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Distributed resource allocation (e.g., power control) is considered as a significant feature of self-organization in future ultra-dense small cell networks. This work proposes a novel distributed power control paradigm for dense small cell networks co-existing with traditional macro cellular networks. The power control problem is modeled using Mean Field Game Theory (MFGT), which is an ideal technique for modeling the interactions among a large number of entities. The cost function of the game is designed using stochastic geometry analysis. A finite difference scheme is then developed based on the LaxFriedrichs algorithm to solve the corresponding mean field equations and obtain the power control policy in order to minimize the cost over a predefined period of time. Each small cell base station can independently execute the proposed algorithm offline, i.e., prior to data transmission. Sufficient conditions for the uniqueness of the solution for a generic cost function are also given. The effectiveness of the algorithm is shown by using numerical results.

I. INTRODUCTION

The evolving 5G cellular networks will be composed of large number of different types of small cells (i.e., femto, micro, pico) underlying in the traditional macro cellular networks [START_REF] Hossain | Evolution toward 5g multi-tier cellular wireless networks: An interference management perspective[END_REF]. For efficient network management, these small cells are expected to have the self-organization capability [START_REF] Bennis | Interference management in self-organized femtocell networks: The befemto approach[END_REF]. For self-organizing small cells, distributed resource allocation (i.e., each base station takes individual decisions on resource allocation) will be a key feature. Developing distributed resource allocation paradigms (e.g., for channel allocation, power control) for self-organizing dense small cell networks, which involve limited amount of information exchange among the base stations, is a challenging research problem.

Game theory has been widely applied in the context of small cell networks in order to derive distributed resource allocation schemes including power control methods ( [START_REF] Mustika | Potential game approach for self-organized interference management in closed access femtocell networks[END_REF], [START_REF] Semasinghe | Distributed resource allocation for self-organizing small cell networks: An evolutionary game approach[END_REF], [START_REF] Kwon | Distributed resource allocation through noncooperative game approach in multi-cell ofdma systems[END_REF]). In this work, we formulate the downlink power control problem in a dense small cell network underlying a macro network as a mean field game (MFG) [START_REF] Lasry | Mean field games[END_REF], [START_REF] Huang | Large-population costcoupled lqg problems with nonuniform agents: Individual-mass behavior and decentralized "-nash equilibria[END_REF], [START_REF] Huang | Large population stochastic dynamic games: closed-loop mckean-vlasov systems and the nash certainty equivalence principle[END_REF]. Classical game theory models the interaction of a single player with all the other players of the system. Conversely, a MFG models individual's interaction with the effect of the collective behavior (mass) of the players. This collective behavior is reflected in the "meanfield". Mean-field games can also be considered as a form of stochastic differential games extended for a system with a large number of players.

For a dense network of interconnected base stations, solving the power control problem based on classical game theory may become analytically intractable due to the large number of players. Conversely, if the problem can be modeled as a men field game, the system can be completely defined by two equations, which will make the analysis much more easier. Specifically, individual player's interaction with the mean field is modeled by a Hamilton-Jacobi-Bellman (HJB) equation. The motion of the mass according to the players' actions is modeled by a Fokker-Planck-Kolmogorov (FPK) equation [START_REF] Lasry | Mean field games[END_REF]. These coupled FPK and HJB equations are also called backward and forward equations, respectively. The solution of a mean field game can be obtained by solving these two equations. Solutions to the mean field games can be obtained distributively and behavior of all the players can be described by one control. In addition to that, mean field games can take the stochastic nature of the system into account. However, modeling the collective effect of the players (i.e., the effect of the mass) has to be done in a realistic way. Accurate modeling of the effect of the mass is a major challenge when adopting mean field games to solve problems in wireless communications. In this regard, different work in the literature has considered different approaches. We consider an stochastic geometry based approach.

