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From out-of-time design to in-time production of temporal media

The design a temporal media, a sequence of temporal media values such as notes, sounds, images, etc., is an out-of-time task. Fairly general out-of-time program constructs are available for such a purpose. For example, when writing a musical piece, a composer can traverse back and forth his creation. On the contrary, rendering a temporal media is an in-time task. The production of notes in a musical performance is bound to be coherent with the unceasing onward flow of time. It follows that some of the out-of-time programming constructs used for the creation of that pieces must have been re-ordered in order to produce the right media events in the right order and at the right time. In this paper, we propose a formal study of the interplay between these in-time and these out-of-time programing constructs. With an explicitly out-of-time design approach, we eventually show that simpler and more abstract declarative programming features become available, leaving to computers the tedious task of synchronizing and scheduling the media events to be produced in-time, upon demand.

Introduction

In many multimedia applications, one of the main task performed by computers is to render temporal media, that is, to produce and perform, in the right order and at the right time, media values: sounds, notes, images, etc. Such a production is an in-time process. It is necessarily performed in the irreversible flow of time. The computation of media values is bound to be coherent with the unceasing onward flow of time.

On the contrary, in the design process of these temporal media, the flow of time is partially reversible. A designer can easily traverse back and forth the temporal media under to be created. It follows that, in such an out-of-time design process more programming features are available, leaving to computers the task of re-organizing, possibly just upon demand, the temporal media that must be produced.

As an example, a typical in-time program construct consists of specifying the production of values after a certain amount of time. This construct can be implemented by means of a timer. In this case, there is an immediate correspondance between the definition of a stream of values to be produced and its in-time production. In the out-of-time definition of a stream of value, another program construct consists of specifying that some event must occur before a certain amount of time. Even though refeering to the past, this backward dependence can still be implemented provided it does not violate some causality constraints. For example, another timer may be used to count down the remaining time available before the occurrence of a known planed events. However, in that later case, the correspondance between the definition of the stream of values and their effective production of these values is no longer straightforward. It requires to check its consistency with respect to the flow of time and, in the positive case, to retrieve the media values in the appropriate order and time.

In this paper, we propose a formal study of the interplay between such in-time and out-of-time programming features and we eventually show that a simple and efficient program transformation is available in order to convert outof-time temporal media specification into in-time temporal media production. The tedious task of synchronizing and scheduling the media events to be produced in-time is thus left, upon demand, to the computer.

More precisely, we first define a simple set of out-of-time primitives, namely event productions and back and forth shifts of time, that can be combined one with the other. Then, we show how the resulting (zigzagging) sequence of primitives can be encoded so that an efficient on-the-fly normalization is available to re-order events in the way they have to be produced in-time. Doing so, we eventually recover the notion of tiled temporal media [START_REF] Hudak | Tiled polymorphic temporal media[END_REF], a notion originating from the 80's in the field of computational music [START_REF] Desain | LOCO: a composition microworld in Logo[END_REF], that induces a rich algebraic structure. Under adequate assumption, temporal media form an inverse monoid.

Compared to [START_REF] Hudak | Tiled polymorphic temporal media[END_REF], the main novelty of the present paper is that, by implementing out-of-time temporal media constructs and the related on-the fly in-time normalization process, we eventually provide a simple, elegant, and standalone implementation of truly polymorphic tiled temporal media. In [START_REF] Hudak | Tiled polymorphic temporal media[END_REF], we had implicitly provided an encoding of out-of-time (tiled) temporal media into in-time temporal media. In this paper, we explicitly provide an embedding of finite in-time into out-of-time (tiled) temporal media.

Oddly enough to be mentioned, the work presented here essentially amounts to define and study a set of spatiotemporal primitives that can be combined one after the other for creating temporal media somehow much in the same way some spatial primitives are provided in Logo, for the turtle to create pictures.

The remarkable difference is that the pictures resulting from a spatial traversal of the turtle can be displayed as such. On the contrary, the temporal media resulting from the spatiotemporal traversal of the turtle must be normalized in order to be rendered. Then, when this normalization is defined as the in-time retrieval of media events to be rendered, we recover the classical correspondance between normalization and computation.

