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Abstract

When studying mechanical systems, engineers usually consider that math-
ematical models and structural parameters are deterministic. However, ex-
perimental results show that these elements are uncertain in most cases, due
to natural variability or lack of knowledge. Therefore, engineers are becoming
more and more interested in uncertainty quantification. In order to improve
the predictability and robustness of numerical models, a variety of methods
and techniques have been developed. In this work we propose to review the
main probabilistic approaches used to model and propagate uncertainties in
structural mechanics. Then we present the Lack-Of-Knowledge theory that
was recently developed to take into account all sources of uncertainties. Fi-
nally, a comparative analysis of different parametric probabilistic methods
and the Lack-Of-Knowledge theory in terms of accuracy and computation
time provides useful information on modeling and propagating uncertainties
in structural dynamics.
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1. Introduction

Industrial structures are mainly assemblies of many parts with complex
geometries and non-linear characteristics. In most cases, parameters of the
mathematical-mechanical model linked to geometry, boundary conditions
and material properties can neither be identified nor modeled accurately.
For that, there has been a growing interest in modeling uncertainties in me-
chanical structures [1, 2, 3].

In computational mechanics, random uncertainties are due to data uncer-
tainties and model uncertainties. Data uncertainties concern the parameters
of the mathematical–mechanical model and can be taken into account by
parametric approaches. “Table 1” gives a quick overview of some of the main
probabilistic and non-probabilistic parametric methods.

Table 1: Some main parametric methods used to propagate uncertainties in mechanics
Probabilistic Methods Non-Probabilistic Methods

Statistical Methods Generalized Information Theory
Monte Carlo Simulation

Variance Reduction & Sampling Techniques Interval Theory
Reliability Methods

Stochastic Finite Element Methods Fuzzy Set Theory
Perturbation, Neumann Decomposition

Spectral Stochastic Method Dempster–Shafer Theory
Model Reduction Techniques

A posteriori Techniques (RBM, POD) Info-gap Decision Theory
A priori Techniques (PGD, GSD)

Statistical methods, such as Monte Carlo methods [4], seem to be the
simplest way to evaluate the response of a model with uncertain parameters
but their convergence is time-consuming. Sampling methods and variance
reduction techniques help overcome this difficulty. Stochastic Finite Element
methods result from the combination of finite elements with probabilities.
The main variants are the perturbation method [5], and the spectral stochas-
tic finite element method [6]. Model reduction techniques aim to approximate
the response of a complex model by the response of a surrogate model built
through a projection on a reduced basis, such as the Proper Orthogonal De-
composition [7] and the Proper Generalized Decomposition [8].
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Nevertheless, uncertainties are sometimes epistemic due to imprecise or in-
complete information, and that is why non-probabilistic approaches were
developed [9]. Among the first developments was the interval theory, usu-
ally applied when the focus lies in identifying the bounds of the interval in
which the output of interest varies, such as to problems in mechanics [10, 11]
and robotics [12]. The fuzzy set theory is another non-probabilistic approach
that uses the fuzzy logic which is based on human reasoning rather than
rigid calculations [13, 14]. More recently, the info-gap decision theory was
developed in order to solve decision problems under severe uncertainty [15].
Other non-probabilistic techniques, less developed in structural mechanics,
are used to model uncertainties, such as the generalized information theory
[16] and the evidence theory, also called Dempster–Shafer theory [17].

Due to the introduction of simplifications in the modeling procedure,
model uncertainties should be considered but cannot be taken into account
by the parameters of the mathematical–mechanical model. A description of
the nonparametric probabilistic approach for dynamical systems is presented
in [18, 19]. Model uncertainties are considered in a global way when consider-
ing the matrices of the dynamical model as random matrices, built using the
maximum entropy approach. Recently, efforts have been made to develop a
modeling technique taking into account different sources and types of uncer-
tainty. The Lack-Of-Knowledge (LOK) theory [20, 21] was proposed in the
intention to qualify and quantify the difference between numerical models
and real structures.

