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MULTI-LAYER RADIAL SOLUTIONS FOR A SUPERCRITICAL NEUMANN PROBLEM

In this paper we study the Neumann problem

and we show the existence of multiple-layer radial solutions as p → +∞.

+ u = u p in B 1 u > 0 ∂ ν u = 0 on ∂B 1 , (1.1) 
where B 1 is the unitary ball in R N , N ≥ 3, and p > 1. Such simple models, coming from a variety of applications, have started and inspired the analysis of singular behavior in nonlinear elliptic partial differential equations in the last two decades (see, e.g. [START_REF] Del Pino | Semi-classical states for nonlinear Schrödinger equations[END_REF][START_REF] Ni | Diffusion, cross-diffusion, and their spike-layer steady states[END_REF]). The typical situation is when, for limiting values of a certain parameter, there are special solutions exhibiting a varied limiting behavior. Here we are concerned with the asymptotic p → +∞. In this, as well as in many other problems, one of the main points of the the analysis is the identification of its singular limits. Here we shall follow this strategy, in our search for solutions showing multiple oscillations for problem (1.1).

This particular problem has attracted much interest in recent years because, in spite of its simple and apparently harmless form, it already shows a variety of interesting phenomena. Just to start with, the very same existence of solution is extremely sensitive to the boundary conditions: indeed, as well known, by the Pohožaev identity [START_REF] Pohožaev | On the eigenfunctions of the equation ∆u + λf (u) = 0[END_REF], the Dirichlet problem has no solution for p ≥ N +2 N -2 . On the other hand, the situation changes drastically when dealing with Neumann boundary conditions, when, even in the supercritical regime p ≥ N +2 N -2 there hold existence results ( [START_REF] Serra | Monotonicity constraints and supercritical Neumann problems[END_REF][START_REF] Bonheure | Multiple positive radial solutions on annuli for nonlinear Neumann problems with large growth[END_REF][START_REF] Bonheure | Radial positive solutions of elliptic systems with Neumann boundary conditions[END_REF][START_REF] Bonheure | Increasing radial solutions for Neumann problems without growth restrictions[END_REF] ) Let us start recalling that in [START_REF] Serra | Monotonicity constraints and supercritical Neumann problems[END_REF] it has been showed that the problem

   -∆u + u = a(|x|)u p in B 1 u > 0 ∂ ν u = 0 on ∂B 1 , (1.2) 
where a ∈ L 1 (B 1 ) is increasing, not constant and a(r) > 0 a.e. in [0, 1] admits at least one radially increasing solution. It is a very remarkable fact that this holds irrespective of the sub or supercritical character of the power p. This result was extended in [START_REF] Bonheure | Increasing radial solutions for Neumann problems without growth restrictions[END_REF] to the case of a ≡ 1.

Other progresses have been made when the power p tends to +∞. In [START_REF] Grossi | Positive constrained minimizers for supercritical problems in the ball[END_REF] it was shown the existence of a radial solution u p to (1.1) which satisfies

u p (|x|) → G(|x|, 1) G(1, 1) (1.3) 
where G(r, s) is the Green function associated to the one dimensional operator

L : u → -u ′′ - N -1 r u ′ + u, (1.4) 
for the boundary conditions u ′ (0) = u ′ (1) = 0 (see also [START_REF] Gladiali | Singular limit of radial solutions in an annulus[END_REF]). Note that (1.3) can be read as a concentration on S N -1 . Indeed, it can be shown that in this case we have that the terms u p weakly converge to a multiple of the (N -1)-dimensional Hausdorff measure supported on the 1-sphere.

In the case of the annulus, in [START_REF] Bonheure | Multiple positive radial solutions on annuli for nonlinear Neumann problems with large growth[END_REF] it was shown the existence of at least three different nonradial solutions to (1.1) as p goes to +∞. These are single or double layer solutions, as their laplacian blows up in one -or at most two-annuli about certain spheres, while in the rest of the domain there holds full C 2 convergence.

The aim of this paper is to prove the existence multiple layer solutions, that is radial solutions to (1.1) whose laplacians weakly converge to measures concentrating at interior spheres, with a simple reflection rule. The existence of multiple layer solutions was found, for different singularly perturbed problems and various boundary conditions, in recent papers (see for example [START_REF] Ambrosetti | Singularly perturbed elliptic equations with symmetry: existence of solutions concentrating on spheres[END_REF][START_REF] Ambrosetti | Singularly perturbed elliptic equations with symmetry: existence of solutions concentrating on spheres[END_REF][START_REF] Malchiodi | Multiple clustered layer solutions for semilinear Neumann problems on a ball[END_REF][START_REF] Malchiodi | Boundary concentration phenomena for a singularly perturbed elliptic problem[END_REF][START_REF] Bandle | Multiple clustered layer solutions for semilinear elliptic problems on S n[END_REF][START_REF] Wei | Solutions with interior bubble and boundary layer for an elliptic Neumann problem with critical nonlinearity[END_REF][START_REF] Ruf | Singularly perturbed elliptic equations with solutions concentrating on a 1-dimensional orbit[END_REF]).

We shall exploit a gluing technique, using a variant of Nehari method, adapted to deal with Neumann problems instead of the standard Dirichlet ones: we choose a partition of (0, 1) given by 0 < t 1 < .. < t k < 1 and consider in (0, t 1 ) the increasing solution obtained in [START_REF] Bonheure | Increasing radial solutions for Neumann problems without growth restrictions[END_REF] and in (t i-1 , t i ) the solutions found in [START_REF] Bonheure | Multiple positive radial solutions on annuli for nonlinear Neumann problems with large growth[END_REF].

Of course, this gluing procedure provides a solution in (0, 1) if and only if the value of the solutions at the endpoints t i coincide. This will be true for a careful choice of the partition, related with an auxiliary variational problem.

Note that our approach is very different from others dealing with existence of multiple layers radial solutions. In our opinion it is simpler and it could be applied to various perturbative problems. As a counterpart, it needs some careful expansions of the solutions in [START_REF] Bonheure | Increasing radial solutions for Neumann problems without growth restrictions[END_REF] and in [START_REF] Bonheure | Multiple positive radial solutions on annuli for nonlinear Neumann problems with large growth[END_REF] as p goes to +∞. We finally recall that solutions featuring highly oscillatory behaviour have been studied, among others, in [START_REF] Terracini | Oscillating solutions to second-order ODEs with indefinite superlinear nonlinearities[END_REF][START_REF] Terracini | Solutions of prescribed number of zeroes to a class of superlinear ODE's systems[END_REF][START_REF] Ortega | A variational method for the existence of bounded solutions of a sublinear forced oscillator[END_REF][START_REF] Felmer | Highly oscillatory behavior of the activator in the Gierer and Meinhardt system[END_REF] Since we are interested in radial solutions, the corresponding equation becomes    -u ′′ -N -1 r u ′ + u = u p in (0, 1) u > 0 in (0, 1) u ′ (0) = u ′ (1) = 0.

(1.5) A crucial tool in our arguments is given by the nondegeneracy of the increasing (decreasing) solution in the annulus. We think that this result is interesting itself.

Our main result is the following, Theorem 1.1. Let k > 0 be an integer. There exists p(k) such that for any p > p(k) problem (1.1) admits a radial solution u p,klayer (r) having exactly k maximum points α 1,p , . . . , α k,p . Furthermore we have that (i) (α 1,p , . . . , α k,p ) → (α 1 , . . . , α k ) as p → ∞ and (α 1 , . . . , α k ) is a critical point of the function ϕ(s 1 , . . . , s k ) = inf{ u 2 H 1 (B 1 ) : u ∈ H 1 rad (B 1 ), u(s 1 ) = . . . = u(s k ) = 1}, (1.6) in the set 0 < s 1 < . . . < s k < 1; (ii) u p,klayer (r) converges pointwise to k j=1 A j G(r, α j ), where (A 1 , . . . , A k ) is a solution of the system k j=1 A j G(α i , α j ) = 1, i = 1, .., k.

(1.7)

1.2. Organization of the paper and main ideas. In Section 2 we analyze in detail the limit problem p = +∞. The radial increasing solution of the equation (1.1) in the annulus B b \ B a (or in the ball when a = 0) converges to the increasing function

G(r, b) G(b, b) , r ∈ [a, b], a ≥ 0.
Recall that G(r, s) was defined above (1.4). A decreasing solution of (1.1) exists only in the case of the annulus a > 0, and converges to G(r, a) G(a, a) , r ∈ [a, b], a > 0.

By gluing an increasing solution and a decreasing solution, we construct a 1-layer solution in B b \ B a . This converges to G(r, s) G(s, s) , r ∈ [a, b], a ≥ 0, (

s being the unique point where the left derivative of the function is opposite to the right derivative. Similarly, we study the limit problem of the k-layer solution. This is a combination of k Green functions, with singular points being a critical point of the function ϕ in 1.6, and normalized with value 1 at the maximum points (see Theorem 1.5). Again, the left and right derivatives are opposite at the maximum points. In order to prove the existence of a critical point of ϕ, we consider the juxtaposition of k functions of the type (1.8) and we prove, by a degree theorem, that there exists at least one configuration such that this juxtaposition is continuous.

In Section 3 we start the study of the problem p < ∞. We recall the variational characterization which ensures the existence of an increasing solution in the ball and in the annulus and of a decreasing solution in the annulus.

In Section 4 we prove that the increasing and decreasing solutions converge respectively to the two limit functions introduced above. The convergence is C 1 in the interior of the domain, but not on the boundary at the maximum point. In particular, we prove in Lemma 4.7 that the value of the solution at the maximum point is asymptotically related to the value of the derivative of the limit profile.

In Section 5 we prove that the monotone solutions are nondegenerate. This is the most technical part of the paper and it is based on a blow-up argument inspired from [START_REF] Grossi | Asymptotic behaviour of the Kazdan-Warner solution in the annulus[END_REF]. We present here in detail the proof of the uniqueness of the solution, which is very close to the proof of the nondegeneracy but presents some additional technical difficulties. The uniqueness and nondegeneracy ensure that the monotone solutions depend in a regular way on the boundary points a and b. This is the basic tool to show the existence of a k-layer solution of (1.1) which bifurcates from p = ∞.

In section 6 we prove the existence of a 1-layer radial solution of (1.1). We glue and increasing solution and a decreasing one. Thanks to the continuous dependence of the monotone solutions on the boundary points a and b, we can show that there exists a continuous configuration. This function converges to (1.8). It is remarkable that the limit point s is a maximum point of the function ϕ in (2.4) (whereas the monotone solutions are associated to minimum points of ϕ).

In section 7 we construct the k-layer solution of (1.1). This requires the additional property that the 1-layer solution is unique, both at the limit (see Lemma 2.4) and for p finite. To this aim we prove a stronger convergence result in Theorem 7.8. 1.3. Notation. We list below some notation used throughout the paper.

-For r > 0 we have

B r = {x ∈ R N : |x| < r}, N ≥ 3; |B r | denotes the N-dimensional measure of B r . For 0 < r < R, B R \ B r = {x ∈ R N : r < |x| < R}.
In order to treat at the same time the case of the annulus and that of the ball, we will sometimes allow r = 0 in the previous definition and use the convention that ). The derivatives u ′ p (r; α, β), u ′′ p (r; α, β), and so on, are taken with respect to the variable r.

B R \ B 0 = B R . -H 1 rad (B r ) denotes the Sobolev space of radial functions H 1 rad (B r ) = {u ∈ H 1 (B r ) : u = u(|x|)}. If u ∈ H 1 (B r ), u 2 H 1 = Br (|∇u| 2 + u 2 ) dx; if u ∈ L p (B r ), 1 ≤ p < ∞, u p = Br |u| p dx; if u ∈ L ∞ (B r ), u ∞ =
-We adopt the standard notation f 

(x) = o(g(x)) as x → x 0 if lim x→x 0 f (x)/g(x) is zero, f (x) = O(g(x)) as x → x 0 if lim sup x→x 0 |f (x)/g(x)| is finite, f (x) ∼ g(x) as x → x 0 if lim x→x 0 f (x)/g(x
+ u = u p in B b \ B a u > 0 ∂ ν u = 0 on ∂(B b \ B a ), (2.1) 
is easily done if a > 0, whatever p > 1, by minimizing the quotient

Q p,[a,b] (u) = u 2 H 1 u 2 p+1 , u ∈ H 1 rad (B b \ B a ) (2.2) 
The limit problem as p → ∞, namely minimizing

Q ∞,[a,b] (u) = u 2 H 1 u 2 ∞ , u ∈ H 1 rad (B b \ B a ) (2.3)
was considered in [START_REF] Bonheure | Multiple positive radial solutions on annuli for nonlinear Neumann problems with large growth[END_REF] and [START_REF] Grossi | Positive constrained minimizers for supercritical problems in the ball[END_REF]. In the study of this limit problem, it was shown that an important role is played by the function ϕ : [a, b] → R defined by

ϕ [a,b] (s) = inf u∈H 1 rad u(s) =0 u 2 H 1 u(s) 2 . (2.4)
This function ϕ [a,b] makes sense even if a = 0, in which case we clearly have that the infimum is zero and not achieved for s = a = 0, while it is achieved and not zero if s > 0. For every s ∈ ]a, b] when a = 0 or s ∈ [a, b] otherwise, there exists, up to normalization, a unique minimizer of (2.4). Moreover, when s ∈ ]a, b[, this minimizer is given by the Green function, that we denote by G [a,b] (•, s), associated to the operator

L : u → -u ′′ - N -1 r u ′ + u for the boundary conditions u ′ (a) = u ′ (b) = 0, i.e.
LG To simplify the notation we set

[a,b] (r, s) = δ s for r ∈ [a, b], ∂G [a,b] ∂r (a, s) = ∂G [a,b] ∂r (b, s) = 0. ( 2 
G(r, s) := G [0,1] (r, s).
We recall in the next proposition some useful properties of G(r, s).