Specifically, we consider minimizing a cost function under certain constraints over a pre-defined period of time. The cost function is derived using a stochastic geometry approach which considers the signal-to-interference-plus-noise ratio (SINR) at a small cell user served by a base station and the interference caused to the macro network. The formulated problem is then solved by using a finite difference method. The key feature of the proposed algorithm is that it can be executed offline. Small cell base stations can then use the resulting power control policy for data transmission for the pre-defined period of time. Also, instead of taking decisions based only on the instantaneous cost, this algorithm considers minimizing the cost over a certain period of time.

Recently, few researchers has used mean field games in the context of wireless communications. Most of them ( [START_REF] Mériaux | Mean field energy games in wireless networks[END_REF], [START_REF] Mériaux | Stochastic differential games and energy-efficient power control[END_REF], [START_REF] Mériaux | Mean-field games and green power control[END_REF], [START_REF] Tembine | Joint power controlallocation for green cognitive wireless networks using mean field theory[END_REF]) consider the power control problem for the case when multiple transmitters transmit to a single receiver (e.g., uplink transmissions in a cellular network). The problem is first formulated as a stochastic differential game and then the convergence to a mean field game is shown for a very large number of transmitters. In [START_REF] Mériaux | Mean field energy games in wireless networks[END_REF], the authors show the power policy obtained at the mean field equilibrium (MFE). [START_REF] Mériaux | Stochastic differential games and energy-efficient power control[END_REF] and [START_REF] Mériaux | Mean-field games and green power control[END_REF] shows the sufficient conditions for the uniqueness of the respective games that they formulate. [START_REF] Tembine | Mean field games for cognitive radio networks[END_REF] formulates the power control problem in a cognitive radio network as a hierarchical mean field game. The mean field game formulations in all of the aforementioned papers consider scaled interference (i.e., interference at the receiver is normalized by the number of transmitters) only. In addition, none of the above works explains a technique of solving the mean field equations, which is also very challenging.

The contributions of our paper in comparison with the existing work can be summarized as follows:

1) The downlink power control problem of a dense small cell network underlying a traditional macro network (i.e., our system model consists of multiple transmitters and multiple receivers) is formulated as a mean field game.

2) The cost function is derived by using a stochastic geometry-based approach in such a way that mean field game setting becomes valid. In this way, it combines the theory of MFG with that of stochastic geometry.

3) The forward and backward equations are solved by using a finite difference technique. 4) The sufficient conditions are given for the uniqueness of the game. The rest of the paper is organized as follows. Section II presents the system model and assumptions. The MFG formulation and derivation of the cost function are given in Section III. In Section IV, we present a finite difference method to obtain the solution to the formulated problem. Simulation results are presented in V. Section VI concludes the paper.

II. SYSTEM MODEL AND ASSUMPTIONS

We consider an infinite small cell network underlaid with an infinite macro network. The spatial distribution of small cell base stations (SBSs) and macro base stations (MBSs) are modeled by two independent Poisson Point Processes (PPPs) denoted by s and m , respectively. m and s are the intensities of s and m . Users are connected to the base station from which it receives the highest average pilot signal power. Transmit powers of the pilot signals of SBSs and MBSs are given by p s,pilot and p m,pilot respectively. Note that this pilot signal is used by the mobile users only for base station selection. After selecting the base station, uplink and downlink transmit power can be determined according to the power control technique that is being used. Deciding the number of users attached to each base station does not fall inside the scope of our problem. However, we assume that each base station serves only one user at a particular time instant.

We consider the problem of downlink transmit power control in the small cell base stations. Co-channel deployment is considered, i.e., every base station (both MBSs and SBSs) transmits on the same channel. Power control is done in order to minimize the average cost of each SBS over a given finite time horizon T . We define the cost function in the next section. Each SBS k is assumed to be with a finite amount of energy, denoted by E k,max , to spend within the given period of time, T . This finite energy constraint for SBSs is due to the following reasons; 1. SBSs can be battery operated. 2. SBSs can be with an energy constraint to ensure reduced energy consumption. To consider any SBS k with an infinite amount of energy in the same setting, E k,max can be set to a comparatively higher value. Channel fading between all the transmitters and all the receivers are modeled by a Rayleigh distribution.

