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ABSTRACT

In this study, the potential locations of asteroidal small satellites (also called moonlets) with
quasi-circular mutual orbit are analysed. For the motion of the moonlets, only the solar
gravity perturbation and the primary’s second degree-and-order gravity field are considered.
By eliminating short periodic terms, the dynamical behaviour of the Hamiltonian for the
moonlets is investigated. The observational data of some high-size-ratio binary asteroids show
that the orbits of the moonlets lie close to the classical Laplace equilibrium points, which
reach global minimum values of the Hamiltonian. It is found that tides or Yarkovsky effects
alone cannot account for the reason why the orbits of asteroidal moonlets are not exactly at the
classical Laplace equilibrium points. The analysis in this study is expected to provide useful
information for the potential locations of asteroidal moonlets, and contribute to principles to

relate predictions to observations.

Key words: celestial mechanics — minor planets, asteroids: general.

1 INTRODUCTION

Binary minor planets are recent discoveries. The first con-
firmed binary asteroids 243 Ida-Dactyl were discovered in 1993
(Belton et al. 1995, 1996; Chapman et al. 1995). The in-
vestigations of binary minor planets have aroused great inter-
est (Richardson & Walsh 2006). A comprehensive online data
base for binary asteroid systems is available on web page
http://www.asu.cas.cz/~asteroid/binastdata.htm, the construction of
which is described in Pravec & Harris (2007) and Pravec et al.
(2012).

For the dynamics of binary asteroid systems, some work has
been done in previous studies. The generalized Tisserand constant
was used to elucidate orbital dynamical properties of distant moons
of asteroids (Hamilton & Krivov 1997). In order to study the sta-
bility of the binary asteroids, the system was modelled based on
the full two-body problem (Scheeres 2002a,b, 2004, 2006, 2007,
2009; Breiter et al. 2005; Fahnestock & Scheeres 2006). A two-
dimensional dynamical model of the binary asteroids including
primary’s oblateness, solar perturbations and the BYORP (binary
Yarkovsky-O’Keefe-Radzievskii-Paddack) effect enabled to obtain
new results about orbital evolution (Cuk & Nesvorny 2010). Nu-
merical simulations were applied to investigate the stability of the
binary asteroids 243 Ida (Petit et al. 1997), and the triple asteroids 87
Sylvia (Winter et al 2009; Frouard & Compere 2012). Both the sta-
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bility regions around the triple asteroids 2001 SN263 (Araujo et al.
2012) and the collisionally born family about 87 Sylvia were also
investigated using numerical models and integrations (Vokrouh-
licky et al. 2010). The Hill stability of binary minor planets was
discussed using the total angular momentum and the total energy
of the system (Donnison 2011). In our previous study, the Hill sta-
bility of triple minor planets was also examined (Liu et al. 2012).
Scheeres et al. (2006) and Fahnestock & Scheeres (2008) stud-
ied dynamics of the near-Earth binary asteroids 1999 KW4. Fang
etal. (2011) analysed several processes that can excite the observed
eccentricity and inclinations for near-Earth triple asteroids 2001
SN263 and 1994 CC. Further, Fang & Margot (2012) investigated
the evolutionary mechanisms that can explain the origin of the spin
with orbital parameters for near-Earth binaries and triples. Besides,
there are plenty of papers on dynamics of a particle around an as-
teroid (Hamilton & Burns 1991, 1992; Chauvineau, Farinella &
Mignard 1993; Scheeres 1994; Scheeres et al. 1996; Rossi, Marzari
& Farinella 1999; Scheeres, Williams & Miller 2000; Vasilkova
2005; Colombi, Hirani & Villac 2008; Yu & Baoyin 2012), which
can also be applied to asteroidal moonlets.

The relevance of the dynamical behaviour of asteroidal moonlets
to the Laplace plane is studied in this study. Laplace (1805) intro-
duced the concept of the Laplace plane of a planetary satellite.’
For a satellite with circular orbit influenced by the planetary oblate-
ness and the solar gravity perturbation, the Laplace plane is defined
as the plane around which the instantaneous orbital plane of the

