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[1] We perform a retrospective forecast test using Northern California seismicity for the
period between 1980 and 2009. We compare 7 realizations of the short-term clustering
epidemic-type aftershock sequence (ETAS) model, and 21 models combining Coulomb
stress change calculations and Rate/State theory (CRS) to forecast seismicity rates in 10 day
time intervals. We employ a common learning phase (1974–1980) for CRS models to
ensure consistency, and we evaluate the forecasts with log likelihood statistics to detect any
spatial inconsistencies and compare the total numbers of forecasts versus observed events.
We find that: (1) ETAS models are better forecasters of the spatial evolution in seismicity in
the near-source region, (2) CRS models can compete with ETAS models away from the
mainshock rupture, and for short periods after mainshocks, (3) CRS models with optimally
oriented receiver fault planes perform better in the first few days after mainshocks, whereas
mapped fault planes should be implemented for longer-term forecasting, and (4) CRS models
based on shear stress change calculations have comparable performance with Coulomb stress
change models, with the benefit of lesser parameters involved in stress calculations. We
conclude that physics-based and statistical forecast models are complimentary to each other
and that future forecasts should be based on statistical models for near-source regions, and
physical models for longer periods and distances. However, the realization of the CRSmodels
involves a number of critical parameters (reference seismicity rates, regional stress field, and
loading rates), which should be retrospectively tested to improve the predictive power of
physics-based models.

Citation: Segou, M., T. Parsons, and W. Ellsworth (2013), Comparative evaluation of physics-based and statistical
forecasts in Northern California, J. Geophys. Res. Solid Earth, 118, 6219–6240, doi:10.1002/2013JB010313.

1. Introduction

[2] During the last decade, a wide range of statistical and
physics-based models was developed to forecast earthquake
occurrence following moderate and great earthquakes.
Empirical statistics and cascading effects are the basis for
epidemic-type aftershock sequences (ETASs) [Ogata,
1988], whereas rate/state friction laws [Dieterich, 1994]
combined with the idea of static stress triggering [Stein
et al., 1997; Harris and Simpson, 1996; Toda et al., 2005]
are the cornerstone of physics-based-models. The consideration
of spatiotemporal clustering effects through empirical-statistical
models is important for short-term earthquake forecasting [Field
et al., 2009]. Recently, Steacy et al. [2013] supports that
including spatial constraints from Coulomb stress changes can
increase forecasting power of the statistical models. However,
we ultimately want to understand the physics underlying

aftershock occurrence, that the empirical methods only describe,
and the theoretical bases of stress transfer and rate/state friction
offer explanations. Thus, their direct comparison is important
not only for operational forecasting [Jordan et al., 2011] but
also for understanding the physics of earthquake triggering.
[3] We develop a wide range of physics-based (CRS) and

short-term clustering statistical models (ETAS) to retrospec-
tively forecast Northern California seismicity between 1980
and 2009 withML ≥ 3.0. Other statistical forecasting methods
have been proposed lately, such as the EEPAS (every earth-
quake a precursor), PPE (Proximity to Past Earthquakes), and
double branching process models by Rhoades [2007] and
Marzocchi and Lombardi [2008], respectively. Although these
individual models address intermediate to long-term clustering,
recent research [Rhoades, 2013] reveals that a mixture of
ETAS, EEPAS, and PPE models may also improve short-term
forecasting. We implement twenty-one CRS models consider-
ing various sources of uncertainty such as different mainshock
slip models, receiver plane geometry, stressing rates, receiver
fault friction coefficient, and reference seismicity rate models.
We also compare seven ETAS realizations; those are based on
two basic principles of ETAS modeling that (1) the update time
should be reasonably short (24 h) and (2) all available earth-
quakes should be used for cascading earthquake sequences,
which is found to improve statistical forecasting methods
[Helmstetter, 2003]. It is clear that the rules for forecast model
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implementation are not the same for physics-based and ETAS
models, but in this study we focus on the comparison between
the theoretically advantageous ones from each family, e.g., the
forecast time window is set to 10days for CRS models, but
we adopt a daily updated ETAS model, since Nanjo et al.
[2012] has demonstrated the link between poor performance
and extended update intervals for statistical models.
[4] We evaluate the relative performance of the forecast

models with log likelihood statistics [Schorlemmer et al.,
2007; Zechar et al., 2010; Rhoades et al., 2011]; our goal
is not necessarily to determine the best performing
individual model, but instead through comparative perfor-
mance, to identify which components of the physical and
statistical models succeed in different spatial, temporal,
and geological parameterizations.
[5] We implement the suggested log likelihood statistics to

different subregions along San Andreas Fault for one year
following the 1989 Loma Prieta (Mw= 6.9) rupture. During
our evaluation period the spatiotemporal evolution of seis-
micity within these subregions is influenced by at least four
mainshocks with ML ≥ 5.0, included in our modeling. We
identify a time and space-dependent character of the predictive
power of the forecast models developed in this study.
Furthermore, we support that forecast models based on rate/
state friction and static stress changes constitute a feasible
solution for prospective experiments within the frame of
operational earthquake forecasting.

2. Data

[6] We use the earthquake catalog and the focal mecha-
nisms of the Advanced National Seismic System (ANSS)
for shallow events (depth, z< 30 km) inside the learning
phase of 1974–1980 (Figure 1a), and the latest version of
the high-precision relocated catalog of Waldhauser and
Schaff [2008] during our testing phase between 1980 and
2009 (Figure 1b).
[7] Our models are implemented in a 2.5 km × 2.5 km

grid that encompasses the San Francisco Bay region of
Northern California between 123°W–121.3°W longitude
and 36.4°N–38.2°N latitude, for forecasting earthquakes
with ML≥ 3.0, the latter corresponding to the threshold of
completeness for the modern instrumental California catalog
[Felzer, 2008; Hardebeck, 2013]. This grid is used for
calculating expected aftershock rates in ETAS models and
the coseismic static stress changes from 15 ML≥5.0 earth-
quakes that occurred during our testing period (1980–2009),
listed in Table 1. The consideration of the most recent earth-
quakes with ML≥ 5.0 (e.g., the 2007 Alum Rock event) aims
in providing updated estimates of forecast parameters (e.g.,
the state variable γ in the rate-and-state equations, see section
A1), which can be further employed for prospective forecasting
in case a major earthquake occurs within our study area.
[8] Mainshock sources are represented by boxcar uniform

and variable slip models, the latter available from the finite-fault

Figure 1. Seismicity with magnitude ML ≥ 3.0 within our study area (�123.0°W, 36.4°N to �121.3°W,
38.2°N). (left) The 177 earthquakes from the available ANSS catalog inside the learning phase of our forecast
experiment between 1974 and 1980 and (right) 15 major events (stars), for which we have calculated the stress
changes imparted (listed in Table 1) together with 1459 earthquakes (1980–2009), taken from the high-precision
relocated catalog of Waldhauser and Schaff [2008] for the time period 1984–2009 and the available ANSS
catalog between 1980 and 1984. Also noted subregions A and B that have been used for performance evaluation
of the forecast models.
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source model database. We have considered alternative slip
distributions for the 1984 Mw=6.4 Morgan Hill, 1989
Mw=6.9 Loma Prieta, and the 2007Mw=5.4 AlumRock earth-
quakes and we employed as mainshock sources the models de-
veloped by Beroza and Spudich [1988], Beroza [1991], and
Murray-Moraleda and Simpson [2009]. For deriving uniform-
slip source models, we estimated the amount of slip using the
moment relation ofHanks and Kanamori [1979], assuming that
the moment magnitude equals the local magnitude, while the
source dimensions are based on the scaling relation of Wells
and Coppersmith [1994] for the specific faulting style.

3. Description of Forecast Models

[9] The predictive power of a CRS model is based on the
idea that stress is transferred through the elastic crust follow-
ing the distortion caused by slip during an earthquake.
Representing this slip as a series of dislocations allows
crustal volumes, subject to calculated stress increases and
decreases to be identified, with the stress-increased volumes
expected to be at sites where most aftershocks will occur
[e.g., Stein, 1999]. The Coulomb failure criterion was
implemented as follows:

Δτ ¼ Δτf
�� ��þ μ Δσn þ Δp

� �
(1)

where Δτf
�� �� is the shear stress change parallel to the fault’s

rake, μ the friction coefficient, Δσn the stress change normal
to the fault plane, and Δp the pore pressure change. Our final
implementation uses the effective coefficient of friction,
which also models Skempton coefficient Bk, to incorporate
pore fluid effects so that friction becomes μ=μ(1 +Bk) and
the Coulomb criterion, following Rice’s [1992] formulation,
is given by

Δτ ¼ Δτf
�� ��þ μ Δσnð Þ (2)

[10] Sources of calculation uncertainty include the friction
parameter and its relationship with pore fluid pressure and the
adequate representations of coseismic slip distributions.
Additional sources of uncertainty with regard to the simplified

static stress hypothesis could be dynamic, secondary, and
postseismic relaxation effects, including deep fault afterslip.
[11] Short-term clustering models (ETAS) are based on the

Omori and the Gutenberg-Richter law and the idea that large
magnitude earthquakes trigger even more smaller magnitude
aftershocks [Ogata, 1988]. Although, operational forecasting
is mostly based in short-term statistical clustering models
[Jordan et al., 2011], the knowledge of the physical system
driving earthquake occurrence can be approached only
through extensive testing of physics-based models, allowing
us to understand the significance behind a number of critical
parameters and features such as the representation of the
stress field, the completeness of earthquake catalogs and
network detectability, loading rates on active faults, and
aftershock decay. Following Jordan and Jones’ [2010]
definition, “the goal of operational earthquake forecasting is
to provide the public with authoritative information on the
time dependence of regional seismic hazards” which from
the scientific perspective is based on the research and
development of earthquake clustering models.

