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MULTI-LAYER RADIAL SOLUTIONS FOR A SUPERCRITICAL

NEUMANN PROBLEM

DENIS BONHEURE, MASSIMO GROSSI, BENEDETTA NORIS, AND SUSANNA TERRACINI

Abstract. In this paper we study the Neumann problem










−∆u+ u = up in B1

u > 0, in B1

∂νu = 0 on ∂B1,

and we show the existence of multiple-layer radial solutions as p → +∞.

1. Introduction

1.1. Motivations and main results. This paper is concerned with multiple solutions of
the following problem,







−∆u + u = up in B1

u > 0
∂νu = 0 on ∂B1,

(1.1)

where B1 is the unitary ball in R
N , N ≥ 3, and p > 1.

Such simple models, coming from a variety of applications, have started and inspired the
analysis of singular behavior in nonlinear elliptic partial differential equations in the last two
decades (see, e.g. [9, 16]). The typical situation is when, for limiting values of a certain
parameter, there are special solutions exhibiting a varied limiting behavior. Here we are
concerned with the asymptotic p→ +∞. In this, as well as in many other problems, one of
the main points of the the analysis is the identification of its singular limits. Here we shall
follow this strategy, in our search for solutions showing multiple oscillations for problem
(1.1).

This particular problem has attracted much interest in recent years because, in spite of its
simple and apparently harmless form, it already shows a variety of interesting phenomena.
Just to start with, the very same existence of solution is extremely sensitive to the boundary
conditions: indeed, as well known, by the Pohožaev identity [18], the Dirichlet problem has
no solution for p ≥ N+2

N−2
. On the other hand, the situation changes drastically when dealing

with Neumann boundary conditions, when, even in the supercritical regime p ≥ N+2
N−2

there
hold existence results ([20, 5, 6, 4] )

Date: August 7, 2015.
D.B. is supported by INRIA - Team MEPHYSTO, MIS F.4508.14 (FNRS), PDR T.1110.14F (FNRS) &

ARC AUWB-2012-12/17-ULB1- IAPAS. M. Grossi and S. Terracini are partially supported by PRIN-2012-
grant “Variational and perturbative aspects of nonlinear differential problems”. S. Terracini is partially
supported by INDAM. B. Noris and S. Terracini are partially supported by the project ERC Advanced
Grant 2013 n. 339958: “Complex Patterns for Strongly Interacting Dynamical Systems - COMPAT”.

1



2 BONHEURE, GROSSI, NORIS, AND TERRACINI

Let us start recalling that in [20] it has been showed that the problem






−∆u + u = a(|x|)up in B1

u > 0
∂νu = 0 on ∂B1,

(1.2)

where a ∈ L1(B1) is increasing, not constant and a(r) > 0 a.e. in [0, 1] admits at least one
radially increasing solution. It is a very remarkable fact that this holds irrespective of the
sub or supercritical character of the power p. This result was extended in [4] to the case of
a ≡ 1.

Other progresses have been made when the power p tends to +∞. In [13] it was shown
the existence of a radial solution up to (1.1) which satisfies

up(|x|) →
G(|x|, 1)
G(1, 1)

(1.3)

where G(r, s) is the Green function associated to the one dimensional operator

L : u 7→ −u′′ − N − 1

r
u′ + u, (1.4)

for the boundary conditions u′(0) = u′(1) = 0 (see also [11]). Note that (1.3) can be read as
a concentration on SN−1. Indeed, it can be shown that in this case we have that the terms
up weakly converge to a multiple of the (N − 1)-dimensional Hausdorff measure supported
on the 1-sphere.

In the case of the annulus, in [5] it was shown the existence of at least three different
nonradial solutions to (1.1) as p goes to +∞. These are single or double layer solutions, as
their laplacian blows up in one –or at most two– annuli about certain spheres, while in the
rest of the domain there holds full C2 convergence.

The aim of this paper is to prove the existence multiple layer solutions, that is radial
solutions to (1.1) whose laplacians weakly converge to measures concentrating at interior
spheres, with a simple reflection rule. The existence of multiple layer solutions was found,
for different singularly perturbed problems and various boundary conditions, in recent papers
(see for example [1, 2, 15, 14, 3, 23, 19]).

We shall exploit a gluing technique, using a variant of Nehari method, adapted to deal
with Neumann problems instead of the standard Dirichlet ones: we choose a partition of
(0, 1) given by 0 < t1 < .. < tk < 1 and consider in (0, t1) the increasing solution obtained
in [4] and in (ti−1, ti) the solutions found in [5].