III. FORMULATION OF MEAN FIELD GAME

The basic components of the formulated mean field game G, for the system model described above, are defined below.

• Set of players: The set of SBSs K = {1, 2, ..., K} is the set of players of the game G.

• Set of actions: The set of actions for player k includes all possible transmit powers which is given as follows:

P k = [0, p max ] , (1) 
where p max is the maximum allowable transmit power for an SBS. The transmit power of base station k at time t is denoted by p k (t). • State space: The state of base station k at time t is defined by the amount of available energy at that time, which is given by, e k (t). Therefore, the state space E k of the player k can be written as follows:

E k = [0, E k (0)] . (2) 
We also define the state of the system at time t, e(t) as follows:

e(t) = [e k (t) 8k ] T . (3) 
• Cost function:The cost function of SBS k at time t, is composed of two components which are given below.

1) The utility gained by the base station based on the SINR at the user being served,

f 1 (SIN R k (t)).
The SINR at the user served by small cell base station k at time t is given by

SINR k (t) = p k (t)g k,k (t)r k,k (t) ↵ I s,k (t) + I m,k (t) + N 0 , (4) 
where

I s,k (t) = P l2K,l6 =k p l (t)g l,k (t)r l,k (t) ↵ and I m,k (t) = P 8m2 m p m g m,k (t)r m,k (t)
↵ denotes the interference caused by small cell and macro cell networks, respectively. g l,k is the fading channel gain between the transmitter l and the receiver k, r l,k is the distance between the transmitter l and the receiver k, N 0 is the noise power, and ↵ is the pathloss exponent. f 1 (SINR k (t)) can be any function of receive SINR such as achievable rate or coverage probability.

2) The cost associated with the distance to the nearest macro user, r k,m . This cost can be calculated based on any function of r k,m which we denote by f 2 (r k,m ). One example for f 2 (r k,m ) is the interference caused at the nearest macro user at time t (I m k (t)) which is given below:

I m k (t) = p k (t)g k,m r ↵ k,m . (5) 
Accordingly, we define the cost function of player k at time t, given by c k (t) as follows:

c i (t) = w 1 f 1 (SIN R k (t)) + w 2 f 2 (r k,m ) , ( 6 
)
where w 1 and w 2 are biasing factors which bring the above two terms into one scale. The network operator has the freedom to set these biasing factors. • Control policy: The evolution of the state over time is decided by a control, which in this case corresponds to the transmit power given by,

p k (t) 2 [0, p max ].
Consequently, the state equation of the system is defined as follows.

Definition III.1.

State Equation

The state of a base station k is given by the random variable e k (t) 2 [0, E k,max ] whose evolution is defined by the following differential equation:

de k (t) = p k (t)dt (0  t  T ) . (7) 
The control policy is a mapping of the player's state to an action. This is defined over a given period of time denoted by T . We denote the control policy of player k over the given time period T by p k (0 ! T ). The above game G has to be solved in order to obtain an optimal control, p opt k (0 ! T ) 8k . The optimal control, p opt k should minimize the average cost of player k over the given finite time horizon, T . Therefore, we write p opt k (0 ! T ) as follows:

p opt k (0 ! T ) = arg min p k (0!T ) E " Z T 0 c k (t)dt + c k (T ) # , = arg min p k (0!T ) E " Z T 0 w 1 p k (t)g k,k (t)r k,k (t) ↵ I s,k (t) + I m,k (t) + N 0 + w 2 p k (t)g k,m r ↵ k,m dt + c k (T ) i , (8) 
where c k (T ) is the terminal cost.