Out-of-time vs in-time temporal media

We give in this section the syntax of out-of-time temporal media definitions and we briefly review their associated in-time semantics described in terms of tiled temporal media. This leads us to the specification of the corner stone functions of our proposal: the head/tail normalization functions. Implementation and other semantics issues are then discussed in the remaining sections.

Out-of-time syntax

We first need to define a simple set of out-of-time primitives that can be used for designing temporal media: timed sequences of media values, be they sounds, notes, images, animation commands, etc.

The set of primitives we consider is defined as the primitive event e that describes the instantaneous event e at the current date, the basic primitive delay d that described the (positive or negative) shift of d units of time for the current position (forward or backward) in time. These primitives can then be composed by means of an (infix) sequential composition product z 1 % z 2 that combined, one "after" the other, any out-of-time specifications z 1 and z 2 . An exemple of the resulting zigzags is depicted Figure 1. In this figure, we have depicted the sequential composition product of the primitives delay 5, event e 1 , delay (-8), event e 2 , delay 9, event e 3 , delay (-4), event e 4 and delay 2.

As far as semantics is concerned, we assume that the composition product is associative. This allows for depicting any out-of-time specification of a temporal media as a sequence of events related by the forward and backward zigzag in time created by the positive and negative delays.

For the sake of simplicity, we only handle media events that are supposed to be instantaneous. As we shall see later in the text, this takes into account all common situations where media values, lasting for a certain amount of time, can be decomposed into two events, a media on event and a media off event.

In-time semantics

Now, we aim at rendering in-time the media events that have been described out-of-time.

In the above out-of-time description of streams of events, we observe that two events may appear syntactically close while, in the flow of time, while they are far one from the other in time.

For exemple, in Figure 1, the events e 2 and e 3 are syntactically close in the product defining the out-of-time specification while, in the flow of time, the event e 2 should be played the first and the event e 3 should be played the last, hence they are separated by all other events.

In some sense, in out-of-time descriptions of a temporal media, media events can be intricate. Executing or rendering such a temporal media thus necessitates to retrieve the events to be launched in an order coherent with the flow of time. This re-ordering defines the in-time semantics linearize z of an out-oftime specification z.

More precisely, linearizing an out-of-time description of a temporal media just amounts to order the events (or media values) that appear in a zigzag description. The resulting structure is a tiled temporal media [START_REF] Hudak | Tiled polymorphic temporal media[END_REF] : a list of timed media values (a temporal media in the sense of [START_REF] Hudak | An algebraic theory of polymorphic temporal media[END_REF][START_REF] Hudak | A sound and complete axiomatization of polymorphic temporal media[END_REF]) that is extended with two synchronization marks that memorized the position in time of the former beginning (for Pre) and end (for Post) of the out-of-time zigzag specification.

An exemple of a linearization is depicted in Figure 2. It corresponds to the tile linearize z obtained by linearizing the out-of-time definition z depicted in Figure 1. It occurs that a simple semantical mapping, that maps every of out-of-time specification z to its linearization linearize z, induces quite a rich algebraic structure: the algebra of tiled temporal media [START_REF] Hudak | Tiled polymorphic temporal media[END_REF] that is reviewed below under the new point of view provided by out-of-time temporal media.
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Induced tiled temporal media algebra

Let us consider again the zigzag depicted in Figure 1. Assume additionally that the delay 9 primitive is cut into two successive delays, delay 2 and delay 7. Then, as depicted in Figure 3, this cut defines two successive zigzags z 1 and z 2 that can be combined sequentially in order to form the zigzag z = z 1 % z 2 . Then, it can be proved (see [START_REF] Hudak | Tiled polymorphic temporal media[END_REF]) that tiled temporal media can be equipped with a product, still denoted by %, such that the following property is satisfied :

(linearize z 1 ) % (linearize z 1 ) = linearize (z 1 % z 2 )
In other words, the set of linearized zigzags can be equipped with a product, called the tiled product in [START_REF] Hudak | Tiled polymorphic temporal media[END_REF], such that the mapping linearize is a morphism with respect to zigzag sequential composition.

An exemple of a tiled product is depicted in Figure 4. In this figure, the tiled product is detailed as the succession of two elementary steps: the synchronization (or alignment) step and the fusion (or reduction) step.

