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WAVEGUIDE SOLUTIONS FOR A NONLINEAR SCHRÖDINGER

EQUATION WITH MIXED DISPERSION

DENIS BONHEURE AND ROBSON NASCIMENTO

Ao nosso amigo Djairo com admiraçao

Abstract. In this note we provide some simple results for the 4NLS model

i∂tψ + ∆ψ + |ψ|2σψ − γ∆2ψ = 0,

where γ > 0. Our aim is to partially complete the discussion on waveguide

solutions in [11, Section 4.1]. In particular, we show that in the model case
with a Kerr nonlinearity (σ=1), the least energy waveguide solution ψ(t, x) =

exp(iαt)u(x) with α > 0 is unique for small γ and qualitatively behaves like

the waveguide solution of NLS. On the contrary, oscillations arise at infinity
when γ is too large.

1. Introduction

The standard model for propagation of laser beams is the 2D Schrödinger equa-
tion with Kerr nonlinearity

i∂tψ + ∆ψ + |ψ|2ψ = 0, ψ(x, y, 0) = ψ0(x, y).

It is well known that this equation can become singular at finite time, see for in-
stance [11] and the classical references therein. Karpman and Shagalov [16] studied
the regularization and stabilization effect of a small fourth-order dispersion, namely
they considered the equation

(1) i∂tψ + ∆ψ + |ψ|2σψ − γ∆2ψ = 0,

for some γ > 0, the equation being now considered in [0,∞[×RN , N ≥ 1. One of
their results shows, by help of some stability analysis and numerical computations,
that when Nσ ≤ 2, the waveguide solutions are stable for all γ and when 2 <
Nσ < 4, they are stable for small values of γ. This result shows that when adding
a small fourth-order dispersion term, a new critical exponent/dimension appears.
In particular, the Kerr nonlinearity becomes subcritical in dimension 2 and 3 which
is obviously an important feature of this extended model.

In [11], Fibich et al. have motivated the study of (1) by recalling that NLS
(the nonlinear Schrödinger equation) arises from NLH (the nonlinear Helmholtz
equation) as a paraxial approximation. But since NLS can become singular at a
finite time, this suggests that some of the small terms, neglected in the paraxial
approximation, plays in fact an important role to prevent the blow up. The natural
question addressed by Fibich et al. is therefore whether nonparaxiality prevents
the collapse. The small fourth-order dispersion coefficient γ is then shown to be
part of the nonparaxial correction to NLS.

In [11], Fibich et al. showed the role of the new critical exponent σ = 4/N
in the global existence in time when applying the arguments of Weinstein [25].
The necessary Strichartz estimates follow from Ben-Artzi et al. [1]. A necessary
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condition for existence of waveguide solutions is given in [11, Lemma 4.1], see also
the Derrick-Pohozahev identity in Section 6.

The purpose of this short note is to show that classical tools, available in the
literature, allow to state the existence and some qualitative properties of least
energy waveguide solutions. In particular, a small fourth-order dispersion coefficient
does not affect the symmetry, uniqueness and non degeneracy of the least energy
waveguide solution at least for a Kerr nonlinearity in dimension N ≤ 3.

From now on, we focus on standing wave solutions of (1), referred to as waveguide
solutions in nonlinear optics, namely on solutions of (1) of the form

ψ(t, x) = exp(iαt)u(x).

This ansatz yields the semilinear elliptic equation

(2) γ∆2u(x)−∆u(x) + αu(x) = |u|2σu(x), x ∈ RN .

By scaling the solutions as v(x) = u( x
4
√
γ ), it is equivalent to consider the equation

(3) ∆2v(x)− β∆v(x) + αv(x) = |v|2σv(x), x ∈ RN .

where β = 1√
γ .

It is standard that least energy solutions can be obtained by considering the
minimization problem

(4) mRN := inf
u∈MRN

JRN (u)

where

(5) JRN (u) =

∫
RN

(|∆u|2 + β|∇u|2 + α|u|2) dx

and

MRN := {u ∈ H2(RN ) :

∫
RN
|u|2σ+2 dx = 1}.

Indeed, if u ∈MRN achieves the infimum m = mRN , then u weakly solves

(6) ∆2u− β∆u+ αu = m|u|2σu.

Henceforth, if m > 0, then v = (m)
1

2σ u solves (3). Moreover v is a least energy
solution in the sense that it minimizes the action functional E : H2(RN ) → R
defined by setting

E(u) :=
1

2
JRN (u)− 1

2σ + 2

∫
RN
|u|2σ+2 dx

among the set of (H2 or smoother) solutions or equivalently within the Nehari
manifold

{u ∈ H2(RN ) : E′(u)(u) = 0}.

We then prove the following results.

Theorem 1. Assume α > 0, β > −2
√
α and 2 < 2σ + 2 < 2N

N−4 if N ≥ 5. Then

problem (3) has a nontrivial least energy solution. If β ≥ 2
√
α, then any least

energy solution does not change sign, is radially symmetric around some point and
strictly radially decreasing.

An existence statement (as well as the information on the sign of the minimizer)
is also given in Section 3 and Section 4 when the equation is considered in a bounded
domain with Navier boundary conditions. The symmetry properties of the solutions
that match the symmetries of the domain are discussed in Section 4.
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When β is large, the Laplacian is the driven term in the differential operator
in (3) and we therefore expect to recover the uniqueness (up to translations) of
the least energy solution. By scaling, we can discuss this issue by looking at least
energy solutions of (2) for small γ. As a preliminary observation, we prove the
strong convergence in H1 to the unique least energy solution of NLS.

Theorem 2. Assume 2 < 2σ+ 2 < 2N
N−2 if N ≥ 3. If γk → 0 and uk is a sequence

of least energy solutions of (2), then (uk)k converges (after possible translations)
in H1 to u0, where u0 is the unique positive (radially symmetric) solution of the
limit problem (2) with γ = 0.