The aim of this paper is to provide engineers with practical information
on the main stochastic methods used to model and propagate uncertainties
in structural mechanics. Firstly, an overview of stochastic parametric and
nonparametric approaches is presented. Then, a comparative analysis of
different parametric probabilistic methods and the LOK theory in terms of
accuracy and computation time will provide useful information on modeling
and propagating small uncertainties in structural dynamics.

2. Reference problem and notations

For many physical problems studied by engineers, the conceptual model
can be written in terms of stochastic partial differential equations. Uncer-
tainties are then modeled in a suitable probability space and the response
of the model is a random variable that satisfies a set of equations formally
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written
A(u(ζ), ζ) = b(ζ) (1)

where A is a differential operator, b is associated with the source terms
and ζ = ζ(θ) are the uncertain parameters modeled as random variables,
θ denoting randomness. For instance, when analyzing free vibrations of a
structure, equation (1) becomes the eigenvalue problem of linear dynamics.

3. Statistical Methods

3.1. Monte Carlo Simulation

Monte Carlo Simulation (MCS) is the basic approach that characterizes
the response variability of a structure through the use of repeated determin-
istic experiments [4]. After defining a variation domain of the inputs (i.e.
uncertain parameters), n pseudo-random samples of variance σ2 are gener-
ated from a probabilistic distribution over the domain. For each sample, a
deterministic structure is defined and computed in the framework of the FE
method. Finally, a statistical study of the output of interest provides first
and second moments, probability density function, and failure probability.
Easy to implement and robust, the convergence rate of MCS is in the order of
σ/

√
n. Parallel computation and processing can accelerate the convergence

[22]. Variance reduction and sampling techniques were also proposed in order
to reduce the computational effort needed to obtain accurate results.

3.2. Variance Reduction Techniques

The optimization of the location of the samples is a first way to improve
MCS. Variance reduction techniques [23], such as importance sampling, are
based on concentrating the distribution of the generated samples in zones of
most importance, namely the parts which mainly contribute to the statistical
estimate of the output of interest.

3.3. Sampling Techniques

While MCS uses a pseudorandom sequence, Quasi-Monte Carlo methods
consist in choosing the samples using low-discrepancy sequences (e.g. Halton
and Sobol sequences), also called quasi-random sequences [24, 25]. That
yields a convergence rate in the order of 1/n. Latin Hypercube Sampling
allows a reduction of the number of samples required [26]. For each of the
p variables of the problem, its range is divided into N intervals, in each one
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sample is generated. The N samples of each variable are then randomly
matched together until obtaining N p-tuples. The number N of p-tuples is
significantly smaller than n with the same accuracy level.

3.4. Reliability Methods

The aim of reliability methods [27] is to evaluate the probability of failure
of a system containing uncertainties. Let S = S(ζ) denote a vector of load
effects (e.g. displacements, stresses, etc.) that is related to the uncertain
parameters and whose values define the failure of the system. To assess the
reliability of a structure, a limit state function g is defined, such as g(S) ≤ 0
defines the failure state. If fS(s) denotes the joint probability density function
(PDF) of S, then the probability of failure is given by:

Pf = P (g(S) ≤ 0) =

�

g(S)≤0

fS(s)ds

Computing this PDF is not possible with MCS due to the large number of
samples required for an accurate evaluation (10m+2 samples for a precision
of 10−m, with m ≥ 4). In addition, fS(s) is usually unknown. To overcome
these difficulties, a probabilistic transformation Y = Y(ζ) is applied (e.g. the
Nataf or Rosenblatt transformations [27]). The limit state function is mapped
onto the standard normal space by using Y and the failure probability can
be rewritten as:

Pf =

�

G(y)≤0

ϕ(y)dy

where ϕ(y) denotes the standard normal PDF. Due to the form of ϕ(y), the
most likely failure point in the standard normal space is the nearest one from
the origin, and is the solution of the following optimization problem:

y∗ = argmin
G(y)≤0

�y�2

After computing y∗, reliability methods consist in approximating the failure
domain by a simpler one whose probability can be estimated analytically.
The First Order Reliability Method (FORM) replaces the integration domain
by the hyperplane that passes through the design point and which is orthog-
onal to vector y∗. A better approximation can be provided by the Second