! Sometimes, the term Laplace plane is used to refer to the invariable plane,
the plane perpendicular to the angular momentum vector of the entire system.
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satellite precesses. The Laplace plane possesses a constant incli-
nation with respect to the planetary equatorial plane. The classical
Laplace plane’s axis is coplanar with and between the planet’s spin
axis and the planet’s heliocentric orbit axis. In many works, dynam-
ics of planetary satellites on the Laplace plane were studied. Allan
& Cook (1964) found that for a circular orbit with given size, three
mutually perpendicular directions in which the axis of the orbit
remains stationary exist: two stable and one unstable. One of the
stable directions corresponds to the classical Laplace plane. Ward
(1981) showed that circumplanetary disc’s structure could affect the
orientation of the local Laplacian plane. Stable rings are possible
to exist in the circular orthogonal Laplace equilibrium points (Do-
brovolskis 1980; Borderies 1989; Dobrovolskis, Steiman-Cameron
& Borderies 1989a; Dobrovolskis, Borderies & Steiman-Cameron
1989b). Dobrovolskis (1993) studied the maps of Laplace planes
for Uranus and Pluto, which are helpful for new satellites searches.
Kudielka (1994) found that ‘balanced’ Earth satellites’ orbits exist
both in the classical Laplace plane and in the plane perpendicular to
the classical Laplace plane. Tremaine, Touma & Namouni (2009)
presented a comprehensive study of the Laplace equilibrium points
including the effect of eccentricity. By truncating the gravitational
potential up to the second order, Boué & Laskar (2006) presented
the application of the Laplace plane to a three-body system con-
sisting of a central star, an oblate planet and a satellite orbiting the
planet. Most of the previous papers focused on the application of the
Laplace plane to planetary satellites. Considering the interactions
of two rigid bodies, the concept of the Laplace plane was applied
to binary asteroids to analyse the full coupled rotational and trans-
lational dynamics (Fahnestock & Scheeres 2008; Boué & Laskar
2009). In Fahnestock & Scheeres (2008), the gravitational potential
was expanded up to the second order, whereas in Boué & Laskar
(2009), the gravitational potential was further expanded up to the
fourth order.

Some high-size-ratio binary asteroids in the Solar system are
found to possess quasi-circular mutual orbits, for example, 22
Kalliope, 45 Eugenia, 87 Sylvia, 107 Camilla, 121 Hermione,
216 Kleopatra. Recent studies were ever performed on the high-
size-ratio binary asteroids. Four high-size-ratio main-belt binary
asteroids with quasi-circular mutual orbits were focused on in
Marchis et al. (2008). The evolution of the high size binary as-
teroids was studied using the MEGNO indicator (Mean Exponen-
tial Growth Factor of Nearby Orbits) and the truncated poten-
tial up to the second degree-and-order in Compere, Lemaitre &
Delsate (2011). In this paper, only high-size-ratio binary asteroids
with quasi-circular mutual orbits are considered, and simple model
is used. People who are interested in more complicated models can
refer to Boué & Laskar (2009) and Fahnestock & Scheeres (2008),
which contributed significantly to the modelling of the binary as-
teroids. The analysis in this study is expected to provide a priori
knowledge for the potential locations of asteroidal moonlets, and
contribute to principles to relate predictions to observations.

2 THE SECULAR DISTURBING FUNCTION
DUE TO THE SOLAR GRAVITY
PERTURBATION AND THE PRIMARY’S
NON-SPHERICITY

In this study, we are concerned with high-size-ratio binary asteroids
with quasi-circular mutual orbits. The eccentricity of the mutual
orbits is assumed zero. The moonlet’s effect on other bodies of the
system is assumed negligible. This hypothesis comes from the fact
that the moonlet’s mass is expected to be too small to be detected,

and as such, too small to have any major influence on the dynamics
of the primary, which would end only in a very slight perturbation
of the primary’s heliocentric distance, and as such, a very small
change in the solar gravity perturbation. In all the dynamical stud-
ies of such systems, as those of 45 Eugenia in Marchis et al. (2010)
for example, the masses of the satellites have not been determined,
but estimated from hypothesis on their density and size. Since the
geometry of the moonlet would have an even smaller effect than
the effect of its centre of mass, we also do not take into account
the shape of the moonlet. The orbit of the moonlet is under the
influence of a variety of perturbations: the solar gravity perturba-
tion, the solar radiation pressure, the gravitational harmonics of the
primary, etc. The effects of these perturbations were analysed in the
previous research presented in the following. The solar-radiation
pressure affects significantly for very small particles, but slightly
affects particles larger than a few centimetres (Hamilton & Burns
1992; Scheeres 1994). The gravitational harmonics dominate when
close to the asteroid (Scheeres 1994). The solar gravity perturba-
tion dominates when fairly far from the asteroid (Hamilton & Burns
1991; Scheeres 1994), and is important for the long-term evolution
of the satellites (Yokoyama 1999). Thus, for the moonlet’s motion,
only the solar gravity perturbation and the non-spherical effect of
the primary are considered. Further, we only consider the second
degree-and-order gravitational harmonics for the non-spherical ef-
fect of the primary because of the large primary-moonlet separations
with respect to the primary’s radii. For simplicity, the mutual per-
turbations between moonlets are neglected if there are more than
one moonlets in the system, the secular effects of which due to a
secular resonance have been analysed in Winter et al. (2009).

