, y) and s2 = (x, y), with x, y > 0.
The contrast

Z(0, 0)− Z(−x, y)/2 − Z(x, y)/2 =
2∑

i=0

wi Z(si ),

corresponds to the error made when predicting the value at s0 with the average of the
values located at s1 and s2. Let us examine the sign of the quadratic form

Q = −
2∑

i=0

2∑

j=0

wiw jγ (si − s j )

= γAP{(−x, y)} + γAP{(x, y)} − 0.5γAP{(2x, 0)}
= a(π − θ)rβ(π−θ) + a(θ)rβ(θ) − 0.5a(0)(2x)β1 ,
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where θ denotes the angle of the vector s2 − s0 with the X-axis and r2 = x2 + y2.
The quadratic form Q would correspond to the variance of the linear combination if
γAP(h)was a valid variogram. Let us denote βm = min{β(π − θ), β(θ)} ≥ β1. Using
x = r cos θ and dividing by rβm the above expression becomes

Q

rβm
= a(π − θ)rβ(π−θ)−βm + a(θ)rβ(θ)−βm − 0.5a(0)(2r cos θ)β1−βm . (18)

As r → 0, the first two terms in (18) are bounded by a(π − θ) + a(θ) and the last
term is proportional to −rβ1−βm with β1 ≤ βm . Hence, Q becomes negative as r → 0
unless βm = β1. Hence, for all 0 < θ < π/2

Q ≥ 0 as x → 0 ⇔ min
θ

{β(π − θ), β(θ)} = β1. (19)

Using topological arguments, one can then show that β(θ) = β1, for all θ . The proof
is completed by noticing that if a function is not c.d.n. in R

2, it is not c.d.n. in R
d , for

d ≥ 2. �

Proof of Theorem 2

For the same construction as in Proposition 1, the quadratic form Q now reads

Q = a(π − θ)rβ(π−θ) f (r)+ a(θ)rβ(θ) f (r)− 0.5a(θ)(2x)β1 f (2x),

and thus

Q

f (r)rβm
= a(π − θ)rβ(π−θ)−βm + a(θ)rβ(θ)−βm

−0.5a(0)(2 cos θ)β1−βm
f (2r cos θ)

f (r)
rβ1−βm . (20)

As r → 0, the first two terms in (20) are bounded and, since f is a slowly varying
function at r = 0, the last term tends to −∞. Hence, Q becomes negative as r → 0
unless βm = β1. The end of the proof is now exactly similar to that of Proposition 1.

�
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