The above formulated game can also be seen as a stochastic differential game and the Nash equilibrium can be obtained by solving a set of Hamilton-Jacobi-Bellman (HJB) equations associated with each player [START_REF] Soner | Controlled markov processes, viscosity solutions and applications to mathematical finance[END_REF]. This would result in K simultaneous equations for a system with K players. Existence of a solution to these coupled equations is a sufficient condition for the existence of a Nash equilibrium. However, for a dense network, obtaining the Nash equilibrium by solving the corresponding stochastic differential game would be difficult or even impossible due to the large number of simultaneous equations. Therefore, to make the analysis easier for densified networks, we use a mean field game formulation where the system can be defined solely by two coupled equations.

We define the mean field as follows:

Definition III.2. Mean Field m(e, t) = lim K!1 1 K X 8k2K {e k (t)=e} , (9) 
where denotes an indicator function which returns 1 if the given condition is true and zero otherwise.

Simply, mean field is the probability distribution of the states at a given time over the set of players.

The general setting of mean field games is based on the following four assumptions [START_REF] Guéant | A reference case for mean field games models[END_REF]: 1) rationality of the players, 2) the existence of a continuum of the players, (i.e., continuity of the mean field), 3) interchangeability of the actions among the players (i.e., permutation of the actions among the players would not affect outcome of the game), and 4) interaction of the players with the mean field.

The first assumption is very general in game theory. The presence of a large number of base stations ensures the existence of the continuum of the players. We derive the cost function (as shown in next section) in order to ensure the interchangeability of the actions among the players. The fourth assumption states that each player interacts with the mean field instead of interacting with all the other players.

A. Derivation of the Cost Function

A cost function which depends only on control (and/or state) and mean field would ensure the third assumption of the mean field game setting. To derive such a cost function, we take the spatial averages of receive SINR at the user and distance to the closest possible macro user over m and s . By defining f 1 and f 2 in equation ( 6), cost function of any generic user k whose in state e at time t can be written as follows:

c (p(t, :), m(t, :)) = w 1 E s [SINR k (p(t, :), m(t, :))] +w 2 p k (t)E s [g k,m ] E s [r k,m ] ↵ , (10) 
where p(t, e) is the transmit power (i.e., control) of a SBS with energy e at time t and m(t, :) is mean field at time t. E [X] denotes the expectation of variable X taken over the point process .

In this case, for simplicity, we assume an interference limited network (i.e., N 0 = 0) with path-loss exponent equal to 4 and all users are at the same distance r s from its serving SBS. It is also assumed that all (g l,k ) 8 k,l 2 s , m are i.i.d and exponentially distributed with mean 1. The average receive SINR of a generic SBS user was derived in [START_REF] Semasinghe | An Evolutionary Game Approach for Distributed Resource Allocation for Self-Organizing Small Cells[END_REF]. We use the same expression as follows:

E [SINR(p(t, :), m(t, :))] = 8p(t, e) A 2 ⇣ m p p m + s E 8e2E h p p(t, :) i⌘ 2 , (11) 
where A = ⇡ 2 r 2 s . The expectation of the transmit power over all states can be written in terms of the mean field. Then, [START_REF] Mériaux | Mean-field games and green power control[END_REF] can be re-written as follows:

E [SINR(p(t, :), m(t, :))] = 8p(t, e) A 2 ⇣ m p p m + s R 8ē2E p p(t, ē)m(t, ē) de ⌘ 2 . ( 12 
)
For the third term of equation ( 10) we need to determine the probability density function (PDF) of r k,m . The nearest macro user can be just beyond the edge of coverage area of the small cell. In practice cell edges can be created both due to MBSs and SBSs. However, for analytical tractability, we assume that small cell edges are formed only due to MBSs. We find the PDF of r k,m as follows. Considering the cell edge between a SBS and a MBS (see Fig. 2) the following equation can be written.

p s,pilot R ↵ = p m,pilot (X R) ↵ , ( 13 
)
where R is the distance from SBS to the closest cell edge and X is the distance to nearest MBS. The complementary cumulative distribution function (CCDF) of r k,m is given by Pr (r k,m > R) = Pr (No macro base station within radius x) .

