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THE CUBIC SZEGO EQUATION WITH A LINEAR PERTURBATION
HAIYAN XU

AssTtrAcT. We consider the following Hamiltonian equation on the L? Hardy space on the
circle S!,

i0u = T(Jul*u) + a(u|]l) ,a € R, 0.1)
where I1 is the Szegd projector. The above equation with @ = 0 was introduced by Gérard and
Grellier as an important mathematical model [5, 7, 3]. In this paper, we continue our studies
started in [22], and prove our system is completely integrable in the Liouville sense. We
study the motion of the singular values of the related Hankel operators and find a necessary
condition of norm explosion. As a consequence, we prove that the trajectories of the solutions
will stay in a compact subset, while more initial data will lead to norm explosion in the case
a>0.

1. INTRODUCTION
The purpose of this paper is to study the following Hamiltonian system,
i0u = I(lul*u) + au|l), xeS', teR, aeR. (1.1)

where the operator II is defined as a projector onto the non-negative frequencies, which is
called the Szeg6 projector. When a = 0, the equation above turns out to be the cubic Szeg6
equation,

i0u = I(|lul*u) , (1.2)

which was introduced by P. Gérard and S. Grellier as an important mathematical model of the
completely integrable systems and non-dispersive dynamics [5, 7]. For @ # 0, by changing
variables as u = V]a|it(Je|t), then i satisfies

i0,it = TI(|i|* i) + sgn(a)(@|1) . (1.3)
Thus our target equation with @ # 0 becomes

iOu = T(JulPu) £ 1) . (1.4)

1.1. Lax Pair structure. Thanks to the Lax pairs for the cubic Szegd equation (1.2) [7], we
are able to find a Lax pair for (1.1). To introduce the Lax pair structure, let us first define
some useful operators and notation. For X ¢ D'(S'), we denote

X (8" = {u(e”) € X, u(e”) = Z (ke } . (1.5)

k>0

2010 Mathematics Subject Classification. 35Q55, 35B40.
Key words and phrases. cubic Szegb equation, integrable system, Hamiltonian system, energy cascade.
This work was supported by grants from Région Ile-de-France (RDMath - IdF). .

1



For example, L2 denotes the Hardy space of L? functions which extend to the unit disc
D ={z € C, |z] < 1} as holomorphic functions

u@) = ) al, ) NakP < co. (1.6)

k>0 k>0

Then the Szegd operator IT is an orthogonal projector L*(S') — L2(S).

Now, we are to define a Hankel operator and a Toeplitz operator. By a Hankel operator
we mean a bounded operator I" on the sequence space £> which has a Hankel matrix in the
standard basis {e;} >0,

(reja € ) = )’j+k, j’ k > 0 ) (17)

where {y} >0 1s a sequence of complex numbers. More backgrounds on the Hankel operators
can be found in [20].
Let S be the shift operator on ¢?,

Sej:€j+l’ ]ZO
It is easy to show that a bounded operator I" on ¢? is a Hankel operator if and only if

ST=TS . (1.8)

1
Definition 1.1. For any given u € HX(S"), b € L™(S"), we define two operators H,, T}, :
L2 — L2 as follows. Forany h € L2,

H,(h) = T(uh) , (1.9)
Ty(h) = I1(bh) . (1.10)
Notice that H, is C—antilinear and symmetric with respect to the real scalar product
Re(u|v). In fact, it satisfies
(H,(h)lh2) = (H,(ho)lhy)

T, is C—linear and is self-adjoint if and only if b is real-valued.
Moreover, H, is a Hankel operator. Indeed, it is given in terms of Fourier coefficients by

H)K) = atk+ Oh(L)

>0
then
S H(h) = » atk+ DOh(O)S e = > atk+ £+ Di(t)e, .

k,€>0 k,£20

HiSh = 3 aWed@ecs = Y ilk+C+ DiOer
k0,620 kL0
which means S*H, = H,S, thus H, is a Hankel operator. We may also represent 7}, in terms
of Fourier coeflicients,
Ty(hk) = > bk - Oh(t) ,
=0
then its matrix representation, in the basis e, k > 0, has constant diagonals, 7}, is a Toeplitz

operator.
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We now define another operator K, := T7H,,. In fact T is exactly the shift operator S as
above, we then call K, the shifted Hankel operator, which satisfying the following identity
K2=H—(-|uu. (1.11)
Using the operators above, Gérard and Grellier found two Lax pairs for the Szeg6 equation
(1.2).
Theorem 1.1. [5, Theorem 3.1] Let u € C(R, H:(SY)) for some s > 1/2. The cubic Szegé
equation (1.2) has two Lax pairs (H,, B,) and (K,, C,), namely, if u solves (1.2), then
dH,
dt

dk,
= [BLHHM] > 7 = [Cu’Ku] s (112)

where . .
l l
B, := EHL% —ilyp , Cy = EKL% = iTyp -

For a # 0, the perturbed Szegd equation (1.1) is globally well-posed and by simple calcu-
lus, we find that (H,, B,) is no longer a Lax pair, in fact,

dH,

dt
Fortunately, (K,, C,) is still a Lax pair.

= [B,,H,] —ia(u|1)H, . (1.13)

Theorem 1.2. [22] Given uy € Hé (SY), there exists a unique global solution u € C(R; Hé)
of (1.1) with uy as the initial condition. Moreover, if uy € H:(S') for some s > %, then
u € C*(R; HY). Furthermore, the perturbed Szegd equation (1.1) has a Lax pair (K,, C,),
namely, if u solves (1.1), then
dK,
dt

An important consequence of this structure is that, if « is a solution of (1.1), then K, is
unitarily equivalent to K,,. In particular, the spectrum of the C-linear positive self-adjoint
trace class operator K> is conserved by the evolution.

Denote

= [Cu, Ku] - (1.14)

L(N) :={u:1k(K,) = N,N € N*} . (1.15)

Thanks to the Lax pair structure, the manifolds £(N) are invariant under the flow of (1.1).

Moreover, they turn out to be spaces of rational functions as in the following Kronecker type
theorem.

Theorem 1.3. [22] u € L(N) if and only if u(z) = % is a rational function with

A,B € Cylz],AAB=1,deg(A) = N or deg(B) =N,B'({0)nD =0,
where A A B = 1 means A and B have no common factors.