In this paper, the primary’s heliocentric orbital plane is taken
as the reference plane. The perturbation due to the second degree-
and-order gravity field from the primary is averaged with respect
to both the primary’s spin period and the moonlet’s orbital period.
The secular part of the disturbing function R, due to the primary’s
second degree-and-order gravity field in the primary’s heliocentric
orbital plane is obtained as (Kinoshita & Nakai 1991; Domingos,
Moraes & Prado 2008; Tremaine et al. 2009)

R, = ni]zRez [3 (cosi cose + sini sin & cos §2)> — 1] /4, @))]

where n, is the mean motion of the moonlet, J> is the oblateness co-
efficient, R, is the reference radius of the primary, i is inclination, &
is the inclination of the primary’s equatorial plane with respect to
the primary’s heliocentric orbital plane and €2 is right ascension of
the ascending node. Note that the gravity harmonic J5; is eliminated
by averaging over the primary’s spin period. The solar gravity per-
turbation is averaged with respect to both the primary’s heliocentric
orbital period and the moonlet’s orbital period. The secular part of
the disturbing function R due to the solar gravity perturbation is
(Kinoshita & Nakai 1991; Domingos et al. 2008; Tremaine et al.
2009)

Ro =m®n6a2 (3 cos?i — 1)/ {8 (m,, + m®> (l B 66>3/2} '
2

where m is the mass of the Sun, n¢) is the mean motion of the Sun,
a is the moonlet’s semimajor axis, m, is the mass of the primary and
e is the primary’s heliocentric orbital eccentricity. The secular part
of the disturbing function R due to both perturbations is presented
as
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3 THE FROZEN SOLUTIONS IN THE
PRIMARY’S HELIOCENTRIC ORBITAL PLANE

Based on the Lagrange’s planetary equations (Chobotov 2002, p.
201), the variation rates of i and 2 can be easily derived as (Liu &
Ma 2012)

di 3n,,JzR3 . . . L.

T = o sin 2 sin & (cosi cos & + sini sin & cos 2) , 4)
a

e _ 3m@n6 cosi B 3n,J,R2

dr

- 3/2 2 i s
4n, (m, +me) (1 —66) 4asini

x (—sin2i cos” & + sin 2i sin® & cos Q + cos 2i sin2¢ cos Q) .
(5)

For circular or quasi-circular moonlet’s orbits, it is obvious that
the Delaunay variables L = G = ,/[t,a are constant. Thus, the
averaged system has only one degree of freedom in (H, €2), where
H = Gcos i (Murray & Dermott 1999, p. 59). Since G is constant, the
orbital parameters (i, 2) are used instead of the Delaunay variables
(H, ). It is evident from equation (4) that there exist the frozen
solutions when €2 = 0° (or 180°), which are the circular coplanar
Laplace equilibrium points according to Tremaine et al. (2009). The
values of these frozen i for the Laplace equilibrium points can be
solved numerically by setting the right-hand side of equation (5)
equal to zero. Because either cosi or cos 2 exist in the right-hand
sides of both equations (4) and (5), another two frozen solutions
exist: 2 = £90° and i = 90°, which are the circular orthogonal
Laplace equilibrium points according to Tremaine et al. (2009).
The linear stability of the Laplace equilibrium points including the
oblateness and the solar gravity perturbation was examined using
the vector description by Tremaine et al. (2009). In this paper, the
stability of the Laplace equilibrium points to variations in i and €2 is
determined by analysing the characteristic equation of the linearized
model of equations (4) and (5). By defining a vector X = (8i, Q)"
as the variations, the variational equations of equations (4) and (5)
are written as

X=A-X, (6)
where
9(di/dr) 9(di/dr)
i oQ
A =
?(dQ/dr) d(dQ/dr)
qi oQ

The characteristic equation of equation (6) for the circular orthog-
onal Laplace equilibrium is calculated as

B 9u’n6 sin? e, R?