3.1. Rate-and-State Friction Forecast Models

[12] In this study, physics-based forecasts are represented
by combining Coulomb stress changes and rate/state equa-
tions for expected seismicity rates following a stress pertur-
bation [Dieterich, 1994]. The cornerstone of physics-based
forecasting is the assumption that static Coulomb stress
changes (DCFF) caused by a dislocation in an elastic
medium are responsible for triggering aftershocks. We em-
ploy a common learning phase (1974–1980) for the CRS
models to ensure consistency. In order to model the evolution
of seismicity we calculate the DCFF, at each node of the
2.5 km × 2.5 km grid, imparted by the 15 ML≥5.0 events
between 1980 and 2009 and we update the forecast after each
major event listed in Table 1.We note that we compare between
physics-based and statistical models for the 300 day period
following the Mw = 6.9 Loma Prieta 1989 earthquake. We
develop three primary classes of physics-based models
depending on how the stress-change receiver planes are
handled: CRS-1, CRS-2, and CRS-3. We adopt a friction
coefficient μ= 0.2 for our CRS-1 and CRS-2 models, as-
suming that major active faults in Northern California are

Table 1. Seismic Parameters of 15 ML ≥ 5.0 Mainshocks in Our Study Area Between 1980 and 2009 Taken From the Waldhauser and
Schaff [2008] High-Accuracy Relocated Catalog for Northern Californiaa

No Year Month Day Hr Min ML Depth (km) Earthquake Name

1 1980 1 24 19 0 5.8 14.79 Livermore I
2 1980 1 24 19 1 5.1 6.9 Livermore II
3 1980 1 27 2 33 5.4 14.43 Livermore III
4 1984 4 24 21 15 6.2 7.968 Morgan Hill (Beroza and Spudich [1988])
5 1986 3 31 11 55 5.7 8.394 Mt. Lewis
6 1988 2 20 8 39 5.1 8.222 Alum Rock 1988
7 1988 6 13 1 45 5.3 8.869 Hollister
8 1988 6 27 18 43 5.3 11.544 Elsman Lake I
9 1989 8 8 8 13 5.4 12.586 Elsman Lake II
10 1989 10 18 0 4 7.0 16.412 Loma Prieta mainshock (Beroza [1991])
11 1989 10 18 0 41 5.1 13.864 Loma Prieta aftershock-St Cruz Mts
12 1990 4 18 13 53 5.4 4.611 Watsonville I
13 1990 4 18 15 46 5.1 6.338 Watsonville II
14 1998 8 12 14 10 5.1 7.746 SJ Bautista
15 2007 10 31 3 4 5.4 7.486 Alum Rock 2007 (Murray-Moraleda and Simpson [2009])

aWe cite in parentheses in the last column the main slip distributions used to describe the three larger mainshocks in our study.
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weak based on seismological, borehole, and heat flow data
[Lachenbruch and Sass, 1980; Townend, 2006; Mount and
Suppe, 1992; Parsons et al., 1999; Geist and Andrews,
2000]. Our assumption is further supported by Reasenberg
and Simpson [1992] who studied the response of regional seis-
micity to the static stress changes following the Loma
Prieta earthquake and found that, “the agreement is best
for models with low values of the coefficient of friction
(0.1 ≤ μ ≤ 0.3) on Bay Area faults.” The CRS-3 model tests
the predictive power of forecast models based on shear
stress changes (μ= 0). A summary of the main features
and parameters for each CRS model is shown in Table A1.
[13] From equation (A1) it is obvious that CRS models

depend on three critical parameters: (1) the reference seismicity
rate (or background seismicity rate), (2) the constant secular
shear stressing rate or equivalent, such as the fault loading rate,
and (3) the term Ασ (assumed to be 0.05MPa in this study)
[Toda et al., 2005]. We note that there is a trade off between
the two parameters, Ασ and τ̇ , and our implementation here
chooses to fix Ασ and vary the stressing rate τ̇ based on
previous researches for major faults in Northern California. We
estimate the expected seismicity in each node at (dt=)10 day time
intervals inside our testing phase (1980–2009), except in the
case where two or moreML≥ 5.0 events occur less than 10 days
apart, in which case we allow time intervals to vary accordingly.
[14] We have implemented an extensive set of background

seismicity models and fault loading rates to analyze the
sensitivity of our forecasting results to the above CRS com-
ponents. Analytically, our background rate formulations
include a declustered model following Reasenberg [1985],
a gridded, and a smoothed-gridded model using a Gaussian
operator with correlation distance 5 km.We have considered:
(1) uniform tectonic stressing rates over our study area equal
to 0.065 bar/yr, inversely proportional to the aftershock se-
quence duration of the Loma Prieta earthquake and (2)
fault-specific loading rates by Smith and Sandwell [2003],
Smith-Konter and Sandwell [2009], and Parsons [2002].
For the last two loading rate representations, we have ex-
tended the fault-specific loading rates to 10 km distance from
the surface traces of the faults.
[15] As previously noted, the difference between models

CRS-1 and CRS-2 (bold denotes the generation) is the
receiver fault plane approach. One approach for mapping
stress change patterns is to calculate values for optimally
oriented faults [King et al., 1994], assuming these are the
most likely to host aftershocks. This approach tends to work
well in explaining observations [e.g., Hainzl et al., 2009], but
it also involves a number of free parameters because it requires
estimation of the magnitudes and directions of the regional
stress field, and it potentially resolves stresses on fault planes
that at one hand may not necessarily exist, and on the other
hand if they exist, we have identified them as “optimal” based
on the assumption that we have an adequate representation of
the premain shock stress field. A second approach is to define
receiver fault plane orientations and mechanics based on geo-
logical knowledge, a process that is also subject to uncertainty.
It is unclear at this time which method is better [e.g., Steacy
et al., 2005; Cocco et al., 2010], so we make calculations on
optimally oriented fault planes (CRS-1) and on a dense grid
of 3-D fault planes representing the predominant fault
structures in Northern California (CRS-2) (Figure A1). We
have set the 3-D fault plane grid (Figure A1) to comply with

the following concepts: (1) we only use seismological data
(Figure A2) to influence our definitions of faulting style from
the same period of the forecast learning period (1974–1980)
and (2) we describe primary geological features that are con-
sistent with the long-term deformation history (major faults
and recent topography). For the development of the predomi-
nant geology grid, we refer the reader to see section A3. We
also provide Coulomb stress change calculations along San
Andreas Fault, following Loma Prieta earthquake, implemented
in CRS-1 and CRS-2 models in Figure A3. For the CRS-1
models, the regional stress field representation was taken from
Hardebeck and Michael [2004], with the maximum
compressive stress set to N19°E, while the regional stress
σ1 � σ3 = 10MPa [Toda et al., 2005]. This gives the optimally
oriented fault plane models (CRS-1) an advantage in the sense
that a better-defined stress direction is available than would
have been guessed during the learning period (1974–1980).
[16] We note that our CRS implementation in this study in

based on stress perturbations from major events; however,
the results of a complimentary study of the first two authors sug-
gest that the consideration of small magnitude could improve
the predictive power of physics-based models under specific
circumstances (M. Segou and T. Parsons, The stress shadow
problem in physics-based aftershock forecasting: Does incorpo-
ration of secondary stress changes help?,Geophysical Research
Letters, 2013, in review), depending whether these events can
play an important role in elastic stress redistribution [Marsan,
2005; Helmstetter et al., 2005].