Proposition 2.1 ( [START_REF] Catrina | A note on a result of m. grossi[END_REF][START_REF] Grossi | Positive constrained minimizers for supercritical problems in the ball[END_REF]). There exist two positive linearly independent solutions ζ ∈ C 2 ((0, 1]) and ξ ∈ C 2 ([0, 1]) of the equation Lu = 0 in (0, 1)

satisfying ξ ′ (0) = ζ ′ (1) = 0, r N -1 (ξ ′ (r)ζ(r) -ξ(r)ζ ′ (r)) = 1 for every r ∈ (0, 1], (2.6) 
and such that

G(r, s) = s N -1 ξ(r)ζ(s) for r ≤ s s N -1 ξ(s)ζ(r) for r > s. (2.7)
Moreover, ξ is bounded and increasing in [0, 1], ζ is decreasing in [0, 1], and 

lim r→0 + ξ(r) = 1 N -2 (2.8) lim r→0 + r N -2 ζ(r) = 1, (2.9) 
lim r→0 + r N -1 ζ ′ (r) = -(N -2) (2.
ξ [a,b] (r) = ξ ′ (a)ζ(r) -ξ(r)ζ ′ (a) ξ ′ (a)ζ ′ (b) -ξ ′ (b)ζ ′ (a) , ζ [a,b] (r) = ξ ′ (b)ζ(r) -ξ(r)ζ ′ (b) ξ ′ (a)ζ ′ (b) -ξ ′ (b)ζ ′ (a) if 0 < a < b < 1; ξ [0,b] (r) = ξ(r) ξ ′ (b) , ζ [0,b] (r) = ξ ′ (b)ζ(r) -ξ(r)ζ ′ (b) if 0 < b < 1; ξ [a,1] (r) = ξ ′ (a)ζ(r) -ξ(r)ζ ′ (a), ζ [a,1] (r) = - ζ(r) ζ ′ (a) if 0 < a < 1.
= 0 in (a, b), such that ξ ′ [a,b] (a) = ζ ′ [a,b] (b) = 0. Furthermore, ξ [a,b] is increasing, ζ [a,b] is decreasing, r N -1 (ξ ′ [a,b] (r)ζ [a,b] (r) -ξ [a,b] (r)ζ ′ [a,b] (r)) = 1 for every r ∈ (a, b], (2.12) 
and we have (2.15)

G [a,b] (r, s) = s N -1 ξ [a,b] (r)ζ [a,b] (s) for r ≤ s s N -1 ξ [a,b] (s)ζ [a,b] (r) for r > s. ( 2 
The remaining properties can be proved by explicit computations. [START_REF] Bonheure | Multiple positive radial solutions on annuli for nonlinear Neumann problems with large growth[END_REF][START_REF] Grossi | Positive constrained minimizers for supercritical problems in the ball[END_REF] to have a global minimum at a and a local minimum at b (which is also consequence of the lemma below). We will recall in the next section that the local minimum in b gives the limiting profile of the increasing radial solution for the original problem as p → ∞ while if a > 0, the global minimum at a gives the limiting profile of the decreasing radial solution for the original problem as p → ∞. We will build a third solution by gluing an increasing solution in a ball with a decreasing solution in an annulus. This is a 1-layer solution, having exactly one maximum point. The construction will use crucially the following fact. 

ϕ [a,b] (s) = Q ∞ G [a,b] (•, s) G [a,b] (s, s) . It is proved in [13, Lemma 2.1] that Q ∞ G [a,b] (•, s) G [a,b] (s, s) = |∂B 1 | s N -1 G [a,b] (s, s)
.

Hence Proposition 2.2 provides ϕ [a,b] (s) = |∂B 1 | ξ [a,b] (s)ζ [a,b] (s) (2.17)
We take the derivative of the last expression and we manipulate it by making use of (2.12) as follows 

ϕ ′ [a,b] (s) |∂B 1 | = - ξ ′ [a,b] (s)ζ [a,b] (s) + ξ [a,b] (s)ζ ′ [a,b] (s) ξ [a,b] (s) 2 ζ [a,b] (s) 2 = -s N -1    ξ ′ [a,b] (s) ξ [a,b] (s) 2 - ζ ′ [a,b] (s) ζ [a,b] (s) 2    . ( 2 
= 0 by r N -1 ξ ′ [a,b] to get r N -1 ξ [a,b] ξ ′ [a,b] = r N -1 ξ ′′ [a,b] ξ ′ [a,b] + (N -1)r N -2 (ξ ′ [a,b] ) 2 . (2.19)
Next we multiply the equation satisfied by

ξ ′ [a,b] by r N -1 ξ [a,b] to obtain -(r N -1 ξ ′′ [a,b] ξ [a,b] ) ′ + r N -1 ξ ′′ [a,b] ξ ′ [a,b] + (N -1)r N -3 ξ ′ [a,b] ξ [a,b] + r N -1 ξ ′ [a,b] ξ [a,b] = 0. (2.20)
Replacing (2.19) into the last expression and integrating on (a, s), we deduce that

s N -1 (ξ ′′ [a,b] (s)ξ [a,b] (s) -ξ ′ [a,b] (s) 2 ) = (N -1) s a r N -3 ξ ′ [a,b] ξ [a,b] dr. (2.21) This implies ξ ′ [a,b] (s) ξ [a,b] (s) ′ = ξ ′′ [a,b] (s)ξ [a,b] (s) -ξ ′ [a,b] (s) 2 ξ [a,b] (s) 2 > 0. (2.22)
We preform the same computations with the function ζ [a,b] , but this time we integrate on (s, b), leading to which is defined in the set {0 < a < 1, a < b ≤ 1}. Similarly, when we are working in the annulus, this is a function of one variable s(0, b) defined in {0 < b ≤ 1}. The monotonicity proved in Lemma 2.4 implies that this map is smooth.

s N -1 (ζ ′′ [a,b] (s)ζ [a,b] (s) -ζ ′ [a,b] (s) 2 ) = ζ ′′ [a,b] (b)ζ [a,b] (b) -(N -1) b s r N -3 ζ ′ [a,b] ζ [a,b] dr.
s → ξ ′ [a,b] (s) ξ [a,b] (s) 2 is increasing, s → ζ ′ [a,b] (s) ζ [a,b] (s)
Lemma 2.6. The map (a, b) → s(a, b) is of class C 1 in the set {0 < a < 1, a < b ≤ 1}. Analogously, s(0, b) is of class C 1 in {0 < b ≤ 1}
Proof. It follows from Lemma 2.4 that s is implicitely defined by the equation

0 = F (a, b, s) = ξ ′ [a,b] (s) ξ [a,b] (s) 2 - ζ ′ [a,b] (s) ζ [a,b] (s) 2 . The definitions of ξ [a,b] and ζ [a,b] imply that F is smooth. Let 0 < a 0 < b 0 < 1 and s 0 = s(a 0 , b 0 )).
Since by (2.23) we have ∂F/∂s(a 0 , b 0 , s 0 ) > 0, the Implicit Function Theorem applies and s is a C 1 function of (a, b) in a neighborhood of (a 0 , b 0 ). This holds for every 0 < a 0 < b 0 < 1. When b 0 = 1 we argue in the same way in a left neighborhood of b 0 . In the case of the ball a 0 = 0 we can proceed similarly.

Next we study the behaviour of s when b → 0.

Lemma 2.7. Let 0 ≤ a < b ≤ 1. We have s ∼ b as b → 0 + . (2.24) 
Proof. Let us first consider the case a = 0. We use (2.11) to rewrite the equation (2.16) as

ξ ′ (s) ξ(s) + ξ ′ (b)ζ ′ (s) -ξ ′ (s)ζ ′ (b) ξ ′ (b)ζ(s) -ξ(s)ζ ′ (b) = 0. (2.25)
Both b and s converge to zero, hence we can replace in the previous expression the following asymptotic developments, which are deduced from Proposition 2.1:

ξ(r) = 1 N -2 + o(r), ξ ′ (r) = ξ ′′ (0)r + o(r), as r → 0 ζ(r) = 1 r N -2 + o 1 r N -2 , ζ ′ (r) = - N -2 r N -1 + o 1 r N -1
as r → 0.

(2.26) Using these asymptotics in (2.25), we infer that

2s N -b N + o(s N ) + o(b N ) = 0, which implies that s ∼ b as b → 0.
Assume now that a > 0. We rewrite (2.16) more explicitely as

ξ ′ (a)ζ ′ (s) -ξ ′ (s)ζ ′ (a) ξ ′ (a)ζ(s) -ξ(s)ζ ′ (a) + ξ ′ (b)ζ ′ (s) -ξ ′ (s)ζ ′ (b) ξ ′ (b)ζ(s) -ξ(s)ζ ′ (b) = 0. (2.27) Since now a, s, b → 0, we can use again (2.26) to obtain 2s 2N -2 -(a N + b N )s N -2 -2ξ ′′ (0)a N b N + o(s 2N -2 ) + o((a N + b N )s N -2 ) + o(a N b N ) = 0. (2.28)
Here we have to distinguish two cases. If a ∼ b as b → 0, then (2.28) writes

s2N-2 -C 1 sN-2 b N -C 2 b 2N + o(s 2N -2 ) + o(s N -2 b N ) + o(b 2N ) = 0. for some C 1 , C 2 > 0. This implies s ∼ b. Indeed, if by contradiction s = o(b), then also s2N-2 = o(s N -2 b N
), and we would obtain

-C 1 sN-2 -C 2 b N + o(s N -2 ) + o(b N ) = 0, C 1 > 0, C 2 > 0, which is not possible. When a = o(b), (2.28) yields 2s 2N -2 -b N sN-2 + o(s 2N -2 ) + o(b N sN-2 ) + o(b 2N ) = 0. Again, if s = o(b), then we obtain -s N -2 + o(s N -2 ) + o(b N ) =
0 and since this is not possible, we conclude that s ∼ b also in this case.

In the next lemma, we show that the distance from s to the extrema of the interval only depends on the length of the interval.

Lemma 2.8. Let 0 ≤ a < b ≤ 1. For every ε > 0, there exists δ > 0 such that if b -a > ε, then b -s > δ and s -a > δ.
Proof. We argue by contradiction. Let (a n ) n and (b n ) n be such that b n -a n > ε and (s n ) n We have to distinguish three cases Assume first a > 0. Suppose by contradiction that there exist sequences α

(n) j , β (n) j-1 such that |α (n) j -β (n) j-1 | → 0 as n → ∞. Replacing in (2.27), we obtain ξ ′ (β (n) j )ζ ′ (β (n) j-1 ) -ξ ′ (β (n) j-1 )ζ ′ (β (n) j ) = 0, which contradicts (2.15) since |β (n) j-1 -β (n) j | > ε for every n. The case |α (n) j -β (n) j | →
0 can be ruled out in the same way. The cases j = 1 and j = k can be proved in a similar way, by exploiting the suitable definitions in (2.11).

We will see that the point s defined in the previous lemma is the limit (as p → ∞) of the maximum points of the 1-layer solutions of (1.1). Therefore we give the following definition of 1-layer solution of the limit problem in an interval [

β j-1 , β j ]. For k ∈ N 0 , let 0 = β 0 < β 1 < . . . < β k-1 < β k = 1.
We denote by α j := α j (β j-1 , b j ) the unique point satisfying (2.16) 

in the interval [β j-1 , β j ], namely ξ ′ [β j-1 ,β j ] (α j ) ξ [β j-1 ,β j ] (α j ) + ζ ′ [β j-1 ,β j ] (α j ) ζ [β j-1 ,β j ] (α j ) = 0, j = 1, . . . k.
(2.29) Definition 2.9. We refer to the function

u ∞,1-layer (r; β j-1 , β j ) := G [β j-1 ,β j ] (r, α j ) G [β j-1 ,β j ] (α j , α j ) (2.30)
as the 1-layer solution of the limit problem in the interval [β j-1 , β j ].

When we do not need to emphasize the interval of definition, we write u ∞,1-layer (r) to shorten the notations. Observe that (2.29) shows that u ∞,1-layer satisfies a reflection law at α j : the right and left derivatives are opposite, namely lim

ε→0 - u ∞,1-layer (α j + ε) -u ∞,1-layer (α j ) ε = -lim ε→0 + u ∞,1-layer (α j + ε) -u ∞,1-layer (α j ) ε .

2.2.