Order Reliability Method (SORM) when replacing the limit state surface by
a quadratic surface whose probabilistic content is known analytically. Lately,
a more efficient and accurate approach, the Mean-Value First Order Saddle-

point Approximation (MVFOSA) method, was proposed [28].
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4. Stochastic Finite Element Methods

The combination of the probability theory with the FE method resulted
in the development of Stochastic Finite Element Methods [2, 29, 30]. The
FE method is used in the spatial discretization. When the uncertain pa-
rameters are random but spatially constant, they are modeled as random
variables. To account for the spatial variability of uncertain quantities (e.g.
material property), a characterization in terms of a random field is usually
employed. Through a process of discretization, it is possible to represent the
random field by a vector of random variables. The discretization methods
can be divided into three groups, i.e. point discretization methods, average
discretization methods and series expansion methods [31]. Stochastic FE
methods are based on a series representation of the solution.

4.1. Perturbation Method

The perturbation method is one of the most popular techniques used
for analyzing random systems in stochastic engineering [5, 32]. After the
discretization step, the solution of (1) is approximated by a Taylor series
expansion around the mean value µζ of the random variables {ζk(θ)}1�k�n as
follows:

u = u0 +
n�

i=1

(Xi − µζi)u,i +
1

2

n�

i=1

n�

j=1

(ζi − µζi)(Xj − µζj)u,ij + . . . (2)

where

u0 := u(µζ),

u,i :=
∂u

∂ζi
(µζ),

u,ij :=
∂2u

∂ζi∂ζj
(µζ),

. . .

By writing the operator A(•, ζ(θ)) and the right-hand side b(ζ) similarly and
by injecting them in equation (1), one obtains that the coefficients of the
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expansion of u are solution of a sequence of deterministic problems.

A0(u0) = b0
A0(u,i) = b,i −Ai(u0)

A0(u,ij) = b,ij −Ai(u,j)−Aj(u,i)−A,ij(u0)

. . .

Due to limitations in numerical differentiation, usually expansions of degree
two or smaller are used, and only the first and second order statistics are
computed. Therefore, the perturbation method is accurate in the case of
small uncertainties. The mean and covariance can be simply expressed in
terms of the expansion coefficients and the statistics of the random variables:

E[u] = u0 +
1

2

n�

i=1

n�

j=1

Cζiζj u,ij + . . .

Cov[u,u] =
n�

i=1

n�

j=1

Cζiζj u,i u
T
,j + . . .

where Cζiζj denotes the covariance of variables ζi and ζj.

4.2. Neumann Decomposition

The idea of the Neumann decomposition method is to expand in a Neu-
mann series the inverse of the random operator A(•, ζ) [33, 34, 35]. It starts
by writing the operator as:

A(•, ζ) = A0 + A∗(•, ζ) = A0 (I +A−1
0 A∗(•, ζ))

where A0 is the mean of A, A−1
0 its inverse, and I denotes the identity

operator. The inverse of A can be then expanded in a kind of geometric
series, known as the Neumann series:

A−1(•, ζ) = (I +A−1
0 A∗(•, ζ))−1 A−1

0 =
∞�

i=0

(−1)i (A−1
0 A∗(•, ζ))i A−1

0

The series converges only if the absolute values of all eigenvalues of A−1
0 A∗

are less than 1, which can always be satisfied after introducing a scalar factor
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as proposed in [34]. The solution of (1) can then be represented by the series
as:

u(ζ) =
∞�

i=0

(−1)i (A−1
0 A∗(•, ζ))i u0 =

∞�

i=0

(−1)i ui(ζ) (3)

where the terms ui(ζ) are solutions of the following problems:

A0(u0) = b0
A0(ui) = A∗(ui−1) i ≥ 1

The Neumann decomposition method has the advantage that only the deter-
ministic part of the random operator has to be inverted and only once, and
that partial derivatives with respect to the random variables are not required.
However, computing the expansion terms of u requires to solve deterministic
problems with random right-hand sides, which can be expensive. In practice,
the series is truncated and the first moments of the approximated solution
are evaluated.