3.2. Statistical Forecast Models

[17] Epidemic-type aftershock (ETAS) models have been
extensively used the last few years in forecasting to predict
aftershock occurrence both in space and time after a
mainshock (Werner et al. [2011] and Woessner et al. [2011]
among others). The models have evolved from the formulations
byOgata [1988, 1998],Ogata and Zhuang [2006], and Zhuang
et al. [2002], and express the seismicity rate λ(x,y,t) forM>Mth

at a spatial bin (x,y) and time t given by

λ x; y; tð Þ ¼ μ x; yð Þ þ ∑i:ti<t

Keα Mi�Mthð Þ

t � ti þ cð Þp f i x� xi; y� yi;Mið Þ (3)

where Mth ≥2.5 corresponds to the minimum triggering

magnitude, K ¼ A c p�1ð Þ2
� �

in day(p� 1) unit is related to

the short-term productivity, directly expressed by A that
corresponds to the average number of offspring events by
an earthquake at the threshold magnitude, while α is the
efficiency of an event to generate aftershocks relative to its
magnitude. The spatial PDF f(x,y,M) represents the distribu-
tion of distance to offspring events relative to the magnitude
of ancestors, and is given by the analytical form

f x; y;Mð Þ ¼ q� 1

πD Mð Þ 1þ x2 þ y2

D Mð Þ
� ��q

(4)

where D(M)= deγ(M�Mmin), d and q are the spatial fitting
parameters, while γ is proportional to α of equation (3).
[18] For the seven ETAS models, we use all available

earthquakes with ML ≥ 2.5 to forecast earthquakes with
ML ≥ 3.0. ETAS-1 to ETAS-6 models correspond to daily
updated forecasts, whereas the ETAS-7 model is updated
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every 10 days, which eventually leads to a poor performance
depending on the number of earthquakes between model
updates [Nanjo et al., 2012]. We distinguish between two
groups of ETAS models: ETAS-1 and ETAS-7, and ETAS-2
to ETAS-6 based on the modification of parameters provided
in Hardebeck [2013] and Werner et al. [2011], respectively.
Hardebeck [2013] focuses in deriving and validating ETAS
parameters for California within the framework of Unified
California Earthquake Rupture Forecast, whereas Werner
et al. [2011] parameter estimation has been found to optimize
daily forecasts, including secondary triggering effects. Here,
we set the c value to 0.1667days to reflect the network detection
limitations for the first 4 h [Enescu et al., 2009] following the
Loma Prieta mainshock [Dietz and Ellsworth, 1990; Dietz and
Ellsworth, 1997] discussed in the following paragraph. We also
consider fixed spatial fitting parameters q, d equal to 1.96 and
0.79 km. For determining the γ parameter, Ogata and Zhuang
[2006] support two approaches; either estimate by fitting the
data or fix γ value equals α value (α = γ). With the exception
of the ETAS-4 model, where α (= 0.84) and γ (= 0.49) are taken
by fitting the complete instrumental catalog for the entire testing
period, ETAS models consider α= γ.
[19] According to the productivity law, each mainshock

with magnitude M triggers ~10αM number of events and
the relative abundance of ~10�bM events is given by the
Gutenberg-Richter law, which leads to a contribution of
magnitude M events 10�(b�a)M. In ETAS-1 model, we
consider α= b = 1.0, therefore the contribution of each mag-
nitude class is equal whereas in ETAS-2 model α< b = 1.0,
which increases the importance behind the contribution of
smaller magnitude events. According to Werner et al.
[2011], this has, as a consequence, that small, undetected
earthquakes have a significant, time-dependent impact on
the observed seismicity budget and any failure to model their
effect causes parameter bias [Sornette and Werner, 2005a,
2005b; Saichev and Sornette, 2005, 2006]. In this study for
ETAS modeling we consider Mmin = 2.5 and md= 3.0, which
corresponds to the minimum magnitude for triggering and
detection limit of the network, and the threshold magnitude
for our forecast, respectively. This consideration is more
critical for the statistical forecast immediately after the
Loma Prieta mainshock rather than any other modern event,
since there is a larger discrepancy between the minimum
magnitude of the modern instrumental catalog and the

detection magnitude since the network experienced power
cuts and seismic station malfunctions within the first 24 h
[Dietz and Ellsworth, 1990], which is expected to influence
the performance of the daily forecast for the first day.
[20] We carefully examine this underreporting in 4 h

windows using frequency-magnitude density distributions
to estimate completeness; hours 1 to 4 appear complete down
to M3.0 with b value 0.83 ± 0.09 for events M ≥ 3.0
(Figure A4a), while for the remaining first day we reach a b
value 0.81 ± 0.05 for events M ≥ 1.5 (Figure A4b). We
present the variability of magnitude of completeness with time
after the mainshock for the first 10 days in Figure A4c. We
observe that approximately after the first 4 h, the magnitude of
completeness is well below theminimummagnitude for trigger-
ing (Mmin = 2.5).We therefore estimate that approximately three
events betweenM2.5 andM3.0 are not reported within the first
4 h in subregion A, which does not jeopardize the ETAS’
forecasting effort. We note that the problem of short-term after-
shock incompleteness is still a standing issue, which becomes
increasingly important for forecast models demanding real-time
high-accuracy hypocenters for small magnitude events.
[21] We consider the branching ratio n =Naft/N equal to

0.67 [Hardebeck, 2013], where Naft is the number of events
triggered by mainshocks [Helmstetter and Sornette, 2002].
We determine the productivity parameter K in relation with
the true branching ratio n, which we estimate from the appar-
ent branching ratio na, using the formalism for Mmin ≤md

distinguishing between the minimum triggering magnitude
Mmin and the detection magnitude md. [Werner, 2008]. We
provide in the section A2 of the examples of parameter esti-
mation for ETAS modeling for varying a values, b = 1.0,
c = 0.1667 days for Mmax = 6.9, Mmin = 2.5, and md = 3.0.
The estimated parameters and implementation details for
ETAS models are summarized in Table 2.

4. Performance Evaluation of Forecasting Models

[22] In seismology, the basic idea behind using the ave-
rage likelihood per event as a metric for the predictive
power of the model was defined in the early work of
Kagan and Knopoff [1977] and discussed for its theoreti-
cal basis by Harte and Vere-Jones [2005]. In recent years,
worldwide initiatives, such as the Collaboratory for the
Study of Earthquake Predictability and Regional Earthquake

Table 2. Estimates of Space-Time ETAS Parametersa

ETAS Number

1 2 3 4 5 6 7 Parameter

K 0.061 0.211 0.154 0.154 0.154 0.105 0.061 Related to productivity
α 1.0 0.7 0.8 0.8 0.8 0.9 0.8 α value
c (days) 0.16 0.16 0.16 0.16 0.16 0.16 0.16 c value
p 1.27 1.27 1.27 1.27 1.37 1.27 1.27 Decay parameter
b 1.0 1.0 1.0 1.0 1.0 1.0 1.0 b value
γ 1.0 0.7 0.8 0.5 0.8 0.9 0.8 γ value
d (km) 0.79 0.79 0.79 0.79 0.79 0.79 0.79
q 1.96 1.96 1.96 1.96 1.96 1.96 1.96
Mmin 2.5 2.5 2.5 2.5 2.5 2.5 2.5 Minimum magnitude for triggering
dt(days) 1 1 1 1 1 1 10 Update interval

aIn this table K, c, and p are Omori law values [Utsu, 1961] governing the decay rate of aftershocks, α and γ estimates the magnitude efficiency of an earth-
quake in generating its offspring, and d and q, are spatial fitting parameters. The parameter dt corresponds to the time interval for the model update andMmin is
the minimum magnitude for triggering.
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Likelihood Models project, have proposed statistical tests
regarding the efficient testing of earthquake forecasting
models [Schorlemmer et al., 2007; Werner et al., 2010;
Zechar et al., 2010; Rhoades et al., 2011; Marzocchi et al.,
2012].
[23] We implement the suggested log likelihood statistics

to different subregions along San Andreas Fault for appro-
ximately one year following the 1989 Loma Prieta rupture
(see Figure 1b). During our evaluation period, we anticipate
the influence of at least four mainshocks (ML ≥ 5.0) within
these subregions. Analytically, the southern San Andreas
Fault in Santa Cruz Mountains (subregion A) represents the
prolongation of the main aftershock zone of Loma Prieta but
also the epicentral area of the Watsonville events, the ML=5.4
Watsonville I (180days after) and ML=5.1 Watsonville II
(112min after Watsonville I). Studying this subregion is
important since: (1) it holds ~40%of the Loma Prieta aftershock
sequence but lies outside the main aftershock zone
[Oppenheimer, 1990; Kilb et al., 1997; Beroza and Zoback,
1993], (2) the aftershock triggering mechanism is not clear; it
may partly be a sympathetic slip on the Sargent Fault following
the 1989 mainshock or/and postseismic deformation [Mueller
and Johnston, 2000], and (3) the Watsonville sequence within
the subregion presents the opportunity to study the nucleation
of major aftershocks through a rate/state framework. The impor-
tance behind the near-source region of the Loma Prieta event
(subregion B) is self-evident; the authors note that the effects
of the M5.1 aftershock at the northern part of the rupture,
37min after the mainshock, are also considered.
[24] We use four statistical tests: (1) the modifiedN (number)

test, comparing the number of forecast and observed events, (2)
the S (space) test, for measuring the relative performance
and the spatial consistency of each forecast, (3) the T test
representing the information gain per earthquake and its
variability within each model, and (4) the R (ratio) test, to deter-
mine the rejection percentage of a model when compared with a
reference forecast. Possible biases of these tests have been
discussed by Lombardi and Marzocchi [2010], Werner and
Sornette [2008], and Woessner et al. [2011]. Rhoades et al.
[2011] discuss how the R test can be potentially difficult to
interpret in cases where we observe a mutual rejection on behalf
of the models [Schorlemmer et al., 2007] and that it relies to
computational time-consuming simulations.
[25] The metrics δ1 and δ2 of the modified N test (equations