Since the MBSs form a PPP with intensity m , F R k,m (r k,m ) and f R k,m (r k,m ) can be expressed as follows:

F R k,m (r k,m ) = 1 e m ⇡b 2 r 2 , ( 14 
) f R k,m (r k,m ) = 2⇡ m rb 2 e m⇡b 2 r 2 , (15) 
where b =

h 1 + p m,pilot p s,pilot 1 ↵ i .
The above equations imply that r k,m is Rayleigh distributed and the expected value is given by

E m2 s [r k,m ] = 1 2 p m  1 + ⇣ p m,pilot p s,pilot ⌘ 1 ↵ . ( 16 
)
The cost function of a generic SBS has energy e at time t is given by c (p(t, :), m(t, :)) =

w 1 8p(t, e) A 2 ⇣ m p p m + s R 8ē2E p p(t, ē)m(t, ē) de ⌘ 2 +w 2 16p(t, e) 2 m " 1 + ✓ p m,pilot p s,pilot ◆ 1 4 # 4 . ( 17 
)
Since the cost function only depends on the mean field and the control, the optimal control problem given in equation [START_REF] Huang | Large population stochastic dynamic games: closed-loop mckean-vlasov systems and the nash certainty equivalence principle[END_REF] is similar for all the players in the system. The Hamilton-Jacobi-Bellman equation associated with the given optimal control problem can be written as follows [START_REF] Guéant | Mean field games and applications[END_REF]: @u(t, e) @t + min p(t,e) ✓ c (p(t, e), m(t, e)) p(t, e) @u(t, e) @e ◆ = 0, (18) where min p(t,e) c (p(t, e), m(t, e)) p(t, e) @u @e is the Hamiltonian, generally denoted by H ⇣ e, m(t, e), @u(t,e) @e ⌘ and u(t, e) is called the adjoint variable. The HJB equation models an individual player's interaction with the mass (i.e., mean field) and this is called the backward equation.

The motion of the mean field corresponds to a Fokker-Planck-Kolmogorov(FPK) equation. This is also called as the forward equation. @m(t, e) @t + @ @e ✓ m(t, e) @H @z

◆ = 0, ( 19 
)
where z = @u @e . It has been already proven that @H @z can be replaced by the control [START_REF] Burger | Adjoint methods for hamilton-jacobibellman equations[END_REF] which is in this case p(t, e). Hence, the modified FPK equation can be written as @m(t, e) @t @ @e (m(t, e)p(t, e)) = 0.

(20)

The mean field equilibrium (MFE) can be obtained by solving the above two coupled equations.

B. Uniqueness of the MFE

In the following theorem, we state the sufficient conditions for G to have a unique solution.

Theorem III.3. The game G has a unique solution if the following conditions are satisfied: 1) @ @m H (p, z, m) > 0, 2) @ @z (mp) > 0, 3) @ @m (mp) > 0, where z = @u @e . Proof. The proof of Theorem (III.3) is omitted here due to brevity.

IV. PROPOSED FINITE DIFFERENCE SCHEME

When the initial distribution m(0, :) and the terminal cost c(T ) are known, the mean field equilibrium can be obtained by solving the above coupled equations ( 18) and (20), iteratively. In this section, we develop a finite difference method to solve the equations based on the method proposed in [START_REF] Burger | Adjoint methods for hamilton-jacobibellman equations[END_REF].

To begin with, the time axis [0, T ] and the state space [0, E max ] are discretized into X ⇥ Y spaces. Hence, we have X + 1 points in the time and Y + 1 points in the state space. We also define t := T X ,

and e := E max Y .
The forward equation is solved by using the Lax-Friedrich's scheme to guarantee the positivity of m. The Lax-Friedrich's scheme for partial differential equations is first order accurate in time and second order accurate in space. By applying the Lax-Friedrich's scheme we have

M (i + 1, j) = 1 2 [M (i, j 1) + M (i, j + 1)] + t 2( e)
[P (i, j + 1)M (i, j + 1) P (i, j 1)M (i, j 1)] ,

where M (i, j) and P (i, j), respectively, denote the values of the mean field and power at time instant i and energy level j in the discretized grid. The boundary values of M for any i are updated as follows:

M (i+1, 1) = M (i, j)+ X 8j {e(j) p(i,j) t< e} M (i, j). (21) Also, M (i + 1, Y + 1) = 0 if P (i, Y + 1) > 0 and M (i + 1, Y + 1) = M (i, Y + 1) if P (i, Y + 1) = 0.