4.3. Spectral Stochastic Finite Element Method

The Spectral Stochastic Finite Element method aims at discretizing the
random dimension in an efficient way using two procedures. Firstly, the input
random field is discretized using the truncated Karhunen-Loève expansion.
Then, the solution is represented by its coordinates in an appropriate basis
of the space of random variables, “the polynomial chaos” [6].

The Karhunen-Loève (KL) expansion is a representation of a stochastic
field (or process) as an infinite linear combination of orthogonal functions,
that are the eigenvalues of a Fredholm integral equation of the second kind,
considering the autocovariance function as kernel. Considering a stochastic
field h(x, θ) modeling an uncertainty in the system (e.g. material Young’s
modulus), this expansion is defined as follows:

h(x, θ) = µ(x) +
∞�

i=1

�
λi Φi(x) ξi(θ)

Cov[x1,x2] = E [h(x1, θ)h(x2, θ)] − E [h(x1, θ)] E [h(x2, θ)]�

D

Cov[x1,x2]Φn(x1) dx1 = λnΦn(x2)
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where x is a vector containing space variables, µ(x) is the mean of the field, λi

and Φi(x) are the eigenvalues and eigenfunctions of the autocovariance func-
tion Cov[x1,x2], and {ξi(θ)} forms a set of uncorrelated random variables.
If the random field h(x, θ) is Gaussian, then {ξi(θ)} are independent stan-
dard normal random variables. Otherwise the joint distribution of {ξi(θ)} is
almost impossible to obtain. Hence, the KL expansion is mainly applicable
to the discretization of Gaussian fields.

The solution u(θ) is then searched under the form of an expansion over
the polynomial chaos:

u(θ) =
∞�

j=0

uj Ψj({ξi(θ)}∞i=1) =
∞�

j=0

uj Ψj(θ) (4)

where {Ψj(θ)}∞j=0 is a complete set of orthogonal random polynomials defined
by means of {ξi(θ)}∞i=1 forming an orthonormal basis, satisfying:

Ψ0 ≡ 1

E[Ψj] = 0 ∀j > 0

E[ΨjΨk] = E[Ψ2
j ] δjk

The correspondance of the type of polynomial chaos {Ψj(ξi)} and the prob-
ability distribution of variables {ξi} is discussed in [36] (e.g. Hermite poly-
nomials are associated with the Gaussian distribution).
In order to evaluate the solution, the coordinates {uj}∞j=0, that are deter-
ministic vectors having as much components as the number of degrees of
freedom, must be computed. Then a truncation of both expansions is per-
formed: M + 1 terms in the Karhunen-Loève expansion and P terms in the
polynomial chaos expansion are taken (P+1 = (M+p)!

M !p! , p is chaos polynomials
order).
Upon substituting the truncated expansion of the solution into the governing
equation (1) with ξ0(θ) ≡ 1, one finds:

A
�

P−1�

j=0

uj Ψj({ξi(θ)}Mi=0), ζ

�
= b(ζ) (5)

A Galerkin projection of equation (5) onto each polynomial {Ψj(θ)} is then
performed in order to ensure that the error is orthogonal to the functional
space spanned by the finite-dimensional basis {Ψj(θ)}P−1

j=0 . By using the
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polynomial chaos expansion of u(θ), the randomness is effectively transferred
into the basis polynomials. Thus, using orthogonality of the polynomial
basis leads to a set of P coupled equations for the coefficients uj that are
deterministic. The mean and covariance matrix can be then obtained, along
with the probability density function of the components of uj:

E[u] = u0

Cov[u,u] =
P−1�

j=1

E[Ψ2
j ]uj u

T
j

While mathematically elegant, this approach suffers from the curse of dimen-
sionality. In addition, higher order approximations are necessary to more ac-
curately capture higher order response statistics. To address such difficulties,
a non intrusive method that builds a sparse PC expansion was introduced
[37]. Another work proposes a model reduction technique for chaos represen-
tations that mitigates the computational cost without reducing the accuracy
of the results [38].