8a? (1 — 6‘2@)3/2 '

If A> > 0, which means that one eigenvalue of A is a positive real
number, so the Laplace equilibrium is unstable; if 22 < 0, both
eigenvalues are pure imaginary, which means that the elements i
and €2 are both oscillatory, so the Laplace equilibrium is linearly
stable. For some actual asteroidal moonlets, the examinations of
stability to variations in i and €2 will be also presented in Section 5.

A= 7

4 NUMERICAL VERIFICATION

In this section, the averaged model is applied to 22 Kalliope’s moon-
let Linus for verification. The averaged results are compared to the

150 T T -
—unaveraged
---double—averaged|
120r 1
o)
Q
=
60 1
300 20 40 | 60 80 100
time (year)
(@)
50 T T -
—unaveraged
---double—averaged|
25p 1
)
Q
2
G
—25F 1
% 20 40 60 80 100
time (year)

(b)

Figure 1. Evolutions of Linus’s orbital elements over 10 000 7. The solid
line in blue corresponds to results of the direct numerical simulations of the
full (unaveraged) equations of motion; the dashed lines in red correspond
to results of the averaged model. (a) Evolution of i over 10 000 T. (b)
Evolution of 2 over 10 000 T5.

direct numerical simulations of the full equations of motion includ-
ing the unaveraged solar gravity perturbation and the unaveraged
primary’s second degree-and-order gravity field. The orbital pa-
rameters of the primary in the J2000 ecliptic coordinate system are
available from the JPL Horizon service. The orbital elements of the
moonlet in the J2000 Earth equatorial-coordinate frame adopted in
this paper are from Vachier, Berthier & Marchis (2012). The derived
spin vector solution of the primary in J2000 ecliptic coordinates is
taken from Descamps et al. (2008). The primary’s heliocentric or-
bital plane is adopted as the reference plane. The duration time of
the orbital evolution is set to 10 000 T§.

The evolutions of the moonlet’s orbital elements are presented in
Fig. 1. It can be seen that the results of the averaged models show
a satisfactory approximation to those of the unaveraged model for
inclination i and right ascension of the ascending node 2. Those
two results are almost overlaid with each other. The mean €2 is about
0° and the mean i is about 9327, which meets the frozen condition
discussed in Section 3.

5 ANALYSIS OF LOCATIONS OF
ASTEROIDAL MOONLETS

After averaging, the Hamiltonian can be presented as follows

H=—p,/2a —R. ®)
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It is obvious that the averaged Hamiltonian is time independent
for asteroidal moonlets with quasi-circular orbits, so the averaged
Hamiltonian is an integral constant and represents the energy of the
averaged system. Define the Hessian matrix Hq,

2H 2H
2i2 i0Q
H, = . ©
9%H %K
Q0 Q2

If Hy is positive definite at the Laplace equilibrium, then the Hamil-
tonian H attains a local minimum at this equilibrium. If Hy is
negative definite at the Laplace equilibrium, then / attains a local
maximum at this equilibrium.

Several asteroidal moonlets 22 Kalliope’s moonlet Linus, 121
Hermione’s moonlet S/2001 (121) 1, 45 Eugenia’s moonlets Petit-
Prince and Petite-Princesse, and 216 Kleopatra’s moonlets S/2008
(216) 1 and S/2008 (216) 2 are taken as examples to analyse the
behaviours of the Hamiltonian in the parameter plane of i and €.
The eccentricity for the moonlet’s orbit is kept equal to zero, and
the semimajor axis for the moonlet’s orbit is kept as its actual
value. The orbital parameters of Linus, S/2001 (121) 1, Petit-Prince,
Petite-Princesse, S/2008 (216) 1 and S/2008 (216) 2 are taken from
Vachier etal. (2012), Descamps et al. (2009), Beauvaletetal. (2011),
Beauvalet et al. (2011), Descamps et al. (2011) and Descamps et al.
(2011), respectively. These moonlets’ orbits are all almost circu-
lar. The spin vector solutions of the primaries 22 Kalliope, 121
Hermione, 45 Eugenia and 216 Kleopatra are taken from Descamps
et al. (2008), Descamps et al. (2009), Beauvalet et al. (2011) and
Descamps et al. (2011), respectively. For the primary 22 Kalliope,
J> = 0.19 (Descamps et al. 2008); for 121 Hermione, J, = 0.28
(Descamps et al. 2009); for 45 Eugenia, J, = 0.060 (Marchis et al.
2010) and for 216 Kleopatra, J, = 0.6 (Descamps et al. 2011). It
can be seen that the primary’s J, is much larger than Earth’s J, =
1.082 63 x 1073 (Lemoine et al. 1998) and Martian J, = 1.955 45
x 1073 (Lemoine et al. 2001). Simulations of 22 Kalliope’s moon-
let Linus, 121 Hermione’s moonlet S/2001 (121) 1, 45 Eugenia’s
moonlets Petit-Prince and Petite-Princesse, and 216 Kleopatra’s
moonlets S/2008 (216) 1 and S/2008 (216) 2 are shown in Figs 2-7,
respectively.