The k-layer solution of the limit problem. In order to produce a k-layer solution of the limit problem, we glue together k 1-layer solutions. For k ∈ N 0 , let

T = {(β 1 , . . . , β k-1 ) ∈ R k-1 : 0 = β 0 < β 1 < β 2 < . . . < β k-1 < β k = 1}. (2.31)
The existence of a continuous configuration will follow from a degree argument, applied to the map

M ∞ = (M (1) 
∞ , . . . , M

(k-1) ∞ ) : T → R k-1 , defined as M (j) ∞ (β 1 , . . . , β k-1 ) = u ∞,1-layer (β j ; β j , β j+1 ) -u ∞,1-layer (β j ; β j-1 , β j ) = ξ [β j ,β j+1 ] (β j ) ξ [β j ,β j+1 ] (α j+1 ) - ζ [β j-1 ,β j ] (β j ) ζ [β j-1 ,β j ] (α j ) = 1 β N -1 j 1 ξ ′ (β j )ζ(α j+1 ) -ξ(α j+1 )ζ ′ (β j ) - 1 ξ ′ (β j )ζ(α j ) -ξ(α j )ζ ′ (β j ) , (2.32) 
for j = 1, . . . , k -1, where α j = α j (β j-1 , β j ) are defined in (2.29). We notice that M (j) ∞ depends only on β j-1 , β j , β j+1 .

In order to study the degree of M ∞ in T , we need to evaluate it on ∂T , given by the union of k sets:

∂T = ∪ k j=1 (∂T ) j , with (∂T ) j = {β 0 ≤ β 1 ≤ . . . ≤ β j-1 = β j ≤ . . . ≤ β k-1 ≤ β k }. (2.
33) Using a standard notation, we denote by T the closure of T , that is to say T = T ∪ ∂T . Lemma 2.10. There exists ε such that for every 0 < ε < ε there exists a constant C(ε) > 0 (depending only on ε) such that, for every j = 1, . . . , k -1, we have

M (j) ∞ (β 1 , . . . , β k-1 ) < -C(ε) for (β 1 , . . . , β k-1 ) ∈ T with β j ≤ ε ≤ β j+1 .
Proof. Fix any j = 1, . . . , k -1 and any ε ∈ (0, 1). We compute the limit of M (j) ∞ as β j → 0 and β j+1 > ε. Consider the definition of M (j) ∞ in (2.32). Since α j , β j → 0, we can replace the developments (2.26). Moreover, thanks to Lemma 2.8, for every fix β j+1 > ε > 0, we have that α j+1 → ᾱj+1 , with ᾱj+1 > δ > 0 and δ = δ(ε) independent of β j+1 . Therefore lim

β j →0 β j+1 >ε M (j) ∞ (β 1 , . . . , β k-1 ) = lim β j →0      1 ξ ′′ (0)ζ( ᾱj+1 )β N j + (N -2)ξ( ᾱj+1 ) + o(1) - 1 ξ ′′ (0) β N j α N-2 j + 1 + o( β N j α N-2 j ) + o(1)      .
(2.34) By Lemma 2.7 we have that α j ∼ β j , so that lim

β j →0 β j+1 >ε M (j) ∞ (β 1 , . . . , β k-1 ) = 1 (N -2)ξ( ᾱj+1 ) -1 < -C(ε), (2.35) 
where in the last step we used the fact that ξ(0) = 1/(N -2) and ξ( ᾱj+1 ) > 1/(N -2) + C(δ) for ᾱj+1 > δ > 0.

Lemma 2.11. M ∞ is continuous in T and can be extended continuously on T .

Proof. Thanks to Lemma 2.6, M ∞ is continuous in T . Calculations similar to the ones in (2.34), (2.35) show that M ∞ can be extended continuously on T Lemma 2.12. There exists ε such that for every 0 < ε < ε there exists a constant C(ε) > 0 such that, for every j = 1, . . . , k -1, we have

M (j) ∞ (β 1 , . . . , β k-1 ) > C(ε) for (β 1 , . . . , β k-1 ) ∈ T with β j-1 ≤ 1 -ε ≤ β j .
Proof. We proceed similarly to the previous lemma. Now we use the fact that ζ ′ (1) = 0 and that α j → ᾱj < 1 -δ, with δ > 0, by Lemma 2.8. We have lim

β k-1 →1 β j-1 <1-ε M (j) ∞ (β 1 , . . . , β k-1 ) = 1 - 1 ξ ′ (1)ζ( ᾱj ) > C(ε), since ξ ′ (1)ζ( ᾱj ) > ξ ′ (1)ζ(1) + C(δ) for ᾱj < 1 -δ, and ξ ′ (1)ζ(1) = 1.
Again, by taking ε sufficiently small, the statement follows.

Lemma 2.13. There exists ε such that for every 0 < ε < ε there exists a constant C(ε) > 0 such that (i) for every j = 2, . . . , k and l = 1, . . . , j -1 we have

M (l) ∞ (β 1 , . . . , β k-1 ) > C(ε) for (β 1 , . . . , β k-1 ) ∈ T with β l-1 ≤ β j -ε ≤ β l ; (2.36) 
(ii) for every j = 0, . . . , k -2 and l = j + 1, . . . , k -1 we have

M (l) ∞ (β 1 , . . . , β k-1 ) < -C(ε) for (β 1 , . . . , β k-1 ) ∈ T with β l ≤ β j + ε ≤ β l+1 .
(2.37) Proof. We compute the limit of M (l)

∞ as β l → β j and β l-1 < β j -ε. To this aim, consider the definition of M (l) ∞ in (2.32) and notice that both α l+1 → β j and β l+1 → β j as β l → β j . For every fix β l-1 , denote by ᾱl the limit of α l as β l → β j . We obtain lim

β l →β j β l-1 <β j -ε M (l) ∞ (β 1 , . . . , β k-1 ) = 1 - ζ [β l-1 ,β j ] (β j ) ζ [β l-1 ,β j ] ( ᾱl )
By Lemma 2.8 there exists δ independent of β l-1 such that ᾱl < β j -δ. Since ζ [β l-1 ,β j ] is decreasing, we conclude that the previous quantity is larger than a strictly positive constant which depends only on ε. By taking ε sufficiently small, the statement follows. Similarly we have lim

β l →β j β l+1 >β j +ε M (l) ∞ (β 1 , . . . , β k-1 ) = ξ [β j ,β l+1 ] (β j ) ξ [β j ,β l+1 ] ( ᾱl+1 ) -1 < -C(ε). Theorem 2.14. Let k ∈ N 0 . There exists a configuration 0 = β 0 < β 1 < . . . < β k-1 < β k = 1 such that the function u ∞,klayer (r) := u ∞,1-layer (r; β j-1 , β j ) for r ∈ [β j-1 , β j ), j = 0, . . . , k, (2.38) 
is continuous. In addition, the β j satisfy

ξ ′ (β j ) ζ ′ (β j ) = ξ(α j+1 ) -ξ(α j ) ζ(α j+1 ) -ζ(α j ) , j = 1, . . . , k -1.
(2.39)

Proof. For P = (P 1 , . . . , P k-1 ) ∈ T to be chosen later, let us introduce the operator

(I -P )(β 1 , . . . , β k-1 ) = (β 1 -P 1 , . . . , β k-1 -P k-1 ) .
We want to show that the homotopy H = (H (1) , . . . , H (k-1) ) defined by

H(t, β 1 , . . . , β k-1 ) = tM ∞ (β 1 , . . . , β k-1 ) + (1 -t)(I -P )(β 1 , . . . , β k-1 ) (2.40)
satisfies H(t, β 1 , . . . , β k-1 ) = 0 for every t ∈ [0, 1] and (β 1 , . . . , β k-1 ) ∈ ∂T.

(2.41) Here M ∞ is extended to ∂T thanks to Lemma 2.11.

In the following take ε < ε/2, with ε such that the statements of Lemmas 2.10, 2.12 and 2.13 hold true.

Let us first consider H on (∂T ) 1 , as defined in (2.33). We write

(∂T ) 1 = ∪ k-1 j=1 (∂T ) 1,j , (∂T ) 1,j := {(β 1 , . . . , β k-1 ) ∈ (∂T ) 1 : β j ≤ ε ≤ β j+1 } By Lemma 2.10 there exists C > 0 such that H (j) (t, β 1 , . . . , β k-1 ) < -tC + (1 -t)(ε -P j ) on (∂T ) 1,j ,
for every j = 1, . . . , k -1. This quantity is negative for every t ∈ [0, 1] provided that P j > ε for every j.

Let us consider H on (∂T ) k . We write

(∂T ) k = ∪ k-1 j=1 (∂T ) k,j , (∂T ) k,j := {(β 1 , . . . , β k-1 ) ∈ (∂T ) k : β j-1 ≤ 1 -ε ≤ β j }.
Then, by Lemma 2.12,

H (j) (t, β 1 , . . . , β k-1 ) > tC + (1 -t)(1 -ε -P j ) on (∂T ) k,j ,
and this quantity is positive for every t ∈ [0, 1] provided that P j < 1 -ε for every j.

Finally, let us consider H on (∂T ) j , for a fix j = 1, . . . , k -1. We define

(∂T ) - j,-1 = {(β 1 , . . . , β k-1 ) ∈ (∂T ) j : β j-1 = β j ≤ ε}, (∂T ) - j,l = {(β 1 , . . . , β k-1 ) ∈ (∂T ) j : β l ≤ β j-1 -ε ≤ β l+1 }, for l = 0, . . . , j -2, and (∂T ) + j,m = {(β 1 , . . . , β k-1 ) ∈ (∂T ) j : β m-1 ≤ β j + ε ≤ β m }, (∂T ) + j,k+1 = {(β 1 , . . . , β k-1 ) ∈ (∂T ) j : β j-1 = β j ≥ 1 -ε}, for m = j + 1, . . . , k, so that (∂T ) j = ∪ k m=j+1 (∂T ) - j,-1 ∩ (∂T ) + j,m ∪ j-2 l=0 ∪ k+1 m=j+1 (∂T ) - j,l ∩ (∂T ) + j,m .
Let us show that on each piece of this decomposition at least one component of H does not vanish.

On (∂T )

- j,-1 ∩ (∂T ) + j,m , m = j + 1, . . . , k, we have β m-1 ≤ β j + ε ≤ 2ε and β m ≥ β j + ε ≥ ε. Lemma 2.10 implies M (m-1) ∞ (β 1 , . . . , β k-1 ) < -C on (∂T ) - j,-1 ∩ (∂T ) + j,m , so that H (m-1) (t, β 1 , . . . , β k-1 ) < -Ct + (1 -t)(2ε -P m-1 ) < 0 on (∂T ) - j,-1 ∩ (∂T ) + j,m , for every m = j + 1, . . . , k.
Next consider (∂T ) - j,l ∩ (∂T ) + j,m , for l = 0, . . . , j -2 and m = j + 1, . . . , k. Lemma 2.13 implies that

M (l+1) ∞ > C and M (m-1) ∞ < -C on (∂T ) - j,l ∩ (∂T ) + j,m , hence H (l+1) > Ct + (1 -t)(β l+1 -P l+1 ), H (m-1) < -Ct + (1 -t)(β m-1 -P m-1 )
on (∂T ) - j,l ∩ (∂T ) + j,m . Suppose by contradiction that both H (l+1) and H (m-1) vanish on (∂T ) - j,l ∩ (∂T ) + j,m , then

β j-1 -ε ≤ β l+1 < P l+1 < P m-1 < β m-1 ≤ β j + ε = β j-1 + ε, which is not possible provided that |P l+1 -P m-1 | > 2ε.
Finally on (∂T ) - j,l ∩ (∂T ) + j,k+1 , l = 0, . . . , j -2, we have

β l ≤ β j-1 -ε ≤ 1 -ε and β l+1 ≥ β j-1 -ε ≥ 1 -2ε. Lemma 2.
12 implies Proof. By construction, u ∞,k-layer is the juxtaposition of k 1-layer solutions u ∞,1-layer (r; β j-1 , β j ) as defined in (2.30). The β j are such that the juxtaposition is continuous, that is to say (2.39) holds. Recall that each 1-layer solution attains it maximum value 1 at r = α j , with α j satisfying (2.29), therefore (A 1 , . . . , A k ) solves the system (1.7). We only have to prove that (α 1 , . . . , α k ) is a critical point of ϕ.