5. Model Reduction Techniques

Modeling any physical phenomenon on large domains results in inade-
quate computing resources, both in terms of speed and storage capacity.
The methods described previously focus on the equations to solve rather
than the model itself. Model reduction techniques seek to reduce the stud-
ied model through approximations and projections without modifying the
mathematical/physical model.

The basic idea is to build an approximation of the solution, which is a
multivariable function (e.g. space and structural uncertain parameters), as
a finite sum of products of functions

u(x, ζ) ≈ un(x, ζ) =
n�

p=1

ψp(x)
nk�

k=1

λpk(ζk) (6)

where the {ψp(x)}p=1..n and {λpk(ζk)}p=1..n form low-dimensional reduced
bases of deterministic vectors and stochastic functions of the random param-
eters {ζk}k=1..nk

respectively. Reduced bases can be defined in many ways
leading to an optimal decomposition of the solution for a given order n of
decomposition. A statistical study provides first moments and probability
density distribution of the solution.
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5.1. A posteriori Techniques

A posteriori model reduction techniques build the reduced basis using
some knowledge (at least partial) on the solution (called snapshot) of the
reference problem. Then the coefficients in the linear combination (6) are
computed by solving the equations of the initial problem projected in the
reduced basis. The offline determination of the reduced basis usually has a
high computational cost, while the cost of the online solving of the reduced
model is significantly smaller.

A first popular technique is the proper orthogonal decomposition (POD)
[7, 39] where random values of the uncertain parameters are considered in
order to evaluate the snapshots. The basis vectors are chosen among the
snapshots technique such as the separated representation minimizes the dis-
tance to the solution with respect to a given metric. Another way to build
the reduced basis is given by the reduced basis (RB) method [40], especially
developed for parametrized problems. In this case, the uncertain parameters
are chosen in an iterative optimal way to compute the snapshots.

The simplest approximation of the properties of dynamic systems is the
projection on a truncated modal basis, also referred to as the subspace re-

duction (SR) method [41]. An accurate approximation of the response is
assumed to be found in a subspace spanned by the columns of a rectangular
matrix T (N rows and NR << N columns, where N is the number of degrees
of freedom of the initial problem). The approximate eigenmodes of a model
are given by Φi = TΦiR, where ΦiR are the eigenvectors of the projected
(reduced) eigenvalue problem

�
TT [K− ω2

iM] T
�
ΦiR = 0

In practice, the columns of matrix T can be the truncated eigenmodes of
several models, each given for different values of the uncertain parameters.
This approach can be very useful when analyzing uncertainty propagation to
some eigenfrequencies and eigenmodes of a model.

5.2. A priori Techniques

A priori model reduction techniques [42] do not require any knowledge of
the solution and operate in an iterative way, where a set of simple problems,
that can be seen as pseudo eigenvalue problems, need to be solved. They
are based on the proper generalized decomposition (PGD) [43, 8] where the
deterministic vectors and stochastic functions in (6) are initially unknown
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and computed at the same time. This computation phase is usually very
expensive, but done only once. The solution of the problem for a variation
of any parameter can be evaluated in a significantly fast and cheap online
computation. The PGD has been successfully applied to stochastic problems
[44, 45] and to solve multidimensional models [46].