The first step, the synchronization step, amounts to making coincide the Post synchronization mark of the first component with the Pre synchronization of the second component. Then, the second step, the fusion step, amounts to merge the underlying streams of media values.

Although not appearing in the example depicted above, several events may occur at the same time. This may result from a linearization process. This may also just result from the composition of two events. At this stage of our presentation, let us just mentioned that simultaneous events are assumed to be totally ordered and, in the fusion step, they are collected into an ordered multiset.

In some sense, these multisets describe the instantaneous spatial structure that results from the back and forth traversal of the time dimension. All the example depicted above are kept simple so that they only induce singleton (spatial) structures. 

The head/tail on-the-fly normalization

We have briefly sketched above the linearization semantics. Now, we aim at providing a slightly more effective view of that linearization mapping. It appears that it can be defined as an on-the-fly inductive normalization process depicted as a repeated head/tail decomposition.

More precisely, this normalization process essentially consists of retrieving the events stored in an out-of-time (zigzag) definition of timed events in an order that is coherent with the flow of time. Here, we show that this can be done by defining two functions head and tail that behave as follows. For every out-of-time specification z, head z contains the earliest events that appear in z and tail z contains the remaining events in such a way that the following equation is satisfied

z == (head z) % (tail z)
where == stands for the equivalence induced by the linearization mapping.

Of course, there are various possibilities for defining head and tail for achieving such a goal. In this paper, we choose to define head z and tail z in the following way.

In the case there are no event in z, we put head z = z and tail z = delay 0. In the case there are some events in z, we put head z = (delay d) % (event e) where d is the relative time distance from the beginning of z to the earliest event in z and where e is that earliest event to be played.

For instance, the zigzag example provided in Figure 1 can be decomposed as depicted in Figure 5. Then, it is quite an easy observation that such a del ay (-3)

(head z)

del ay 8 del ay (-3) e1 del ay 4 del ay (-2) e4 e3

(tail z)

Figure 5: A one step head and tail normalization of the zigzag z depicted in Figure 1.

normalization can be repeated, taking head (tail z), head (tail (tail z)), etc., till all events have been retrieved.

The result of such a repeated decomposition is depicted in Figure 6 below. (head (tail (tail (tail (tail z)))))

Figure 6: The resulting head/tail decomposition.

Then, it occurs that the repeated head/tail decomposition induces a normal form that may be used to unambiguously represent linearize z. Indeed, as depicted in Figure 7, such a normal form can be defined as the sequential composition of the heads of the form head (tail n z) until tail n (z) equals the unit Delay 0. In our ongoing example, this happens when n = 5. This suggests that the mapping linearize can be defined by the equation

linearize z = if (isUnit z) then delay 0 else head t % linearize (tail z)
where isUnit z tests if z is equivalent to the unit temporal media delay 0 or not.

In other words, the in-time (linearized) semantics of out-of-time temporal media definition can be defined within zig-zag definitions. This opens the way for a standalone implementation of polymorphic temporal media. More precisely, as soon as the two functions head and tail are defined over out-of-time temporal media definitions, the equivalence induced by the linearization operator is definable. It follows that tiled temporal media can easily be defined as (equivalence classes) of out-of-time temporal media definitions. This is the purpose of the next section.

Observe again that, although this is not the case in our running exemple, it may be the case that several events are to be played at the same time. As already mentioned above for describing the fusion operation, we just assume that these simultaneous events are totally ordered. Then, as described below, they are collected into ordered multisets.

Lazy implementation in Haskell

In this section, we implement out-of-time temporal media and the related normalization functions head and tail. As observed above, this provides an implementation of the polymorphic tiled temporal media defined in [START_REF] Hudak | Tiled polymorphic temporal media[END_REF].

The proposed implementation is lazy in the sense that, when computing the head and the tail of (the syntactic representation of) a zigzag z it never traverses more than what is strictly needed to retrieve the events to be collected into head z.

Preliminary remark on the tail function

Observe that, while the function head is completely specified in the previous section, the zigzag representation of tail is less clear. The example depicted above, from Figure 5 to Figure clearly shows that tail z can be defined in many ways.