Itis evident in Fig. 2 that six Laplace equilibrium points are found
in total in the range of i € [0, 180°] and 2 € [—180°, 180°] for 22
Kalliope’s moonlet Linus. The values of the frozen i and 2 at these

120F

Q (deg)

—-180

2
-lzoﬁw

0 60 90 120 150 180
i (deg)

Figure 2. Contours of the averaged Hamiltonian 7 in the parameter plane
of i and © for 22 Kalliope’s moonlet Linus. The thicker line in black
corresponds to Petite-Princesse’s orbit of 10 000 T. The red dots correspond
to the Laplace equilibrium points.
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1207 Lég;// g
60F |
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Figure 3. Contours of the averaged Hamiltonian 7 in the parameter plane
of i and 2 for 121 Hermione’s moonlet S/2001 (121) 1. The thicker line
in black corresponds to S/2001 (121) 1’s orbit of 10 000 7. The red dots
correspond to the Laplace equilibrium points.
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Figure 4. Contours of the averaged Hamiltonian 7 in the parameter plane
of i and €2 for 45 Eugenia’s moonlet Petit-Prince. The thicker line in black
corresponds to Petit-Prince’s orbit of 10 000 7. The red dots correspond to
the Laplace equilibrium points.
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Figure 5. Contours of the averaged Hamiltonian 7 in the parameter plane
of i and 2 for 45 Eugenia’s moonlet Petite-Princesse. The thicker line in
black corresponds to Petite-Princesse’s orbit of 10 000 7. The red dots
correspond to the Laplace equilibrium points.

Laplace equilibrium points can be obtained by solving equilibrium
solutions of equations (4) and (5), which are shown as follows:
(Q=90° i=90%; (=-90° i=90°;
(Q=0°i=9374); (2=180° i =8626);
(Q=0°i=374); (Q=180° i =176226).

According to Tremaine et al. (2009), the equilibrium points when i
= 90° are the circular orthogonal Laplace equilibrium points, and
the other four equilibrium points are the circular coplanar Laplace
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Figure 6. Contours of the averaged Hamiltonian 7 in the parameter plane
of i and Q for 216 Kleopatra’s moonlet S/2008 (216) 1. The thicker line
in black corresponds to Petite-Princesse’s orbit of 10 000 7. The red dots
correspond to the Laplace equilibrium points.
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Figure 7. Contours of the averaged Hamiltonian 7 in the parameter plane
of i and Q for 216 Kleopatra’s moonlet S/2008 (216) 2. The thicker line
in black corresponds to Petite-Princesse’s orbit of 10 000 7. The red dots
correspond to the Laplace equilibrium points.

equilibrium points. For the first four Laplace equilibrium points,
the eigenvalues of equation (6) are all pure imaginary according to
equation (7), so the elements i and 2 are all oscillatory. Thus, these
four Laplace equilibrium points are all linearly stable to variations
in 7 and 2. For other two Laplace equilibrium points, one of the
eigenvalues of equation (6) is a positive real number, so they are
unstable to variations in i and 2. Based on equation (9), the ex-
tremum properties of the linearly stable Laplace equilibrium points
are examined. For the circular coplanar Laplace equilibrium points,
the Hessian matrix Hj is negative definite according to equation (9),
so the Hamiltonian H attains a local maximum at these equilibrium
points. For the classical Laplace equilibrium (2 = 0°,i = 93°74)
and the other circular coplanar linearly stable Laplace equilibrium
(2 = 180°,i = 86226), H; is positive definite, so the Hamiltonian
‘H attains a local minimum.