6. Nonparametric Methods

In computational mechanics, random uncertainties in model predictions
are due to data uncertainties and to model uncertainties. Data uncertainties
concern the parameters of the mathematical–mechanical model and can be
taken into account by parametric probabilistic approaches, such as the ones
previously presented. However, for complex mechanical systems, the con-
structed model cannot be considered representative due to the introduction
of approximations and because some details are not accurately known, such as
in joining areas. Clearly, model uncertainties should be introduced but can-
not be taken into account by the parameters of the mathematical–mechanical
model under consideration. A description of the nonparametric probabilistic
approach for dynamical systems can be found in [18, 19]. Model uncertainties
are considered in a global way when considering the matrices of the dynam-
ical model as random matrices, built using the maximum entropy approach.
Developments for taking into account data and model uncertainties in linear
dynamical systems are presented in [47]. Recently, a generalized probabilis-
tic approach that models both model-parameter uncertainties and modeling
errors in structural dynamics, for linear and nonlinear problems, has been
introduced and validated [48].

7. The Lack-Of-Knowledge Theory

Parametric probabilistic approaches are usually used to model intrinsic
uncertainties resulting from natural variabilities. In case of epistemic uncer-
tainties resulting from a lack of knowledge, it seems interesting to look for
the solution in an interval rather than conducting a global stochastic search.
The concept of lack-of-knowledge [20, 21] is based on the idea of globalizing
all sources of uncertainty for each substructure through scalar parameters
that belong to an interval whose boundaries are random variables.
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7.1. Basic Lack-Of-Knowledge

The starting point of the LOK theory is to consider a theoretical de-
terministic model, to which a lack-of-knowledge model is added. Let Ω be
a family of real and quasi-identical structures, each being modeled as an
assembly of several substructures E. To each substructure E two positive
scalar random variables m−

E(θ) and m+
E(θ) are associated, called basic LOKs

and defined in [20, 49] as follows:

−m−
E(θ)KE ≤ KE(θ) − KE ≤ m+

E(θ)KE (7)

where KE and KE are the stiffness matrices of E, for the real structure and
the theoretical deterministic model respectively. The basic LOKs are stochas-
tic variables characterized by probability laws defined using the deterministic
interval [−m−

E ;m+
E].

Inequation (7) may seem sometimes difficult to use because of the usual
size of the stiffness matrix of industrial structures. Therefore the basic
LOKs are expressed in practice using scalar quantities related to the stiffness,
namely the strain energies:

−m−
E(θ) eE(U) ≤ eE(U, θ) − eE(U) ≤ m+

E(θ) eE(U) (8)

where eE(U, θ) = 1
2U

TKE(θ)U is the strain energy of a real substructure
taken from the family of structures Ω, and eE(U) = 1

2U
TKEU is the strain

energy of the theoretical deterministic model of the substructure.

7.2. Effective LOK of an output

From the basic LOKs, the first step is to establish a general procedure
that leads to the evaluation of the dispersion of any variable of interest α.
The second step is to write the difference:

∆α = αLOK − α

between the value αLOK of the variable of interest given by the LOK model,
and α the one from the theoretical deterministic model. Then ∆α can be
expressed as a function of the stiffness or the strain energy. Using inequations
(7) and (8) leads to the propagation of the intervals ([m−

E(θ);m
+
E(θ)])E∈Ω

throughout the stochastic model. In the LOK model, one associates to each
generated sample of the basic LOKs two bounds ∆α−

LOK et ∆α+
LOK satisfying:

∆α−
LOK(θ) ≤ ∆α ≤ ∆α+

LOK(θ)
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where
∆α−

LOK(θ) = −
�

E

∆α−
E(θ)

∆α+
LOK(θ) =

�

E

∆α+
E(θ)

As long as the probability laws of the basic LOKs are known, the dispersion
of these bounds can be determined. After generating the basic LOKs, the
probability density functions of ∆α−

LOK(θ) and ∆α+
LOK(θ) are found.

When carrying out a comparative analysis, representative quantities of the
dispersion of ∆α are extracted from αLOK, namely ∆α−

LOK(P ) and ∆α+
LOK(P ),

called effective LOKs on αLOK. These quantities are the bounds defining the
smallest interval containing P% of the values of ∆α.