The positive solution of (2) with γ = 0 is unique up to translations. To ensure
uniqueness, we have assumed that u0 is the positive solution radially decreasing
around 0. For the physical model (2) with σ = 1 in dimension N ≤ 3, we can
improve this convergence to strong convergence in H2. The non degeneracy of
the least energy waveguide of NLS allows then to invoque the Implicit Function
Theorem to prove uniqueness for small γ.

Theorem 3. Assume N ≤ 3 and σ = 1. Then there exists γ0 > 0 such that if
0 < γ < γ0, (2) has a unique least energy solution (up to translations). Fixing
its maximum at the origin, this solution is radially symmetric and strictly radially
decreasing.

An equivalent statement can be proved for the Navier boundary value problem
in a ball (and a weaker statement holds for other bounded domains), see Section 6.

In the H1 critical or supercritical regime, the least energy solution should disap-
pear at the limit γ → 0. In fact, if 2N

N−2 ≤ 2σ + 2 < 2N
N−4 , N ≥ 5, the least energy

solutions are unbounded in H2 when γ → 0, see Section 6.

In contrast with Theorem 1, when β is small in (3), some of the usual properties
of the least energy solution of NLS cannot hold. Namely, if one can prove that any
least energy solution is radial in that case, then oscillations arise at infinity. These
oscillations were suggested in [11]. We focus again on the model equation (2) with
σ = 1 in dimension N ≤ 3. We prove that least energy solutions among radial
solutions do oscillate at infinity.

Theorem 4. Suppose that −2
√
α < β < 2

√
α and N ≤ 3. Then every radial least

energy solution of (3) with σ = 1 is sign-changing.

This statement shows that when β < 2
√
α, least energy solutions cannot be

radial and monotone in contrast with the case β ≥ 2
√
α. We point out that on a

bounded domain, we are not aware of an equivalent statement.

The paper is organized as follows. Section 2 deals with the functional framework
and the formulation of the problem on a bounded domain. In Section 3, we prove
the existence of a least energy solution in the whole space as well as in bounded
domains. In Section 4, we consider the qualitative properties for large β. Section
5 is dedicated to the proof of Theorem 2 and Theorem 3 while Section 6 contains
the proof of Theorem 4. In the last section, we give some concluding remarks.

Notes added in proofs : We thank Jean-Claude Saut for bringing to our atten-
tion the reference [5] which deals with an anisotropic mixed dispersion NLS also
proposed in [11]. We believe that some arguments from [5] can be used to obtain
the exponential decay of the ground state at least in some particular cases.

We also mention the very recent preprint [6] where the first theoretical proof of
blow-up is obtained for the biharmonic NLS as well as a new Fourrier rearrangement
is proposed in the Appendix. This rearrangement decreases the L2-norm of (−∆u)s
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for every s ≥ 0 and is therefore adequate to deal with polyharmonic as well as
fractional equations. Applied to our problem, it completes Theorems 1 and 4 in the
following way. Assuming β ≥ 0 and σ ∈ N0 (including therefore the physical case
σ = 1), any ground state solution of (3) is radially symmetric. As a consequence
of Theorem 4, assuming σ ∈ N0 and 0 ≤ β < 2

√
α, any ground state is radially

oscillatory at infinity. When σ is not an integer, the radial symmetry remains an
open question in the range β < 2

√
α though the natural conjecture is that radial

symmetry holds for every σ and every β in the range covered by Theorem 1.

2. Functional framework

In this section, we settle the functional setting. The natural space for (2) and
(3) is H2(RN ) or H2(Ω)∩H1

0 (Ω) when we consider the boundary value problem in
a bounded domain Ω ⊂ RN with Navier boundary conditions, namely

(Pβ)

{
∆2u− β∆u+ αu = |u|2σu, in Ω,

u = ∆u = 0, on ∂Ω.

We therefore set HΩ := H2(Ω) ∩ H1
0 (Ω) and HRN := H2(RN ). We introduce the

following conditions on α and β:

(A1) α > 0 and β > −2
√
α;

(A1′) α > −βλ1(Ω)− λ2
1(Ω) and −2λ1(Ω) < β;

where λ1(Ω) stands for the first eigenvalue of −∆ in H1
0 (Ω) when Ω is a bounded

domain. Observe that when |Ω| is large, λ1(Ω) is small. If β is negative, (A1′)
is then more restrictive than (A1). The following lemma follows from standard
computations.

Lemma 1. Assume Ω is a bounded smooth domain and (A1) or (A1′) holds. Then
HΩ is a Hilbert space endowed with the inner product defined through

〈u, v〉 =

∫
Ω

(∆u∆v + β∇u∇v + αuv) dx ∀ u, v ∈ HΩ.

Proof. From H2 elliptic regularity [14, 18], we know that if u ∈ H2(Ω) ∩ H1
0 (Ω),

then

‖u‖H2 ≤ C‖∆u‖L2

for some C > 0 depending on Ω, so that HΩ is a Hilbert space endowed with the
inner product

〈u, v〉HΩ
=

∫
Ω

∆u∆v dx ∀ u, v ∈ HΩ.

It will be enough to show that there exists a constant C > 0 such that

(7)

∫
Ω

(|∆u|2 + β|∇u|2 + α|u|2) dx ≥ C‖u‖HΩ
∀ u ∈ HΩ.

Obviously the inequality (7) holds true if we have α ≥ 0 and β ≥ 0. For u ∈ HΩ,
we can apply Young’s inequality to obtain

‖u‖2 =

∫
Ω

(|∆u|2 + β|∇u|2 + α|u|2) dx

=

∫
Ω

(|∆u|2 − βu∆u+ α|u|2) dx

≥
(

1 +
β

2ε

)∫
Ω

|∆u|2 dx+

(
α+

βε

2

)∫
Ω

|u|2 dx(8)
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for every ε > 0. We have to distinguish two cases. If we can choose ε > 0 such that
both terms in the right hand side of (8) are positive, then we are done. This ends
the proof if β > −2

√
α, namely if (A1) holds. If

1 +
β

2ε
> 0 and α+

βε

2
< 0,

we write

‖u‖2 ≥
(

1 +
β

2ε

)[∫
Ω

|∆u|2 dx+ g(ε)

∫
Ω

|u|2 dx
]
,

where

g(ε) =
α+ βε/2

1 + β/2ε
.