B. Solution to the Backward Equation

The existing finite difference techniques to solve partial differential equations cannot be applied directly to solve the HJB equation due to the Hamitonian. Therefore, we re-formulate the problem by writing the HJB equation as its corresponding optimal control problem with the FPK equation as a constraint. The re-formulated problem is stated below. Minimize p(t,e),m(t,e) E

" Z T t=0 c(t)dt + c(T ) # , (22) 
subject to @m(t, e) @t @ @e (m(t, e)p(t, e)) = 0

8(t, e) 2 [0, T ]⇥[0, E max ] , (23) and Z 
e2E m(t, e) = 1 8t 2 [0, T ] . (24) 
Then, we write the Lagrangian ⇤ (m(t, e), p(t, e), v(t, e)) for the above problem with the Lagrange multiplier v(t, e) 8t,e as follows:

⇤ (m(t, e), p(t, e), u(t, e)) = E " Z T t=0 c(t)dt # + Z T t=0 Z Emax e=0 v(t, e)
 @m(t, e) @t @ (m(t, e)p(t, e)) @e dedt,

= Z T t=0 Z Emax e=0 m(t, e)c(t)de dt + Z T t=0 Z Emax e=0 v(t, e)  @m(t, e) @t @ (m(t, e)p(t, e)) @e dedt, (25) 
where we have assumed that the terminal cost c(T ) is equal to zero. It has been already proven that the Lagrange multiplier v(t, e) is equivalent to the adjoint variable u(t, e) in the HJB equation [START_REF] Burger | Adjoint methods for hamilton-jacobibellman equations[END_REF]. The discretized Lagrangian D is given by

D = e t X+1 X i=1 Y +1 X j=1 " M (i, j)C (M (i, j), P (i, j)) + V (i, j) ✓ M (i + 1, j) 0.5 (M (i, j + 1) + M (i, j 1)) t ◆ 
V (i, j) ✓ P (i, j + 1)M (i, j + 1) P (i, j 1)M (i, j 1)

2 e ◆ , (26) 
where V denotes the Lagrange multiplier on the discretized grid.

The optimal decision variables (given by P ⇤ , M ⇤ , V ⇤ ) must satisfy the Karush-Kuhn-Tucker (KKT) conditions. For an arbitrary point (i, j) in the discretized grid by evaluating and re-arranging the KKT condition, @ D @M(i,j) = 0, we deduce the following equation to update V .

V (i 1, j) = 0.5 [V (i, j 1) + V (i, j + 1)]
tC(i, j)

+ tP (i, j) 2 e [V (i, j 1) V (i, j + 1)] 16 t xw 2 s p P (i, j) P Y +1 j=1 P (i, j)M (i, j) A 2 ⇣ m p p m + x s P Y +1 j 0 =1 p P (i, j 0 )M (i, j 0 ) ⌘ 3 , (27) 
where C(i, j) is the cost pertinent to the point (i, j) in the discretized grid. Next, we consider @ D @M(i,j) = 0 which gives the following expression. The equation (28) has to be solved for P (i, j) to obtain the transmit power at point (i, j).

8w 1 s e P Y +1 j=1 (M (i, j)P (i, j)) p p(i, j)A 2 ⇣ m p p m + x s P Y +1 j 0 =1 p P (i, j 0 )M (i, j 0 ) ⌘ 3 + M (i, j) 0 @ 16w 2 2 m " 1 + ✓ p m,pilot p s,pilot ◆ 1 4 # 4 1 A 2 ⇣ m p p m + x s P Y +1 j 0 =1 p P (i, j 0 )M (i, j 0 ) ⌘ 2 1 C A M (i, j) [V (i, j 1) V (i, j + 1)] = 0 (28) 
V. NUMERICAL RESULTS AND DISCUSSION The parameters used for obtaining the numerical results are given in Table 1.