Our main objective of the study on this mathematical model (1.1) is on the large time
unboundedness of the solution. This general question of existence of unbounded Sobolev
trajectories comes back to [ 1], and was addressed by several authors for various Hamiltonian
PDEs, see e.g. [2, 6, 12, 13, 14, 11, 15,16, 17,19, 21]. We have already considered the case

with initial data uy € £(1) and found that
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Theorem 1.4. [27] Let u be a solution to the a—Szegd equation,
i = (lulu) + al), @ =R,
u(0, x) = uop(x) € L(1).

For a < 0, the Sobolev norm of the solution will stay bounded, uniform if uy is in some
compact subset of L(1),

(1.16)

llu(H)||gs < C, C does not depend on timet, s >0 .

For a > 0, the solution u of the a—Szegd equation has an exponential-on-time Sobolev
norm growth,

1
@l = e 5> 5. €00, il = eo. (1.17)

if and only if
1 1
E,=-0"+=0, 1.18
79+ 50 (1.18)
with E, and Q as the two conserved quantities, energy and mass.

1.2. Main results. We continue our studies on the cubic Szegd equation with a linear per-
turbation (1.1) on the circle S' with more general initial data uy € £(N) for any N € N*,

Firstly, the system is integrable since there are a large amount of conservation laws which
comes from the Lax pair structure(1.14).

Theorem 1.5. Let u(t, x) be a solution of (1.1). For every Borel function f on R, the follow-
ing quantity

Ly(u) := (F(KDulu) - o F(K)1I1)

is conserved.

Let O'i be an eigenvalue of K2, and f be the characteristic function of the singleton {o2},

then

Gu) = gl = allviIl®
is conserved, where u;, v, are the projections of u and 1 onto ker(K> — 0',%), and || - || denotes
the L>—norm on the circle. Generically, on the 2N + 1-dimensional complex manifold £(N),
we have 2N + 1 linearly independent and in involution conservation laws, which are o, 1 <
k < Nand<{,, 0 <m < N. Thus, the system (1.1) can be approximated by a sequence of
systems of finite dimension which are completely integrable in the Liouville sense.

Secondly, we prove the existence of unbounded trajectories for data in L(N) for any arbi-
trary N € N*. One way to capture the unbounded trajectories of solutions is via the motion
of singular values of H? and K?2. In the case with @ = 0, all the eigenvalues of H> and K>
are constants, but the eigenvalues of H> are no longer constants for @ # 0, which makes the
system more complicated.

By studying the motion of singular values of H, and K,, we gain that the necessary con-
dition and existence of crossing which means the two closest eigenvalues of H, touch some
eigenvalue of K, at some finite time. A remarkable observation is that the Blaschke products
of K, never change their S! orbits as time goes.

The main result on the large time behaviour of solutions is as below.
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Theorem 1.6. Let uy € L(N) for any N € N*,
If @ < 0, the trajectory of the solution u(t) of the a—Szegd (1.1) stays in a compact subset
of L(N). In other words, the Sobolev norm of the solution u(t) will stay bounded,

(|| < C, C does not depend on time t, s >0 .

While for a > 0, there exists uy € L(N) which leads to a solution with norm explosion at
infinity. More precisely,

Co(2s=1)lt|

N =

lu(||lgs = e , 1 — 00, Vs>
Remark 1.1.

1. In the case a = 0, there are two Lax pairs, the conserved quantities are much simpler,
which are the eigenvalues of H> and K>. While in the case a # 0, the eigenvalues of H> are
no longer conserved, which makes our system more complicated.

2. For the cubic Szegd equation with a = 0, Gérard and Grellier [4] have proved there exists
a Gs dense set g of initial data in C := N H’, such that for any v € g, there exist sequences
of time t, and t,, such that the corresponding solution v of the cubic Szegé equation

0y = IL.(V*) , v0) = v, (1.19)
satisfies
1 )5
Vr>—,VM21,M L n— 0, (1.20)
2 |2, 1M
while
V(t,) = Vo inCs,n— . (1.21)

Here, by considering the rational data in the case @ # 0, we proved the existence of solutions
with exponential growth in time rather than lim sup.

There is another non dispersive example with norm growth by Oana Pocovnicu [21], who
studied the cubic Szegd equation on the line R, and found there exist solutions with Sobolev
norms growing polynomially in time as |t|**~! with s > 1/2.

3. For the case @ > 0, we now have solutions of (1.1) with different growths, uniformly
bounded, growing in fluctuations with a lim sup super-polynomial in time growth, and expo-
nential in time growth. Indeed, it is easy to show that zu(t,z*) is a solution to the a—Szegd
equation if u(t, z) solves the cubic Szegd equation (1.19). Thus, for the cubic Szegd equation
with a linear perturbation (1.1), there also exist solutions with such an energy cascade as in
(1.20) and (1.21).

4. In this paper, we consider data in L(N) for any arbitrary N € N*. The data we find which
lead to a large time norm explosion are very special. An interesting observation is that the
equations on w,_and v, look similar to the original a—Szegd equation,

0 (u, [ Tup a(u|l) u
— = - 1 1.22
ot (v,’{) ! (—(1|u) T — 0 vi)’ (1.22)

which gives us some hope to extend our results to general rational data.
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1.3. Organization of this chapter. In section 2, we recall the results about the singular
values of H, and K, [9]. In section 3, we introduce the conservation laws and prove the
integrability. In section 4, we study the motion of the singular values of the Hankel operators
H, and K, the eigenvalues of H, move and may touch some eigenvalue of K, at finite time
while the eigenvalues of K, stay fixed with the corresponding Blaschke products stay in the
same orbits. In section 5, we present a necessary condition of the norm explosion, and as
a direct consequence, we know that for @ < 0, the trajectories of the solutions stay in a
compact subset. In section 6, we study the norm explosion with @ > 0 for data in L(N) with
any N € N*. We present some open problems in the last section.

2. SPECTRAL ANALYSIS OF THE OPERATORS H,, AND K,

In this section, let us introduce some notation which will be used frequently and some

useful results by Gérard and Grellier in their recent work [9]. We consider u € H:(S') with

s > % The Hankel operator H, is compact by the theorem due to Hartman [18]. Let us

introduce the spectral analysis of operators H> and K>. For any 7 > 0, we set
E,(7) := ker(H, — 7°1), F,(7) := ker(K,, — 7°I) . 2.1)
If > 0, the E,(7) and F,(7) are finite dimensional with the following properties.
Proposition 2.1. [9] Let u € HS(S') \ {0} with s > 1/2, and T > 0 such that
E,(t)#{0} or F,(r)+{0}.