(A9) and (A10)) answer two questions assuming that the
forecast is correct: first, What is the probability observing at
least Nobs events?, and second, What is the probability of
observing at most Nobs earthquakes? If the observations fall
into the tails of the distributions, then we reject the forecasts
as inconsistent with the observations at 95% significance
level. We expect that δ1≃ 1� δ2 because they share a
complimentary role, and we reject a forecast model if either
δ1(t)< αeff or δ2(t)< αeff, where aeff = 0.025 corresponds to
the effective significance value [Zechar et al., 2010]. For
example, in the case that we have Nobs = 16 earthquakes, we
do not reject the forecast at the 0.05 significance level if it
predicts between N1 = 9 and N2 = 26 events. We perform
two types of the N test, an incremental one within 10 day
intervals, and a cumulative one that includes the total number
of events at time n*10 days (n = 1, 2, …, 30).
[26] We measure the spatial consistency of the forecast

(S test) by comparing the distribution between observed (ω)

and forecast (λ) events using equations (A11) and (A12)
[Schorlemmer, 2007; Zechar et al., 2010]. According to
Zechar et al. [2010], the observed log likelihood, given by
equation (A11), “ has a negative value, and values closer to
zero indicate a more likely observation; in other words, such
a value indicates that the forecast shows better agreement
with the observation.”
[27] We then compare the log likelihood score of the

observed locations in the spatial forecast with the log likeli-
hood values that we would expect to find if the forecast were
correct. To obtain this last parameter, we simulate over 1000
synthetic samples generated by a Poisson distribution and
compute their spatial likelihood value. We calculate the
quantile ζ of the simulated values that are less than the
observed score as shown by the expression

ζ ¼ Ŝ xjŜ x ≤ Ŝ
	 
�� ��

Ŝ
	 
�� �� (5)

where in a given set A, |{A}| denotes the number of elements
in the set |{A}| and Ŝ x corresponds to the joint log likelihood
of the xth simulated catalog. A low ζ value returned by equation
(5) would indicate an inconsistency with the observations since
it would imply that the measured likelihood value is much
lower than the expected if the forecast was correct. A high
value would indicate that the observed score is higher than
what we expected, which is not ground for rejection, since
it still shows that the observed events are exactly at correct
locations [Zechar et al., 2010]. We reject models at the
95% confidence level when ζ < 0.05 and examine the
rejection ratio Rζ , based on the above quantile ζ , thought
our evaluation period.
[28] For the T test application [Rhoades et al., 2011] the

sample information gain per earthquake of a model A over
model B is defined by

ΙΝ A;Bð Þ ¼ 1

N
∑
Ν

i¼1
X i �ϒið Þ � N̂ A � N̂ B

N
(6)

[29] ΙN (A,B) is considered as the mean of a sample from a
population with actual mean I(A,B), where ΙN (A,B) is the true
information gain of model A over model B with Xi= log λA(i)
and Yi= log λB(i) the log likelihood value of a model A and B
in the ith bin. In comparison with the R test, which tests
whether model A can be rejected in favor of model B, the T
statistic “measures the relative amount of information on
future earthquakes provided by competing models, by
computing a confidence interval for the information gain
per earthquake” according to Rhoades et al. [2011] and it
has also the benefit of being computationally less intensive.

5. Results

[30] We first discuss the forecast seismicity rate maps,
describing earthquake occurrence in the first 10 days after
the Loma Prieta mainshock, and comment on important
features of our models.

5.1. Seismicity Rate Maps

[31] Selected CRS models are presented in Figure 2 with
the aim of revealing major differences in the spatial distribu-
tion of forecasted seismicity due to different receiver
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geometry (Figures 2a and 2b), loading rates (Figures 2b, 2c,
and 2e), background seismicity formulations (Figures 2c
and 2d), and friction coefficient (Figures 2b and 2f). For the
statistical forecasts, results are compared between the
ETAS-1 to ETAS-7 realizations (Figures 3a–3g) based on
the different parameterization for a, b, p, and K values.
[32] For the CRS models, forecasts are based on the

calculated static stress changes that are largest in the immedi-
ate vicinity of the mainshock plane. At the near source area,
stress heterogeneity leads to negative Coulomb stresses
changes, resulting in a decreased rate of seismicity, whereas
at the ends of the mainshock fault, where the stress-increased
lobes are calculated, the seismicity rates are increased. This
dependency of the increased seismicity rates depending on

the fault model is one significant difference between physics-
based and ETAS models. ETAS models tend to predict high
forecast rates at the vicinity of the epicenter and do not have
the capacity for rate reductions.
[33] When we compare CRS receiver fault formulations

(optimally oriented strike slip faults (Figure 2c) and predom-
inant geology (Figure 2d)), we find that the incorporation of
thrust faults in the geology model aided forecasting of after-
shocks on E-W striking reverse planes, whereas at the central
San Andreas Fault, seismicity due to right/left lateral faulting
subparallel to mainshock plane was adequately captured by
optimally oriented strike slip faults. When different loading
rates τ̇ð Þ are used, the resulting variability of forecasted rates
is better represented in longer time intervals. For the

Figure 2. Maps of forecast daily seismicity rates with M ≥ 3.0 for physics-based models covering the
first 10 days after the Loma Prieta mainshock for models based on (a) optimally oriented strike slip
fault planes with San Andreas Fault (SAF) loading rate of 0.0065MPa/yr and a gridded reference seis-
micity model, (b) optimally oriented strike slip fault planes with SAF loading rate of 0.0065MPa/yr
and a smoothed gridded reference seismicity model, (c) optimally oriented strike slip fault planes with
SAF loading rate of 0.03MPa/yr and a smoothed gridded reference seismicity model, (d) receiver planes de-
rived from predominant geology with a SAF loading rate of 0.03MPa/yr and a smoothed-gridded reference
seismicity model, (e) receiver planes derived from predominant geology with a SAF loading rate of
0.07MPa/yr and a gridded reference seismicity model, (f) shear stress changes on receiver planes derived
from predominant geology with a SAF loading rate of 0.03MPa/yr and a smoothed-gridded reference
seismicity model, and (g) optimally oriented strike slip fault planes with SAF loading rate of 0.03MPa/yr
and a declustered background seismicity model. Models (Figure 2a–2e) are based on Coulomb stress change
calculations with a friction coefficient of μ=0.2.
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examples shown in Figure 2 we are looking at the shortest
term forecasting class, where the effect of τ̇ in the transient
seismicity is less pronounced. However, we note that the
observed seismicity of central to northern part of the rupture
agrees with low loading rates around 0.0065MPa/yr.
[34] Using a declustered catalog to derive our background

model leads to lower forecast rates, especially where seismic-
ity rates during the learning period (1974–1980) were already
diminished, near the central and northern part of the Loma
Prieta rupture as well as near the junction of San Andreas
with Calaveras Fault (Figure 1a). When comparing the
reference seismicity model formulations shown in Figures 2a
and 2b, we get more distributed forecast rates when using
smoothed formulations rather than gridded rates. Smoothed
reference models improve the prediction of moderate rates at
the northern edge of the Loma Prieta rupture (Figure 2b–2d).
We note that the correlation distance of the smoothing operator
should be compared with the spatial extent of the active
faulting in the region. Forecast seismicity rates shown in
Figures 2d–2f use predominant geology receiver planes
for stress calculations, and also test the idea that adequate
forecasting results can be achieved when incorporating
shear (Figure 2f) instead of Coulomb stress changes
(Figure 2e). We do not observe significant variability on
the spatial distribution of seismicity rates between

Coulomb and shear stress change models, which is proba-
bly related with the low friction coefficient (μ = 0.2) for
the Coulomb stress change calculations.
[35] For the ETAS model we observe that using a 10 day

interval for the model update (Figure 3g) leads to lower
forecasted rates along the Loma Prieta rupture. Moreover,
the ETAS-2/4/5 models (Figure 3b, 3d, and 3e) predict
higher rates at the near source region, which is related with
larger K values and the trade off between α and γ values.
We also observe that the spatial extent of predicted daily rates
with 0.1 ≤Ndaily ≤ 1.0 concentrates close to the edges of the
Loma Prieta rupture for CRS models, following the form of
the lobes related with Coulomb theory, whereas ETAS
models appear more radially distributed around the triggering
events, predicting adequate seismicity rates in the near-
source region (see ETAS-2 in Figure 3b).

5.2. Log Likelihood Statistics

[36] In this section we present the results after the compara-
tive performance evaluation for selected CRS and ETAS
models for illustrations purposes based on log likelihood
statistics for subregions A and B.We also provide, in the appen-
dix of this article and as supplementary material, relevant results
for all the models of this study, presented in Table A1.