Recalling Poincaré inequality∫
Ω

|∆u|2 dx ≥ λ2
1(Ω)

∫
Ω

u2 dx ∀ u ∈ HΩ,

we can complete the proof if

g(ε) > −λ2
1(Ω)

for some ε > 0. When β > −2λ1(Ω), this condition can be fulfilled if

α > −βλ1(Ω)− λ2
1(Ω)

while if β ≤ −2λ1(Ω), we recover the condition

−2
√
α < β.

�

In the case Ω = RN , the same arguments show that (A1) implies

〈u, v〉 =

∫
Ω

(∆u∆v + β∇u∇v + αuv) dx

is a scalar product on HRN . Elliptic regularity can be used here to ensure that(
1 +

β

2ε

)∫
RN
|∆u|2 dx+

(
α+

βε

2

)∫
RN
|u|2 dx

is a norm on H2(RN ) as soon as 1+ β
2ε > 0 and α+ βε

2 > 0. This yields the following
lemma.

Lemma 2. Assume that (A1) holds. Then the bilinear form

〈u, v〉 =

∫
Ω

(∆u∆v + β∇u∇v + αuv) dx ∀ u, v ∈ HRN ,

is an inner product on HRN .

3. Existence of minimizers

In this section, we handle the minimization problem (4). We start with the
simpler case of a bounded domain. In this case, the minimization problem writes

mΩ := inf
u∈MΩ

JΩ(u)

where

JΩ(u) =

∫
Ω

(|∆u|2 + β|∇u|2 + α|u|2) dx

and

MΩ := {u ∈ HΩ :

∫
Ω

|u|2σ+2 dx = 1}.
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In the case of a bounded domain, it is standard to prove that mΩ is achieved
when 2σ+2 is a subcritical exponent because JΩ is the square of a norm on HΩ and
we can rely on the compactness of the embedding of HΩ into L2σ+2(Ω). Moreover,

since mΩ is clearly positive, we deduce that v = (mΩ)
1

2σ u solves (Pβ). Moreover
v is a least energy solution in the sense that it minimizes the action functional
EΩ : HΩ → R defined by

EΩ(u) :=
1

2
JΩ(u)− 1

2σ + 2

∫
Ω

|u|2σ+2 dx

among the set of (H2 or smoother) solutions or equivalently within the Nehari
manifold

{u ∈ HΩ : E′Ω(u)(u) = 0}.

Theorem 5. Assume Ω is a bounded smooth domain and (A1) or (A1′) holds.
Suppose moreover that 2 < 2σ + 2 < 2N

N−4 if N ≥ 5. Then problem (Pβ) has a
nontrivial least energy solution.

To handle the case of Ω = RN , since we cannot use sign information, nor symme-
try, we follow the celebrated method of concentration-compactness of P.L. Lions.
We give a sketchy proof since classical arguments apply. All the details can eas-
ily be reconstructed from Kavian [17, Chapitre 8 - Exemple 8.5] with minor and
obvious modifications with respect to the case treated therein.

Proof of the existence part in Theorem 1. We introduce

Mλ = {u ∈ H2(RN ) :

∫
RN
|u|2σ+2 dx = λ}

where λ > 0 is fixed and we consider the minimization problem

mλ := inf
u∈Mλ

JRN (u)

where JRN (u) is defined as in (5).

Let (uk)k ⊂ Mλ be such that JRN (uk) → mλ. Then, (uk)k is bounded in
H2(RN ) and

∫
RN |uk|

2σ+2 = λ. Thus, we can apply P.L. Lions’ concentration-

compactness lemma to the sequence (ρk)k = (
∫
RN |uk|

2σ+2)k, see [21, Lemma I. 1].

Since mλ = λ
1

σ+1m1, we have mλ > 0 for all λ > 0 and therefore, for all R > 0, the
sequence

Qk(R) := sup
y∈RN

∫
BR(y)

|uk(x)|2σ+2 dx

does not converge to zero. Namely, vanishing is ruled out.

Since 2σ + 2 > 2, we have, for 0 < θ < λ,

λ
1

σ+1 < θ
1

σ+1 + (λ− θ)
1

σ+1 ,

which yields

(9) mλ < mθ +mλ−θ, ∀ θ ∈ ]0, λ[.

Then dichotomy is ruled out using classical truncation arguments.

Therefore, the compactness holds for ρk, i.e., going to a subsequence of (uk) if
necessary, there exists a sequence (yk) ⊂ RN such that for every ε > 0, there exists
R > 0 such that ∫

BR(yk)

|uk|2σ+2 dx > λ− ε.

Setting wk(x) := uk(x + yk), we have that (wk) is also a minimizing sequence for
mλ. Then, up to a subsequence, wk weakly converges in H2(RN ) to w ∈ Mλ and
JRN (w) = mλ. This concludes the proof of the existence in Theorem 1. �
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Remark 1. When β ≥ 2
√
α, we can avoid the use of the concentration-compactness

lemma. Indeed, take a minimizing sequence (uk)k ⊂ H2(RN ) for m. Then, let us
set fk := −∆uk + βuk/2 and define vk ∈ H2(RN ) to be the strong solution of
−∆vk + βvk/2 = |fk|∗ in RN , where |fk|∗ denotes the Schwarz symmetrization
of |fk|. Thus for each k ∈ N, we have vk ∈ H2

rad(RN ) which is the space of H2

functions that are radially symmetric around the origin. Then a particular case of
[3, Lemma 3.4] implies

J

(
vk

|vk|2σ+2

)
=

∫
RN

(−∆vk + βvk/2)2 dx− (β2/4− α)

∫
RN

v2
k dx

|vk|22σ+2

≤

∫
RN

(−∆uk + βuk/2)2 dx− (β2/4− α)

∫
RN

u2
k dx

|uk|22σ+2

.