Then one of the following properties holds.

(1) dimE,(r) =dimF,(t)+ 1, u L E (1), and F, (1) = E,(T) Nu*.
2) dmF,(t) =dimE,(7t)+ 1, u L F,(7), and E,(7) = F,(7) N u*.

Moreover, if u, and u, denote respectively the orthogonal projections of u onto E,(p), p €
2y(w), and onto F (o), o € Zg(u) with

2pw) ={t>0: u L E,(1)}, Zx(w):={r=20: ut F,(1)}.

Then
(1) X4(u) and Zk(u) are disjoint, with the same cardinality;
(2) ifp € Zp(w),
Uty
= gl pr— 2.2)
oeXk(u)
(3) if o € Zg(u),
u
e T R (2.3)
pesaw P 77

(4) A non negative number o belongs to X (u) if and only if it does not belong to Xy(u)

and
et I®
2, ==l 2.4)
PeZH(u)p
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By the spectral theorem for H> and K>

-, which are self-adjoint and compact, we have the
following orthogonal decomposition

Li = 69'r>OE‘Lt(T) = 69‘rZOF‘u(T) . (25)
Then we can write u as
u= Zup: Zu; (2.6)
PEX (1) oeZk(u)

In fact, we are able to describe these two sets E,(7) and F,(7) more explicitly. Recall that
a finite Blaschke product of degree k is a rational function of the form

)
D(z)’

where y € S! is called the angle of ¥ and P is a monic polynomial of degree k with all its
roots in D, D(z) = ZP (%) as the normalized denominator of ¥. Here a monic polynomial is
a univariate polynomial in which the leading coeflicient (the nonzero coefficient of highest
degree) is equal to 1. We denote by By, the set of all the Blaschke functions of degree k.

Y(z)=e

Proposition 2.2. [9] Let T > 0 and u € H:(S") with s > %

(1) Assume T € Zy(u) and € := dim E, () = dim F,(7) + 1. Denote by u. the orthogonal
projection of u onto E, (7). There exists a Blaschke function ¥, € B,y such that

TUr = lP‘r[—[u(l/t‘r) s

and if D denotes the normalized denominator of Y-,

Eu(T) = {%Hu(u‘r) » f € Ct’—l[z]} » (27)
FM(T) = {%Hu(u‘r) » 8§ € Ct’—Z[Z]} > (28)
andfora=0,....6—-1,b=0,...,0-2,
i B it {—a-1
H, (D(z) Hu(u‘r)) = 1€ ) H,(u,) , (2.9)
Zb i Zt’—b—Z
K, (%Hu(u‘r)) = TC D(Z) Hu(u‘r) s (210)

where . denotes the angle of Y.
(2) Assume T € Xx(u) and m := dim F,(7) = dim E, (1) + 1. Denote by u'. the orthogonal
projection of u onto F, (7). There exists an inner function ¥, € 8B,,_| such that

K, () = ¥,

and if D denotes the normalized denominator of Y-,

I
Fu(T) - {D(Z) u,, f € Cm—l[z]} > (211)
E (1) = {DZTS;)M; g€ Cm—z[Z]} ; (2.12)

7



and, fora=0,....m—-1,b=0,...,m-2,

Za ) Zm—a—l
K, (—u;) = eV ——nu, (2.13)
D(z) D(z)
b+1 m—b—1
Z v L
H/(|—u| = eV —u, 2.14
(D(z)”f) DG 19

where . denotes the angle of Y.

We call the elements p; € Xy(u) and o € Zg(u) as the dominant eigenvalues of H, and
K, respectively. Due to the above achievements, they are in a finite or infinite sequence

p1>01>p>0,>-—>0,
we denote by £; and my, as the multiplicities of p; and o7 respectively. In other words,
dimE,(pj) =¢;,
dim F, (o) = my .

Therefore, we may define the dominant ranks of the operators as

tka(H,) = ) €,
J

tkq(K,) := Z my ,
%

while the ranks of the operators are

tk(H,) = D 6+ D m = 1),
7 k

rk(K,) = Z(fj )+ Z m .
7 k

In this paper, u; and u; denote the orthogonal projections of u onto E,(p;) and F,(co)
respectively, while v; and v; denote the orthogonal projections of 1 onto E,(p;) and F, (o).
The L*~norms of u; and u} can be represented in terms of p,’s and o/’s, which was already
observed in [8].

Lemma 2.1. Let u € H? (SH, Zpu) = {pj} and Zg(u) = {0} with

P1>01>py > 2 0.

Then
H(p2 - 0-{7 H(p[ - O-k
il = ——, gl = ————
Y H(p2 T e -
t#j t+k
Proof. First, we have
- X073

1
(I -xHH 1 [1)= .

U 1 - xp7
8



In fact, we can rewrite the left hand side as

2
w+mﬁﬂm=2”w 1—an

¢

From Proposition 2.2,

_ (1 H,(u;) \ H,(u;j)

! H )l IH )l
combined with W ;H,(u;) = pju;, we get

(L H )P I(H(D, upP gl

vili? =

||HLl(uj)||2 B p?”l/l]”z B p?
Thus )
l_l 1 = xo7 _ Z el B Z ||bt€||2
ol =xop G pp(1 = xpp)

We get, identifying the residues at x = 1/p7,

H(p2 - 0-5

lufll? = —5—-
" H(P2
l#]

On the other hand, since
1

= =K ) = T

then , ,
el 5 o 1 — xp?
I —x(; el —;uukn )= ]:[ et
we get, identifying the residues at x = 1/07,
[167 - o}
gl = 1_1(2—

3. CONSERVATION LAWS AND THE —SZEGO HIERARCHY
We endow L?(S') with the symplectic form
w(u,v) = 4m(u | v) .

Then (1.1) can be rewritten as
o = Xg,(u),

(2.15)

(2.16)

(3.1)

with Xz, as the Hamiltonian vector field associated to the Hamiltonian function given by

1 dd «a
E,(u) :=- D).
@ i=g [wrS + Sy
S]



The invariance by translation and by multiplication by complex numbers of modulus 1 gives
two other formal conservation laws

do
mass: O(u) := f'mzﬂ = lull?,
sl

momentum: M(u) := (Dulu), D := —idy = z0, .