H (l+1) > Ct + (1 -t)(1 -2ε -P l+1 ) > 0 on (∂T ) - j,l ∩ (∂T ) + j,
Let us write relation (2.29) more explicitely for β j satisfying (2.39): We have

ξ ′ (α 1 ) ξ(α 1 ) + ζ ′ (α 1 )[ξ(α 2 ) -ξ(α 1 )] -ξ ′ (α 1 )[ζ(α 2 ) -ζ(α 1 )] ξ(α 2 )ζ(α 1 ) -ζ(α 2 )ξ(α 1 ) = 0, (2.45) ζ ′ (α j )[ξ(α j ) -ξ(α j-1 )] -ξ ′ (α j )[ζ(α j ) -ζ(α j-1 )] ξ(α j )ζ(α j-1 ) -ζ(α j )ξ(α j-1 ) + ζ ′ (α j )[ξ(α j+1 ) -ξ(α j )] -ξ ′ (α j )[ζ(α j+1 ) -ζ(α j )] ξ(α j+1 )ζ(α j ) -ζ(α j+1 )ξ(α j ) = 0 j = 2, . . . , k -1, (2.46) ζ ′ (α k )[ξ(α k ) -ξ(α k-1 )] -ξ ′ (α k )[ζ(α k ) -ζ(α k-1 )] ξ(α k )ζ(α k-1 ) -ζ(α k )ξ(α k-1 ) + ζ ′ (α k ) ζ(α k ) = 0. ( 2 
ϕ(s 1 , . . . , s k ) = |∂B 1 | • k j=1 s N -1 j u ′ ∞,+ (s j ; β j-1 , s j ) -u ′ ∞,-(s j ; s j , β j ) = |∂B 1 | • k j=1 s N -1 j ξ ′ [β j-1 ,β j ] (s j ) ξ [β j-1 ,β j ] (s j ) - ζ ′ [β j-1 ,β j ] (s j ) ζ [β j-1 ,β j ] (s j ) =: |∂B 1 | • k j=1 Φ j , (2.48) 
with the β j satisfying (see (2.39))

ξ ′ (β j ) ζ ′ (β j ) = ξ(s j+1 ) -ξ(s j ) ζ(s j+1 ) -ζ(s j ) , j = 1, . . . , k -1.
(2.49)

We compute ∂ϕ/∂s j for j = 2, . . . , k -1 (the cases j = 1 and j = k being similar). For such j, using relation (2.49), rearranging the terms, and recalling (2.6), we obtain

Φ j = ζ(s j )[ξ(s j-1 ) -ξ(s j+1 )] + ζ(s j-1 )[ξ(s j+1 ) -ξ(s j )] + ζ(s j+1 )[ξ(s j ) -ξ(s j-1 )] [ξ(s j )ζ(s j-1 ) -ξ(s j-1 )ζ(s j )][ξ(s j+1 )ζ(s j ) -ξ(s j )ζ(s j+1 ] . (2.50)
When we compute ∂ϕ/∂s j , only the terms Φ j-1 , Φ j and Φ j+1 intervene. Some tedious computations provide

∂Φ j-1 ∂s j = ζ ′ (s j )[ξ(s j ) -ξ(s j-1 )] -ξ ′ (s j )[ζ(s j ) -ζ(s j-1 )] [ξ(s j )ζ(s j-1 ) -ξ(s j-1 )ζ(s j )] 2 =: ζ ′ (s j )N 1 -ξ ′ (s j )N 2 D 2 1 , (2.51) 
∂Φ j+1 ∂s j = ζ ′ (s j )[ξ(s j+1 ) -ξ(s j )] -ξ ′ (s j )[ζ(s j+1 ) -ζ(s j )] [ξ(s j+1 )ζ(s j ) -ξ(s j )ζ(s j+1 )] 2 =: ζ ′ (s j )N 3 -ξ ′ (s j )N 4 D 2 2 
(2.52) and

∂Φ j ∂s j = ζ ′ (s j )N 5 -ξ ′ (s j )N 6 D 2 1 D 2 2 , (2.53) 
where

N 5 := ξ(s j-1 )D 2 [ζ(s j+1 )N 1 -ξ(s j+1 )N 2 ] -ξ(s j+1 )D 1 [ζ(s j-1 )N 3 -ξ(s j-1 )N 4 ], (2.54) 
N 6 := ζ(s j-1 )D 2 [ζ(s j+1 )N 1 -ξ(s j+1 )N 2 ] -ζ(s j+1 )D 1 [ζ(s j-1 )N 3 -ξ(s j-1 )N 4 ].
(2.55) We sum the contributions to obtain, for j = 2, . . . , k -1,

∂ϕ ∂s j = ∂Φ j-1 ∂s j + ∂Φ j ∂s j + ∂Φ j+1 ∂s j = Φ j D 1 D 2 {ξ ′ (s j )(N 2 D 2 + N 4 D 1 ) -ζ ′ (s j )(N 1 D 2 + N 3 D 1 )} . (2.56)
Therefore ∂ϕ/∂s j = 0 if and only if (2.46) holds. Similarly, one can prove that ∂ϕ/∂s 1 = 0 is equivalent to (2.45) and ∂ϕ/∂s k = 0 is equivalent to (2.47).

We conclude this section with the following conjecture, which seems natural to us, since we have proved in Lemma 2.4 that the 1-layer solution of the limit problem is unique.

Conjecture 2.16. The configuration (β 1 , . . . , β k-1 ) in Theorem 2.14 is unique.

Existence of the increasing and decreasing solutions

3.1. The increasing solution in the ball.

Let 0 ≤ α < β ≤ 1. If u ∈ H 1 rad (B β \ B α )
, we can assume it is continuous in (α, β] (α included if positive) and the following set is well defined

C +,[α,β] = {u ∈ H 1 rad (B β \ B α ) : u ≥ 0 and u(r) ≤ u(s) for every α < r ≤ s ≤ β}.
Observe that if α = 0 and u ∈ C +,[α,β] , then u ∈ C(B β ) and in particular it is a bounded function. In fact, since u is non-decreasing, we can assume continuity also at the origin by letting u(0) = lim r→0 + u(r). Moreover, u is differentiable almost everywhere and u ′ (r) ≥ 0 where it is defined.

Lemma 3.1. Let u ∈ C +,[α,β] solve -∆u + u = u p in B β \ B α ∂ ν u = 0 on ∂(B β \ B α ). (3.1)
Then (i) either u ≡ 1, or u(α) < 1 and u(β) > 1; (ii) |u| ≤ e 1/2 in B β \ B α ; (iii) |u ′ | < 1 in B β \ B α . Proof. (i) Integrating the equation for u in B β \ B α we obtain B β \Bα u(1 -u p-1 ) dx = 0.
(ii) By multiplying the equation for u by u ′ we obtain

u ′′ u ′ -uu ′ + u p u ′ = - N -1 r (u ′ ) 2 . (3.2)
Hence the Lyapunov function 

L(r) = |u ′ (r)| 2 2 - u(r) 2 2 + u(r) p+1 p + 1 satisfies L ′ (r) = -N -1 r (u ′ ) 2 ≤ 0. As a consequence, we have L(r) ≤ L(0) = -u(0) 2 2 + u(0) p+1 p+1 ≤ 0 by point (i), for every α ≤ r ≤ β. This implies u(r) ≤ u(β) ≤ p + 1 2 1 p-1 (3.
c p,+ (α, β) = inf Q p,[α,β] (u) : u ∈ C +,[α,β] , u ∞ < √ e + 1 , (3.4) 
where Q p,[α,β] was defined in (2.2). By the maximum principle, u p,+ is strictly increasing.

Proof. Fix q > 1, q < N +2 N -2 if N ≥ 3, and s 0 = √ e + 1. Define the following C 1 function

f p (s) =    0 if s ≤ 0 s p if 0 ≤ s ≤ s 0 s p 0 + ps p-1 0 (s -s 0 ) + (s -s 0 ) q if s ≥ s 0 , and let F p (s) = s 0 f (t) dt, Ẽp,[α,β] (u) = B β \Bα |∇u| 2 2 + u 2 2 -F p (u) dx. (3.5) 
In [4, Thm. 1.3, Prop. 4.7] it is proved that there exists a strictly increasing radial solution of (3.1), which achieves the following mountain pass level in 1)) < 0}. Given this result, it will be enough to show that a suitable rescaling of this solution achieves c p,+ (α, β). To this aim, let

C +,[α,β] c ′ p,+ (α, β) = inf γ∈Γ p,+ (α,β) max t∈[0,1] Ẽp,[α,β] (γ(t)), where Γ p,+ (α, β) = {γ ∈ C([0, 1], C +,[α,β] ) : γ(0) = 0, Ẽp,[α,β] (γ(
c ′′ p,+ (α, β) = inf Ẽp,[α,β] (u) : u ∈ C +,[α,β] , u 2 H 1 = B β \Bα f p (u)u dx .
It is standard to see that c Let us show that w = c p,+ (α, β) -1 p-1 u p,+ achieves c p,+ (α, β) and solves -∆w + w = c p,+ (α, β)w p , which concludes the proof. On the one hand we have

c p,+ (α, β) ≤ Q p,[α,β] (u p,+ ) = u p,+ 2(1-2 p+1 ) H 1 = 2 p + 1 p -1 c ′′ p,+ (α, β) p-1 p+1 . ( 3.6) 
On the other hand, t p w is an admissible test function for c ′′ p,+ (α, β), with

t p = w 2 p-1 H 1 w -p+1 p-1 p+1 . Hence c ′′ p,+ (α, β) ≤ Ẽp,[α,β] (t p w) = p -1 2(p + 1) t p w 2 H 1 = p -1 2(p + 1) c p,+ (α, β) p+1 p-1 .
This implies that the inequalities in (3.6) are indeed equalities and in turn that u p,+ can be chosen as a multiple of w.

Remark 3.3. For a fix p, if 0 < ᾱ < β are such that there exists the solution u p,+ (•; ᾱ, β), then by the continuity of λ rad 2 (α, β), there exist 0 < A 1 < ᾱ < A 2 , B 1 < β < B 2 such that the solution u p,+ (•; α, β) exists for every (α, β) ∈ (A 1 , A 2 ) × (B 1 , B 2 ). In case ᾱ = 0, there exist B 1 < β < B 2 such that the analogous holds in the ball. Remark 3.4. We see from the previous proof that u p,+ equivalently achieves

inf u∈C +,[α,β] Qp,[α,β] (u), where Qp,[α,β] (u) = u 2 H 1 B β \Bα F p (u) dx 2 p+1
.

As an additional information, we next show that the increasing solution is a local minimizer of Qp,[α,β] in H 1 rad (B β \ B α ). This implies for instance that the Morse index of the corresponding critical point of

E p,[α,β] (u) = B β \Bα |∇u| 2 2 + u 2 2 - u p+1 p + 1 dx.
is 1. Indeed we have that u p,+ is an eigenfunction of the operator v → -∆v + v -pu p-1 p,+ v associated with the negative eigenvalue 1 -p while for smooth functions v orthogonal to u p,+ in H 1 rad (B β \ B α ), we have

E ′′ p,[α,β] (u p,+ )[v, v] = B β \Bα |∇v| 2 + v 2 -pu p-1 p,+ v 2 dx ≥ 0
as a consequence of the fact that u p,+ is a local minimizer of the functional Qp,[α,β] . The claim then follows by density.

Theorem 3.5. The increasing solution u p,+ is a local minimizer of Qp,[α,β] in H 1 rad (B β \ B α ). We first show the minimality with respect to smooth variations. Lemma 3.6. There exists ε > 0 such that for every function satisfying 

ϕ ∈ C 2 rad (B β \ B α ), ϕ ′ (α) = ϕ ′ (β) = 0, ϕ -u p,+ (•; α, β) C 2 < ε, (3.7 
u ′′ p,+ , -max [β-r,β] u ′′ p,+ ,
we have ϕ ′′ > 0 in [α, α + r] and ϕ ′′ < 0 in [β -r, β], for every ϕ satisfying (3.7). Then, using the fact that ϕ ′ (α) = ϕ ′ (β) = 0, we deduce

ϕ ′ (r) = r α ϕ ′′ (s) ds > 0, r ∈ (α, α + r], ϕ ′ (r) = - β r ϕ ′′ (s) ds > 0, r ∈ [β -r, β).
Finally, since u ′ p,+ (r) > 0 in [α + r, β -r], by choosing

ε < 1 2 min r∈[α+r,β-r] u ′ p,+ (r),
we also have ϕ ′ > 0 in (α + r, β -r) for every ϕ satisfying (3.7). Therefore ϕ ∈ C +,[α,β] .

Proof of Theorem 3.5. Let us show that there exists ε > 0 such that

ϕ ∈ H 1 rad (B β \ B α ), ϕ -u p,+ H 1 < ε (3.8)
implies Qp,[α,β] (u p,+ ) ≤ Qp,[α,β] (ϕ). We proceed as in [START_REF] Brezis | H 1 versus C 1 local minimizers[END_REF]. Suppose by contradiction that there exists a sequence ϕ n satisfying (3.8) with ε = 1/n and Qp,

[α,β] (ϕ n ) < Qp,[α,β] (u p,+ ). Since inf{ Qp,[α,β] (ϕ) : ϕ ∈ H 1 rad (B β \ B α ), ϕ -u p,+ H 1 ≤ 1/n} is attained, we can assume that it is achieved by ϕ n , so that Q′ p,[α,β] (ϕ n )[ψ] = µ n (ϕ n -u p,+ , ψ) H 1 (3.9)
for some Lagrange multiplier µ n and for very test function

ψ ∈ H 1 (B β \ B α ). Therefore ϕ n satisfies (1 -µ n )(-∆ϕ n + ϕ n ) = f p (ϕ n ) -µ n (-∆u p,+ + u p,+ ), ϕ ′ n (α) = ϕ ′ n (β) = 0. Let us show that µ n < 0. If ϕ n -u p,+ H 1 < 1/n then µ n = 0. If otherwise ϕ n -u p,+ H 1 = 1/n, let t > 0 and ψ be such that ϕ n + tψ ∈ H 1 rad (B β \ B α ) and ϕ n + tψ -u p,+ H 1 ≤ 1/n. Then 1 n 2 ≥ ϕ n + tψ -u p,+ 2 
H 1 = 1 n 2 + 2t(ϕ n -u p,+ , ψ) H 1 + t 2 ψ 2 H 1 , so that 2t(ϕ n -u p,+ , ψ) H 1 ≤ 0. ( 3.10) 
On the other hand, by the definition of ϕ n , we have Qp,

[α,β] (ϕ n + tψ) -Qp,[α,β] (ϕ n ) ≥ 0, which in the limit t → 0, t > 0, provides Q′ p,[α,β] (ϕ n )[ψ] ≥ 0.
By comparing the last inequality with (3.9) and (3.10), we obtain µ n ≤ 0.