Figure 3. Maps of forecast daily seismicity rates with M ≥ 3.0 for the seven empirical-statistical ETAS
models (see Table 2). It is worthy to note the difference in predicted seismicity rates between the ETAS-
1 to ETAS-6 models and ETAS-7, which are updated daily and every 10 days, respectively.
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5.2.1. Subregion A: N Test
[37] In this paragraph we compare the forecasted number

(Nfore) to observed (Nobs) ofM ≥ 3.0 events at 10 day intervals
for selected models during our evaluation period, beginning
with the Loma Prieta mainshock and including the
Watsonville events (Figure 4). We note that the interested
reader can refer to Figures A5 and A6 for a complete presenta-
tion of CRS and ETAS models, respectively. We comment on
model performance based on the representation of Figure 4
and the results of the modified N test (Figures 5 and 6).
[38] All of our models underpredict aftershock rates

during the first 10 days of the testing phase (at 10 day
resolution; Figure 4). For ETAS models, there is sig-
nificant variability in the number of forecast events
between the first six ETAS (3 ≤NF ≤ 8) model and
ETAS-7 (NF ≈ 1), which points out the importance of up-
date interval for a successful short-term clustering model
(see Figure 4 for ETAS-1/6/7 and Figure A6). We also
note the difference between the ETAS-1 and the next
5 ETAS models (ETAS-2 to ETAS-6); in the ETAS-1
model we set α= b = 1.0 whereas ETAS-2 corresponds
to a lower magnitude scaling formulation with α< b
(see Figure 4 for ETAS-1/2 and Figure A5b for ETAS-3
to 5). The latter assigns this way more importance to
smaller magnitude events for cascading with an anti-
cipated increase of productivity parameter K so that
KETAS-1<KETAS-2 (see Table 2). Furthermore, we observe
from studying the quantile δ1 that the ETAS-1 and ETAS-7
models underestimate the seismicity over the entire time
period (Figure 5a).
[39] For CRS models, there is an obvious underestimation

on behalf of all models immediately after the 1989
mainshock, which is caused by the low reference rate during
the 1974–1980 learning period. However, as time progresses,
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region A within 10 day intervals for approximately one year following the Loma Prieta mainshock. We note
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cates the 0.025 significance level beneath which the model is
rejected. The two quantiles have complementary behavior and
small values of δ1 and δ2 correspond to underestimation and
overestimation of the number of observed events, respectively.
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the physics-based models adjust up to the point of
overforecasting at 20 days after the Watsonville events (see
CRS-12 in Figure 4, t=200days) which is pointed out also
by the quantile δ2< 0.025 (Figure 5b). Regarding CRS
models we find that: (1) in short-term forecasting models
based on optimally oriented strike slip planes (see CRS-14/15
models in Figures 4 and A5), predict approximately 32%–
40% of the total number of observed events, (2) in long-
term forecasting (t> 10 days) models based on predominant
geology bound the observations (Figure 4, see CRS-23/24/
26). The above remark suggests that the underprediction in
the first few days could be partly addressed by implementation
of CRS models based on optimally oriented faults, but longer-
term forecasts should be based on predominant fault structures.
The CRS-25 model yields a balanced performance over the en-
tire evaluation period exhibiting a complementary behavior in
quantiles δ1 and δ2, with the first ranging between 0.35 and 0.8.
[40] When we assess the rejection ratios RN based on the

10 day incremental test N test (Figure 6) we note that: (1)
within ETAS realizations, the ETAS-1, ETAS-6, and ETAS-
7 models perform poorly (RN> 24%), (2) within CRS imple-
mentation, the CRS-11/12 models have the worst performance
(RN> 25%), (3) the best performing models are CRS-14/18/19
and CRS-22/23/25/26 (10<RN< 15%) together with ETAS-2
to ETAS-5 (RN=17%), (4) CRS models based on shear stress
changes have comparable performance with Coulomb stress
based ones with rejection ratios RN=16–19% (see CRS-33
and CRS-29 in Figure 4), and (5) CRS models based on low
uniform stressing rates across our study area, and resolved
on optimally oriented faults, have higher rejection ratios

when compared with higher loading rate formulations with
RN> 19% (see CRS-11/12/13 in Figure 6).
[41] In addition to the incrementalN test discussed above, we

also perform a cumulative N test (see also Figure A7). The
cumulative N test sums over the number of forecast events at
time t from the beginning of the testing period at 10 day
resolution. We note that even if the cumulative test is useful
for measuring the time-dependent performance of the model,
the fact that it remembers previous incidental poor perfor-
mances can be thought of as a disadvantage. In our study we
find that the problem of early underprediction is inherited to
later times, resulting to a total rejection (RNC≥ 0.7) of the 75%
of forecasting models.
5.2.2. Subregion A: Consistency in Space (S Test) and
Gain per Earthquake (T Test)
[42] In Figure 7 we present the joint log likelihood estima-

tion to facilitate the comparison between forecast models (see
also Table A2). Following the joint log likelihood metric for the
entire evaluation period we find that: (1) the best performing
models are the physics-based CRS-16/19, CRS-23/26 and the
statistical models ETAS-2 to ETAS-6, with a 24 log-unit differ-
ence between the best performing ETAS and CRS model
(LLs

ETAS-2=�228, LLs
CRS-16=�228) (2) for ETASmodels there

is a 18 log-units difference between the higher (LLs
ETAS-2=�228)

and the lower joint log likelihood score (LLs
ETAS-1=�308) (3) for

CRS models there is a 238 log-units difference between the
higher (LLs

CRS-16 =�228) and the lower joint log likelihood
score (LLs

CRS-17 =�490) and, (4) within the same generation
and loading rate formulation there is a direction of improved
performance going from declustered to gridded and finally to
smoothed gridded reference seismicity (e.g., CRS-14/15/16
and CRS-17/18/19).
[43] Our N test conclusion for CRS forecasters, that CRS-2

models, present an improved performance for short-term
forecasting, whereas for long-term forecasting CRS-3
models dominate, is further supported by the S test.
Analytically, we rank the models for the short time class after
the Loma Prieta mainshock (Rankshort,LP) and we observe
that CRS-1, CRS-2, and ETAS models are having three,
two, and five positions among the first ten ranks, while for
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the long-term class CRS-2 and ETAS share those first ten
positions (Table A2).
[44] We also calculate the rejection ratios Rζ for the 10

day S test and find that the CRS-16, CRS-23/26 models are
rejected at less than 10%, followed closely by CRS-13/19,
CRS-29, and ETAS-4 models (Rζ < 15%) and ETAS
models, while the majority of the remaining models suffer
rejection ratios of about 20% (Figure 8).
[45] In Figure 9 we present the log likelihood versus time

for four best performing models during our entire evaluation
period and we find that the majority of time intervals have log
likelihood values smaller than 10 logarithmic units. We show
that the forecast was rejected, based on the quantile ζ , for
only for few time intervals (red triangles), implying that the
spatial consistency of the models is relatively static over the
evaluation period. It is noteworthy that immediately after
the Watsonville events (~t= 180 days), the CRS models
perform poorly, and have smaller negative log likelihood
values that are rejected (Figure 9).
[46] We evaluate the average log likelihood and standard

deviation of the log likelihood sums over all spatial bins
within the short-term and long-term forecasting classes after
the Loma Prieta (LP) and the Watsonville (WS) mainshocks
(Table A3). The results are used for a complementary relative
ranking of the models within each time class and to address
the question whether accounting for previous important
ruptures in our study area improves the physics-based
model performance.
[47] Under the LLs

short, LP criterion, the best performing are
the CRS-13/16/19 and CRS-23/26/29 (ranks 1–6), all of them
based on smoothed gridded seismicity, and ETAS-2 model
(rank 13). However, when we look the LLs

short, WS values,
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which correspond to the first 10 days after the Watsonville
events, the CRS-16 model outperforms all forecast models,
immediately followed by ETAS-1 to ETAS-6 models
(Figure 10). It is important that the Watsonville sequence
evolved within the testing subregion A, which favors short-
term clustering models though earthquake cascading, resulting
in higher ranks for ETAS models immediately after
Watsonville events (see Rshort, Wa based on LLs

short, Wa in
Table A3). In Figure 10 where we observe the smaller absolute
log likelihood values for a short-period after Watsonville
events in comparison with LLs

short, LP, which points out that
for physics-based models accounting for past major ruptures
plays a crucial role.
[48] Our previous remark regarding the good performance of

models based on predominant geology receivers is confirmed
by comparing the first ten ranks under the LLs

short, LP and

LLlong, LP criteria (see Rshort, LP and LLs
long,LP in Table A3),

where CRS-1 models are absent in the long-term period and it
is also illustrated in Figure A8, where we observe that for
long-term after Loma Prieta, CRS-2 models are characterized
by smaller absolute log likelihood values in respect with
CRS-1 models.
[49] We also apply the T test which measures the relative