Moreover, the Lax pair structure leads to the conservation of the eigenvalues of K>. So it
is obvious the system is completely integrable for the data in the 3—dimensional complex
manifold £(1). Then what about the general case, for example in L(/N) with arbitrary N €
N*? Fortunately, we are able to find many more conservation laws by its Lax pair structure
(1.14). We will then show our system is still completely integrable with data in £(N) in the
Liouville sense.

3.1. Conservation laws. Thanks to the Lax pair structure, we are able to find an infinite
sequence of conservation laws.

Theorem 3.1. For every Borel function f on R, the following quantity
Ly(u) = (f(KDulu) — o fKD1IN)
is a conservation law.

Proof. From the Lax pair identity

dkK,
dt

we infer

d
EK,E = [~iTyp, K21,

and consequently, for every Borel function f on R,

d )
—f (KD = [=iTp, fKD].
On the other hand, the equation reads
d

—u = —iT,pu —ia(ull) .

dt
Therefore we obtain

%(f(Ki)ulu)

(=T e, SR ult) = i( fRDTpule) + i(ul f (KT o)
—ie(ulD)( FRD(Dlue) + iee(Hu)( FKD )1
—ia| (FRDOIHwu) = (Huyul FKMD)|

Now observe that

(wu = HX(1) = K2(1) = Tp,p(1) = K2(1) .
10



‘We obtain

d
—(fEDulu) = ~ia| (FEDOITpD) = (T (DIFEDD))]
a([=iTyp, FKDIDI)

o (FKDDN).

3.2. The a—Szego hierarchy. By the theorem above, for any n € N,
Ly(u) := (K" (u) | u) = (K" (D | 1)

is conserved. Then the manifold £(N) is of 2N + 1— complex dimension and admits 2N + 1
conservation laws, which are

O, k:],...,NandLn(u), n:O,l,...,N.

We are to show that all these conservation laws are in involve. Since the o ’s are constants,
it is sufficient to show that all these L, satisfy the Poisson commutation relations

{Lp, Ly} =0. (32)

Let us begin with the following lemma which helps us better understand the conserved
quantities.

Lemma 3.1. Let u € H%(Sl), 2u(u) = {p;} and Tg(u) = {o} with

p1>0'1>p2>“‘20.

Denote

Jow) = (1-xHH)™'(D|1),

Z@w) = (111 -xH) " W),

Fuw = ((1-xK) "W u),

E«w) = (1-xK)'(D]1).
Then

_Juw) -1
F’“(u)_—xjx(u) , (3.3)
|1Z(w)]*

E(u) = J.(u) - (3.4)

@
Proof. Recall (1.11), for any f € H?, we have
Kuof = Hyf = (f L.

Denote

w(f) = (1= xH)™'(f) = (1 = xK)7'(f) (3.5)
11



then
w(f) = x(f 1 (1= xK)™ )1 = xH2) ™ ()
= x(f | (1 = xH})™ )1 = xK2) ™" (u) .

We may observe the two vectors (1 — xH?)"!(u) and (1 — xK?)~!(u) are co-linear,

(1 —xK>)""(u) = A(l = xH>)'(u), A€R. (3.6)
Let us choose f = u, then
(W) [u) = (1= A = xHD) ) | u) = Ax(u | (1 - ng)-l(u))2 . (3.7)

We are to calculate the factor A. Since
Al (1= xH) " @) = x(11(1 - xH) " HX(1))
— Z n+1 H2(n+1)(1) | 1 an(Hin(l) | 1) —1=J,-1,

n>0 n>0

thus (3.7) yields

—A=(,-DA,
which means )
A=—.
Jy
So (3.6) turns out to be
241 1 241
(1-xK,) " () = J—(l - xH;) (u), (3.8)

X

then combined with the definition of w(f), we have
(1= xH)™'(f) = (1 = xK))7'(f) = Ji(f | = xH) ) = xH) @) (3.9)
Using the equality (3.8),

Fi= ((1 ~ KD 1) = (1~ <2 @) )
Jo—1
" x )( Xy
Now, we turn to prove (3.4). Use again (3.5) with f =1,
(wDIt) = (1 =xH)™ (D) = (1 2K (DIL) = L~ E,

= (111 = xH) "' ()((A = xK2) ' (DI1) = 2Z,((1 - xKD ' w)l1) ,

J(x)
(1= xH) " Hy(1) | 1) =

plugging (3.6),

1 Z,
251 _ 2
(1 =xK) ) = Jx(( —xHol) = 7+

then i

—Z _ |2
Jo—E. =x2,— = , 3.10
S (3.10)
which leads to (3.4). O

12



Now, we are ready to show the following cancellation for the Poisson brackets of the
conservation laws.

Theorem 3.2. For any x € R, we set
L) = (1 = xK) ") [u) —a((1 - xK) 7' (1) [ 1),
Then L,(u(t)) is conserved, and for every x,y,

{Ly, L,}=0. (3.11)
Proof. Using the previous Lemma, we may rewrite
1 1
L.,=—-(1-—)-aE,, (3.12)
X J
with
Jw) = (A =xHH D[ 1) =1+ x((0 = xH) " (w) | u),
Z.(u)?
E, ) = (1 - xK2 ()] 1) = () — 0200
J(u)
Zo(u) ;= (1 (1 = xH>) ' (w)) .
Recall that the identity
/s, Jy}:() (3.13)
which was obtained in [5, section 8]. We then have
— oY 2 _ 2 2
(Lo, L} = of - a7, e ) = St 12 )+ @AEx, Ey) . (3.14)
Let us first prove that {E,, E,} = 0. Notice that
E(u) = J(S7u), (3.15)
therefore

dE,(u)-h =dJ(S*u)- (S*h) = w(S"h, X, (S*u)) = w(h,S X, (S u)) .
We conclude
Xg,(u) = S$X,(s°U) ,
thus
{Ex, EJ(u) = dEy(u) - Xg (u) = dJy(S"u) - ™S X, (S u)
=dJ,(Su) - X;.(S"u) ={J, ,}(S"u) =0.
We now show that the coefficient of @ in (3.14) vanishes identically. It is enough to work
on the generic states of £(N), so we can use the coordinates
O1 - PN+, T1s - S ON @1 N1, O1, -, Oy)

for which we recall that
N+l 2

N 2
Pj Tk
= d(=)ANdy; + d(—=) A db, .
w ;(2> °) ;(2) k
Moreover, we have ’
pju;=e Y H,(u)),
13



therefore,

S gl
Ziw = ) —L e
j=1 p}(l - xpj)
Since
[T (1 = x02)
Jw) = —
(1 - j)
we know that 5
xJ,
JX9 i = T 5 >
{ on} 1 _ xp?
and we infer
N+1 2 .
173 - 2ixJ,
{Je, Z,} = 2ixJ, e = (xZ, —vZ,) . (3.16)
’ Z 4 pi(1 = xp2)(1 = yp?) x—y ’
Consequently,
) — 4], —
{Js, |Zy| } = 2Re(Zy{Jx’ Zy}) == _yIm(Zny) . (317)
We conclude that
y 2 X 2 Xy
——\{J,, 1Z,|’} - ——{J,, |Z, -———(Im(Z,Z,) + Im(Z,Z,)) = 0. 3.18
xJ)%Jy{ 1Z,|°} ny2Jx{y| I} = (_)JJ(m( ) +Im(Z,Z,)) = (3.18)
This completes the proof. O