From the point of view of semantics, this is not an issue since the linearization function is eventually defined in terms of heads. However, from the implementation point of view, there is an obvious efficiency issue since the linearization function is defined by iterated calls of the function tail.

In the proposed implementation, observing that head and tail functions are necessarily computed by doing partially traversals of syntactic representation of zigzags, we make these traversals optimal by precomputing on nodes of zigzag syntactic trees certain time information. These informations, implemented by the functions dur and firstD, are called synchronization profiles. They are defined below.

Synchronization profiles

Following [START_REF] Janin | The T-calculus : towards a structured programming of (musical) time and space[END_REF] and [START_REF] Hudak | Tiled polymorphic temporal media[END_REF], a first basic elements of the synchronization profile of a zig zag (or a tile) is the distance from its beginning (the pre synchronization mark of a tile) and its end (the Post synchronization of a tile). This distance is computed by the function dur that takes a tile (or a zigzag) as input and produces a Duration with type Duration = Rational This function is depicted in Figure 8 below.

As it should already be clear in view of the specification of the head function, we also need to know if there is an event in zigzags. Moreover, in the positive case, it is the position of the first events that should be known. This leads us to the definition of the function firstD that takes a tile (or a zigzag) as input and produces a Date with type Date = Maybe Rational When there is no event in a tile, the function firstD returns Nothing. Otherwise, the function firstD returns Just d, where d is the distance from the Pre synchronization marks (equivalently the beginning of the zigzag) to the first events. This function is also depicted in Figure 8.

Tile syntax

The syntax of tile is then defined as follows. where MSet a stands for the type of multisets of elements of type a.

While the purpose of Event and Delay data constructs is clear, the construct Twist, which code product of tiles, needs some explanation.

Firstly, the name twist, comes from the fact that an expression of the form Twist f d t 1 t 2 encodes the product of two tiles, the tile t 1 and the tile inv t 2 . As it shall become clear below, this twisted representation of products allows for encoding a syntactically involutive inverse operator.

Secondly, the argument d denotes the duration of the resulting tile, and the argument f denotes a the position of the first event. Pre-computing these values will prevent useless traversal of the underlying syntactic tree. The fact that f is assume to be of type Duration also means that we will guarantee that Twist constructs are always denoting tiles that, resulting from a product, contains one event at least. 

Tile generators

We have defined above the syntax of tiles. Now we define the tile generators delay, event and %, enriched with an explicit unit tile unit.

unit = Delay 0 event a = Event (singleM a) delay d = Delay d (%) t 1 t 2 = case (t 1 , t 2 ) of ( , Delay 0) → t 1 (Delay 0, ) → t 2 otherwise → let d 1 = dur t 1 d 2 = dur t 2 d = (d 1 + d 2 ) f 1 = firstD t 1 2 = firstD t 2 f = minD f 1 (shiftD f 2 d 1 ) in case (f ) of Nothing → Delay d Just x → Twist x d t 1 (inv t 2 )
In this code, we use the function minD, that compute the minimm of two dates.

It is defined by

minD Nothing d = d minD d Nothing = d minD (Just d 1 ) (Just d 2 ) = Just (min d 1 d 2 )
We also use the function shiftD that shifts a date by some duration. It is defined by

shiftD Nothing d = Nothing shiftD (Just d 1 ) d = Just (d 1 + d)
By construction, no Event construct may occur with no event at all (the empty list). Similarly, the product is defined in such a way that, as requested above, no Twist construct may be used over tiles without defined events.

Inverse, reset and co-reset

The inverse mapping inv is defined by

inv (Event e) = Event e inv (Delay d) = Delay (-d) inv (Twist y d t 1 t 2 ) = Twist (y -d) (-d) t 2 t 1
As expected, this implementation of the inverse function is syntactically involutive in the sense that, for every finite tile z, the representation of inv (inv z) equals the representation of the tile z.

The related reset and co-reset functions are also defined by

re t = t % (delay (-(dur t))) co t = (delay (-(dur t))) % t
Although reset and co-reset are defined directly as above, it is known that they may be defined via the inverse function since, under adequate assumption [START_REF] Hudak | Tiled polymorphic temporal media[END_REF], we have

re t == t % (inv t) co t == (inv t) % t
Lastly, the case EQ corresponds to case that the first events of the underlying product are located both in the tile t 1 and in the tile t 2 . The assumption that a Twist construct cannot be used when both underlying tiles are empty ensures that both tiles t 1 and t 2 are indeed non empty.