As an application of this procedure, let the quantities of interest be the
angular eigenfrequencies in the case of free vibrations

[ K− ω2
i M ] Φi = 0 (9)

where K =
�

E∈Ω KE is the random global stiffness matrix, M =
�

E∈Ω ME

is the random global mass matrix, Φi is the ith eigenvector and ωi the corre-
sponding eigenvalue. When the basic LOKs are small enough to approximate,
one writes the difference on the square of ωi as:

∆ω2
i = ω2

i − ω2
i

= ΦT
i KΦi − Φ

T
i KΦi

� Φ
T
i

�
K − K

�
Φi = 2

�

E∈Ω

�
eE(Φi, θ) − eE(Φi)

�
(10)

where the modes are normalized with respect to the mass matrix. Through
equation (10), the definition (8) enables the propagation of the LOK intervals.
Therefore the lower and upper bounds are found as:

−∆ω2−
iLOK(θ) ≤ ∆ω2

i ≤ ∆ω2+
iLOK(θ)

where
∆ω2−

iLOK(θ) = 2
�

E∈Ω

m−
E(θ) eE(Φi)

∆ω2+
iLOK(θ) = 2

�

E∈Ω

m+
E(θ) eE(Φi)
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In the case of small uncertainties, the effective LOKs on the eigenmodes
Φi can be similarly evaluated. Details are presented in [20] along with an
extension of the LOK theory to consider the presence of a large basic LOK.

8. Applications and results

Among the methods cited previously, four were implemented and used to
evaluate eigenvalues of problem (9) on two different assemblies. Each chosen
method propagates uncertainty differently: MCS is a statistical approach,
the perturbation method is based on the stochastic finite elements, the SR
method is a model reduction technique and the LOK theory, new to engi-
neers, considers different sources and types of uncertainty. These methods
are lightly intrusive and have been applied to industrial problems. For the
study cases that will be presented, the Young’s modulus of the material of
each substructure was assumed to be a random variable such as:

E = E (1 + δ η) with δ = 0.08

where η is a uniform random variable defined in the interval [-1;+1]. In the
case of the LOK theory, the basic LOKs mE(θ) were considered as uniform
random variables in [-0.08;+0.08].
For the statistical studies, 20000 samples were generated and some eigenfre-
quencies of the global structure were evaluated for each sample. As a common
representation, the bounds for the probability P = 0.99 were extracted from
the PDFs given by each method. That means that the bounds define the
smallest interval containing 99% of the values of the eigenfrequencies.

8.1. First assembly

In order to validate the implementation of the considered methods, a
planar truss formed of four pin-jointed bars was considered, as shown in
Figure 1. The connections between the structure and the base are assumed
to be perfectly rigid. All beams are made of aluminum (E = 72 GPa, ρ =
2700 kg/m3) with a circular cross-section of 10−4 m2.

The deterministic structure has four tensile-compressive eigenmodes, and
the associated eigenfrequencies were evaluated. The 99%-intervals presented
in “Table 2” show the influence of stiffness uncertainties on the eigenfrequen-
cies of the assembly. It can be noticed that the intervals are nearly identical
and that the ones given by the LOK theory are included in the ones resulting
from Monte Carlo simulations.
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Figure 1: The 2D truss studied

Table 2: 99%-intervals for all the eigenfrequencies of the 2D truss (20000 samples)
i f i (Hz) MCS Perturbation SR LOK

1 276.4 [266.5 ; 285.8] [266.8 ; 286.0] [266.5 ; 285.8] [266.8 ; 285.6]
2 862.0 [834.3 ; 888.0] [835.0 ; 888.7] [834.3 ; 888.0] [835.8 ; 887.0]
3 1072.5 [1034.4 ; 1108.5] [1035.3 ; 1109.4] [1034.4 ; 1108.5] [1035.4 ; 1107.9]
4 1452.4 [1397.1 ; 1506.0] [1398.2 ; 1507.1] [1397.1 ; 1506.0] [1398.2 ; 1504.9]

An important question can then be asked whether the same accuracy
can be obtained when considering a larger assembly, representative of a real
industrial structure. The next study aims to provide an answer in this matter.