The last part of this section is devoted to proving that functions (L, (#))o<,<y are generically
independent on £L(N). Actually, it is sufficient to discuss the case |a| << 1. For a small
enough, we may consider the term a(K>"(1)|1) as a perturbation, then we only need to study
the independence of F, := (K,f”(u)lu). Using the formula (3.12), forany 0 <n < N,

Fo=Ju — Z FiJj,

k+j=n
j=1,k>0

with J, = (H,f”1|1). Assume there exists a sequence ¢, such that

chF,,ZO,

n>0

we are to prove that ¢, = 0. Indeed,

ch n+l — Z Z IV Z(C" Z Corkr1 Fi) i1 = 0,

n>0 n>0 k+j=n 0<k<N—-(n+1)
Jj=1,k=0

since all the J,,, are independent in the complement of a closed subset of measure 0 of L(N)
[5], then for every n,
Cn— Z Crskr1 Fe = 0.
0<k<N—(n+1)

Thus cy = cy_1 =+ =¢9 =0.
14



Finally, we now have 2N + 1 linearly independent and in involution conservation laws
on a dense open subset of 2N + 1 dimensional complex manifold £(N), thus our system is
completely integrable in the Liouville sense.

4. MULTIPLICITY AND BLASCHKE PRODUCT

Recall the notation in section 2, there are two kinds of eigenvalues of K, some are the
dominant eigenvalues of K,,, which are denoted as o, € Zx(u), while the others are the dom-
inant eigenvalues of H, with multiplicities larger than 1. Let us denote u(¢) as the solution of
the a—Szegd equation with a # 0. Fortunately, we are able to show that for almost all # € R,
the Hankel operator H,, has single dominant eigenvalues with multiplicities equal to 1. In
other words, for almost every time 7 € R,

rdeu(t) = I‘kKu(t) = I‘kKuO .
We call the phenomenon that H,,,, has some eigenvalue o~ with multiplicity m > 2 as cross-
ing at o at ty.
4.1. The motion of singular values. Let us first introduce the following Kato-type lemma.

Lemma 4.1 (Kato). Letr P(t) be a projector on a Hilbert space H which is smoothint € I,
then there exists a smooth unitary operator U(t), such that

P = U@0OPOU" (@),

and
LU0 = 00U, VO =14, @.1)
with Q(t) = [P'(t), P(?)].

Proof. By simple calculus, we can prove Q" = —Q. Since P(¢) is smooth in time, then by the
Cauchy theorem for linear ordinary equations, U(¢) is well defined. The unitary property of
U () for every ¢ is a consequence of the anti self-adjointness of Q.

d d d
dt(U()U()) dtUU+UdtU UQu+U0'QU =0,

thus U()*U(¢) = Id. On the other hand,
d d d
—UmnUM®) ==UU"+U=U"=QUU"-UUQ.
dt( OU@)") 7 tU 0 0

It is obvious that Id is a solution to the linear equation %A = QA — AQ with A(0) = 1d, using
the uniqueness of solutions, we have U(#)U*(t) = Id. We now prove that U*(¢#)P(t)U(¢t) does
not depend on ?.

d * _ i * * i * i
E(U @OPOU()) = dtU @OPOU@) + U (1) dtP(t)U(t) + U ()P(2) dtU(t)
= U*Q"PU + U*P'U + U*PQU
= U*(P’ + [P,Q)U
= U*(P' - PP - P'P)U =0

where we have used P?> = P. This completes the proof. O
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If uy € H{ with s > 1, then the solution u(t) of the a—Szegd equation (1.1) is real analytic
in t valued in H3. By the Lax pair for K, we know that the singular values of K, are fixed,
with constant multiplicities.

Proposition 4.1. Given any initial data uy € H} with s > 1, let u be the corresponding
solution to the a—Szegd equation. Let o > 0 be a singular eigenvalue of K, with multiplicity
m, and write
o.>0>0_
where o, o _ are the closest singular values of K,,, possibly, o, = +0o or o_ = 0. Then one
of the following two possibilities occurs.
(1) o is a singular value of H,y with multiplicity m + 1 for every time t, and u is a
solution of the cubic Szegd equation (1.2).
(2) There exists a discrete subset T, of times outside of which the singular values of H
in the interval (o_,0 ) are py, p> of multiplicity 1, and o of multiplicity m — 1 if
m > 2, with
pP1>0>pPo,
and py, p, are analytic on every interval contained into the complement of T...

Proof. Let us assume that o is a singular value of multiplicity m + 1 of H,,, for some time
to. Then we may select 6 > 0 and € > 0 such that

O,>0+€>0>0—€>0_

such that, for every t € [ty — 8, ty + 5], 0> — € and o + € are not eigenvalues of Hﬁ(t). Then we

know that H  has either o> as an eigenvalue of multiplicity m+1, or admits in (0> ~€, 0> +€)

two eigenvalues of multiplicity 1, p;, p, on both sides of o. Set
P(t) := (2im)™"! f (zld - Hy,) dz . (4.2)
C(o2,€)

We know that P() is an orthogonal projector, depending analytically of ¢ € (t) — 6,1y + 9),
and that P(#,) is just the projector onto

E(ty) := ker(H?

Consider the selfadjoint operator

= o’1d) .

A(t) := Hy, P(t)
acting on the (m + 1)-dimensional space E(t) = RanP(t). Then its characteristic polynomial
is
P(A, 1) = (0% — )" (A + a(®)A + b(1)) ,
where a, b are real analytic, real valued functions, such that
@ —4b>0.