Using the compact embedding of H2
rad(RN ) into L2σ+2(RN ), see for instance [20,

Théorème II.1], it follows that (vk)k weakly converges in H2 to some v ∈ M and
the remaining arguments are standard.

4. Sign and symmetry

In order to investigate the symmetry properties of a fourth order equation with
Navier boundary conditions or in the whole space, it is natural to ask if the equation
may be rewritten as a cooperative system. If this is the case, then the moving plane
procedure applies, see the work of Troy [23] in the case of a bounded domain or
de Figueiredo-Yang [13] (if we assume exponential decay) and Busca-Sirakov [7]
(without assuming exponential decay) when Ω = RN . Observe that when α > 0
and |β| ≥ 2

√
α, we can indeed write the equation as a cooperative system

−∆u+
β

2
u− v = 0, −∆v + (α− β2

4
)u+

β

2
v = |u|2σu.

To prove that least energy solutions do not change sign, we use the minimality
combined to the classical maximum principle for a single equation. The argument
goes back to van der Vorst, see for instance [24]. We sketch it for completeness to
emphasize the role of the assumption |β| ≥ 2

√
α.

Lemma 3. Assume that |β| ≥ 2
√
α and −λ1(Ω) < β/2 if Ω is bounded or β > 0 if

Ω = RN . If u ∈ HΩ is a minimizer of (4), then

u > 0 and −∆u+ βu/2 > 0 in Ω,

or else

u < 0 and −∆u+ βu/2 < 0 in Ω.

Proof. Let w ∈ HΩ be such that{
−∆w + βw/2 = | −∆u+ βu/2|, in Ω,

w = 0, on ∂Ω.

Then

−∆(w ± u) + β(w ± u)/2 ≥ 0.

Using the strong maximum principle we know that u has a fixed sign if −∆u+β/2 u
does not change sign. We then argue by contradiction, suppose that −∆u+ βu/2
changes sign. Then | −∆u+ βu/2| 6= 0 and the strong maximum principle implies
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that w > |u|. For convenience denote by |· |2σ+2 the L2σ+2 norm in Ω. Therefore

JΩ

(
w

|w|2σ+2

)
=

∫
Ω

(−∆w + βw/2)2 dx− (β2/4− α)

∫
Ω

w2 dx

|w|22σ+2

<

∫
Ω

(−∆u+ βu/2)2 dx− (β2/4− α)

∫
Ω

u2 dx

|u|22σ+2

which contradicts the minimality of u. Observe that the last inequality holds be-
cause the numerator is nonnegative. �

Remark 2. In the case of a bounded domain Ω and 0 < α ≤ λ1(Ω)2, we then know
the sign of the least energy solutions of (Pβ) for values of β ∈ (−2λ1(Ω),−2

√
α] ∪

[2
√
α,∞). For Ω bounded, we do not know if the least energy solutions change sign

for β ∈ (−2
√
α, 2
√
α). Section 6 deals with the case Ω = RN under the assumption

that the minimizer is radial.

Proof of Theorem 1 continued. Existence was proved in Section 3 while we just
proved in Lemma 3 that any least energy solution does not change sign.

Writing f(u, v) = (β
2

4 −α)u− β
2 v+ |u|2σu and g(u, v) = v− β

2u, the equation is
equivalent to the cooperative system

∆u+ g(u, v) = 0, ∆v + f(u, v) = 0.

We are in the setting of Busca-Sirakov [7] and [7, Theorem 2] applies. Observe that
clearly u and v must be symmetric with respect to the same point. �

In the case of a bounded domain, we have proved so far the following result for
(Pβ).

Theorem 6. Assume Ω is a bounded smooth domain and (A1) or (A1′) holds.
Suppose moreover that 2 < 2σ + 2 < 2N

N−4 if N ≥ 5. Then problem (Pβ) has a

nontrivial least energy solution. If in addition |β| ≥ 2
√
α and −λ1(Ω) < β/2, then

any least energy solution does not change sign. If Ω is a ball, then any least energy
solution is radially symmetric and strictly radially decreasing.

Proof. Existence has been achieved in Theorem 5 while the sign information follows
from Lemma 3. If Ω is a ball, the symmetry of the minimizer follows from [23,
Theorem 1]. �

We point out that the condition |β| ≥ 2
√
α is crucial to rewrite the problem (Pβ)

as a cooperative system. In fact, we can deal more generally with smooth bounded
or unbounded domain Ω with some symmetries. Then the symmetry properties
of the solutions of constant sign can be deduced from the moving plane method
adapted to cooperative systems in [23].

5. The effect of a small fourth order dissipation

In this section, we study the behaviour of minimizers of (4) when the coefficient
of fourth order dissipation tends to zero. We assume throughout the section that
α > 0 and we choose the norm on H1(RN ) defined through

‖u‖2H1 =

∫
Ω

(|∇u|2 + α|u|2) dx.

We recall that the problem

∆2v(x)− β∆v(x) + αv(x) = |v|2σv(x), x ∈ RN
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is equivalent to

γ∆2u(x)−∆u(x) + αu(x) = |u|2σu(x), x ∈ RN .
by scaling the solutions as u(x) = v( x√

β
) where γ = 1/β2. As before we consider

the associated minimization problem

mγ = inf
u∈M

Jγ(u)

where

M = {u ∈ HΩ :

∫
Ω

|u|2σ+2 dx = 1}

and

Jγ(u) =

∫
Ω

(γ|∆u|2 + |∇u|2 + α|u|2) dx.

When Ω = BR or Ω = RN , the results of the previous sections imply that when
γ ≤ 1

4α , any minimizer is radially symmetric and strictly radially decreasing (after

a possible translation in the case Ω = RN ). In the case Ω = RN , we assume from
now on that the maximum of any minimizer has been translated to the origin.