amount of information on earthquakes provided by competing
models, by computing a confidence interval for the information
gain per earthquake [Rhoades et al., 2011]. We use two refer-
ence models, ETAS-1 and CRS-13, selected for their average
general performance within their generation in the N and S test,
described previously in this paper, and we compare each model
with a specific reference model. The ETAS-1 model achieves a
likelihood score �308 (Table A2) over the entire time period,
has a rejection ratio RN=0.34 and Rζ =0.2 at the incremental
N test and S test, respectively, holding the 13th position over
the entire time period. The CRS-13 model has a log likelihood
score LLs=�270 (Table A2) and ranks among the best 15
models over the entire time period with rejection ratios for the
incremental N test and S test less than 20%.
[50] In Figures 11 and A9, if a confidence interval for the

information gain per earthquake does not intersect the verti-
cal “zero” line, there is a significant difference in the informa-
tion value of the two models. In Figure 11 we present the T
test application for selected models and we observe that
CRS-22/23/26/29, CRS-33, and ETAS-2 have a significant in-
formation gain exceeding 1, whereas CRS-12/14/15 provide
less information value when compared with ETAS-1 model.
In Figure A9 we present the results for the total number of
models and we distinguish between three groups of models,
depending on how informative they are in respect with
ETAS-1 model; Group A with no significant gain in the infor-
mation value with CRS-11/12/14/17 and ETAS-7, Group B
with information gain reaching up to 0.8 with ETAS-15/18,
CRS-21/24/27, CRS-33, and ETAS-3/4/5/6, and Group C
with information gain greater than 0.8, corresponding to our
most informative CRS-13/16/19, CRS-22/23/25/26/28/29,
CRS-31/32, and ETAS-2. In case the CRS-13 model
(Figure A9) serves as the reference model we observe that
models CRS-16/19 and CRS-23/26/29 have information gain
per earthquake of about 0.1�0.5.
[51] Based on our results on the T test (Figures 11 and A9),

we select models from groups B (CRS-15, CRS-24, CRS-32)
and C (CRS-16, CRS-26, ETAS-2) to apply the R test with
ETAS-1 as reference models. In the R test, both the reference
models Hr and Hi are used as null hypothesis to test against.
In Table 3 we define the rejection ratios for both ways of test-
ing R(LLir) and R(LLri), respectively.
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Figure 10. Average negative log likelihood values of the S test
for short-term periods following the Loma Prieta LLs

short, LP and
Watsonville LLs

short,Wa events. For illustration purposes, log
likelihood values have been saturated to �180 units.
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Figure 11. The T test results applied through our evaluation
period for selected models. The plot shows the mean and 95%
confidence interval of the information gain per earthquakewhen
ETAS-1 is used as the reference model. Figure A9 presents the
results of the T test application for the full range of models when
ETAS-1 and CRS-13 are used as reference models.

Table 3. Rejection Ratios Based on the Incremental R Testa

Model R(Lri) R(Lir)

CRS-15 0.31 0.41
CRS-16 0.17 0.21
CRS-24 0.24 0.27
CRS-26 0.20 0.28
CRS-32 0.21 0.27
ETAS-2 0.20 0.48

aAnalytically, for the rejection ratio R(Lri) the reference model ETAS-
1 forms the null hypothesis, whereas for R(Lri) the null hypothesis is
formed by each model presented in this table.
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[52] We find that five out of six models provide better
forecasts than ETAS-1 since they present R(Lir)< 0.3,
indicating that the test hypothesis is rejected less than
30% of our tests with the exception of CRS-15. The latter
is also true when the reference model is used as the null
hypothesis with the exception of the models CRS-15 and

ETAS-2 models, having rejection ratios R(Lri) = 41% and
48%, respectively, leading to a double rejection between
the two models.

5.3. Log Likelihood Statistics in Subregion B

[53] We now examine subregion B, which lies close to the
epicenter of the mainshock. We choose this test region
because we want to address the question whether physics-
based forecast models hold any predictive power in the near
source region, and compare their performance against ETAS
models. From the theoretical point of view, we anticipate that
physics-based models are likely to fail because they oversim-
plify mainshock rupture heterogeneity, often not captured in
the source representation.
[54] We restrict our comparison among the best performing

short-term forecast models identified in subregion A, and
in locations within ~10 km of the Loma Prieta epicenter
(Figure 12). When we consider predominant geology fault
planes as receivers, these locations are calculated to be un-
der a stress decrease following the mainshock. During the
first 10 days, the ETAS-2 model slightly underpredicts
(NETAS-2 = 8 ≈N1 = 9<NObs = 16<N2 = 26), where N1 and
N2 correspond to the lower and upper bounds given
from equations (A9) and (A10), assuming the quantiles
δ1 = δ2 = 0.025 = aeff. Evaluating the ETAS models perfor-
mance based on δ1, δ2 quantiles we find rejection ratios less
than 0.04 with the exception of ETAS-7, which is rejected at
10% of the tests over the entire evaluation period. On the other
hand, CRS models fail for two reasons: (1) the low reference
seismicity rate prior to the mainshock and (2) the calculated
stress decrease from the mainshock which does not corre-
spond to an observed rate decrease; a common problem in
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Figure 12. Observed (triangles) and predicted number of
M ≥ 3.0 for selected models in the subregion A within 10
day intervals following the Loma Prieta mainshock. The
first interval corresponds to 37min between the Loma
Prieta mainshock and the largest (M = 5.1) aftershock.
The CRS models predict number of events <10�3 , which
leads to severe underestimation of seismic activity for the
near source area, mainly due to the low reference seis-
micity during our learning phase and the stress shadow
imposed after the mainshock.

Table A1. Main Features and Free Parameters of the Physics-Based Forecast Models (CRS)a

Model-
Generation
Number

Learning
Phase

Formulation
Friction Coefficient

μ Receiver Plane Formulation Reference
SAF Loading Rate

(MPa/yr)

CRS-11 DE 0.2 OOPs This study 0.0064
CRS-12 GR 0.2 OOPs This study 0.0064
CRS-13 SMGR 0.2 OOP This study 0.0064
CRS-14 DE 0.2 OOPs P02 0.03
CRS-15 GR 0.2 OOPs P02 0.03
CRS-16 SMGR 0.2 OOPs P02 0.03
CRS-17 DE 0.2 OOPs SmSan03 0.07
CRS-18 GR 0.2 OOPs SmSan03 0.07
CRS-19 SMGR 0.2 OOPs SmSan03 0.07
CRS-21 DE 0.2 PrG This study 0.0064
CRS-22 GR 0.2 PrG This study 0.0064
CRS-23 SMGR 0.2 PrG This study 0.0064
CRS-24 DE 0.2 PrG P02 0.03
CRS-25 GR 0.2 PrG P02 0.03
CRS-26 SMGR 0.2 PrG P02 0.03
CRS-27 DE 0.2 PrG SmSan03 0.07
CRS-28 GR 0.2 PrG SmSan03 0.07
CRS-29 SMGR 0.2 PrG SmSan03 0.07
CRS-31 GR 0.0 PrG This study 0.0064
CRS-32 GR 0.0 PrG P02 0.03
CRS-33 GR 0.0 PrG SmSan03 0.07

aEach CRS is named after the Generation (in bold) and its number, e.g., CRS-12, is the second model of Generation 1; the three CRS Generations (i = 1..3)
correspond to models based on Coulomb stress changes resolved on Optimally Oriented (strike-slip) Planes for Failure (OOPs), Predominant Geology (PrG)
receivers and shear stress changes resolved on PrG grid. It is noted that DE, GR, and SMGR correspond to background seismicity models, gridded into
2.5 km × 2.5 km cells, derived from a declustered catalog (DE) [Reasenberg, 1985], a gridded (GR) and a smoothed gridded model (SMGR) using a
Gaussian operator with correlation distance 5 km. For SAF, stressing rates follow calculations by Smith and Sandwell [2003], Smith-Konter and
Sandwell [2009], and Parsons [2002] noted here as SmSan03 and P02, respectively.
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areas close to mainshocks [e.g., Parsons et al., 2012]. We
observe intervals that predict within acceptable limits for
CRS-models at periods longer than 20 days, but we are
reluctant to consider this a success, since the overall
underforecasting behavior is paired here with the vari-
ability of observed events within certain intervals where
Nobs = 0.