By using the equation satisfied by u p,+ , we can rewrite (3.9) as

(1 -µ n ) {-∆(ϕ n -u p,+ ) + ϕ n -u p,+ } = f p (ϕ n ) -f p (u p,+ ).
As ϕ n → u p,+ in H 1 as n → ∞ and µ n ≤ 0, the bootrstap argument implies that ϕ n → u p,+ in C 2 (B β \ B α ). This contradicts Lemma 3.6, thus providing that u p,+ locally minimizes Qp, [α,β] in the H 1 rad -topology. 3.2. The decreasing solution in the annulus. As said before, finding a radial solution of (2.1) in an annulus is easily done, whatever p > 1, by minimizing the quotient

Q p,[α,β] defined in (2.2) in H 1 rad (B β \ B α ).
One expects that this produces a radially decreasing solution. One can show this fact for large p. In order to obtain a decreasing solution for a broader range of p (we leave as a conjecture the fact that the minimizer of Q p,[α,β] is non increasing whatever p > 1), we introduce the cone

C -,[α,β] = {u ∈ H 1 rad (B β \ B α ) : u ≥ 0 and u(r) ≥ u(s) for every α < r ≤ s ≤ β}.
Observe that here we assume α > 0. Then u ∈ C(B β \ B α ) and in particular it is a bounded function. Moreover, u is differentiable almost everywhere and u ′ (r) ≤ 0 where it is defined. The proof is classical. Observe that by the maximum principle, u p,-is strictly decreasing.

Behaviour of the monotone solutions as p → +∞

In this section we will prove the following convergence result.

Proposition 4.1. Denote by u ∞,+ (r) = u ∞,+ (r; α, β) the unique solution of    -∆u + u = 0 in B β \ B α ∂ ν u = 0 on ∂B α u = 1 on ∂B β . (4.1)
As p → ∞ we have that

u p,+ → u ∞,+ in H 1 (B β \ B α ) ∩ C 0,γ (B β \ B α ) for every γ ∈ (0, 1).
The proof of this result is inspired by [START_REF] Grossi | Positive constrained minimizers for supercritical problems in the ball[END_REF]. We divide it in several steps.

Lemma 4.2.

There exists ū ∈ C +,[α,β] satisfying ū ∞ = ū(β) = 1 such that, up to a subsequence, it holds

u p,+ ⇀ ū in H 1 (B β \ B α ), u p,+ → ū in C 0,γ (B β \ B α )
, for every γ ∈ (0, 1).

Proof. Given any η ∈ C +,[α,β] with η ∞ < √ e + 1 we have, by the Hölder inequality (see (3.4) for the definition of c p,+ (α, β)),

c p,+ (α, β) ≤ η 2 H 1 η 2 p+1 ≤ |B β \ B α | p-1 p+1 η 2 H 1 η 2 2 ,
which is bounded by a constant non depending on p. On the other hand, the equation for p,+ provides

c p,+ (α, β) = u p,+ 2 p-1 p+1 H 1 = u p,+ p-1 p+1 . (4.
2) We deduce that the H 1 -norm of the u p,+ is bounded uniformly in p and hence the weak convergence. The Hölder convergence comes from Lemma 3.1 (iii).

Being u p,+ positive and strictly increasing for every p, ū is non-negative and non-decreasing by the pointwise convergence. Let us show that ū ∞ = 1. On the one hand, ū ∞ ≥ 1 since u p,+ (β) > 1 for every p and the convergence is C 0,γ (B β \ B α ). Suppose by contradiction that ū ∞ = ū(β) > 1. Then there exists r < β and δ > 0 such that u p,+ (r) > 1 + δ for every r ∈ (r, β). By integrating (3.1) in (r, β) we obtain

u ′ p,+ (r) > 1 rN-1 β r (u p-1 p,+ -1)r N -1 dr → ∞,
thus contradicting Lemma 3.1 (iii). Proof. For every q > p we have, by the Hölder inequality, Proof. We take w p of the form σ p u with σ p > 1, so that w p ∈ C +, [α,β] . In order to choose

u p,+ p+1 ≤ u p,+ q+1 |B β \ B α | 1 p+1 -1 q+1 . Therefore lim sup p→∞ u p,+ p+1 ≤ lim sup p→∞ lim q→∞ u p,+ q+1 |B β \ B α | 1 p+1 -1 q+1 = lim sup p→∞ u p,+ ∞ |B β \ B α | 1 p+1 = ū ∞ = 1, by Lemma 4.2.
σ p , let f (σ) = σu p+1 . Since f is continuous, f (1) < u ∞ |B β \ B α | 1 p+1 and f (σ) → ∞ as σ → ∞, there exists σ p ∈ (1, ∞) such that σ p u p+1 = u ∞ |B β \ B α | 1 p+1
. It only remains to prove that σ p → 1 as p → ∞. Suppose on the contrary that σ p > 1 + δ for some δ > 0 and for every p large. Then

u ∞ = lim p→∞ u ∞ |B β \ B α | 1 p+1 = lim p→∞ σ p u p+1 > (1 + δ) lim p→∞ u p+1 , which provides 1 > 1 + δ, a contradiction. Proof of Proposition 4.1. Let c ∞,+ = inf u 2 H 1 : u ∈ C +,[α,β] , u ∞ = 1 = inf Q ∞,[α,β] (u) : u ∈ C +,[α,β] , u ≡ 0 , (4.3)
where

Q ∞,[α,β] is defined in (2.3). By Lemma 4.2 we have c ∞,+ ≤ ū 2 H 1 ≤ lim inf p→∞ u p,+ 2 
H 1 = lim inf p→∞ (c p,+ u p,+ 2 
p+1 ). (4.4)
Using Lemma 4.3 we conclude that c ∞,+ ≤ lim inf p→∞ c p,+ . On the other hand, given any

u ∈ C +,[α,β] , u ≡ 0, Lemma 4.4 provides Q ∞,[α,β] (u) ≥ lim sup p→∞ Q p,[α,β] (w p ) ≥ lim sup p→∞ c p,+ .
Therefore we have obtained c ∞,+ = lim p→∞ c p,+ .

In turn, the inequalities in (4.4) are indeed equalities, which implies both that u p,+ → ū in H 1 (B β \ B α ) and that ū achieves c ∞,+ (with ū ∞ = 1). It only remains to show that u ∞,+ is the unique function, having L ∞ -norm equal to 1, which achieves c ∞,+ . On the one hand, u ∞,+ uniquely achieves inf u 2 H 1 : u = 1 on ∂B β ≤ c ∞,+ . On the other hand, u ∞,+ is radial and satisfies

u ′ ∞,+ (r) = 1 r N -1 r α t N -1 u ∞,+ (t) dt ≥ 0, ∀ r ∈ (α, β),
so that u ∞,+ is an admissible test function for c ∞,+ . 

+ u = 0 in B β \ B α ∂ ν u = 0 on ∂B β u = 1 on ∂B α . (4.5) As p → ∞ we have that u p,-→ u ∞,-in H 1 (B β \ B α ) ∩ C 0,γ (B β \ B α )
for every γ ∈ (0, 1).

We conclude this section with a result that we will need later.

Lemma 4.7. We have

lim p→∞ u p,+ (β; α, β) p p = 1 2 u ′ ∞,+ (β; α, β) 2 . (4.6)
Proof. The Pohozaev identity provides

N -2 2 - N p + 1 B β \Bα |∇u p,+ | 2 dx + N 2 - N p + 1 B β \Bα u 2 p,+ dx = ∂(B β \Bα) u 2 p,+ 2 - u p+1 p,+ p + 1 dσ, so that |∂B β | p + 1 u p,+ (β) p+1 = |∂B α | p + 1 u p,+ (α) p+1 - N -2 2 - N p + 1 B β \Bα |∇u p,+ | 2 dx - N 2 - N p + 1 B β \Bα u 2 p,+ dx + ∂(B β \Bα) u 2 p,+ 2 dσ. (4.7) 
On the other hand, writing the Pohozaev identity satisfied by u ∞,+ we obtain,

|∂B β | 2 u ′ ∞,+ (β) 2 = - N -2 2 B β \Bα |∇u ∞,+ | 2 dx - N 2 B β \Bα u 2 ∞,+ dx + ∂(B β \Bα) u 2 ∞ 2 dσ. (4.8) 
The convergence u p,+ → u ∞,+ in H 1 (B β \ B α ) proved in Proposition 4.1 and the fact that u p,+ (α) < 1 imply that the right hand side in (4.7) converges to the right hand side in (4.8).

5.

Uniqueness and nondegeneracy of the monotone solutions 5.1. Uniqueness. In this section we show that the minimal energy solution in the cone found in the previous section is unique.

Theorem 5.1. The value c p,+ (α, β) is uniquely achieved by a multiple of u p,+ (•; α, β) for p large enough.

Proof.

Step 1. Following [12, Theorem 1.5], we perform a blow-up analysis of u p,+ . Let

z p (r) = p u p,+ ∞ (u p,+ (β + ε p r) -u p,+ ∞ ) , r ∈ - β -α ε p , 0 , (5.1) 
where u p,+ ∞ = u p,+ (β) and

pε 2 p = 1 u p,+ p-1 ∞ . ( 5.2) 
From Lemma 4.7 we obtain that, for p large enough,

pε p = √ p u p,+ p-1 2 ∞ → √ 2 u ′ ∞,+ (β) as p → ∞, (5.3) 
so that, in particular, ε p → 0 as p → ∞.

We claim that for every R > 0 there exists C > 0 independent of p such that

|z p (r)| + |z ′ p (r)| ≤ C, r ∈ (-R, 0). (5.4) 
Of course, z p ≤ 0. In order to obtain a bound from below, write

z p (-R) = - pε p R u p,+ ∞ • u p,+ (β -ε p R) -u p,+ (β) -ε p R = -Cu ′ p,+ (ξ p ),
for some ξ p ∈ (β -ε p R, β), by the mean value theorem and (5.3). The last quantity is bounded from below by Lemma 3.1 iii). This lemma, together with (5.3), also provides

|z ′ p | = pε p u p,+ ∞ |u ′ p,+ | ≤ C,
so that (5.4) is proved. From (5.4) and the equation solved by z p :

-z ′′ p -(N -1)εp β+εpr z ′ p + pε 2 p 1 + zp p = 1 + zp p p for r ∈ -β-α εp , 0 z p (0) = z ′ p (0) = 0, (5.5) 
we can see that also z ′′ p is bounded in (-R, 0). Therefore there exists

z ∞ ∈ C 1 (-∞, 0) such that z p → z ∞ in C 1 loc (-∞, 0
) and we can pass to the limit in (5.5), obtaining that z ∞ satisfies -z ′′ = e z in (-∞, 0). (

All the solutions to this equation are given by

z(r) = log 4A 2 e √ 2(Ar+B) 1 + e √ 2(Ar+B) 2 , A, B ∈ R. (5.7) 
Using that z ∞ (0) = z ′ ∞ (0) = 0, we deduce

z p (r) → z ∞ (r) = log 4e √ 2r 1 + e √ 2r 2 in C 1 loc (-∞, 0). (5.8) 
Step 2. We argue by contradiction and suppose that there exists ũp,+ (•; α, β) ∈ C +,[α,β] , ũp,+ ≡ u p,+ , which solves the equation and such that a suitable multiple achieves c p,+ (α, β). All the results proved in Sections 4 apply to ũp,+ since it has the same variational characterization as u p,+ and all the arguments can be repeated. Since ũp,+ ≡ u p,+ , the following normalized function is well defined

w p = u p,+ -ũp,+ u p,+ -ũp,+ ∞ .
(5.9)

Letting K p (r) = 1 0 (tu p,+ (r) + (1 -t)ũ p,+ (r)) p-1 dt, we have that w p solves -(r N -1 w ′ p ) ′ + r N -1 w p = r N -1 pK p w p for r ∈ (α, β) w ′ p (α) = w ′ p (β) = 0, |w p | ≤ 1.
(5.10)

We claim that there exists C > 0 independent of p such that

|w ′ p (r)| ≤ Cp for every r ∈ α + β 2 , β . (5.11) 
Integrating (5.10) in ((α + β)/2, r), for (α + β)/2 ≤ r ≤ β, we obtain

|w ′ p (r)|r N -1 ≤ r α+β 2 t N -1 |w p (t)|dt + p r α+β 2 t N -1 |K p (t)||w p (t)|dt.
(5.12)

Since |w p | ≤ 1, we have

|w ′ p (r)| ≤ C + p r α+β 2 t N -1 |K p (t)|dt. (5.13) 
On the other hand we have that

β α+β 2 |K p (r)|r N -1 dr ≤ C. (5.14) 
This comes from the inequality

|x p -y p | ≤ p|x -y| (max{x, y}) p-1 , for every x, y > 0, (5.15) 
applied as follows

|K p (r)| = |u p,+ (r) p -ũp,+ (r) p | p|u p,+ (r) -ũp,+ (r)| ≤ (max{u p,+ (r), ũp,+ (r)}) p-1 , (5.16) 
and from the fact that

B β \Bα u p+1 p,+ dx + B β \Bα ũp+1 p,+ dx ≤ C, (5.17) 
uniformly in p, by the H 1 -bound in Lemma 4.2 and relation (4.2). So the claim (5.11) is proved.