Notice that the condition a(r)* — 4b(t) = 0 is precisely equivalent to the fact that H;, has o>
as an eigenvalue of multiplicity m + 1. Since this function is analytic, it is either identically
0, or different from O for O < |t —#| < 6 and 6 > 0 small enough. Moreover, by the following
perturbation analysis, the first condition only occurs if
(Hu(r)) = 0
16



for every t € () — 0, tp + 0). Since (1|u) is a real analytic function of ¢, this would imply that
it is identically O, whence u is a solution of the cubic Szeg6 equation. We now come back
to the perturbation analysis, let U(f) be a unitary operator given as in the Kato-type lemma
above, denote

B(r) = U'(DAOU(1) ,
then

B(ty) = 0 °1dP(t) -

Let us calculate the derivative of B, we find

d d d
— B = — (U (0Hy, UOU (0P U®) = — (U0 Hy UWP(0)) -

Since —U (1) = Q(t)U (r) with Q(¢t) = [P'(t), P(t)], then

d d
—B() = U(— - Hu + Higy, QO1)UP(to) ,

using (1.13),

—Hiy = By Hyl = iau)H H, + ia(1)H,H, .

For any hy, h, € E(ty),
([Bu, HY1, ho) + ([H, Qlhy, hy) = 0
then

d
(ZIB(IO)hl, hy) = —ia[(u(to)|1)(h|u(to))(1|hy) — (L|u(to))(u(to)|hy)(hi|1)] .

Denote by v, w as the projections onto E(fy) of 1 and u respectively. If (u(#y)|1) # 0O, then the
corresponding matrix under the base (v, w) turns out to be

(—ia(ull)(VIW) ia(llu)IIWIIZ)

—iaDIVIP ia(1ju)(wlv)

which has a negative determinant if (u(#)|1) # 0. For the case (u(#)|1) = 0 with £ Y ") 1)(1) #
0 for some n € N, we only need to consider W(B(t))(to),

n+1 n n
(jm B(to)hi. hz) = —ia [(%wm)(m)(m (1)1 1) - (%(1|M))(fo)(u(fo)|h2)(h1|1)] ,

with any hy, h, € E(ty). It is similar as the case n = 0. This completes the proof. O

Since u(t) satistying (1|u(¢)) = 0 would be a solution of the cubic Szegd equation, which
is well studied by Gérard and Grellier [5, 7, 6, 10]. We assume (1|u) is not identically zero
in the rest of this article. From the discussion above, we have

Corollary 4.1. The dominant eigenvalues of H,;, are of multiplicity 1 for almost all t € R.
Recall the notation in section 2, by rewriting the conservation laws in Theorem 3.1 as
L, := (K" | u) - a(K2"(1)| 1) Z " (Il = allviIP) . (4.3)

17



we get the following conserved quantities
. 2 2
G = Nl I” = allvll” (4.4)
Lemma 4.2. Let « > 0. If there exists a crossing at oy at time t = ty, then ), < 0.

Proof. Since there is a crossing at o, then o € Xy (u(ty)) with multiplicity m > 2. Then

Fuow = Eon 0t = (St : g€ Coalal}
Hence, u; = 0 while v, # 0, since

(L Hu(ui)) _ gl
| H,, (o)l Ok
Thus ¢; = ||I/t]'€||2 — 01||v]'€||2 <0Ofora >0. m|

vl = £0. (4.5)

Here, we present an example to show the existence of crossing.

Example 4.1 (Existence of crossing). Let uy(z) = f_;[fz with p # 0 and |p| < 1, and u be the
corresponding solution to the equation

i0u = TI(ul*u) + (ul1) . (4.6)
It is obvious that uy € L(1) and 1 € Zy(up) with multiplicity 2, and
Li) = (K@) |u) = (K2(1) [ 1) = =(1 = [pP) < 0.
Let us represent the Hamiltonian function E = %||u||‘z4 + %I(u|1)|2 under the coordinates

P1,P2,0,Q1,¢2,0,

1
E= Z(p‘l‘+p‘2‘—0'4)

.\ 19100} = ) + p3(0” = p3)* + 2p1pa(p} — )0 — p3) cos(p1 — ¢2)

2 (0} = p3)?
11,
=—+=|pl".
7 T 5lPl

22
Notice that o = 1 andp% +p§ —0? = ||u||i2 =1, thenp% +p§ =2 Setl = p‘2p2, ® =@ — @,

then p% =1+1and p% =1 — I, thus we can rewrite E as

E = %(1 +20%) + %(1 + V1 - 2 cos(p)) .
Thus

a _9E 1
B % VI B
- “ap 2 sin()

1
= £ V-AP + BIpP = 5)I2 + 4pP(L - |pP)

=++(a-P)b+ 1),
18



with a, b satisfy
a>0,b>0,

ab = |p(1 - 1pP) .
a-b=2lpf-5/4.

Recall the definition of Jacobi elliptic functions. The incomplete elliptic integral of the
first kind F is defined as

¢
o= [ —2—.
J V1 -k?sin’ 0
then the Jacobi elliptic function sn and cn are defined as follows,
sn(F(p, k), k) =sing,
cn(F(p, k), k) = cosep .
Then we may solve the above equation,
1(t) = \/Ecn(m(t—to) +F(g, \/aib)’ \/ajb) :

Therefore, there exists a discrete set of time 0 € T, such that I(t) = 0 for everyt € T.. In
other words, crossing happens att € T,.

4.2. Blaschke product. We aim to show that the Blaschke products ¥(¢) of K, do not
change their S'-orbits as times grows even before or after crossings.

Proposition 4.2. For any open interval Q contained into the complement of T, for any
o € Zx(u(t)) with t € Q,

Ku(t)l/l;((l) = O'k\Pk(l)l/l;((l) . (47)
Then there exists a function Y (t) : Q — S', such that
Pi(r) = e ¥,0), teQ. (4.8)

Proof. Differentiating the above equation (4.7) and using the Lax pair structure (1.14), one
obtains

, du;, o du;,
[C,, Ku](uk) + K, E = O'k‘I’kuk + O-klPkE . (49)

Recall u; = Pi(u), where Py as (4.2) by replacing H, with K, then

d
_Pk(t) = [Cu, Pi] .

dt
Rewriting I(Ju*u) = T\p(u) = (iC, + 3K2)u, then the @—Szeg equation (1.1) turns out to be
J .
= = (G- 5KDu - iatull).
then
u, d du
k= (ZPYw) + P
o (a’t (1) k(dt)

LR2P () — iaul1YPA(1)

= [Cu’ Pk]u + PkCuu - )