For γ = 0, the associated minimization problem is

m0 = inf
u∈M0

J0(u)

where

M0 = {u ∈ H1
0 (Ω) :

∫
Ω

|u|2σ+2 dx = 1}

and

J0(u) =

∫
Ω

(|∇u|2 + α|u|2) dx.

Assume 2 < 2σ + 2 < 2N
N−2 if N ≥ 3, Ω = BR or Ω = RN and let u0 be the

unique minimizer of J0 in M0. We refer to [9, 19, 15] for the uniqueness property
(in the case Ω = RN , we fix the maximum of the solution at the origin to achieve
uniqueness). We first prove that if γk → 0, then any sequence (uk)k of minimizer
of Jγk converge strongly in H1 to u0. A similar statement obviously holds for
other bounded domains except that uniqueness of the minimizer does not hold in
general so that in the conclusion, we can only state that we have convergence to
one minimizer, see Theorem 7.

Proposition 1. Assume 2 < 2σ + 2 < 2N
N−2 if N ≥ 3, Ω = BR or Ω = RN . There

exists C > 0 such that for every γ > 0, we have

m0 ≤ mγ ≤ m0 + Cγ.

Moreover, if γk → 0 and (uk)k is a sequence such that Jγk(uk) = mγk , then uk → u0

strongly in H1.

Proof. The estimate of mγ is clear since by elliptic regularity, we easily infer that
u0 ∈ H2(Ω). Therefore, we have

mγ ≤ Jγ(u0) = γ

∫
Ω

|∆u0|2 dx+ J0(u0) ≤ Cγ +m0,

whereas taking any minimizer uγ for mγ , we get

mγ = Jγ(uγ) = γ

∫
Ω

|∆uγ |2 dx+ J0(uγ) ≥ m0.

Let γk → 0 and (uk)k be a sequence of minimizers for mk := mγk . Then∫
Ω

(|∇uk|2 + α|uk|2) dx ≤ mk ≤ m0 + Cγk → m0.
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Since we know that uk is a radial function, it follows that uk is bounded in H1
rad(Ω)

- the space of H1 functions that are radially symmetric around the origin - so that
up to a subsequence, uk converges weakly in H1 to some u ∈ M . The strong con-
vergence in L2σ+2 when Ω = RN follows from the compact embedding of H1

rad(RN )
into L2σ+2(RN ), see [22, 20].

Now, by weak lower semi-continuity, we have

m0 ≤
∫

Ω

(|∇u|2 + α|u|2) dx ≤ lim inf
k→∞

∫
Ω

(|∇uk|2 + α|uk|2) dx

≤ lim sup
k→∞

∫
Ω

(|∇uk|2 + α|uk|2) dx = m0.

Hence the convergence is strong in H1 and u is a minimizer for m0. By uniqueness,
u = u0 and the whole sequence converge.

�

In the model case with a Kerr nonlinearity in dimension N ≤ 3, we can improve
this convergence.

Proposition 2. Assume Ω = RN , σ = 1 and N ≤ 3. If γk → 0 and (uk)k is a
sequence such that Jγk(uk) = mγk , then uk → u0 strongly in H2.

Proof. To fix the ideas, we deal with the case N = 3, N = 2 being similar. The
starting point is an a priori bound in H1 and the strategy is to end up with an
a priori H4-bound. We already know from Proposition 1 that uk converges to u0

strongly in H1. To improve the convergence, we use the Euler-Lagrange equation

γk∆2uk −∆uk + αuk = mku
3
k,

where mk = mγk . We can assume γk ≤ 1 and mk ∈ [m0,m0 + C].

Bound in H1. Since uk is a minimizer, we can assume

‖uk‖H1 ≤ m0 + C.

This also provides an a priori bound in Lq for every q ∈ [2, 6].

Bound in H2. We denote vk = −γk∆uk. Then vk solves

(10) −∆vk +
1

γk
vk = wk,

where wk := mku
3
k − αuk. Since Jγk(uk) ≤ m0 + C, we infer that vk → 0 strongly

in L2. In particular, (vk)k is bounded in L2. Observe also that (wk)k is a priori
bounded in L2. Now, by elliptic regularity, we infer that vk ∈ H2(R3) with a bound
that does not depend on k. Indeed, since 1

γk
≥ 1, we get this a priori bound as in

Krylov [18, Chapter 1, Theorems 6.4 & 6.5]. Now, from this a priori H2-bound on
(vk)k and the Euler equation

(11) −∆uk + αuk = mku
3
k + ∆vk,

we deduce that (uk)k is a priori bounded in H2(R3) as well.

Bound in H4. It is straightforward to check that the H2-bound on uk implies that
wk ∈ L2(R3) and ∆wk ∈ L2(R3). Then, elliptic regularity implies wk is bounded in
H2 as well. Using again (10), we now infer that vk ∈ H4 with a bound independent
of k, arguing as in Krylov for Hm+2 regularity [18, Chapter 1, Theorem 7.5 &
Corollary 7.6]. Looking at (11) again, we have that the right hand side is bounded
in H2, whence uk ∈ H4 with a bound independent of k.
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Conclusion. Observe now that we can use the equation (11) to conclude. Since
−∆vk = γk∆2uk → 0 strongly in L2, we conclude that

mku
3
k + ∆vk → m0u

3
0

strongly in L2 and elliptic regularity applied to (11) implies that the convergence
of uk to u0 is actually strong in H2. �

Now that we have proved the strong convergence in H2 to the unique minimizer
for γ = 0, we can use its non degeneracy to apply the Implicit Function Theorem.
This yields Theorem 3.

Proof of Theorem 3. We start by setting X := H2
rad(R3) and Y := H−2(R3). Let

F : R+ ×X → Y be the operator defined (in the sense of distributions) by

F (γ, u) = γ∆2u−∆u+ αu− |u|2u.

Namely, for every v ∈ H2(R3), we have

F (γ, u)(v) =

∫
R3

(γ∆u∆v +∇u∇v + αuv − |u|2uv) dx.