Of course, this gluing procedure provides a solution in (0, 1) if and only if the value of the
solutions at the endpoints ti coincide. This will be true for a careful choice of the partition,
related with an auxiliary variational problem.

Note that our approach is very different from others dealing with existence of multiple
layers radial solutions. In our opinion it is simpler and it could be applied to various per-
turbative problems. As a counterpart, it needs some careful expansions of the solutions in
[4] and in [5] as p goes to +∞. We finally recall that solutions featuring highly oscillatory
behaviour have been studied, among others, in [21, 22, 17, 10]

Since we are interested in radial solutions, the corresponding equation becomes






−u′′ − N−1
r
u′ + u = up in (0, 1)

u > 0 in (0, 1)
u′(0) = u′(1) = 0.

(1.5)
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A crucial tool in our arguments is given by the nondegeneracy of the increasing (decreasing)
solution in the annulus. We think that this result is interesting itself.

Our main result is the following,

Theorem 1.1. Let k > 0 be an integer. There exists p(k) such that for any p > p(k) problem
(1.1) admits a radial solution up,klayer(r) having exactly k maximum points α1,p, . . . , αk,p.

Furthermore we have that

(i) (α1,p, . . . , αk,p) → (α1, . . . , αk) as p → ∞ and (α1, . . . , αk) is a critical point of the
function

ϕ(s1, . . . , sk) = inf{‖u‖2H1(B1)
: u ∈ H1

rad(B1), u(s1) = . . . = u(sk) = 1}, (1.6)

in the set 0 < s1 < . . . < sk < 1;
(ii) up,klayer(r) converges pointwise to

∑k
j=1AjG(r, αj), where (A1, . . . , Ak) is a solution

of the system
k
∑

j=1

AjG(αi, αj) = 1, i = 1, .., k. (1.7)

1.2. Organization of the paper and main ideas. In Section 2 we analyze in detail the
limit problem p = +∞. The radial increasing solution of the equation (1.1) in the annulus
Bb \Ba (or in the ball when a = 0) converges to the increasing function

G(r, b)

G(b, b)
, r ∈ [a, b], a ≥ 0.

Recall that G(r, s) was defined above (1.4). A decreasing solution of (1.1) exists only in the
case of the annulus a > 0, and converges to

G(r, a)

G(a, a)
, r ∈ [a, b], a > 0.

By gluing an increasing solution and a decreasing solution, we construct a 1-layer solution
in Bb \Ba. This converges to

G(r, s̄)

G(s̄, s̄)
, r ∈ [a, b], a ≥ 0, (1.8)

s̄ being the unique point where the left derivative of the function is opposite to the right
derivative.

Similarly, we study the limit problem of the k-layer solution. This is a combination of
k Green functions, with singular points being a critical point of the function ϕ in 1.6, and
normalized with value 1 at the maximum points (see Theorem 1.5). Again, the left and right
derivatives are opposite at the maximum points. In order to prove the existence of a critical
point of ϕ, we consider the juxtaposition of k functions of the type (1.8) and we prove, by
a degree theorem, that there exists at least one configuration such that this juxtaposition is
continuous.

In Section 3 we start the study of the problem p <∞. We recall the variational character-
ization which ensures the existence of an increasing solution in the ball and in the annulus
and of a decreasing solution in the annulus.

In Section 4 we prove that the increasing and decreasing solutions converge respectively
to the two limit functions introduced above. The convergence is C1 in the interior of the
domain, but not on the boundary at the maximum point. In particular, we prove in Lemma
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4.7 that the value of the solution at the maximum point is asymptotically related to the
value of the derivative of the limit profile.

In Section 5 we prove that the monotone solutions are nondegenerate. This is the most
technical part of the paper and it is based on a blow-up argument inspired from [12]. We
present here in detail the proof of the uniqueness of the solution, which is very close to
the proof of the nondegeneracy but presents some additional technical difficulties. The
uniqueness and nondegeneracy ensure that the monotone solutions depend in a regular way
on the boundary points a and b. This is the basic tool to show the existence of a k-layer
solution of (1.1) which bifurcates from p = ∞.

In section 6 we prove the existence of a 1-layer radial solution of (1.1). We glue and increas-
ing solution and a decreasing one. Thanks to the continuous dependence of the monotone
solutions on the boundary points a and b, we can show that there exists a continuous con-
figuration. This function converges to (1.8). It is remarkable that the limit point s̄ is a
maximum point of the function ϕ in (2.4) (whereas the monotone solutions are associated
to minimum points of ϕ).