19



thus )
du;,

dr
Then (4.9) and (4.10) obtained above lead to
(u | D | up)

(g | wp)

(1'1uw)

(g | wp)

= —iTypu), — ia(u | 1) " (4.10)

(\Pk - i(ai + 2aRe][ ])‘Pk) w, = —i[Typ, Pil(u) .
We claim that
[T|u|2, lIIk](u],c) =0.
therefore
Wi(1) = eI O (0)

where
t

(t) = ZafRe[(u(t)l DA [ u ()] ar

lu ()

It remains to prove the claim (one can also refer to [9, Theorem 8] for the proof). We first
prove that, for any x,(z) = f_;[’)’z with |p| < 1,

[Typ, xplf =0
for any f € F, (o) such that y, f € F, (o). For any L? function g,

[T1, x,1g = (1 = [pI")H, 1 55(h)

where (Id — IT)g = Sh. Consequently, the range of [II, ] is one dimensional, directed by
1=+ In particular, [T}z, x,,]f is proportional to =:. Since

1—pz
[Ty x )AL = (Tupxpf = X p T f11)
= (o fIH (1) = (ol DEHF11)
= (H, (¢, NID = (epl DEHGF1D)
= (pf = Qpl DSl (1)
We used (3.6) to gain the last equality. Since x,f — (x,|1)f € F.,(o) is orthogonal to 1, by

Proposition 2.2, x,f — (x,|1)f € E.(0%), hence x,f — (x,|1)f € F,(oy) is orthogonal to u.
This proves that [T}, x,1f = 0. m|

Therefore, we have

Corollary 4.2.

kK, = tkeK,o) = 1kK,,, a.e. t < co.

0°

We know that W,(¢) is defined for every ¢ in an open subset Q of R consisting of the
complement of a discrete closed subset, corresponding to crossings at o’i. Furthermore,
by Proposition 4.2, on each connected component of €, the zeroes of W,(¢) are constant.
Together with the following property, W;(¢) never changes it orbit even after the crossings.

Proposition 4.3. For every time t such that V() is defined, the zeroes of Y,(t) are the same.

Proof. The proposition is a consequence of the following lemma. O
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Lemma 4.3. There exists an analytic function ‘Pi defined in a neighborhood €)' of Q¢ and
valued into rational functions, and, for every t € Q N ', there exists B(t) € T such that
Wi(t,2) = POV, 2) .

2

Proof. Since o is an eigenvalue of constant multiplicity m of Klf( »» the orthogonal projector

Py(t) onto F,;)(07) is an analytic function of ¢ € R. Consequently, the vector

vi(0) == Pr()(1)
depends analytically on ¢. Furthermore, v/ () is not 0 if 7 ¢ Q. Indeed, from the description of
F,(7) provided by Proposition 2.2 when 7 is a singular value associated to the pair (H,, K,,),
we observe that, if 7 is H dominant, the space F,(7) is not orthogonal to 1. Consequently,
we can define, for 7 in a neighborhood Q' of Q¢,

K »(v,(D))(2)
# L OV
Filr.2):= oV (t,2)

as an analytic function of ¢ valued into rational functions of z. On the other hand, if t € Q,
Proposition 2.2 shows that

Fuop(o) Nu() = Eyp(ow) = Fup(o) N1+,
therefore vi(¢) is collinear to u;(2),
w, (1)
[ZAGI e

V() = (L (1))

Since, from the definition of W;(¢),
K (i (D) = o Vi(Du (1)
we infer that there exists an analytic 8, on Q N € valued into T such that
K1) = e PO (0)v (1)

This completes the proof. O

5. NECESSARY CONDITION OF NORM EXPLOSION

In this section, let u(¢) be the solution of @—Szegd equation (1.1) with initial data u, €
L(N), N € N*, u® = limu(t,) for the weak * topology of H'/?, for some sequence t, going
to infinity. To study the large time behavior of solutions, it is equivalent to study the rank of
the shifted Hankel operator K.

Lemma 5.1. The solution u(t) to the a—Szegd equation will stay in a compact subset of L(N)
if and only if for all the adherent values u™ of u(t) at infinity,

kK~ = 1kK,, . 5.1

Proof. By the explicit formula of functions in £(N) c H*® for every s in Theorem 1.3,
rku(t) = N if and only if
u(z) = Alz)

B(2)

with A, B € Cy[z],A A B =1,deg(A) = N or deg(B) = N, B~'({0}) N D=0.
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Then a sequence of (u,), is in a relatively compact subset of £(N) unless one of the poles
of u, approaches the unit disk D, then the corresponding limit u(z) will be in some L(N’)
with N < N. O

We first present a necessary condition of the norm explosion for any @ € R \ {0}.
Theorem 5.1. IfrkK,~ < rkK,,, then there exists some k such that €;(uy) = 0

Corollary 5.1. If @ < 0, for any N € N*, given initial data uy € L(N), then the solution to
the a—Szegd equation stays in a compact subset of L(N).

Proof of Corollary 5.1. Since @ < 0, then ¢ := |lu}l* — a|lV,||* > 0, due to Theorem 5.1,
kK~ = 1kK,,,. m|

Proof of Theorem 5.1. Assume rkK,~ < rkK,,, then there exists some k such that dim F,~(07) <
dim F,, (o) = m. We are to prove [u;||* = 0 and ||v;*||* =
o |l P =

There ex1sts a time dependent Blaschke product W of degree m — 1 such that

u(t,,)(uk(t )) = U]%uli(tn) » Ku(l,,)(u];(tn)) = O-kqlk(tn)u];(tn) s (52)

By Proposition 4.3, any limit point of W, (#) as ¢ goes to oo is of degree m — 1 as
well. Since u/(#,) is bounded in L2, up to a subsequence it converges weakly to some
w® € L3. Passing to the limit in the identities (5.2), we get

K2(u) = o>, Ko (U) = o Pu)™ (5.3)

where ¥}” is a Blaschke product of degree m — 1. The latter identities (5.3) show that
u,” and ‘I‘°°u’°° belong to F~(07y), hence, if ;™ is not zero, the dimension of F (o)

is at least m. Indeed if we write W,° = eV ZEZ)), then

Fu""(o-k) = f uk > fE Cm 1l Z]} (54)

{D(Z)
o Ivi¥IIP =
Recall the structure of F, (o) with o € Xg(u) in Proposition 2.2, the orthogonal

projection of 1 onto the space F,(c7), v, can be represented as

’ ’