6. Conclusions

[55] In this study we evaluate retrospective earthquake
forecasts for the period between 1980 and 2009 for
Northern California, focusing primarily on the first year
after the 1989 Mw = 6.9 Loma Prieta earthquake including
the effects of the largest M = 5.1 aftershock and the two
Watsonville events (ML=5.4 andML=5.1 within 2 h) that oc-
curred 40min and 182 days after Loma Prieta. We investigate

the performance of short (≤10 days after the mainshock) and
long-term forecasts (10–300 days) in the near-source region
and at greater distances with our goal being to reveal the
strength and weaknesses of physics-based and short-term
clustering models in time and space.
[56] Within distances of few rupture lengths, the total

number of observed earthquakes is forecasted adequately by
the CRS-14/18/19, CRS-23/25/26, and ETAS-2/3/4/5 models
with corresponding rejection ratios for the incremental
N (number) test over the entire evaluation period less than
18%. We find that: (1) among physics-based models, the ones
based on smoothed gridded seismicity and stressing rates on
San Andreas of about 0.03–0.07 Mpa/yr present the higher
predictive power (CRS-16/19 and CRS-23/26/29), (2) at
short-term forecasts optimally oriented receivers perform
better capturing the initial high variability of the stress field,
represented by the diversity of focal mechanisms, whereas at
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Figure A1. Grid of discrete faults covering our study area. Geometrical characteristics have been
assigned based on prevailing deformation styles of major faults and focal mechanism data (Figure A2)
available during the learning phase (1974–1980) [e.g., Herd, 1979] of our forecast experiment. Line seg-
ments represent the hypothetical fault trace whereas color points reveal the sense of faulting.
Analytically, red, light and dark green, and blue dots correspond to strike slip, thrust, reverse, and normal
faulting, respectively.
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long-term predominant geology receivers have a higher
predictive power, (3) ETAS models updated daily and
incorporating smaller magnitude events (M ≥ 2.5) for
cascading are among the 10 first ranks over the entire
evaluation period, (4) ETAS models receive a performance
boost after the Watsonville events with epicenters within
our evaluation area which underlines how important is
the proximity of the mainshock for such models, and
(5) physics-based models based on shear stress changes
have comparable performance with their Coulomb stress-
based counterparts.
[57] The near-source area, lying under a stress shadow

[Harris and Simpson, 1996] after the Loma Prieta mainshock,
is a setting in which physics-based forecasts are known to
struggle [e.g., Parsons et al., 2012]. Not surprisingly, here
the ETAS models outperform all CRS models in the N test
since the combination of low reference seismicity rate during
the learning phase and the calculated stress decrease result in
severe underforecasting. Spatial consistency tests for ETAS

show that we have balanced performance for short-to-medium
term forecasting in the near-source region.
[58] It is evident, especially for CRS models, that the

forecasts are problematic when the seismicity during the
learning phase is nonexisting or extremely low, and future re-
search has to incorporate time-varying background rate in
physics-based and statistical forecasting models to overcome
this problem. Furthermore, we note that during any retro-
spective experiment related with earthquake catalogs span-
ning the last 30–40 years, we inevitably test the spatial
performance of our models with higher-quality data than
what we used to develop them. Usually, forecast experiments
target regions with aftershock sequences of mainshocks be-
tween M6.5 and M7.0 but for such major earthquakes, there
is an important variability from sequence to sequence. The
variability is related with many parameters such as the pres-
ence of precursory phenomena (e.g., foreshocks), the stress
drop of the mainshock in respect to the regional stress field,
the heterogeneity of the source and the triggering potential
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Figure A2. FPFIT solutions for earthquakes within the learning phase of our forecast experiment between
1974 and 1980, taken from the ANSS catalog. Line segments represent the identified as causative fault plane
with red, orange, green, and blue representing right and left-lateral, reverse and normal faulting, respectively.
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Figure A3. Calculated Coulomb stress changes following the Mw = 6.9 1989 Loma Prieta mainshock
using the Beroza [1991] source model resolved on (left) optimally oriented fault planes (CRS-1) and (right)
predominant geology grid (CRS-2).
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Figure A4. Magnitude of completeness Mc following the Loma Prieta mainshock. (a) Mc versus
time for the first 10 days, (b) frequency-magnitude distribution for the first 4 h, and (c) frequency-
magnitude distribution for the remaining first day (5–24 h). We observe that for the first few hours
the catalog is complete down to ML3.0 (b value 0.83 ± 0.09) while latter in the same day it reaches
ML1.5 (b value 0.81 ± 0.05).
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among neighboring faults influencing the performance of
physics-based and statistical models in different ways.
[59] From the scientific perspective, the aim is to improve

our insight in a prospective manner by understanding each
time which underlying physical hypothesis lead to a higher
predictability during our retrospective experiment. In this
paper we have extensively studied Northern California,
focusing on the Loma Prieta mainshock, but in order to
generalize our results, more aftershock sequences from
various geotectonic environments should be modeled. In
this way we add to our knowledge behind the physical

mechanism of earthquake triggering, which is of paramount
importance for developing better forecasts in the future.

Appendix A: Equations for the Rate/State
and ETAS Implementation, Development
of Predominant Geology Fault Grid, Definition
of Statistical Tests, and Supplementary Figures

A1. Rate-and-State Equations

[60] We use the expression for seismicity rate R as a func-
tion of state variable γ under secular tectonic shear stressing
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Figure A5. Observed (triangles) and predicted number of events with ML ≥ 3.0 for CRS models in the
subregion A within 10 day intervals for approximately one year following the Loma Prieta mainshock.
We note that the first interval corresponds to ~37min between Loma Prieta mainshock and the largest
aftershockM5.1. Also, the time interval after the first Watsonville event is 112min, constrained by the time
of the second Watsonville event.
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Figure A6. Observed (triangles) and predicted number of events with ML≥ 3.0 for ETAS models in the
subregion A within 10 day intervals for approximately one year following the Loma Prieta mainshock.
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rate τ. Under constant shear stressing rate at each location γ
reaches a steady state, and is expressed as

γo ¼
1

τ̇
(A1)

[61] At steady state, the seismicity rate R equals the back-
ground rate r since R is given by

R ¼ r

γτ̇
(A2)

[62] If there is no stress perturbation, then the seismicity rate
is constant. When there is a perturbation, the state variable of
the system γn�1 before the event evolves coseismically to a
new value γn

γn ¼ γn�1 exp
�ΔCFF

Ασ

� �
(A3)

where Ασ is a the rate/state constitutive parameter A
times multiplied by the effective normal stress, assumed
to be 0.05MPa [Toda et al., 2005]. The seismicity rate
during the time Δt is transient, and given sufficient time,
recovers, providing a new state variable for the system
given by

γnþ1 ¼ γn �
1

τ̇

� �
exp

�Δt τ̇
Ασ

� �
þ 1

τ̇
(A4)

[63] The duration of the transient effects is inversely
proportional to the tectonic loading rate, implying that if we
give sufficient time, even in cases of slow stressing rates,
the transient seismicity will eventually disappear.

A2. ETAS Development
[64] For ETAS-1 model: For parameter values a= b = 1.0,

the apparent branching ratio na, is given by the equation

na ¼ kb ln 10ð Þ M max � mdð Þ
1� 10�b M max�M minð Þ (A5)

[65] And the relation between n and na is

na ¼ n
M max � md

M max �M min

� �
(A6)

[66] From the implementation of the above equation we
take n= 0.67, na = 0.59, and K= 0.0619.
[67] For ETAS-2 model: For parameter values α< b = 1.0,

the apparent branching ratio na is given by the equation

na ¼ kb

b� a

10� b�að Þ md�M minð Þ � 10� b�að Þ M max�M minð Þ

1� 10�b M max�M minð Þ

� �
(A7)

and the relation between n and na is

na ¼ n
10 b�að Þ M max�mdð Þ � 1

10 b�að Þ M max�M minð Þ � 1

� �
(A8)

[68] In the case of α= 0.8 we take n = 0.67, na= 0.51, and
K= 0.1543. The values are in close agreement with Werner
et al. [2011], who used M ≥ 2.0 for target magnitude range
M ≥ 3.95. We consider an a value ranging between 0.7 and
0.9 for ETAS-2 up to ETAS-6, respectively, and calculate
in each case the apparent and true branching ratios as well
as K value using the equations above.
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Figure A7. Cumulative observed (triangles) and predicted number of events with ML ≥ 3.0 in the sub-
region A for approximately one year following Loma Prieta mainshock. We note that the first interval
corresponds to ~37min between Loma Prieta mainshock and the largest aftershock M5.1. Also, the
time interval after the first Watsonville event is 112min, constrained by the time of the second
Watsonville event.
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Table A2. Joint Log Likelihood (LLs) for the Full Testing Perioda

Model LLs Rank LLs
short, LP Rankshort,LP LLs

long,LP Ranklong,LP

CRS-11 �462.00 26 �185.14 23 �147.94 27
CRS-12 �455.30 25 �138.79 15 �175.10 28
CRS-13 �279.86 10 �100.32 10 �112.42 15
CRS-14 �464.12 27 �202.62 25 �140.21 24
CRS-15 �419.74 21 �151.12 17 �146.73 26
CRS-16 �252.04 6 �81.12 4 �112.96 16
CRS-17 �490.14 28 �223.02 27 �143.64 25
CRS-18 �425.39 23 �168.56 19 �138.37 23
CRS-19 �269.37 8 �98.61 9 �108.56 12
CRS-21 �370.33 19 �189.28 24 �118.27 19
CRS-22 �305.39 12 �135.20 14 �102.86 7
CRS-23 �260.79 7 �78.50 2 �105.76 11
CRS-24 �401.84 20 �209.09 26 �123.39 21
CRS-25 �328.92 12 �153.55 18 �104.32 9
CRS-26 �276.27 9 �94.74 8 �102.88 8
CRS-27 �438.60 24 �229.07 28 �132.18 22
CRS-28 �359.65 17 �172.84 22 �109.74 13
CRS-29 �301.38 11 �112.77 11 �105.52 10
CRS-31 �321.10 14 �132.06 13 �118.12 18
CRS-32 �333.63 16 �149.56 16 �111.76 14
CRS-33 �360.71 18 �169.18 20 �113.92 17
ETAS-1 �308.83 13 �115.19 12 �92.15 6
ETAS-2 �227.88 1 �77.33 1 �73.83 1
ETAS-3 �246.10 5 �86.05 7 �77.71 5
ETAS-4 �236.44 2 �82.51 5 �75.95 2
ETAS-5 �237.74 3 �80.94 3 �76.26 3
ETAS-6 �244.44 4 �84.71 6 �77.53 4
ETAS-7 �424.40 22 �170.14 21 �119.64 20

aLLs
short,LP and LLs

long,LP correspond to the joint log likelihood within the short (<10 days) and long-term forecasting classes after the mainshock until
Watsonville occurrence, respectively.

