Tilings, Quasicrystals, Discrete Planes, Generalized Substitutions, and Multidimensional Continued Fractions - Archive ouverte HAL
Communication Dans Un Congrès Discrete Mathematics and Theoretical Computer Science Année : 2001

Tilings, Quasicrystals, Discrete Planes, Generalized Substitutions, and Multidimensional Continued Fractions

Pierre Arnoux
  • Fonction : Auteur
  • PersonId : 843356
Valerie Berthe
Hiromi Ei
  • Fonction : Auteur
Shunji Ito
  • Fonction : Auteur

Résumé

The aim of this paper is to give an overview of recent results about tilings, discrete approximations of lines and planes, and Markov partitions for toral automorphisms.The main tool is a generalization of the notion of substitution. The simplest examples which correspond to algebraic parameters, are related to the iteration of one substitution, but we show that it is possible to treat arbitrary irrationalexamples by using multidimensional continued fractions.We give some non-trivial applications to Diophantine approximation, numeration systems and tilings, and we expose the main unsolved questions.
Fichier principal
Vignette du fichier
dmAA0104.pdf (390.03 Ko) Télécharger le fichier
Origine Fichiers éditeurs autorisés sur une archive ouverte
Loading...

Dates et versions

hal-01182971 , version 1 (06-08-2015)

Identifiants

Citer

Pierre Arnoux, Valerie Berthe, Hiromi Ei, Shunji Ito. Tilings, Quasicrystals, Discrete Planes, Generalized Substitutions, and Multidimensional Continued Fractions. Discrete Models: Combinatorics, Computation, and Geometry, DM-CCG 2001, 2001, Paris, France. pp.59-78, ⟨10.46298/dmtcs.2291⟩. ⟨hal-01182971⟩
193 Consultations
924 Téléchargements

Altmetric

Partager

More