Vo= (1 Uy ) Uy

k -_ .
[IZA kali7Al

If v L) thus “4 — v in L? with v # 0. Using the strategy

llu ||

in the first step above by replacing u, by m, we have dim F (o) = m
k

6. LARGE TIME BEHAVIOR OF THE SOLUTION FOR THE CASE @ > 0

In this section, we prove for any N, there exist solutions in £(N) which admit an expo-

nential on time norm explosion.
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Theorem 6.1. For a > 0, uy € HS such that Xx(up) = {o} with multiplicity k = tkK,,,. Then
lu(t)||gs grows exponentially on time,
()]s = =DM
if and only if
Li(u) = (Kylu) = a(Kz (D) = 0. ©6.1)

Let u as in the theorem above. If 1 is not a Blaschke product, we have

Zu(uo) = {p1,02}, p1 >0 >ps.
Using the results by Gérard and Grellier [9], we have the explicit formula for the solution u

as

_Au—bo i Al L, )
Ut = Gec@)S T denC@)S 6.2)

with A j as the minor determinant of C(z) corresponding to line k and column j, and
p1—oz¥e 1 pr—o7Pe 2
2_ 2 2_42
— p—0" P5—0"
C(2) N 2]

P1 P2

Then _ _
1 pa—o¥e™2 \ g p1—oz¥e ¥l 1 \a—ig)
- — e+ (F—F—=——--)e
G —255) =)

u(t,z) =

1 p1—0'z‘{/e""’1 1 p2—0'z‘¥’e”¢2
Logt™) - Lmgite™,

An interesting fact is that u is under the form
c'(nNz¥(1,z)
1-p079(t,2)°
where b, p’, ¢’ € C. Since W(t,z) = e¥Vy(z) with y as a time independent Blaschke product,
we then rewrite

u(t,z) = b(t) +

c(1)zx(z)
1 - pt)zx(2)
Lemma 6.1. Let y be a time-independent Blaschke product. A function u € C*(R, H}) with
s> % is a solution of the a—Szegd equation,

i0,u = T(Ju*u) + a(ull) ,

u(t,z) = b(t) + (6.3)

if and only if
u(t, z) := u(t, 2x(2))
satisfies the a—Szegd equation.

Proof. First of all, zy(z) € C(SY), then (zy(2))" € C(Sh) for any n, so that u € HS implies
u € HY. Assume u is a solution of the a—Szegd equation, it is equivalent to

i0i(t,n) = Z u(t, p)ﬁ(t, q)i(t,r) + ai(t,0)0,0, Yn > 0. (6.4)
p—q+r=n
Since

(e )Pz @) = > Mpa@arEx @),

p—q+r>0

we obtain that u satisfies the a—Szegé equation.
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Conversely, assume u satisfies the @—Szeg6 equation, then we have

i0,i1(n)(zx (2))" = Z (p)a(g)a(r)(zx(2))" " + i(0) . (6.5)

p—q+r>0

Identifying the Fourier coefficients of O mode of both sides, we get equation (6.4) with n = 0.
Then withdraw this quantity from both sides of (6.5) and simplify by zy(z). Continuing this
process, we get all the equations (6.4) for every n. O

Lemma 6.2. Let Y be a Blaschke product of finite degree d and s € [0,1). There exists
Cy s > 0 such that, for every p € D,

C‘F,s
ey (1=|p)z

=
1-p¥

Proof. 1t is a classical fact that, for every u € Hj(Sl), for every s € [0, 1),

|w@%2fwwwvmwmﬂm,
D

where L denotes the bi-dimensional Lebesgue measure.
Let p € D close to the unit circle and

Nz
w .= —.
pl

Since V¥ is a Blaschke product of finite degree d, the equation
w¥(z) =1

admits d solutions on the circle. Moreover, these solutions are simple. Indeed, writing

d
—i Z=Dj
¥ =e"| [ == Ipl<1,
=1 PR

we have, for every z € S!,

Y@ 1 1-Ipf
Y@ 4 lz-pP

#0.

Let @ be such a solution. For every z such that
lz—al < (1 -1p)),
we have, if 1 — |p| is small enough,

11— p¥(@)| =1 - p¥(@) — p¥'(@)(z - @) + Oz — af)| < C(1 - |p)).
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Therefore
2

(1 =1z dL(z)

N
Hs(sl)_ ’ (1 —P\F(Z))2

Dnflz—al<(1-|p)}

B
1-p¥

> By (1 —p)~* f (1 - |z»)""* dL(z)

Dnflz—a|<(1-|p))}

C2
>
(1= Iph>*!
O
Let us turn back to prove the theorem.
Proof of Theorem 6.1. Recall that
Li(u) = (K3(w) | ) — a(K3(1) | 1)
1
= 5 lullye = llulty>) = exClullz> = I | DF) -
Since y(z) is an inner function, we have
@|v) = uv),Yu,v,
thus
@) = (1), [ullz = llullz2
and since _
@ = @7,
then
l[lls = Nullps -
As a consequence, Ly(u) = Ly(u) = 0.
The solution u is under the form (6.3),
c(Hzx(z) c ¢ 1
ult,z) =b(t)+ ——2"—=p—-— 4 —— |
1 = p()zx(2) p rl-px@
thus
llutll gz = el 1 |
ullgs = |c|l|l—————Ius
" - pax(@) "
lc|
2 Cys——775 -
=T
where we used Lemma 6.2. Using the result in [22, Theorem 3.1] and its proof, we have
|c —s+1/2 _ Cal25-
I e s+1/2 o oCas=Dll
A jpyr = i =e
Therefore, u admit an exponential on time growth of the Sobolev norm H* with s > % The
proof is complete. O
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7. PERSPECTIVES

The main purpose of this work is to study the dynamics of the general solutions of the
a—Szeg6 equation (1.1). We have already observed the weak turbulence by considering
some special rational data. We proved the existence of data with exponential in time growth,
a natural question is about the genericity of data with such a high growth. Besides, an
important open problem is to gain new informations on the solutions with infinite rank.

Another interesting question is about the cubic Szegd equation with other perturbations,
for example, consider a Hamiltonian function

1 1
E(u) = ZIIMIIZ + EF(I(ull)lz) ;

with a non linear function F. In this case, we still have one Lax pair (K,, C,) while the
conservation laws we found no longer exist. The question is to study the integrability and
also the existence of turbulent solutions of this new Hamiltonian system.
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