Table A3. Average Log Likelihood (LLs) and Ranks (R)a

Models LLs
short,LP LLs

long, LP σLP LLs
short, Wa LLs

long, Wa σWa Rshort,LP Rlong, LP Rshort, Wa Rlong, Wa

CRS-11 �92.56 �4.90 9.0 �40.48 �3.16 4.2 21 24 25 25
CRS-12 �69.39 �8.22 7.4 �39.78 �4.46 3.8 9 28 24 27
CRS-13 �50.16 �6.68 2.5 �17.20 �3.22 1.9 5 27 7 26
CRS-14 �101.30 �3.38 9.1 �41.20 �1.95 4.6 23 1 27 20
CRS-15 �75.56 �4.90 7.3 �38.92 �2.74 4.2 11 23 23 24
CRS-16 �40.56 �4.81 2.4 �14.46 �1.92 2.0 2 22 1 19
CRS-17 �111.50 �3.84 9.3 �43.47 �1.02 5.1 25 3 28 12
CRS-18 �84.28 �3.58 7.4 �40.53 �1.70 4.6 16 2 26 18
CRS-19 �49.30 �4.16 3.1 �17.71 �1.01 2.6 4 8 8 11
CRS-21 �94.64 �3.86 7.6 �20.72 �1.51 1.3 22 4 11 14
CRS-22 �67.59 �4.47 3.8 �20.62 �2.44 0.8 8 17 10 21
CRS-23 �39.25 �4.77 2.4 �21.68 �2.57 1.6 1 20 13 22
CRS-24 �104.54 �4.05 7.7 �24.55 �0.88 1.8 24 7 15 8
CRS-25 �76.77 �4.35 4.1 �24.25 �1.60 1.3 12 13 14 16
CRS-26 �7.37 �4.64 2.9 �24.97 �1.53 2.1 3 18 17 15
CRS-27 �114.53 �4.23 8.0 �28.11 �0.53 2.3 26 10 22 5
CRS-28 �86.42 �4.30 4.4 �27.69 �1.04 1.7 20 12 19 13
CRS-29 �56.38 �4.78 3.4 �28.08 �0.91 2.6 6 21 21 9
CRS-31 �66.02 �4.75 3.9 �21.08 �2.66 0.8 7 19 12 23
CRS-32 �74.78 �3.91 4.2 �24.62 �1.63 1.3 10 5 16 17
CRS-33 �84.58 �3.96 4.6 �28.02 �0.97 1.8 17 6 20 10
ETAS-1 �115.19 �5.15 5.3 �20.06 �0.19 4.2 27 25 9 1
ETAS-2 �77.33 �4.17 3.9 �14.79 �0.60 3.3 13 9 2 7
ETAS-3 �86.05 �4.40 4.3 �16.03 �0.45 3.5 19 16 6 3
ETAS-4 �82.51 �4.27 4.2 �15.41 �0.53 3.4 15 11 3 6
ETAS-5 �80.94 �4.35 4.2 �15.47 �0.40 3.7 14 14 4 2
ETAS-6 �84.71 �4.39 4.2 �15.99 �0.47 3.5 18 15 5 4
ETAS-7 �170.14 �6.50 7.0 �26.82 �0.04 5.4 28 26 18 26

aWe note that for short and long-term classes after the Loma Prieta mainshock (LLs
short,LP, LLs

long, LP ) and Watsonville (LLs
short, Wa, LLs

long, Wa ) events
~170 days after. Our estimates for long-term class after Loma Prieta corresponds to the time period 10 days after Loma Prieta mainshock until the time of the
Watsonville events.
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A3. Development of Predominant Geology Grid

[69] We have set the 3-D fault plane grid (Figure A1) to
comply with the following concepts: (1) we only use seismo-
logical data to influence our definitions of faulting style from
the same period of the forecast learning period (1974–1980)
and (2) we describe primary geological features that are con-
sistent with the long term deformation history (major faults
and recent topography). An important task for our receiver
fault model is to explain regional seismicity changes; it thus
cannot only be defined by sparsely distributed faults.
Instead, we cover our study region with discrete fault
sections on a 2.5 × 2.5 km grid, so that every point has
a defined receiver fault orientation that is either directly
associated with the mapped faults and seismicity inside
the learning phase, or is interpolated/extrapolated from
those data. Every fault section is 2 km long, and can
either be thought of in most cases as part of a longer fault
system, or representative of sources of “background”
seismicity occurring on small fractures or other
unmapped faults while its direction was taken from the
closest 2 km fault segment.

[70] We assess whether rupture variability is adequately
expressed in our fault plane grid by comparing with FPFIT
solutions [Reasenberg and Oppenheimer, 1985] between
1974 and 1980 (Figure A2). We find that there is noteworthy
compressive strain accommodated by vertical deformation
expressed with reverse or thrust events near the strike slip
junctions of the San Andreas peninsula with southern
Calaveras and Hayward with northern Calaveras. From
this analysis, inclusion of the Sargent and Mission faults
is necessary because they accommodate deformation
within blocks bounded by major strike slip faults; as an
aside, knowledge not available from our test period con-
firms this [Andrews et al., 1993; Manaker et al., 2005].
The broadly interpolated view of the San Francisco Bay
region geology we employ was available during our test
period [e.g., Herd, 1979], and can be confirmed by later
reports. For example, reverse and thrust belts are de-
scribed more fully for their geometrical characteristics in
the U.S. Geological Survey (USGS) Complete Reports
on Quaternary Faults [http://geohazards.usgs.gov/cfusion/
qfault/index.cfm].
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Figure A8. Joint log likelihood values of the S test for (a)
short (t ≤ 10 days) and (b) long-term forecasting (t ≥ 10 days)
(Table A2) following the Loma Prieta mainshock until the
Watsonville I event. Information Gain per Earthquake
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Figure A9. The T test results applied through our eval-
uation period for selected models. The plot shows the
mean and 95% confidence interval of the information
gain per earthquake when ETAS-1 and CRS-13 are used
as reference models.
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[71] Other aspects of note from the FPFIT interpretation of
1974–1980 seismological data include N-S strike slip
faulting near the junction between the northern and central
Calaveras fault, and distributed normal faulting offshore of
San Francisco and in the San Pablo Bay area. We thus have
allowed for small scale normal faulting in these two cases;
the first with N-S trending normal faults dipping to the NE
at the northernmost edge of the peninsula section of the San
Andreas fault segment, and second, at the dilatational step
over between the right-lateral Hayward and Rodgers Creek
faults, expressed through normal faults striking NE-SW,
and dipping to the southeast.

A4. Definition of Statistical Tests

A4.1. Modified N Test
[72] The modified N test evaluates the consistency between

the forecast and observed number of events within a test area.
Zechar et al. [2010] improved the original N test metric by
introducing the following equations,

δ1 ¼ 1� F NObs � 1 NFÞjð (A9)

δ2 ¼ F NObs NFÞjð (A10)

where F(x|μ) is the right-continuous Poisson cumulative
distribution function with expectation μ evaluated at x
and NF is the forecast number of events determined by
the model.
A4.2. S Test
[73] Analytically, the expression for estimating the log

likelihood L of observing ω events at a given expectation λ
for a model j is defined by the logarithm of the probability
p(ω|λ), which is given by

L ω λj
�� � ¼ log p ω λjÞ ¼ �λj þ ω log λj � logω!

����
(A11)

[74] The joint log likelihood represents the sum of log
likelihood values over all bins bi and is given by the expression

L Ω ΛÞ ¼ ∑ i;jERð Þ �λ i; jð Þ þ ω i; jð Þ log λ i; jð Þð Þ � log ω i; jð Þ!ð Þð Þ
����

(A12)
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