Deep fluids can facilitate rupture of slow-moving giant landslides as a result of stress transfer and frictional weakening, - Archive ouverte HAL Accéder directement au contenu
Article Dans Une Revue Geophysical Research Letters Année : 2014

Deep fluids can facilitate rupture of slow-moving giant landslides as a result of stress transfer and frictional weakening,

Résumé

Landslides accommodate slow, aseismic slip and fast, seismic rupture, which are sensitive to fluid pressures and rock frictional properties. The study of strain partitioning in the Séchilienne landslide (France) provides a unique insight into this sensitivity. Here we show with hydromechanical modeling that a significant part of the observed landslide motions and associated seismicity may be caused by poroelastic strain below the landslide, induced by groundwater table variations. In the unstable volume near the surface, calculated strain and rupture may be controlled by stress transfer and friction weakening above the phreatic zone and reproduce well high-motion zone characteristics measured by geodesy and geophysics. The key model parameters are friction weakening and the position of groundwater level, which is sufficiently constrained by field data to support the physical validity of the model. These results are of importance for the understanding of surface strain evolution under weak forcing.
Fichier principal
Vignette du fichier
2013GL058566.pdf (1.19 Mo) Télécharger le fichier
Origine : Fichiers éditeurs autorisés sur une archive ouverte

Dates et versions

hal-01183217 , version 1 (20-05-2021)

Identifiants

Citer

F. Cappa, Y. Guglielmi, Sophie Viseur, S. Garambois. Deep fluids can facilitate rupture of slow-moving giant landslides as a result of stress transfer and frictional weakening,. Geophysical Research Letters, 2014, pp.1-6. ⟨10.1002/2013GL058566⟩. ⟨hal-01183217⟩
265 Consultations
30 Téléchargements

Altmetric

Partager

Gmail Facebook X LinkedIn More