Obviously F (0,
√
m0u0) = 0. Also, F is continuously differentiable in a neighbour-

hood of (0,
√
m0u0) with DuF (γ, u) ∈ L(X,Y ) defined by

DuF (γ, u)v = γ∆2v −∆v + αv − 3|u|uv, ∀ v ∈ X,

i.e.

DuF (γ, u)v[w] =

∫
R3

(γ∆v∆w +∇v∇w + αvw − 3|u|uvw) dx, ∀ v, w ∈ X.

We thus have in the distributional sense

L(v) := DuF (0,
√
m0u0)v = −∆v + αv − 3m0u

2
0v.

It is well-known that the kernel of L is of dimension 3 when considered in H2(R3)
and it is spanned by the partial derivatives of u0. In particular, the kernel of
L restricted to H2

rad(R3) is trivial and L : X → Y is one-to-one. We refer for
instance to [19, 15, 8]. Moreover, it follows from the Open Mapping Theorem that
L−1 : Y → X is continuous.

Since the linear map L is a homeomorphism, we can apply the Implicit Function
Theorem. Namely, there exists γ0 > 0 and an open set U0 ⊂ X that contains√
m0u0 such that for every γ ∈ [0, γ0[, the equation F (γ, u) = 0 has a unique

solution uγ ∈ U0 and the curve

Γ : [0, γ0[→ H2(R3) : γ 7→ uγ

is of class C1.
Now suppose that the uniqueness of least energy solutions fails in every interval

(0, γ). We can then construct two sequences in M of least energy solutions along
a sequence γk converging to 0. We call them (uk)k and (vk)k whereas mk is their
common energy. By assumption, uk 6= vk. Since γk → 0, we know that uk and vk
are radially symmetric. Since these two sequences converge in H2 to u0 as k →∞,
we have

√
mkuk,

√
mkvk →

√
m0u0,

where the convergence is strong in H2. Then, for k large enough, there exist two
solutions of the equation F (γk, u) = 0 in U0 with γk < γ0. This is a contradiction
and ends the proof.

�
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We now state the counterpart of Theorem 3 for the boundary value problem in
a bounded domain Ω ⊂ RN with Navier boundary conditions, namely

(Pγ)

{
γ∆2u−∆u+ αu = |u|2σu, in Ω,

u = ∆u = 0, on ∂Ω.

We assume in the next statement that Ω is smooth. We have not searched to
optimize the required regularity of the boundary. At some point, we need to take
two partial derivatives into the equation. We assume enough regularity of the
boundary so that the solution belongs at least to H6(Ω). One could work with
interior regularity which requires less regularity on the boundary but since our
main motivation is to cover the case of a ball, working with global regularity is fine
for our purpose as the ball has the regularity required.

Theorem 7. Assume Ω ⊂ RN is a smooth bounded domain of class C6 and 3 ≤
2σ + 2 < 2N

N−2 if 3 ≤ N ≤ 5. If γk → 0 and (uk)k is a sequence of least energy

solutions of (Pγk), then, up to a subsequence, uk converges strongly in H2 to some
minimizer u0 for m0. If, in addition, Ω is a ball, then there exists γ0 > 0 such that
if 0 < γ < γ0, the problem (Pγ) has a unique least energy solution. This solution
is radially symmetric and strictly radially decreasing.

Proof. Step 1. Global regularity. Using elliptic regularity [14, Theorems 8.12 &
8.13], we easily infer that the solutions uk are smooth, namely at least H6(Ω).
Indeed, one can write the equation as a double Dirichlet problem

−∆uk = φk, uk = 0 on ∂Ω,

−γk∆φk + φk = mk|uk|2σuk − αuk, φk = 0 on ∂Ω.

Here γk stays fixed and we can start with the fact that uk ∈ H2(Ω), without caring
about the dependence on k. Then the term mk|uk|2σuk−αuk ∈ L2(Ω) as it can be
easily checked from the assumption on σ and the embedding of H2(Ω) into Lq(Ω)
for every q ≥ 1 if N ≤ 4 and q ∈ [1, 2N

N−4 ] if N = 5. We therefore infer from [14,

Theorems 8.12] that φk ∈ H2(Ω) which in turn implies that uk ∈ H4(Ω) by [14,
Theorems 8.13]. Now computing ∆(mk|uk|2σuk − αuk), we realize that it is an L2

function and therefore mk|uk|2σuk − αuk is an H2 function. Indeed, the condition
on σ ensures the required integrability of |uk|2σ−1|∇uk|2 and |uk|2σ|∆uk|. We then
conclude that φk belongs in fact at least to H4 and therefore uk ∈ H6(Ω).

Step 2. Strong convergence in H1. Arguing as in the proof of Proposition 1, we
infer that there exists a minimizer u0 ∈M0 and a subsequence that we still denote
(uk)k such that uk → u0 strongly in H1. If Ω is a ball, then u0 is the unique
minimizer and the whole sequence converge.

Step 3. Strong convergence in H2. To improve the convergence, we argue as in
the proof of Proposition 2. If 2σ + 1 ≤ N

N−2 , then we can bootstrap using the

Hm+2 regularity theory. Due to the boundary condition, the argument of Krylov
[18, Chapter 1] cannot be applied directly to get higher regularity in general, see
[18, Chapter 8]. However, in our case, since we deal with Navier condition, we have
that uk = ∆uk = 0 on the boundary and therefore the equation (Pγk) tells that
∆2uk = 0 on the boundary as well. By Step 1, we can take the Laplacian inside
the equation in (Pγk) and use the fact that ∆uk solves a boundary problem with
Navier boundary conditions, namely

γk∆2(∆uk)−∆(∆uk) + α(∆uk) = mkf(uk), in Ω,
∆(∆uk) = ∆uk = 0, on ∂Ω,

where

(12) f(uk) = (2σ + 1)sign(uk)
(
2σu2σ−1

k |∇uk|2 + u2σ
k ∆uk

)
.
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Then we can use the H2 regularity for the Dirichlet problem associated to the
systems