In section 7 we construct the k-layer solution of (1.1). This requires the additional property
that the 1-layer solution is unique, both at the limit (see Lemma 2.4) and for p finite. To
this aim we prove a stronger convergence result in Theorem 7.8.

1.3. Notation. We list below some notation used throughout the paper.

- For r > 0 we have Br = {x ∈ R
N : |x| < r}, N ≥ 3; |Br| denotes the N -dimensional

measure of Br. For 0 < r < R, BR \ Br = {x ∈ R
N : r < |x| < R}. In order to

treat at the same time the case of the annulus and that of the ball, we will sometimes
allow r = 0 in the previous definition and use the convention that BR \B0 = BR.

- H1
rad(Br) denotes the Sobolev space of radial functions H1

rad(Br) = {u ∈ H1(Br) :
u = u(|x|)}. If u ∈ H1(Br), ‖u‖2H1 =

∫

Br
(|∇u|2 + u2) dx; if u ∈ Lp(Br), 1 ≤ p < ∞,

‖u‖p =
∫

Br
|u|p dx; if u ∈ L∞(Br), ‖u‖∞ = ess supBr

|u|. Note that in the notation of
the norms the domain is not specified and is taken as the domain of definition of the
function.

- We denote by up(r;α, β) a solution of the problem (1.1) in the annulus Bβ \Bα (with
Neumann b.c. on ∂(Bβ \Bα)). The derivatives u

′
p(r;α, β), u

′′
p(r;α, β), and so on, are

taken with respect to the variable r.
- We adopt the standard notation f(x) = o(g(x)) as x → x0 if limx→x0 f(x)/g(x) is
zero, f(x) = O(g(x)) as x → x0 if lim supx→x0

|f(x)/g(x)| is finite, f(x) ∼ g(x) as
x→ x0 if limx→x0 f(x)/g(x) is finite and different from zero.

Index

1. Introduction 1
1.1. Motivations and main results 1
1.2. Organization of the paper and main ideas 3
1.3. Notation 4
2. The limit problem 5
2.1. The 1-layer solution of the limit problem 5
2.2. The k-layer solution of the limit problem 11
3. Existence of the increasing and decreasing solutions 16
3.1. The increasing solution in the ball 16



MULTI-LAYER RADIAL SOLUTIONS 5

3.2. The decreasing solution in the annulus 19
4. Behaviour of the monotone solutions as p→ +∞ 20
5. Uniqueness and nondegeneracy of the monotone solutions 22
5.1. Uniqueness 22
5.2. Proof of Lemma 5.2 27
5.3. Nondegeneracy 29
5.4. C1 dependence on the boundary points 29
6. Existence of the 1-layer solution 32
7. Existence of the k-layer solution 33
References 38

2. The limit problem

2.1. The 1-layer solution of the limit problem. Finding a radial solution of






−∆u+ u = up in Bb \Ba

u > 0
∂νu = 0 on ∂(Bb \Ba),

(2.1)

is easily done if a > 0, whatever p > 1, by minimizing the quotient

Qp,[a,b](u) =
‖u‖2H1

‖u‖2p+1

, u ∈ H1
rad(Bb \Ba) (2.2)

The limit problem as p→ ∞, namely minimizing

Q∞,[a,b](u) =
‖u‖2H1

‖u‖2∞
, u ∈ H1

rad(Bb \Ba) (2.3)

was considered in [5] and [13]. In the study of this limit problem, it was shown that an
important role is played by the function ϕ : [a, b] → R defined by

ϕ[a,b](s) = inf
u∈H1

rad

u(s)6=0

‖u‖2H1

u(s)2
. (2.4)

This function ϕ[a,b] makes sense even if a = 0, in which case we clearly have that the infimum
is zero and not achieved for s = a = 0, while it is achieved and not zero if s > 0. For every
s ∈ ]a, b] when a = 0 or s ∈ [a, b] otherwise, there exists, up to normalization, a unique
minimizer of (2.4). Moreover, when s ∈ ]a, b[, this minimizer is given by the Green function,
that we denote by G[a,b](·, s), associated to the operator

L : u 7→ −u′′ − N − 1

r
u′ + u

for the boundary conditions u′(a) = u′(b) = 0, i.e.

LG[a,b](r, s) = δs for r ∈ [a, b],
∂G[a,b]

∂r
(a, s) =

∂G[a,b]

∂r
(b, s) = 0. (2.5)

If a > 0, the punctual limit of G[a,b](r, s) as s → a is well defined and we denote it by
G[a,b](r, a). Analogously we will denote by G[a,b](r, b) the limit of G[a,b](r, s) as s→ b. Notice
that G[a,b](r, a) and G[a,b](r, b) satisfy (2.5) with only one boundary condition.
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To simplify the notation we set

G(r, s) := G[0,1](r, s).