Parameter Value Fig. 2. Mean field at the equilibrium (for uniform initial energy distribution).

with higher energy levels decreases with time. At the end of the time frame T , the probability of a base station having zero energy equals to one, (i.e., m(T, 0) = 1). This means all the base stations have emptied their energy allowance during the transmission and have zero available energy at the end of the considered time frame, T . For a better illustration of the probability distribution of the available energy of SBSs (i.e., mean field), in Fig. 5, we also show several cros-sections of Fig. 4. As it can be seen in Fig. 5, the probabilities of 3. Variation of the mean field with time at the equilibrium the SBSs having higher energy monotonically decrease with time. However, the distribution of SBS with lower energies (e.g., 0.02J) initially increase and then starts to decrease. The explanation is as follows. The SBSs with higher initial energy transmit with maximum allowable transmit power during the initial period of T . As a result, the number of SBSs with higher energy would decrease faster. However, the SBSs with lower initial energy would not transmit at the maximum allowable transmit power originally. They save energy to transmit during the later part of the time interval T . The SBSs with higher initial energy levels would spend their energy faster and appear as lower energy SBSs after sometime. As a result, the amount of SBSs with lower energy levels can increase with time initially. However, all SBSs empty their energy allowance at the end of the time frame T . The number of base stations with zero energy monotonically increases and finally attain 1 (i.e., 0 in log scale).

B. Power Control Policy at the Mean Field Equilibrium

The power control policy at the MFE (for a uniform initial distribution of available energy among the SBSs) is shown in Fig. 6. Once the power policy is calculated, an SBS can decide the transmit power based on its available energy at each time instant. Re-computation of the power policy is needed at the beginning of each time interval T (i.e., 0, T, 2T, 3T, ...) only if the probability distribution of allowable energy changes. Cross-sections of the power policy plot in Fig. 6 at energy equal to 2J, 0.2J, 0.05J and 0J are shown in Fig. 7. This figure also shows that SBSs with higher energy start transmitting with maximum allowable transmit power while SBSs with lower energy start with lower power. However, SBSs with lower energy tend to increase their transmit power after some time. This phenomenon is more emphasized in Fig. 8 where we show the transmit power policies for three different initial energy levels. The SBSs which start the game with an initial energy of 0.05J does not transmit at higher power in the beginning of the time period, T . They increase the transmit power later in the time slot. By that time, the SBSs who started the game with higher energy has spent most of their energy and lowered the transmit power. SBSs with less initial energy can go for a better cost by increasing the transmit power later in time period T due to the reduced interference. 

C. Comparison with the Uniform Transmit Power

To compare the performance of the proposed algorithm, we use uniform transmit power setting (throughout time period T ) as a bench mark. In this case, the uniform transmit power p k of SBS k with initial energy e k (0) is equal to e k (0) T . Fig. 9 plots the variation of average SINR over T with s for both uniform transmit power setting and the proposed algorithm. The results show that the transmit power policy given by the proposed algorithm performs better when the network is densified. 

VI. CONCLUSION

We have proposed a mean field game-based energy-aware power control algorithm for self-organizing small cell networks. The distributed power control problem of a co-channel deployed small cell network underlaid with a macro network is formulated as a mean field game. The mean field differential equations of the formulated game are solved using a finite difference technique. We also have shown the sufficient conditions for the uniqueness of the mean field equilibrium. The main advantage of the proposed algorithm is that it can be distributively executed offline. Also, the algorithm considers minimizing the cost over a pre-defined period of time, instead of minimizing the running cost. Performances of the proposed algorithm are evaluated numerically by simulations.
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