Thanks to this C 1 -bound, we can perform a blow-up analysis of w p , similar to the one in Step 1. Let ε p be as in (5.2) and let v p (r) = w p (β + ε p r) for r ∈ (-(β -α)/ε p , 0), so that

-v ′′ p -(N -1)εp β+εpr v ′ p + ε 2 p v p = pε 2 p K p (β + ε p r)v p for r ∈ -β-α εp , 0 v ′ p (α) = v ′ p (β) = 0, |v p | ≤ 1.
(5.18) By (5.11) we deduce that

|v ′ p (r)| ≤ C for r ∈ - β -α 2ε p , 0 . (5.19) 
Let us show that pε 2 p K p (β + ε p r) → e z∞ (5.20) locally in the compact subsets of (-∞, 0), with z ∞ defined in (5.8). To this aim, consider the function z p introduced in (5.1) and analogously let

pε 2 p = 1 ũp,+ p-1 ∞ , zp (r) = p ũp,+ ∞ (ũ p,+ (β + εp r) -ũp,+ ∞ ) , (5.21) 
so that ũp,+ (β + ε p r) = ũp,+ ∞ 1 + 1 p zp ε p εp r . (5.22) 
Since the asymptotic in (5.3) holds for both ε p and εp , we deduce

ε p εp → 1, u p,+ ∞ ũp,+ ∞ → 1 as p → +∞, (5.23) 
so that, using also (5.8),

zp ε p εp r → z ∞ (r) as p → ∞. (5.24) 
Using this and (5.23) again, we have

K p (β + ε p r) = u p,+ p-1 ∞ 1 0 1 + 1 p tz p (r) + (1 -t)z p ε p εp r + o p (1) p-1 dt ∼ u p,+ p-1
∞ e z∞(r) as p → ∞, proving (5.20).

By combining (5.18), (5. [START_REF] Ruf | Singularly perturbed elliptic equations with solutions concentrating on a 1-dimensional orbit[END_REF]) and (5.20), we deduce that also v ′′ p is bounded, so there exists

v ∞ ∈ C 1 (-∞, 0) such that v p → v ∞ in C 1 loc (-∞, 0). (5.25) Moreover v ∞ solves -v ′′ = e z∞ v in (-∞, 0) v ′ (0) = 0, |v| ≤ 1. (5.26) It is known, see [12, Lemma 4.2], that v(r) = A 1 -e √ 2r 1 + e √ 2r + B √ 2r 1 -e √ 2r 1 + e √ 2r + 2 , A, B ∈ R. (5.27) 
Since v ∞ is bounded, we immediately obtain that B = 0. On the other hand, the condition

v ′ ∞ (0) = 0 implies that A = 0. Therefore v p → v ∞ ≡ 0 in C 1 loc (-∞, 0). (5.28) 
Step 3. We will see that v ∞ ≡ 0 contradicts the fact that w p ∞ = 1 for every p. Let m p ∈ [α, β] be such that w p (m p ) = 1 and let (up to a subsequence)

m p → m ∞ ∈ [α, β].
Denoting by G [α,β] (r, t) the Green function of the operator -u ′′ -N -1 r u ′ + u with Neumann boundary conditions u ′ (α) = u ′ (β) = 0, we have

w p (r) = β α G [α,β] (r, t)pK p (t)w p (t)dt.
(5.29)

Then 1 = w p (m p ) = β α G [α,β] (m p , t)pK p (t)w p (t)dt = β α+β 2 G [α,β] (m p , t)pK p (t)w p (t)dt + o p (1),
where we used the fact that u p,+ (t) ≤ C < 1 for t ∈ [(α + β)/2, β]. By applying the change of variables t = β + ε p s, we obtain Since we know that v p → 0 a.e. as p → ∞, it will be enough to show that the Lebesgue dominate convergence theorem applies. To this aim we use the following lemma, of which we postpone the proof to Section 5.2. (5.36)

1 = pε p 0 -β-α 2εp G [α,β] (m p , β + ε p s)K p (β + ε p s)v p (s)ds + o p (1) = pε p G [α,β] (m p , β) 0 -β-α 2εp K p (β + ε p s)v p (s)ds +pε p 0 -β-α 2εp G [α,β] (m p , β + ε p s) -G [α,β] (m p , β) K p (
On the other hand, (5.28) implies (repeating the same procedure as before),

o p (1) = w p (β) = β α G [α,β] (β, t)pK p (t)w p (t)dt = β α+β 2 G [α,β] (β, t)pK p (t)w p (t)dt + o p (1) = pε p G [α,β] (β, β) 0 -β-α 2εp K p (β + ε p s)v p (s)ds +pε p 0 -β-α 2εp G [α,β] (β, β + ε p s) -G [α,β] (β, β) K p (β + ε p s)v p (s)ds + o p (1) = pε p G [α,β] (β, β) 0 -β-α 2εp K p (β + ε p s)v p (s)ds + o p (1), (5.37) 
which contradicts (5.36). This concludes the proof of Theorem 5.1.

Corollary 5.3. Let us suppose that (α n , β n ) → (α, β) with α < β. Then there exists p 0 = p 0 (α, β) > 1 such that, for every n, the value c p 0 ,+ (α n , β n ) is uniquely achieved by a multiple of u p,+ (•; α n , β n ).

Proof. It is enough to repeat step by step the proof of Theorem 5.1. We just remark that the functions z p and v p are now defined in -βn-αn εp , 0 and by assumption this interval converges again to (-∞, 0). This applies also to Lemma 5.2. Proof. By definition we have

c p,+ (α, β) = Q p,[α,β] (u p,+ ) = |∂B 1 | β α u p+1 p,+ (t)t N -1 dt p-1 p+1
.

(5.39)

Then, recalling the blow up procedure (5.1), (5.8), we obtain

c p,+ (α, β) p+1 p-1 |∂B 1 | = β α u p+1 p,+ (t)t N -1 dt = ε p 0 -β-α εp u p+1 p,+ (β + ε p s)(β + ε p s) N -1 ds = ε p u p,+ p+1 ∞ 0 -β-α εp 1 + z p (s) p p+1 (β + ε p s) N -1 ds ≥ ε p u p,+ p+1 ∞ β N -1

0

-∞ e z∞(s) ds, (5.40) where in the last step we applied Fatou's lemma. Next by (5.2), (5.8) and Lemma 4.7, we obtain

c p,+ (α, β) p+1 p-1 |∂B 1 | ≥ β N -1 u p,+ p ∞ p 1 2 ( √ 2 + o p (1)) = β N -1 u ′ ∞,+ (β) + o p (1).
On the other hand, taking u ∞,+ as test function for c p,+ (α, β), we have

c p,+ (α, β) ≤ Q p,[α,β] (u ∞,+ ) = |∂B 1 |β N -1 u ′ ∞,+ (β) 1 + o p (1) , (5.41) 
where in the last line we used the equation satisfied by u ∞,+ .

Corollary 5.5. For every δ > 0 there exist s(δ) < 0 and p(δ) > 1 such that, for every p > p(δ) and s ∈ (-(β -α)/ε p , s(δ)), the following holds

s -β-α εp 1 + z p (τ ) p p+1 (β + ε p τ ) N -1 dτ < δ.
(5.42)

Proof. For any δ > 0 let us choose s(δ) such that

β N -1 s(δ)
-∞ e z∞(τ ) dτ < δ 3 .

(5.43)

We point out that a consequence of (5.40) and (5.41) of Lemma 5.4 is that 0

-β-α εp 1 + z p (τ ) p p+1 (β + ε p τ ) N -1 dτ → β N -1 0 -∞
e z∞(τ ) dτ, (5.44) as p → ∞, hence we can choose p 1 (δ) such that, for every p ≥ p 1 (δ),

0 -β-α εp 1 + z p (τ ) p p+1 (β + ε p τ ) N -1 dτ -β N -1 0 -∞ e z∞(τ ) dτ < δ 3 .
(5.45)

Next, using the uniform convergence of z p to z ∞ on the compact sets of (-∞, 0] let us choose p 2 (δ) such that, for p ≥ p 2 (δ),

0 s(δ) 1 + z p (τ ) p p+1 (β + ε p τ ) N -1 -β N -1 e z∞(τ ) dτ < δ 3 .
(5.46) Finally, let p 3 (δ) be such that -(β -α)/ε p < s(δ) for every p ≥ p 3 (δ) and set p(δ) := max {p 1 (δ), p 2 (δ), p 3 (δ)}. If p > p(δ) and s ∈ (-(β -α)/ε p , s(δ)), we have

s -β-α εp 1 + z p (τ ) p p+1 (β + ε p τ ) N -1 dτ ≤ s(δ) -β-α εp 1 + z p (τ ) p p+1 (β + ε p τ ) N -1 dτ = β N -1 s(δ) -∞ e z∞(τ ) dτ + 0 -β-α εp 1 + z p (τ ) p p+1 (β + ε p τ ) N -1 dτ -β N -1 0 -∞ e z∞(τ ) dτ - 0 s(δ) 1 + z p (τ ) p p+1 (β + ε p τ ) N -1 dτ -β N -1 0 s(δ)
e z∞(τ ) dτ < δ, (5.47) which proves the claim.

Proof of Lemma 5.2. Writing the equation satisfied by u p,+ we obtain

-u ′ p,+ (β + ε p s)(β + ε p s) N -1 + β+εps α u p,+ (t)t N -1 = β+εps α u p p,+ (t)t N -1 dt, (5.48) 
which implies by (5.1),

u p,+ ∞ pε p z ′ p (s)(β + ε p s) N -1 = β+εps α u p,+ (t)t N -1 dt -ε p u p,+ p ∞ s -β-α εp 1 + z p (t) p p (β + ε p t) N -1 dt.
(5.49) Using (5.2), (5.3) and the fact that s ∈ (-(β -α)/2ε p , 0), we obtain, for p large enough,

z ′ p (s) ≥ 1 2 √ 2 u ′ ∞,+ (β) 1 β N -1 α+β 2 α u p,+ (t)t N -1 dt -2 2 α + β N -1 s -β-α εp 1 + z p (t) p p (β + ε p t) N -1 dt =: I 1 -I 2,p (s). 
(5.50) By Corollary 5.5, with ε = I 1 /2, there exist p and s such that

I 2,p (s) < I 1 2 for every p > p, s ∈ - β -α ε p , s .
(5.51)

The Hölder inequality with exponents (p + 1)/p and p + 1 provides

s -β-α εp 1 + z p (t) p p (β + ε p t) N -1 dt ≤ s -β-α εp 1 + z p (t) p p+1 (β + ε p t) N -1 dt p p+1 • 0 -β-α εp (β + ε p t) N -1 dt 1 p+1 ≤ s -β-α εp 1 + z p (t) p p+1 (β + ε p t) N -1 dt p p+1 Cε -1 p+1 p .
(5.52)

We notice that 

ε -1 p ∼ p √ 2 u ′ ∞,+ (β) so that ε -1 p+1 p → 1 as p → ∞. ( 5 
-(r N -1 v ′ ) ′ + r N -1 v = r N -1 pu p-1 p,+ v for r ∈ (α, β) v ′ (α) = v ′ (β) = 0.
(5.54)

Then v p ≡ 0 for p large.

Proof. As in the proof of Theorem 5.1, Step 2, we suppose by contradiction that there exists a nontrivial solution of (5.54). The blow-up analysis of this solution can be performed exactly as in the proof to Theorem 5.1, reaching the contradiction in the sae way. Here the calculations are indeed easier because there is only one blow-up parameter ε p , hence (5.23) holds automatically. Also, in the analogous of (5.10) there is u p p in place of K p , so that (5.14) is trivial. 

I = {(r, α, β) : A 1 < α < A 2 , B 1 < β < B 2 , α < r < β} .
Then the map I ∋ (r, α, β) → u p,+ (r; α, β) is continuous.

Similarly, in the case of the ball, let 0 < B 1 < B 2 be as in Remark 3.3 and I = {(r, β) : B 1 < β < B 2 , 0 ≤ r < β}. Then the map I ∋ (r, β) → u p,+ (r; 0, β) is continuous.

We define a functional Φ :

H 2 rad (B B \B A )∩{u > 0}×{(α, β) : A 1 < α < A 2 , B 1 < β < B 2 } → L 2 (B B \ B A ) as follows Φ(u; α, β) = -u ′′ -h N -1 hs + k u ′ + h 2 u -u p .
The Implicit Function Theorem applies to Φ(u; α, β) = 0 near the point (û p,+ ; α, β). Indeed we have

∂ u Φ(û p,+ (•; α, β); α, β))[ ψ] = -ψ′′ -h N -1 hs + k ψ′ + h 2 ψ -p(û p,+ ) p-1 ψ.
Letting ψ(s) = ψ(hs + k) and rescaling back to the original variable hs + k = r, the previous expression becomes

h 2 (-ψ ′′ - N -1 r ψ ′ + ψ -pu p-1 p,+ ψ
). The nondegeneracy of u p,+ proved in Theorem 5.6 implies that ∂ u Φ(û p,+ (•; α, β); α, β)) is injective. Being a Fredholm operator of index 0, it is also surjective.