We recall in the next proposition some useful properties of G(r, s).

Proposition 2.1 ([8, 13]). There exist two positive linearly independent solutions ζ ∈
C2((0, 1]) and ξ ∈ C2([0, 1]) of the equation Lu = 0 in (0, 1) satisfying ξ′(0) = ζ ′(1) = 0,

rN−1(ξ′(r)ζ(r)− ξ(r)ζ ′(r)) = 1 for every r ∈ (0, 1], (2.6)

and such that

G(r, s) =

{

sN−1ξ(r)ζ(s) for r ≤ s
sN−1ξ(s)ζ(r) for r > s.

(2.7)

Moreover, ξ is bounded and increasing in [0, 1], ζ is decreasing in [0, 1], and

lim
r→0+

ξ(r) =
1

N − 2
(2.8)

lim
r→0+

rN−2ζ(r) = 1, (2.9)

lim
r→0+

rN−1ζ ′(r) = −(N − 2) (2.10)

Proof. The existence of ξ, ζ satisfying (2.6) and (2.7) is proved in [13, Lemma 6.1], based on
the case of Dirichlet boundary conditions which can be found in [8, Appendix]. Following
step by step the last mentioned paper, one can also check that ξ is bounded and that (2.8)-
(2.10) hold. Finally, the monotonicity properties of ξ and ζ follow by integrating the equation
and using the boundary conditions ξ′(0) = ζ ′(1) = 0 respectively. �

With ξ and ζ as in Proposition 2.1, we define

ξ[a,b](r) =
ξ′(a)ζ(r)− ξ(r)ζ ′(a)
√

ξ′(a)ζ ′(b)− ξ′(b)ζ ′(a)
, ζ[a,b](r) =

ξ′(b)ζ(r)− ξ(r)ζ ′(b)
√

ξ′(a)ζ ′(b)− ξ′(b)ζ ′(a)
if 0 < a < b < 1;

ξ[0,b](r) =
ξ(r)

ξ′(b)
, ζ[0,b](r) = ξ′(b)ζ(r)− ξ(r)ζ ′(b) if 0 < b < 1;

ξ[a,1](r) = ξ′(a)ζ(r)− ξ(r)ζ ′(a), ζ[a,1](r) = − ζ(r)

ζ ′(a)
if 0 < a < 1.

(2.11)

It follows from Proposition 2.1 that these are the expressions of the Green function in the
interval [a, b].

Proposition 2.2. The functions ξ[a,b] and ζ[a,b] are linearly independent positive solutions of
Lu = 0 in (a, b), such that ξ′[a,b](a) = ζ ′[a,b](b) = 0. Furthermore, ξ[a,b] is increasing, ζ[a,b] is
decreasing,

rN−1(ξ′[a,b](r)ζ[a,b](r)− ξ[a,b](r)ζ
′
[a,b](r)) = 1 for every r ∈ (a, b], (2.12)

and we have

G[a,b](r, s) =

{

sN−1ξ[a,b](r)ζ[a,b](s) for r ≤ s
sN−1ξ[a,b](s)ζ[a,b](r) for r > s.

(2.13)
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Proof. Let us show that ξ′(a)ζ ′(b)− ξ′(b)ζ ′(a) 6= 0 for any a, b ∈ (0, 1). Indeed, for r ∈ [a, b],
we have

χ[a,b](r) := ξ′(a)ζ(r)− ξ(r)ζ ′(a) > 0, (2.14)

since ξ is increasing, ζ is decreasing and both functions are positive. Moreover χ[a,b] satisfies
L(χ[a,b]) = 0 in [a, b] and χ′

[a,b](a) = 0, which implies

0 < χ′
[a,b](b) = ξ′(a)ζ ′(b)− ξ′(b)ζ ′(a). (2.15)

The remaining properties can be proved by explicit computations. �

Remark 2.3. If N = 3 the functions ξ and ζ can be explicitly computed. In this case we
have that ξ(r) = er−e−r

2r
and ζ(r) = er

r
.