(13) vk = −γk∆uk −∆vk +
1

γk
vk = wk,

and

(14) yk = ∆vk = −γk∆2uk −∆yk +
1

γk
yk = mkf(uk),

where wk = mk|uk|2σuk −αuk and f(uk) is defined in (12). Applying [18, Chapter
8, Theorem 8.7 ] to the second equation of the first system (13), we get an H2 a
priori bound of vk. Now turning to the Dirichlet problem

(15) −∆uk + αuk = mk|uk|2σuk + ∆vk, uk = 0 on ∂Ω,

we deduce that uk is a priori bounded in H2 which leads to an L2 bound for f(uk).
Applying then [18, Chapter 8, Theorem 8.7 ] on the second equation of the system
(14) gives an H2 a priori bound of ∆vk. Whence vk is a priori bounded in H4.
This allows to conclude that uk is a priori bounded in H4 because the right hand
side of ∆(15), namely

−∆(∆uk) + α∆uk = mkf(uk) + ∆2vk,

is a priori bounded in L2. The remaining steps are now as in the proof of Proposition
2.

If N
N−2 + 1 < 2σ + 2 < 2N

N−2 , we can only start with a bound in L
2N

(N−2)(2σ+1) on
the right hand side of

−∆vk +
1

γk
vk = wk,

where we still use the notations vk = −γk∆uk and wk = mk|uk|2σuk − αuk. We
therefore need to improve this bound first. Arguing as above (still using [18, Chap-
ter 8, Theorem 8.7 ]), we deduce an a priori bound in W 2,q with q = 2N

(N−2)(2σ+1) .

Then Sobolev embeddings give a better integrability of wk and we can bootstrap
until we get an L2 a priori bound on wk. The strong convergence in H2 is then
achieved as in the proof of Proposition 2 taking into account the above remark
concerning the way to obtain the higher order elliptic regularity. Observe that even
if N
N−2 + 1 < 2σ + 2, no additional bootstrap is necessary to derive the H4 bound

on uk since once we get an a priori H2 bound on uk, the assumption on σ implies
that f(uk) is a priori bounded in L2.

Uniqueness in the case Ω = BR. When Ω is a ball, the arguments used in the proof
of Theorem 3 are available. The non degeneracy of u0 allows to apply the Implicit
Function Theorem to conclude the local uniqueness (in an H2 neighbourhood of
u0) for γ small. The remaining arguments are then as in the proof of Theorem
3. �

We end up the analysis of the asymptotics for γ → 0 by showing that the least
energy solution blows up in H2 when 2σ + 2 is H1 critical or supercritical. We
focus on the case of Ω = RN .

We first derive the Derrick-Pohozahev identity for minimizers. If u achieves mγ

in M , then, defining vλ by vλ(x) = λ
N

2σ+2u(λx), we infer that f(λ) := Jγ(vλ)
achieves a local minimum at λ = 1. This yields a Derrick-Pohozahev identity

γ (2N − (2σ + 2)(N − 4))

∫
RN
|∆u|2 dx+ (2N − (2σ + 2)(N − 2))

∫
RN
|∇u|2 dx

+α(2N − (2σ + 2)N)

∫
RN
|u|2 dx = 0.
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If 2σ + 2 ≥ 2N
N−4 , then u must be zero which is obviously a contradiction. This

shows that mγ is not achieved for 2σ + 2 ≥ 2N
N−4 .

For 2N
N−2 ≤ 2σ+ 2 < 2N

N−4 , the first coefficient in the Derrick-Pohozahev identity
is positive whereas the other two are non positive. We can then write

γ (2N − (2σ + 2)(N − 4))

∫
RN
|∆u|2 dx ≥ α(2σN)

∫
RN
|u|2 dx.

Now, from Gagliardo-Nirenberg inequality, we infer that for some C > 0,

1 =

(∫
RN
|u|2σ+2 dx

) 8
4(2σ+2)−2σN

≤ C
(∫

RN
|∆u|2 dx

) 2N
4(2σ+2)−2σN

∫
RN
|u|2 dx,

which implies

γ (2N − (2σ + 2)(N − 4))

(∫
RN
|∆u|2 dx

)1+ 2σN
4(2σ+2)−2σN

≥ α(2σN)C.

This shows that ∆u blows up in L2(R3) when γ → 0.

6. Sign-changing radial minimizer

In this section, we show that a radial least energy solution of (3) with σ = 1
is sign-changing when −2

√
α < β < 2

√
α. We assume N = 3 but the arguments

apply in dimension N = 2 also.
We will require the decay of the radial derivatives. Arguing as in de Figueiredo

et al [12, Theorem 2.2], one easily gets the following lemma.

Lemma 4. Let u ∈ Hm
rad(R3) and let v :]0,∞[→ R be the function defined by

v(r) := u(x) with r = |x|. Then, v ∈ Hm(]0,∞[, r2). Moreover, for a.e. |x| ∈ ]0,∞[
we have ∣∣Dju(x)

∣∣ ≥ ∣∣v(j)(|x|)
∣∣, ∀ j = 0, 1, . . . ,m.

In order to prove the Theorem 4 we adapt some arguments of Bonheure et al [2,
Theorem 6].

Proof of Theorem 4. We suppose N = 3, the case N = 2 is similar.

Step 1. Classical regularity. We start by observing that by elliptic regularity, we
have u ∈ H6(R3) which implies u ∈ C4,1/2(R3) and the solution can be understood
in the classical sense. Indeed, we know that the solution is H2, so that from the
equation

−∆(−∆u) = |u|2u− αu+ β∆u,

we infer that −∆(−∆u) ∈ L2(R3). This implies that −∆u,−∆(−∆u) ∈ L2(R3)
and henceforth −∆u ∈ H2(R3). Since u ∈ H2(R3), we conclude that u ∈ H4(R3).
Looking again at the equation, we can now use the fact that the right-hand side is
an H2-function. Then −∆u,−∆(−∆u) ∈ H2(R3) and therefore −∆u ∈ H4(R3).
At last, combining the fact that u ∈ H4(R3) and −∆u ∈ H4(R3), we deduce that
u ∈ H6(R3). Here above, the required elliptic regularity theory can be found in
[18, Chapter 1] and since we are in the whole space, this is just a consequence of
simple Fourier analysis.