8.2. Second assembly

The assembly shown in “Figure 2” was inspired from the geometry of
the booster pump studied in the framework of the international benchmark
SICODYN [50, 51]. The main goal of this benchmark was to measure the
effective variability on structural dynamics computations and then quantify
the confidence in numerical models used either in design purpose or in ex-
pertise purpose and finally to ensure robust predictions. The structure is an
assembly of a cone and a tube with a wedge between these two elements. The
whole set is made of steel (E = 210 GPa, ρ = 7800 kg/m3) and the largest
side of the cone is clamped. The mesh is composed of 3240 finite elements
(∼20000 DOFs), which seems representative of industrial components.

In this case, the quantities of interest were the first three eigenfrequencies
of the assembly. “Figure 3” shows the shapes of the corresponding eigenmodes
for the reference structure and “Table 3” gives the 99%-intervals resulting
from the statistical study of uncertainty propagation.
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Figure 2: Mesh of the studied assembly

(a) Mode 1 (tensile-compressive):
211.69 Hz

(b) Mode 2 (torsion): 699.28 Hz (c) Mode 3 (bending): 760.76 Hz

Figure 3: The shapes of the first three eigenmodes of the deterministic 3D assembly

The Monte Carlo method was considered as reference for the comparative
analysis of the methods in terms of quality of the results. For that purpose,
“Table 3” shows the highest algebraic percent error for both interval bounds
and the central processing unit (CPU) computation time.

Table 3: 99%-intervals for the first three eigenfrequencies of the 3D assembly, with percent
error and computation time (20000 samples)
i f i (Hz) MCS Perturbation SR LOK

1 211.69 [203.7 ; 219.4] [203.8 ; 219.5] [203.7 ; 219.4] [203.7 ; 219.4]
2 699.28 [672.8 ; 724.3] [673.3 ; 724.8] [672.8 ; 724.3] [673.2 ; 724.2]
3 760.76 [732.0 ; 787.7] [732.6 ; 788.6] [732.0 ; 787.7] [733.2 ; 787.1]
Percent Error (%) Reference [+0.08 ; +0.07] [0.00 ; 0.00] [+0.16 ; -0.06]

CPU Time ∼27.13 h ∼1 min ∼1.93 h ∼1 min

The results show that all implemented methods converge to similar re-
sults. The LOK theory seems to be less conservative than MC, leading to

17



reduced intervals. In addition, the LOK theory and the perturbation method
reveal to be the best in terms of computation time with a substantial advan-
tage compared to other methods. The more numerous the degrees of freedom
of the studied model are, the greater this advantage will be.

9. Conclusion

This paper aimed to provide engineers with practical information on the
main probabilistic methods used to model and propagate uncertainties in
structural mechanics. A brief overview of probabilistic approaches and the
LOK theory was presented. Four lightly intrusive methods, modeling and
propagating parametric uncertainties differently, were used to evaluate eigen-
frequencies of two different assemblies. In the case of small uncertainties on
stiffness parameters, the comparative analysis presented accurate results with
a significant difference in terms of computation time. MCS and model reduc-
tion techniques are time consuming. Stochastic FE methods provide results
more quickly but are relatively intrusive. As for the LOK theory, it globalizes
all sources of uncertainties, related to data and model, and seems to be less
conservative. This modeling technique bounds the quantity of interest in a
stochastic interval. The main advantage is the low implementation and com-
putation time which can be handy when modeling real industrial assemblies.
In the framework of the SICODYN Project [50, 51], initiated in 2012 and
carried out till 2016, the comparative analysis will be extended to the case of
a booster pump studied within its industrial environment. One of the goals
is to evaluate the ability of some methods, such as the LOK theory and the
generalized probabilistic approach of uncertainties [52], to quantify, not only
data uncertainties, but also model uncertainties, especially in the case of high
values of uncertainties.
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