The function ϕ[a,b] was shown in [5, 13] to have a global minimum at a and a local minimum
at b (which is also consequence of the lemma below). We will recall in the next section that
the local minimum in b gives the limiting profile of the increasing radial solution for the
original problem as p→ ∞ while if a > 0, the global minimum at a gives the limiting profile
of the decreasing radial solution for the original problem as p → ∞. We will build a third
solution by gluing an increasing solution in a ball with a decreasing solution in an annulus.
This is a 1-layer solution, having exactly one maximum point. The construction will use
crucially the following fact.

Lemma 2.4. Let 0 ≤ a < b ≤ 1 and let ϕ[a,b] be as in (2.4). The function

s 7→
ϕ′
[a,b](s)

sN−1
is strictly decreasing.

Furthermore, its unique zero s̄ satisfies s̄ ∈ (a, b) and

ξ′[a,b](s̄)

ξ[a,b](s̄)
+
ζ ′[a,b](s̄)

ζ[a,b](s̄)
= 0. (2.16)

Proof. Since the infimum in (2.4) is achieved by G[a,b](·, s), we have

ϕ[a,b](s) = Q∞

(

G[a,b](·, s)
G[a,b](s, s)

)

.

It is proved in [13, Lemma 2.1] that

Q∞

(

G[a,b](·, s)
G[a,b](s, s)

)

= |∂B1|
sN−1

G[a,b](s, s)
.

Hence Proposition 2.2 provides

ϕ[a,b](s) =
|∂B1|

ξ[a,b](s)ζ[a,b](s)
(2.17)

We take the derivative of the last expression and we manipulate it by making use of (2.12)
as follows

ϕ′
[a,b](s)

|∂B1|
= −

ξ′[a,b](s)ζ[a,b](s) + ξ[a,b](s)ζ
′
[a,b](s)

ξ[a,b](s)2ζ[a,b](s)2

= −sN−1







(

ξ′[a,b](s)

ξ[a,b](s)

)2

−
(

ζ ′[a,b](s)

ζ[a,b](s)

)2






. (2.18)
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Let us study the monotonicity of the map s 7→ ξ′[a,b](s)/ξ[a,b](s). To this aim we multiply the

equation Lξ[a,b] = 0 by rN−1ξ′[a,b] to get

rN−1ξ[a,b]ξ
′
[a,b] = rN−1ξ′′[a,b]ξ

′
[a,b] + (N − 1)rN−2(ξ′[a,b])

2. (2.19)

Next we multiply the equation satisfied by ξ′[a,b] by r
N−1ξ[a,b] to obtain

− (rN−1ξ′′[a,b]ξ[a,b])
′ + rN−1ξ′′[a,b]ξ

′
[a,b] + (N − 1)rN−3ξ′[a,b]ξ[a,b] + rN−1ξ′[a,b]ξ[a,b] = 0. (2.20)

Replacing (2.19) into the last expression and integrating on (a, s), we deduce that

sN−1(ξ′′[a,b](s)ξ[a,b](s)− ξ′[a,b](s)
2) = (N − 1)

∫ s

a

rN−3ξ′[a,b]ξ[a,b] dr. (2.21)

This implies
(

ξ′[a,b](s)

ξ[a,b](s)

)′

=
ξ′′[a,b](s)ξ[a,b](s)− ξ′[a,b](s)

2

ξ[a,b](s)2
> 0. (2.22)

We preform the same computations with the function ζ[a,b], but this time we integrate on
(s, b), leading to

sN−1(ζ ′′[a,b](s)ζ[a,b](s)− ζ ′[a,b](s)
2) = ζ ′′[a,b](b)ζ[a,b](b)− (N − 1)

∫ b

s

rN−3ζ ′[a,b]ζ[a,b] dr.

Since ζ[a,b] is decreasing and solves Lζ[a,b] = 0, ζ ′[a,b](b) = 0, we deduce that the previous
expression is also positive. Taking again into account the monotonicity of the maps ξ[a,b] and
ζ[a,b], we conclude that

s 7→
(

ξ′[a,b](s)

ξ[a,b](s)

)2

is increasing, s 7→
(

ζ ′[a,b](s)

ζ[a,b](s)

)2

is decreasing. (2.23)

By combining this with (2.18), we deduce that ϕ′
[a,b](s)/s

N−1 is decreasing and that relation

(2.16) holds at the unique zero s̄.
It only remains to show that s̄ is an interior point. If a 6= 0, we see from (2.18) that