By the Implicit Function Theorem there exists locally a C 1 map (α, β) → u(•; α, β) such that Φ(u(•; α, β); α, β) = 0. Then Lemma 5.7 implies that (α, β) → u p,+ (•; α, β) is of class C 1 . Lemma 5.9. Fix 0 ≤ α < 1. For every ε > 0 we have that

u p,+ (•; α, β) → u ∞,+ (•; α, β) in H 1 (B β \ B α ) ∩ C 0,γ (B β \ B α ) for every γ ∈ (0, 1), as p → ∞, uniformly in β for α + ε ≤ β ≤ 1. Analogously, fix 0 < β ≤ 1, then for every ε > 0 the convergence is uniform for 0 ≤ α ≤ β -ε.
Proof. We only prove the first statement. First we claim that for every ε > 0 there exists

C = C(ε) such that c p,+ (α, β) + u p,+ (•; α, β) 2 H 1 + u p,+ (•; α, β) p+1 p+1 ≤ C for every p > 1, β ∈ [α + ε, 1].
To prove the claim we proceed similarly to Lemma 4.2. Given any η ∈ C +,[α,1] satisfying η ∞ < √ e + 1, we have 

c p,+ (α, β) ≤ η 2 H 1 (B β \Bα) η 2 L p+1 (B β \Bα) ≤ |B β \ B α | p-1 p+1 η 2 H 1 (B β \Bα) η 2 L 2 (B β \Bα) ≤ |B 1 \ B α | p-1 p+1 η 2 H 1 (B 1 \Bα) η 2 L 2 (B α+ε \Bα) (5.57) for every p > 1, β ∈ [α + ε, 1].
u p,+ -u ∞,+ 2 H 1 (B β \Bα) ≤ u p,+ -u ∞,+ L ∞ (B β \Bα) u p,+ p L p (B β \Bα) +|∂B β ||u ′ ∞,+ ( 
∞,+ (r; β j-1 , α) = G [β j-1 ,α] (r, α) G [β j-1 ,α] (α, α) = ξ [β j-1 ,β j ] (r) ξ [β j-1 ,β j ] (α) , (6.7) u ∞,-(r; α, β j ) = G [α,β j ] (r, α) G [α,β j ] (α, α) = ζ [β j-1 ,β j ] (r) ζ [β j-1 ,β j ] (α) . (6.8) 
Comparing with (2.18), we obtain

L ∞ (α; β j-1 , β j ) = 1 2    ξ ′ [β j-1 ,β j ] (α) ξ [β j-1 ,β j ] (α) 2 - ζ ′ [β j-1 ,β j ] (α) ζ [β j-1 ,β j ] (α) 2    = - ϕ ′ [β j-1 ,β j ] (α) 2|∂B 1 |α N -1 . Therefore Lemma 2.4 implies that ∂ ∂α L ∞ (α; β j-1 , β j ) > 0 (6.9)
and that L ∞ (α; β j-1 , β j ) admits a unique interior zero α j . Combining (i)-(ii)-(ii) we deduce that L p has a zero for p sufficiently large, which provides the existence of the 1-layer solution.

Existence of the k-layer solution

In this section we write for shorter notation u p,+ (r) := u p,+ (r; α, b) and u ∞,+ (r) := u ∞,+ (r; α, b).

Let p be fixed. Let us recall the definition of I in Lemma 5.7. In the case of the annulus we have Step 1. Let ε p be as in (5.2) and z ∞ be as in (5.8). We claim that there exists A = 0 such that v p (r) := We multiply (7.10) by r N -1 ∂u p,+ ∂β and (7.1) by r N -1 w and integrate in (α, β): pointwise. We can apply the dominated convergence theorem to pass to the limit in (7.12) to obtain

I = {(r, α, β) : A 1 < α < A 2 , B 1 < β < B 2 , α < r < β} , with 0 < A 1 < A 2 < B 1 < B 2
β N -
(β) -C(β)α N u ∞,+ (α) 2 - 2p p -1 β N -1 u ′ ∞,+ (β) 2 2 + o(1) = C(β) β N -1 u ′ ∞,+ (β) + βu ′′ ∞,+ (β) -β N u ′ ∞,+ (β) 2 -α N -1 u ∞,+ ( 
p n ∂u pn,+ ∂β (r; α, β n ) -2 u ′′ ∞,+ (β 0 ) -(u ′ ∞,+ (β 0 )) 2 u ′ ∞,+ (β 0 ) → 0, (7.20) 
which contradicts (7.18).

We have an anologous result for the decreasing solution.

Lemma 7.7. We have

p ∂u p,- ∂α (r; α, β) r=α → 2 u ′′ ∞,-(α) -(u ′ ∞,-(α)) 2 u ′ ∞,- (α 
) uniformly in β for (r, α, β) ∈ I.

Theorem 7.8. Let L p (α; β j-1 , β j ) and L ∞ (α; β j-1 , β j ) be defined in (6.5) and (6.6) respectively. There exists ε > 0 such that L p (•; β j-1 , β j ) → L ∞ (•; β j-1 , β j ) in C 1 (α j -ε, α j + ε). The convergence is uniform by Lemma 7.6 and by Remark Remark 5.10. Since an analogous result hold for the decreasing solution, the statement is proved.

Corollary 7.9. The map α j,p (β j-1 , β j ) defined in Theorem 6.1 is of class C 1 .

1 . Introduction 1 . 1 .

 111 Motivations and main results. This paper is concerned with multiple solutions of the following problem,

  ess sup Br |u|. Note that in the notation of the norms the domain is not specified and is taken as the domain of definition of the function. -We denote by u p (r; α, β) a solution of the problem (1.1) in the annulus B β \ B α (with Neumann b.c. on ∂(B β \ B α )

. 5 )

 5 If a > 0, the punctual limit of G [a,b] (r, s) as s → a is well defined and we denote it by G [a,b] (r, a). Analogously we will denote by G [a,b] (r, b) the limit of G [a,b] (r, s) as s → b. Notice that G [a,b] (r, a) and G [a,b] (r, b) satisfy (2.5) with only one boundary condition.

(2. 11 )Proposition 2 . 2 .

 1122 It follows from Proposition 2.1 that these are the expressions of the Green function in the interval [a, b]. The functions ξ [a,b] and ζ [a,b] are linearly independent positive solutions of Lu

. 13 )

 13 Proof. Let us show that ξ ′ (a)ζ ′ (b) -ξ ′ (b)ζ ′ (a) = 0 for any a, b ∈ (0, 1). Indeed, for r ∈ [a, b], we have χ [a,b] (r) := ξ ′ (a)ζ(r) -ξ(r)ζ ′ (a) > 0, (2.14) since ξ is increasing, ζ is decreasing and both functions are positive. Moreover χ [a,b] satisfies L(χ [a,b] ) = 0 in [a, b] and χ ′ [a,b] (a) = 0, which implies 0 < χ ′ [a,b] (b) = ξ ′ (a)ζ ′ (b) -ξ ′ (b)ζ ′ (a).

Remark 2 . 3 .

 23 If N = 3 the functions ξ and ζ can be explicitly computed. In this case we have that ξ(r) = e r -e -r 2r and ζ(r) = e r r . The function ϕ [a,b] was shown in

Lemma 2 . 4 .

 24 Let 0 ≤ a < b ≤ 1 and let ϕ [a,b] be as in (2.4). The function s → ϕ ′ [a,b] (s) s N -1 is strictly decreasing. Furthermore, its unique zero s satisfies s ∈ (a, b) and ξ ′ [a,b] (s) ξ [a,b] (s) + ζ ′ [a,b] (s) ζ [a,b] Since the infimum in (2.4) is achieved by G [a,b] (•, s), we have

  Since ζ [a,b] is decreasing and solves Lζ [a,b] = 0, ζ ′ [a,b] (b) = 0, we deduce that the previous expression is also positive. Taking again into account the monotonicity of the maps ξ [a,b] and ζ [a,b] , we conclude that

Remark 2 . 5 .

 25 (a) > 0 and ϕ ′ [a,b] (b) < 0 so that the claim obviously follows. When a = 0, we still have ϕ ′ [a,b] (b) < 0 and moreover lim The formula (2.16) that defines s is equivalent to d dr G [a,b] (r, r) r N -1 r=s = 0, which means that s is a critical point of the weighted Robin function associated to G [a,b] . So one deduces the following statement from Lemma 2.4: for any 0 ≤ a < b ≤ 1, the weighted Robin function associated to G [a,b] has a unique interior critical point. Since Lemma 2.4 provides the uniqueness of s, we can define the map s : (a, b) → s(a, b),

  k+1 , for every l = 0, . . . , j -2.By (2.40) we get thatdeg (M ∞ (β 1 , . . . , β k-1 ), T, 0) = deg (I -P, T, 0) = 1. (2.42) Then the equation M ∞ (β 1 , . . . , β k-1 ) = 0 (2.43) admits at least a solution in T . Proposition 2.15. We haveu ∞,k-layer = k j=1 A j G(r, α j ),(2.44)where (α 1 , . . . , α k ) is a critical point of the function ϕ defined in (1.6) and (A 1 , . . . , A k ) is a solution of the system (1.7).

3 )Proposition 3 . 2 .

 332 and hence the claim.(iii) Since the function x 2 2 -x p+1 p+1 achieves its maximum at x = 1, the inequalityL(r) ≤ 0 implies |u ′ (r)| 2 ≤ p-1 p+1 . Let λ rad 2 (α,β) be the second radial eigenvalue of -∆ + Id in B β \ B α with Neumann boundary conditions. If p > λ rad 2 (α, β) there exists u p,+ (r) = u p,+ (r; α, β) ∈ C +,[α,β] which solves (3.1) and such that a suitable rescaling achieves

  ′ p,+ (α, β) = c ′′ p,+ (α, β), see for example [24, Thm. 4.2], with the only difference that we have to work in the cone C +,[α,β] . Therefore there exists u p,+ ∈ C +,[α,β] , strictly increasing, which achieves c ′′ p,[α,β] and solves (3.1) with f p (u) in place of u p . Since the conclusions of Lemma 3.1 still hold with f p (u) in place of u p , we have |u p,+ | ≤ e 1/2 in B β \ B α and hence f p (u p,+ ) = u p p,+ in B β \ B α .

Proposition 3 . 7 .

 37 If α > 0 and p > λ rad 2 (α, β) there exists u p,-(r) = u p,-(r; α, β) ∈ C -,[α,β] which solves (3.1) and such that a suitable rescaling achieves c p,-(α, β) = inf{Q p,[α,β] (u) : u ∈ C -,[α,β] }, (3.11)

Lemma 4 . 3 .

 43 It holds lim sup p→∞ u p,+ p+1 ≤ 1.

Lemma 4 . 4 .

 44 For every u ∈ C +,[α,β] , u ≡ 0, there exists a sequence{w p } ⊂ C +,[α,β] such that lim p→∞ w p -u H 1 = 0, u ∞ ≤ lim inf p→∞ w p p+1 .

Remark 4 . 5 .

 45 Note that we cannot have the C 1 -convergence of the solution up to r = β. Indeed u ′ p,+ (β) = 0 and u ′ ∞,+ (β) > 0. An analogous result holds for the decreasing solution in the annulus. Proposition 4.6. Let α > 0. Denote by u ∞,-(r) = u ∞,-(r; α, β) the unique solution of    -∆u

Lemma 5 . 2 .

 52 There exist p > 1, s ∈ (-(β -α)/(2ε p), 0), C > 0 such that z ′ p (s) ≥ C (5.34) for every p > p and s ∈ (-(β -α)/(2ε p ), s). Given p and s as above, we compute z p (s) =p (τ )dτ ≤ -C(s -s) ≤ Cs, (5.35) for every p > p and s ∈ (-(β -α)/(2ε p ), s), which gives (5.33). So we have proved that |I 2,p | → 0 as p → ∞, so that (5.30) becomes 1 = pε p G [α,β] (m p , β) 0 -β-α 2εp K p (β + ε p s)v p (s)ds + o p (1).

5. 2 .Lemma 5 . 4 .

 254 Proof of Lemma 5.2. Recall that c p,+ (α, β) is defined in Proposition 3.2. We have thatc p,+ (α, β) = |∂B β |u ′ ∞,+ (β; α, β) + o p (1) as p → ∞.(5.38)

Theorem 5 . 6 .

 56 .53) By combining (5.50)-(5.53) we obtain that z ′ p (s) ≥ I 1 /2 for every p > p and s ∈ (-(βα)/ε p , s). 5.3. Nondegeneracy. With very few changes with respect to the proof of the uniqueness, one can prove the following nondegeneracy result, Let v p solve

5. 4 .Lemma 5 . 7 .