Head, Tail and induced equality

With the function norm given above, the head and tail functions are then simply defined as follows. where isEmptyM is the function that check if its argument is the empty multiset.

As observed in the previous section, the linearization function can be defined by means of head and tail. The semantical equivalence it induces can directly (and lazily) be defined as follows: instance (Eq a, Ord a) ⇒ Eq (Tile a) where (==)

t 1 t 2 = case (t 1 , t 2 ) of (Delay d 1 , Delay d 2 ) → (d 1 == d 2 ) otherwise → let (dd1 , ee1 , tt 1 ) = (norm t 1 ) (dd2 , ee2 , tt 2 ) = (norm t 2 ) in ((dd1 == dd2 ) ∧ (equalM ee1 ee2 ) ∧ (tt 1 == tt 2 ))
where the function equalM is the equality of finite multi-sets.

It can be shown that the complexity of computing the (semantical) equality z 1 == z 2 of two out-of-time definition of temporal media z 1 and z 2 equals the sum of their syntactic size multiply by the depth of the underlying syntactical tree. In other words, provided this depth is kept small, our encoding of the linearization mapping is quasi-linear in the size of its arguments.

Conclusion

In the experiment described in the above pages, we thus show that allowing outof-time programming constructs such as back and forth time shifts, eventually leads to a confortable language for specifying temporal media. Still, the specified events can be automatically reordered in an efficient way for the in-time rendering of these temporal media.

Quite strikingly, the complete implementation is achieved in less than a hundred lines of Haskell code. This comes in particular from the twisted encoding of the products that allows to reason by duality. This also comes from the robustness of the underlying mathematical objects.

It can easily be shown that classical (in-time) temporal media [START_REF] Hudak | An algebraic theory of polymorphic temporal media[END_REF] can be embedded and thus re-encoded into the (out-of-time) tile formalism that is presented here. Even though of a rather theoretical nature, further experiments, with audio or midi temporal media are currently done in order to validate this approach in practice.

The on-the-fly head/tail decomposition that we have proposed and implemented here may sound familiar to the programmers known FRP [START_REF] Elliott | Push-pull functional reactive programming[END_REF]. Although going out of the scope of the presented experiments, it is believed that tiles can be used for multi-scale descriptions of temporal media. Indeed, more abstract temporal media can be defined as sequences more concrete tiled temporal media. The fact tiled temporal media may overlap should facilitate such a hierarchical design approach.

Beyond temporal media, our experiments examine the distinction one can make between program design, that may go back and forth in the space of causal dependencies, and program execution, that must respect causal dependencies. To which extent our approach can be extended to such a much broader scope is left to further investigations.
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data

  Tile a = Event (MSet a) | Delay Duration | Twist Duration Duration (Tile a) (Tile a)

Following

  these conventions, the functions dur and firstD are simply implemented over such syntactic constructs by: dur (Event ) = 0 dur (Delay d) = d dur (Twist d ) = d firstD (Event ) = Just 0 firstD (Delay d) = Nothing firstD (Twist e ) = Just e

Normalization function

The head/tail normalization function is computed in two steps. In the first step, the function norm make a single (partial) traversal of its argument to compute all elements needed, in the second step, for computing head and tail.

The type of the function norm is defined by

When (d, e, tt) = norm t, the duration d is the distance to the earliest events (or zero if there are none), the multiset e contains all these first events, and the tile tt is the remaining tail of the input tile t. This function, defined below, does not meant to be exported.

I n this code, we use the unionM that computes unions of multisets. We also use the function compareD that compare dates if a way coherent with the function minD defined above. It is defined by

The case LT above corresponds to the case that the first event of the underlying product is located in the tile t 1 . The definition of compareD ensures that the tile t 1 contains an event.

The case GT defined above corresponds to the case that the first event of the underlying product is located in the tile t 2 . Again, the definition of compareD ensures that the tile t 2 contains an event. This case is solved by duality, exploiting the syntactical encoding of inverses.