ϕ′
[a,b](a) > 0 and ϕ′

[a,b](b) < 0 so that the claim obviously follows. When a = 0, we still have

ϕ′
[a,b](b) < 0 and moreover

lim
s→0

ϕ′
[0,b](s)

sN−1
= lim

s→0

(N − 2)2

s2
= +∞,

as follows from (2.11) and Proposition 2.1. �

Remark 2.5. The formula (2.16) that defines s̄ is equivalent to

d

dr

(

G[a,b](r, r)

rN−1

)
∣

∣

∣

∣

r=s̄

= 0,

which means that s̄ is a critical point of the weighted Robin function associated to G[a,b]. So
one deduces the following statement from Lemma 2.4: for any 0 ≤ a < b ≤ 1, the weighted
Robin function associated to G[a,b] has a unique interior critical point.
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Since Lemma 2.4 provides the uniqueness of s̄, we can define the map

s̄ : (a, b) 7→ s̄(a, b),

which is defined in the set {0 < a < 1, a < b ≤ 1}. Similarly, when we are working in the
annulus, this is a function of one variable s̄(0, b) defined in {0 < b ≤ 1}. The monotonicity
proved in Lemma 2.4 implies that this map is smooth.

Lemma 2.6. The map (a, b) 7→ s̄(a, b) is of class C1 in the set {0 < a < 1, a < b ≤ 1}.
Analogously, s̄(0, b) is of class C1 in {0 < b ≤ 1}
Proof. It follows from Lemma 2.4 that s̄ is implicitely defined by the equation

0 = F (a, b, s) =

(

ξ′[a,b](s)

ξ[a,b](s)

)2

−
(

ζ ′[a,b](s)

ζ[a,b](s)

)2

.

The definitions of ξ[a,b] and ζ[a,b] imply that F is smooth. Let 0 < a0 < b0 < 1 and s0 =
s̄(a0, b0)). Since by (2.23) we have ∂F/∂s(a0, b0, s0) > 0, the Implicit Function Theorem
applies and s̄ is a C1 function of (a, b) in a neighborhood of (a0, b0). This holds for every
0 < a0 < b0 < 1. When b0 = 1 we argue in the same way in a left neighborhood of b0. In
the case of the ball a0 = 0 we can proceed similarly. �

Next we study the behaviour of s̄ when b→ 0.

Lemma 2.7. Let 0 ≤ a < b ≤ 1. We have

s̄ ∼ b as b→ 0+. (2.24)

Proof. Let us first consider the case a = 0. We use (2.11) to rewrite the equation (2.16) as

ξ′(s̄)

ξ(s̄)
+
ξ′(b)ζ ′(s̄)− ξ′(s̄)ζ ′(b)

ξ′(b)ζ(s̄)− ξ(s̄)ζ ′(b)
= 0. (2.25)

Both b and s̄ converge to zero, hence we can replace in the previous expression the following
asymptotic developments, which are deduced from Proposition 2.1:

ξ(r) =
1

N − 2
+ o(r), ξ′(r) = ξ′′(0)r + o(r), as r → 0

ζ(r) =
1

rN−2
+ o

(

1

rN−2

)

, ζ ′(r) = −N − 2

rN−1
+ o

(

1

rN−1

)

as r → 0.
(2.26)

Using these asymptotics in (2.25), we infer that

2s̄N − bN + o(s̄N) + o(bN ) = 0,

which implies that s̄ ∼ b as b→ 0.

Assume now that a > 0. We rewrite (2.16) more explicitely as

ξ′(a)ζ ′(s̄)− ξ′(s̄)ζ ′(a)

ξ′(a)ζ(s̄)− ξ(s̄)ζ ′(a)
+
ξ′(b)ζ ′(s̄)− ξ′(s̄)ζ ′(b)

ξ′(b)ζ(s̄)− ξ(s̄)ζ ′(b)
= 0. (2.27)

Since now a, s̄, b→ 0, we can use again (2.26) to obtain

2s̄2N−2− (aN + bN )s̄N−2−2ξ′′(0)aNbN +o(s̄2N−2)+o((aN + bN)s̄N−2)+o(aNbN ) = 0. (2.28)

Here we have to distinguish two cases. If a ∼ b as b→ 0, then (2.28) writes

s̄2N−2 − C1s̄
N−2bN − C2b

2N + o(s̄2N−2) + o(s̄N−2bN ) + o(b2N ) = 0.
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for some C1, C2 > 0. This implies s̄ ∼ b. Indeed, if by contradiction s̄ = o(b), then also
s̄2N−2 = o(s̄N−2bN ), and we would obtain

−C1s̄
N−2 − C2b

N + o(s̄N−2) + o(bN ) = 0, C1 > 0, C2 > 0,

which is not possible. When a = o(b), (2.28) yields

2s̄2N−2 − bN s̄N−2 + o(s̄2N−2) + o(bN s̄N−2) + o(b2N ) = 0.