Step 2. Equation in radial coordinates and decay at infinity. Writing now the
equation (3) in radial coordinates (the expression is especially simple in dimension
N = 3), we compute that v, defined by v(r) := u(x) for r = |x|, solves

(16) viv +
4

r
v
′′′
− βv

′′
− 2β

r
v′ + αv = |v|2v, r ∈ ]0,∞[.
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The H5(R3) regularity yields

lim
|x|→∞

(u(x), ∂xiu(x), ∂2
xixju(x), ∂3

xixjxk
u(x)) = (0, 0, 0, 0)

whatever i, j, k ∈ {1, 2, 3}. Then Lemma 4 implies that v satisfies

(17) lim
r→∞

(v(r), v′(r), v
′′
(r), v

′′′
(r)) = (0, 0, 0, 0).

Step 3. Asymptotic analysis of the solution of the ordinary differential equation
(16).

Claim 1 : Given R > 0 we can find r ≥ R such that v(r) > 0.

Let R > 0 be fixed. Consider the following Cauchy problem

(C1)

{
wiv(r)− βw′′(r) + αw(r) = 0, r > 0,

(w(r0), w′(r0), w
′′
(r0), w

′′′
(r0)) =: w0,

where r0 > 0 and w0 ∈ R4. By using condition (A1) we have that all the roots of
the characteristic equation associated to (C1) are complex, let us say ±a± ib. We
set ∆ := 2π/b. Then there exists c > 0 such that any solution of (C1) satisfies

(18) sup
[r0,r0+∆]

w, sup
[r0,r0+∆]

(−w) ≥ c|w0|.

Moreover, there exists M > 0 such that any solution of (C1) verifies

‖w‖C3([r0,r0+∆]) ≤M |w0|.
Again, we can also find N > 0 such that the solutions of{

ψiv(r)− βψ′′(r) + αψ(r) = h(r), r > 0,

(ψ(r0), ψ′(r0), ψ
′′
(r0), ψ

′′′
(r0)) =: 0,

satisfy

‖ψ‖C3([r0,r0+∆]) ≤ N‖h‖L∞(r0,r0+∆).

Let us set δ > 0 so that c− MNδ
1−Nδ > 0. Denote by v(r) = v(r; r0, v0) the solution of

(16) with initial conditions

(v(r0), v′(r0), v
′′
(r0), v

′′′
(r0)) =: v0, where r0 > 0.

Now, let us fix r0 ≥ R large enough so that |v0| is small enough to have

sup
r∈[r0,r0+∆]

|v(r)|2, sup
r∈[r0,r0+∆]

4

r
and sup

r∈[r0,r0+∆]

2β

r
< δ.

We write

v = ψ + w,

where ψ solves ψiv − βψ′′ + αψ = |v|2v +
2β

r
v′ − 4

r
v
′′′
, r > 0,

(ψ(r0), ψ′(r0), ψ
′′
(r0), ψ

′′′
(r0)) = 0,

and w is a solution of{
wiv(r)− βw′′(r) + αw(r) = 0, r > 0,

(w(r0), w′(r0), w
′′
(r0), w

′′′
(r0)) = v0.

Now, let us choose r ∈ [r0, r0 + ∆] such that

w(r) ≥ c|v0|.
Thus,

‖ψ‖C3([r0,r0+∆]) ≤ Nδ‖v‖C3([r0,r0+∆]),
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which implies that

‖ψ‖C3([r0,r0+∆]) ≤
Nδ

1−Nδ
‖w‖C3([r0,r0+∆]) ≤

MNδ

1−Nδ
|v0|.

Then we obtain

v(r) ≥ c|v0| − ‖ψ‖L∞ ≥
(
c− MNδ

1−Nδ

)
|v0| > 0.

Claim 2 : Given R > 0 we can find r ≥ R such that v(r) < 0.

The proof of this claim is similar to that of Claim 1.

Conclusion. We have proved in the last step that u changes sign. In fact, we have
even proved that u oscillate as |x| → +∞.

�

7. Comments

This note provides some simple results for the model equation (3) with a Kerr
nonlinearity and aims to partially complete the discussion on waveguide solutions
in [11, Section 4.1]. The methods we used are standard. On the other hand, since
radial solutions present oscillations for −2

√
α < β < 2

√
α, we expect that one

needs new arguments to answer the question whether the least energy solutions are
radial or not in this case. Also uniqueness is a challenging question if we are not in
the asymptotic regime β →∞ (or equivalently γ → 0).

We also mention that the important question about the decay at infinity of the
least energy solutions will be addressed in a future work. We are only aware of [10]
for a result in that direction. The analysis therein relies on the computation of the
fundamental solution of the fourth-order operator in (3) with β = 0.

The analysis of the decay should also allow to extend the statement of Theorem
3 to the case 2 < 2σ + 2 < 2N

N−2 and N ≥ 3. Indeed, the arguments we used are
just fine for the Kerr nonlinearity whereas some technical adjustments are needed
for a general subcritical power. In fact, one checks easily that our arguments apply
in dimension N ≤ 4 if we assume 2 ≤ 2σ + 1 ≤ N

N−2 . The lower inequality on σ

implies the required C1,1 regularity of the function s 7→ |s|2σs whereas the upper
inequality is used to start the bootstrap with a L2-bound on |u|2σu (here u is a
solution).

The same remark holds for Theorem 4 which should be true with less restrictive
assumptions. In dimension N ≤ 8, one can deal with 2 ≤ 2σ+ 1 ≤ N

N−4 . The other
cases will require more care and will be treated in a forthcoming work.
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