Computing Minimal Generating Sets of Invariant Rings of Permutation Groups with SAGBI-Gröbner Basis - Archive ouverte HAL
Communication Dans Un Congrès Discrete Mathematics and Theoretical Computer Science Année : 2001

Computing Minimal Generating Sets of Invariant Rings of Permutation Groups with SAGBI-Gröbner Basis

Nicolas M. Thiéry

Résumé

We present a characteristic-free algorithm for computing minimal generating sets of invariant rings of permutation groups. We circumvent the main weaknesses of the usual approaches (using classical Gröbner basis inside the full polynomial ring, or pure linear algebra inside the invariant ring) by relying on the theory of SAGBI- Gröbner basis. This theory takes, in this special case, a strongly combinatorial flavor, which makes it particularly effective. Our algorithm does not require the computation of a Hironaka decomposition, nor even the computation of a system of parameters, and could be parallelized. Our implementation, as part of the library $permuvar$ for $mupad$, is in many cases much more efficient than the other existing software.
Fichier principal
Vignette du fichier
dmAA0123.pdf (128.31 Ko) Télécharger le fichier
Origine Fichiers éditeurs autorisés sur une archive ouverte
Loading...

Dates et versions

hal-01182965 , version 1 (06-08-2015)

Identifiants

Citer

Nicolas M. Thiéry. Computing Minimal Generating Sets of Invariant Rings of Permutation Groups with SAGBI-Gröbner Basis. Discrete Models: Combinatorics, Computation, and Geometry, DM-CCG 2001, 2001, Paris, France. pp.315-328, ⟨10.46298/dmtcs.2285⟩. ⟨hal-01182965⟩
145 Consultations
1164 Téléchargements

Altmetric

Partager

More