Again, if s̄ = o(b), then we obtain −s̄N−2+o(s̄N−2)+o(bN ) = 0 and since this is not possible,
we conclude that s̄ ∼ b also in this case. �

In the next lemma, we show that the distance from s̄ to the extrema of the interval only
depends on the length of the interval.

Lemma 2.8. Let 0 ≤ a < b ≤ 1. For every ε > 0, there exists δ > 0 such that if b− a > ε,
then b− s̄ > δ and s̄− a > δ.

Proof. We argue by contradiction. Let (an)n and (bn)n be such that bn − an > ε and (s̄n)n
We have to distinguish three cases

Assume first a > 0. Suppose by contradiction that there exist sequences α
(n)
j , β

(n)
j−1 such

that |α(n)
j − β

(n)
j−1| → 0 as n→ ∞. Replacing in (2.27), we obtain

ξ′(β
(n)
j )ζ ′(β

(n)
j−1)− ξ′(β

(n)
j−1)ζ

′(β
(n)
j ) = 0,

which contradicts (2.15) since |β(n)
j−1 − β

(n)
j | > ε for every n. The case |α(n)

j − β
(n)
j | → 0 can

be ruled out in the same way. The cases j = 1 and j = k can be proved in a similar way, by
exploiting the suitable definitions in (2.11). �

We will see that the point s̄ defined in the previous lemma is the limit (as p→ ∞) of the
maximum points of the 1-layer solutions of (1.1). Therefore we give the following definition
of 1-layer solution of the limit problem in an interval [βj−1, βj]. For k ∈ N0, let

0 = β0 < β1 < . . . < βk−1 < βk = 1.

We denote by αj := αj(βj−1, bj) the unique point satisfying (2.16) in the interval [βj−1, βj],
namely

ξ′[βj−1,βj ]
(αj)

ξ[βj−1,βj ](αj)
+
ζ ′[βj−1,βj ]

(αj)

ζ[βj−1,βj ](αj)
= 0, j = 1, . . . k. (2.29)

Definition 2.9. We refer to the function

u∞,1-layer(r; βj−1, βj) :=
G[βj−1,βj ](r, αj)

G[βj−1,βj](αj , αj)
(2.30)

as the 1-layer solution of the limit problem in the interval [βj−1, βj].

When we do not need to emphasize the interval of definition, we write u∞,1-layer(r) to
shorten the notations. Observe that (2.29) shows that u∞,1-layer satisfies a reflection law at
αj : the right and left derivatives are opposite, namely

lim
ε→0−

u∞,1-layer(αj + ε)− u∞,1-layer(αj)

ε
= − lim

ε→0+

u∞,1-layer(αj + ε)− u∞,1-layer(αj)

ε
.
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2.2. The k-layer solution of the limit problem. In order to produce a k-layer solution
of the limit problem, we glue together k 1-layer solutions. For k ∈ N0, let

T = {(β1, . . . , βk−1) ∈ R
k−1 : 0 = β0 < β1 < β2 < . . . < βk−1 < βk = 1}. (2.31)

The existence of a continuous configuration will follow from a degree argument, applied to

the map M∞ = (M
(1)
∞ , . . . ,M

(k−1)
∞ ) : T → R

k−1, defined as

M (j)
∞ (β1, . . . , βk−1) = u∞,1-layer(βj; βj , βj+1)− u∞,1-layer(βj ; βj−1, βj)

=
ξ[βj,βj+1](βj)

ξ[βj,βj+1](αj+1)
− ζ[βj−1,βj ](βj)

ζ[βj−1,βj ](αj)

=
1

βN−1
j

{

1

ξ′(βj)ζ(αj+1)− ξ(αj+1)ζ ′(βj)
− 1

ξ′(βj)ζ(αj)− ξ(αj)ζ ′(βj)

}

,

(2.32)

for j = 1, . . . , k − 1, where αj = αj(βj−1, βj) are defined in (2.29). We notice that M
(j)
∞

depends only on βj−1, βj, βj+1.
In order to study the degree ofM∞ in T , we need to evaluate it on ∂T , given by the union

of k sets:

∂T = ∪k
j=1(∂T )j , with (∂T )j = {β0 ≤ β1 ≤ . . . ≤ βj−1 = βj ≤ . . . ≤ βk−1 ≤ βk}. (2.33)

Using a standard notation, we denote by T̄ the closure of T , that is to say T = T ∪ ∂T .
Lemma 2.10. There exists ε̄ such that for every 0 < ε < ε̄ there exists a constant C(ε) > 0
(depending only on ε) such that, for every j = 1, . . . , k − 1, we have

M (j)
∞ (β1, . . . , βk−1) < −C(ε) for (β1, . . . , βk−1) ∈ T with βj ≤ ε ≤ βj+1.