Seen from Figs 3-7, there are also six Laplace equilibrium points
for 121 Hermione’s moonlet S/2001 (121) 1, 45 Eugenia’s moon-
lets Petit-Prince and Petite-Princesse, and 216 Kleopatra’s moonlets
S/2008 (216) 1 and S/2008 (216) 2: two linearly stable equilibrium
points with local minimum values of the Hamiltonian, two linearly
stable equilibrium points with local maximum values of the Hamil-
tonian and two unstable equilibrium points. It is noted from Figs 2—7
that the orbits of these actual asteroidal moonlets all lie close to the
classical Laplace equilibrium points that reach global minimum
values of the Hamiltonian 7, which means that the normal of the
averaged moonlet’s orbital plane, the primary’s spin axis and the
normal of the primary’s heliocentric orbital plane are approximately

coplanar. The reason why the orbits of asteroidal moonlets are not
exactly at the classical Laplace equilibrium points might be due
to the effect of the other perturbations. Yet, our knowledge of the
dissipative forces in these kinds of systems suggests that tides or
Yarkovsky effects alone cannot account for this. If we consider the
tidal effects between 45 Eugenia and Petit-Prince, the primary’s
tidal Love number k, of 45 Eugenia is expected to be given by
(Goldreich & Sari 2009),

R,

k, ~107° (10)

If we suppose that Petit-Prince is in a spin—orbit resonance with
respect to 45 Eugenia, we can then have an estimation of its semi-
major axis changing rate (Goldreich & Sari 2009),

lda _ ky my (R’
e SR (o (11)
a dt Q,m, \ a

where Q, is tidal quality factor, and m,, is the mass of the moonlets.
Since here we are studying the tidal evolution of the moonlet, we
have to make a few assumptions on its mass.

This formula gives a semimajor axis changing rate of about 4 m
per century, far from enough to explain a drift from the equilibrium
point if the satellite has been captured or formed there. It can also
be seen from here that the effect of the Petit-Prince’s mass on the
mutual orbit is marginal. Concerning the Yarkovsky effect, we can
compare the satellites of 45 Eugenia to those of Mars. This effect
depends mainly on the distance between the Sun and the small ob-
jects considered. In the case of Phobos and Deimos, the diurnal
Yarkovsky effect is negligible on the evolution of the satellites, a
few centimetres of semimajor axis change on one million years
(Tajeddine, Lainey & Hestroffer 2011). 45 Eugenia being even far-
ther from the Sun, we can safely neglect the Yarkovsky effect on
the evolution of 45 Eugenia’s satellites. The mechanism prevent-
ing the satellites from reaching the equilibrium points, or drifting
them from it, is still to be determined, but their proximity to these
points is a clear indication that these points are still important in
the dynamics of the satellites and are good approximation of their
position.

6 CONCLUSIONS

In this study, the potential locations of asteroidal moonlets with
quasi-circular mutual orbit are investigated. By analysing frozen
solutions of the averaged equations of motion, we found that the
orbits of several actual moonlets lie close to one type of frozen so-
lutions that are called the classical Laplace equilibrium points. The
normal of the mean orbital plane of the moonlet, the primary’s spin
axis and the normal of the primary’s heliocentric orbital plane are
found to be approximately coplanar, which is generally consistent
with the previous studies (Fahnestock & Scheeres 2008; Boué &
Laskar 2009). Even though no clear mechanism can explain the
small difference between the satellites’ current position and the
equilibrium points, they are good enough approximation for the
satellites position. The positions of these points do not depend on
any a priori hypothesis on the moonlet’s shape or mass apart from
the fact that its mass is negligible with respect to the primary.

To determine those equilibrium positions, we need to know the
orientation of the primary’s spin pole, the primary’s mass, the J,
coefficient and the moonlet’s orbital size. The orientation of the
primary’s spin pole can be estimated from light-curve inversion in
the case of 45 Eugenia for example (Taylor et al. 1988). Prior to the
discovery of a satellite or a probe’s fly-by, there is no possibility to
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determine precisely the mass of the primary. Yet, from the spectra,
we can make assumptions on the primary’s density and hence its
mass. Its light curve can then provide its shape (Carry et al. 2012)
and its polar oblateness (Turcotte & Schubert 2002). Most high-ratio
systems being compact, we can assume that the satellite would be
at most at a distance of a few per cent of the primary’s Hill radius.
A supposed semimajor axis in this range would then be a good first
approximation. A systematic investigation around these equilibrium
points may then lead us to discover these satellites.
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