 457 C 1 dependence on the boundary points. The following result is inspired from [17, Lemma 3.4]. Let p be fixed and let 0 < A 1 < A 2 < B 1 < B 2 be as in Remark 3.3. Define

  β)||u p,+ (β)-1|. The uniform estimate (5.57) and the uniform Hölder convergence allow to conclude. (iii) By Propositions 4.1 and 4.6 and by (2.13) we have u

  as in Remark 3.3. In the case of the ball we haveI = {(r, β) : B 1 < β < B 2 , 0 ≤ r < β} , again with 0 < B 1 < B 2 as in Remark 3.3.Lemma 7.1. Let (r, α, β) ∈ I. There exists C > 0 independent of β and p such that∂u p,+ ∂β (•; α, β) ∞ ≤ C.Proof. Notice first that ∂u p,+ ∂β (r) := ∂u p,+ ∂β (r; α, β) exists by Lemma 5.

e 4 )

 4 ∂u p,+ ∂β (β + ε p r) ∂u p,+ ∂β ∞ → Az ′ ∞ (r) in C 1 loc (-∞, 0).To prove the claim we perform the same blow-up analysis as in the proof of Theorem 5.1.We have (compare with (5.18)) z p is as in(5.1). Proceeding as in (5.11)-(5.13) and(5.19), we can show that there exists C > 0 independent of p such that|v ′ p (r)| ≤ C for r ∈ -z∞ dt ≤ C. Therefore there exists v ∞ such that v p → v ∞ in C 1 loc (-∞, 0) and v ∞ solves -v ′′ = e z∞ v for r ∈ (-∞, 0) |v| ≤ 1. (7.3)We deduce form (5.27) that v ∞ = Az ′ ∞ . Finally, proceeding as in Step 3 of the proof of Theorem 5.1 one can show that A = 0.Step 2. Proceeding similarly to (2.19)-(2.21), we multiply (3.1) by ∂u p,+∂β r N -1 and (7.1) by u p,+ r N -1 and we integrate in (α, β):-β N -1 ∂u p,+ ∂β ′ (β) u p,+ (β) = (p -1)On the one hand, by Lemma 4.7, we have∂u p,+ ∂β ′ (β) = -u ′′ p,+ (β) = u p;+ (β) p -u p,+ (β) = p u ′ ∞,+ (β) 2 2 + o(1) .(7.5)On the other hand, by performing the change of variables r = β + ε p s, we obtain+ (β + ε p s) p u p,+ p ∞ v p (s)(β + ε p s) N -1 ds,(7.6) with v p as in Step 1. Recalling that (see (5.1), (5.3) and (5.8)) + (β + ε p s) p u p,+ p ∞ → e z∞ , and using (5.35) to pass to the limit in (7.6), we get β α u p p,+ ∂u p,+ ∂β r N -1 dr = ∂u p,+ ∂β ∞ u ′ ∞,+ (β) √ 2 + o(1) β N -1 A 0 -∞ (e z∞ z ′ ∞ +o(1)) ds. (7.7)

(7. 21 )

 21 Proof. On the one hand we have ∂ ∂α (u p,+ (α;β j-1 , α)) = u ′ p,+ (α; β j-1 , α) + ∂u p,+ ∂α (r; β j-1 , α) r=α = ∂u p,+ ∂α (r; β j-1 , α)r=α so that, by Lemmas 4.7 and 7.4,∂ ∂α u p,+ (α; β j-1 , α) p p = u p,+ (α; β j-1 , α) p-1 p p ∂u p,+ ∂α (r; β j-1 , α) (α; β j-1 , α) -(u ′ ∞,+ (α; β j-1 , α)) 2 u ′ ∞,+ (α; β j-1 , α) + o(1). (7.22)On the other hand, by computing explicitely the derivatives in (6.7), we obtain (α;β j-1 , α)) 2 2 = u ′ ∞,+ (α; β j-1 , α)[u ′′ ∞,+ (α; β j-1 , α)-(u ′ ∞,+ (α; β j-1 , α)) 2].(7.24) 
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2.1. The 1-layer solution of the limit problem. Finding a radial solution of    -∆u

  .47)We have to prove that ϕ ′ (α 1 , . . . , α k ) = 0 if and only if (α 1 , . . . , α k ) satisfys (2.45) -(2.47)

  s)v p (s)ds + o p (1) =: I 1,p + I 2,p + o p (1).(5.30)Let us observe that there exists C > 0 such that, for any r, α, β ∈ [0, 1], the following holds|G(r, α) -G(r, β)| ≤ C|α -β|. (5.31)This can be seen for example by making use of relations (2.7)-(2.10), we omit the details. Then, using (5.15) we can estimate I 2,p as follows

	|I 2,p | ≤ Cpε 2 p u p,+	p ∞	0 -β-α 2εp	|s| 1 +	z p (s) p	p	|v p (s)|ds
			0				
	≤ C u p,+ ∞	-β-α 2εp	|s|e zp(s) |v p (s)|ds,		(5.32)
	where we used (5.2). We claim that				
	0						
	-β-α 2εp	|s|e zp(s) |v p (s)|ds → 0 as p → ∞.	(5.33)

  This together with (4.2) proves the claim. which provides the uniform Hölder convergence by the Ascoli-Arzelá Theorem. Note that the equicontinuity in β of u p,+ (•; α, β) follows by Lemma 7.1 (which holds independently).To prove the uniform H 1 -convergence, we test the equation satisfied by u p,+ (•; α, β)u ∞,+ (•; α, β) by itself in B β \ B α and apply the Hölder inequality to obtain

	By Lemma 3.1 (iii) and Lemma 5.7 we have
	|u ′ p,+ (•; α, β)| < 1,	u p,+ (•; α, β) is equicontinuous in β,

  1 u ′′ p,+ (β)∂u p,+ ∂β (β) -α N -1 u ′′ p,+ (α)Similarly, we multiply (7.11) by r N -1 ∂u p,+ ∂β and (7.1) by r N -1 z and we integrate in (α, β):Using Lemma 5.9, equation (7.5), Corollary 7.2 and Lemma 7.3, we can pass to the limit in (7.12) and (7.13) to obtain -C(β)α N -1 u ∞,+ (α) 2 = C(β) β N -1 u ′′ ∞,+ (β) -u ′ ∞,+ (β) 2 -α N -1 u ∞,+(α) 2 + o(1) (7.14) and

					∂u p,+ ∂β	(α) = (N -1)	β α	u ′ p,+	∂u p,+ ∂β	r N -3 dr.	(7.12)
	β N u ′′ p,+ (β)	∂u p,+ ∂β	(β) -α N u ′′ p,+ (α)	∂u p,+ ∂β	(α) +	2 p -1	β N -1 u ′′ p,+ (β)u p,+ (β) = 2 β α u p,+ ∂u p,+ ∂β	r N -1 dr. (7.13)
	-β N -1 p (β) -β N p u ′ ∞,+ (β) 2 2 + o(1) ∂u p,+ ∂β u ′ ∞,+ (β) 2 2 ∂u p,+ + o(1) ∂β			

  α)2 + o(1).(7.15) By combining the two previous expressions we obtain the statement. Remark 7.5. We infer from (7.14) and (7.15) that C(β) = -u ′ Lemma 7.6. The convergence in Lemma 7.4 is uniform in β for (r, α, β) ∈ I. So we can select sequences p n → +∞ and β n → β 0 ∈ [B 1 , B 2 ] such that Let us consider relation (7.12) evaluated along the sequences p n , β n . By Remark 5.10 we have . Moreover by repeating the proof of Lemma 7.1 with p = p n and β = β n one can prove that ∂u pn,+ ∂β (•; α, β n )

	Lemma 5.9 and Remark 7.5 provide	
	u ′ pn,+ (r; α, β n ) → u ′ ∞,+ (r; α, β 0 ),	∂u pn,+ ∂β	(r; α, β n ) → -u ′ ∞,+ (β 0 )u ∞,+ (r)	(7.19)
	7.2 provides							∂u p,+ ∂β	→ -u ′ ∞,+ (β)u ∞,+	∞,+ (β), so that Corollary
	pointwise as p → ∞.							
	Proof. We argue by contradiction and suppose that
	lim p→+∞	sup β∈[B 1 ,B 2 ]	p	∂u p,+ ∂β	(r; α, β)	r=β	-2	u ′′ ∞,+ (β) -(u ′ ∞,+ (β)) 2 u ′ ∞,+ (β)	≥ C > 0.	(7.16)
		p n	∂u pn,+ ∂β	(r; α, β n )	r=βn	-2	u ′′ ∞,+ (β n ) -(u ′ ∞,+ (β n )) 2 u ′ ∞,+ (β n )	→ C > 0,	(7.17)
	and the smoothness of u ∞,+ implies p n ∂u pn,+ ∂β (r; α, β n ) r=βn	-2	u ′′ ∞,+ (β 0 ) -(u ′ ∞,+ (β 0 )) 2 u ′ ∞,+ (β 0 )	→ C > 0.	(7.18)
							-	u ′′ pn,+ (β n ) p n	→	u ′ ∞,+ (β 0 ) 2 2	.

uniformly∞ ≤ C, with C independent of n.
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Proof. We prove the result in the case of the annulus, the case of the ball being analogous. Let (r, α n , β n ) be a sequence in I such that α n → α * , β n → β * . Let ûp,+ (r; α n , β n ) be the trivial extension of u p,+ (r; α n , β n ) in the interval [A, B] := [A 1 , B 2 ] (extend as a constant outside (α n , β n )). Define ûp,+ (r; α * , β * ) analogously. Since {û p,+ (•; α n , β n )} n is bounded in H 1 (B B \ B A ), there exists ũ ∈ H 1 (B B \ B A ) such that (up to a subsequence) ûp,+ (•; α n , β n ) ⇀ ũ weakly in H 1 (B B \ B A ).

In order to conclude the proof it will be enough to show that ũ ≡ u p,+ (•;

for n sufficiently large and the H 1 -weak convergence implies

Therefore both ũ and u p,+ (•; α * , β * ) solve equation (3.1) in B β * \B α * . Moreover, by the pointwise convergence, ũ is non-negative and non-decreasing (and hence positive and increasing by the maximum principle) and, by Lemma 3.1 (ii), it satisfies ũ ∞ < √ e + 1. Therefore ũ can be used as a test function for c p,+ (α * , β * ).

Suppose by contradiction that ũ ≡ u p,+ (•; α * , β * ). Then the uniqueness of the minimal energy solution in the cone with variable intervals proved in Corollary 5.3 implies

(5.55)

On the other hand, the H 1 -weak convergence implies 

This implies that ûp,+ (•; α * , β * ) achieves c p,+ (α n , β n ) for n large, which contradicts Theorem 5.1. Finally, by the uniqueness of the minimal solution in [α, β] it is standard to show that the sequences α n and β n do converge.

Lemma 5.8. In the same assumptions of the previous lemma, the maps

Proof. Again we prove the result only in the case of the annulus and we set

Then ûp,+ ∈ H 1 rad (B B \ B A ) and solves

Remark 5.10. By combining the previous result with the proof of Lemma (4.6), we see that

uniformly for α + ε ≤ β ≤ 1, for every ε > 0.

6. Existence of the 1-layer solution

In this section we prove the existence of a 1-layer radial solution of the equation (2.1) in the interval [β j-1 , β j ], for some j = 1, . . . , k, by gluing the increasing solution in [β j-1 , α] and the decreasing solution in [α, β j ], for a suitable α ∈ (β j-1 , β j ). Theorem 6.1. For p sufficiently large there exists a radial solution u p,1-layer (r; β j-1 , β j ) of (2.1) in B β j \ B β j-1 , having exactly one maximum point at r = α j,p . Furthermore,

as p → ∞, where

(compare with Definition 2.9).

Proof. We juxtapose the increasing solution u p,+ (r; β j-1 , α) to the decreasing one u p,-(r; α, β j ). For a generic α ∈ (β j-1 , β j ) this is a discontinuous function. Our aim is to find α j,p such that it is continuous, that is to say u p,+ (α j,p ; β j-1 , α j,p ) = u p,-(α j,p ; α j,p , β j ). (6.3)

Since we are working with Neumann boundary conditions, the function u p,1-layer (r; β j-1 , β j ) = u p,+ (r; β j-1 , α j,p ) in (β j-1 , α j,p ) u p,-(r; α j,p , β j ) in (α j,p , β j ) (6.4)

is the requested solution if α j,p satisfies (6.3). We define

We aim to prove that L p has a zero for p sufficiently large.

(i) We proved in Lemma 5.7 (and analogous result for u p,-) that L p is continuous. This is a consequence of the uniqueness of the increasing and decreasing solutions. (ii) Due to Lemma 4.7 we have that

Since A = 0 and u ′ ∞,+ (β) = 0, by combining (7.4), (7.5) and (7.7) we deduce that ∂u p,+ ∂β ∞ is bounded.

Corollary 7.2. Let (r, α, β) ∈ I. There exists a function C(β) such that

pointwise as p → ∞.

Lemma 7.3. We have

Proof. Proceeding similarly to (2.19)-(2.21), we multiply (4.1) by r N -1 u ′ ∞,+ and we multiply the equation satisfied by

We multiply the last equation by r N -1 u ∞,+ and (4.1) by r N -1 k to obtain

β) and that k ′ (α) = αu ∞,+ (α), we obtain (7.9). Lemma 7.4. For (r, α, β) ∈ I we have

+ o(1).

Proof. We define w := u ′ p,+ , so that

and z := ru ′ p,+ + 2 p-1 u p,+ , so that

(7.11)

Proof. α j,p is implicitely defined by the equation L p (α j,p ; β j-1 , β j ) = 0, with L p as in (6.5). We infer from Theorem 7.8 and relation (6.9) that ∂ ∂α L p (α; β j-1 , β j ) > 0, so that the Implicit Function Theorem applies.

Corollary 7.10. u p,1-layer (β j ;

Proof. It follows by the continuity of the map α j,p (β j-1 , β j ) and the uniqueness result for ODE.

Theorem 7.11. For p sufficiently large there exists a radial solution u p,klayer of (1.1) having exactly k maximum points α 1,p , . . . , α k,p . Furthermore, u p,klayer → u ∞,klayer pointwise, as defined in Theorem 6.1.

Proof. Let T be as in (2.31) and let M p = (M