Proof. Fix any j = 1, . . . , k − 1 and any ε ∈ (0, 1). We compute the limit of M
(j)
∞ as βj → 0

and βj+1 > ε. Consider the definition of M
(j)
∞ in (2.32). Since αj, βj → 0, we can replace the

developments (2.26). Moreover, thanks to Lemma 2.8, for every fix βj+1 > ε > 0, we have
that αj+1 → ᾱj+1, with ᾱj+1 > δ > 0 and δ = δ(ε) independent of βj+1. Therefore

lim
βj→0
βj+1>ε

M (j)
∞ (β1, . . . , βk−1) =

lim
βj→0











1

ξ′′(0)ζ(ᾱj+1)βN
j + (N − 2)ξ(ᾱj+1) + o(1)

− 1

ξ′′(0)
βN
j

αN−2
j

+ 1 + o(
βN
j

αN−2
j

) + o(1)











.

(2.34)

By Lemma 2.7 we have that αj ∼ βj, so that

lim
βj→0
βj+1>ε

M (j)
∞ (β1, . . . , βk−1) =

1

(N − 2)ξ(ᾱj+1)
− 1 < −C(ε), (2.35)

where in the last step we used the fact that ξ(0) = 1/(N−2) and ξ(ᾱj+1) > 1/(N−2)+C(δ)
for ᾱj+1 > δ > 0.

�

Lemma 2.11. M∞ is continuous in T and can be extended continuously on T .
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Proof. Thanks to Lemma 2.6, M∞ is continuous in T . Calculations similar to the ones in
(2.34), (2.35) show that M∞ can be extended continuously on T �

Lemma 2.12. There exists ε̄ such that for every 0 < ε < ε̄ there exists a constant C(ε) > 0
such that, for every j = 1, . . . , k − 1, we have

M (j)
∞ (β1, . . . , βk−1) > C(ε) for (β1, . . . , βk−1) ∈ T with βj−1 ≤ 1− ε ≤ βj .

Proof. We proceed similarly to the previous lemma. Now we use the fact that ζ ′(1) = 0 and
that αj → ᾱj < 1− δ, with δ > 0, by Lemma 2.8. We have

lim
βk−1→1
βj−1<1−ε

M (j)
∞ (β1, . . . , βk−1) = 1− 1

ξ′(1)ζ(ᾱj)
> C(ε),

since ξ′(1)ζ(ᾱj) > ξ′(1)ζ(1) + C(δ) for ᾱj < 1 − δ, and ξ′(1)ζ(1) = 1. Again, by taking ε
sufficiently small, the statement follows. �

Lemma 2.13. There exists ε̄ such that for every 0 < ε < ε̄ there exists a constant C(ε) > 0
such that

(i) for every j = 2, . . . , k and l = 1, . . . , j − 1 we have

M (l)
∞ (β1, . . . , βk−1) > C(ε) for (β1, . . . , βk−1) ∈ T with βl−1 ≤ βj − ε ≤ βl; (2.36)

(ii) for every j = 0, . . . , k − 2 and l = j + 1, . . . , k − 1 we have

M (l)
∞ (β1, . . . , βk−1) < −C(ε) for (β1, . . . , βk−1) ∈ T with βl ≤ βj + ε ≤ βl+1. (2.37)

Proof. We compute the limit of M
(l)
∞ as βl → βj and βl−1 < βj − ε. To this aim, consider

the definition of M
(l)
∞ in (2.32) and notice that both αl+1 → βj and βl+1 → βj as βl → βj .

For every fix βl−1, denote by ᾱl the limit of αl as βl → βj . We obtain

lim
βl→βj

βl−1<βj−ε

M (l)
∞ (β1, . . . , βk−1) = 1− ζ[βl−1,βj ](βj)

ζ[βl−1,βj ](ᾱl)

By Lemma 2.8 there exists δ independent of βl−1 such that ᾱl < βj − δ. Since ζ[βl−1,βj] is
decreasing, we conclude that the previous quantity is larger than a strictly positive constant
which depends only on ε. By taking ε sufficiently small, the statement follows. Similarly we
have

lim
βl→βj

βl+1>βj+ε

M (l)
∞ (β1, . . . , βk−1) =

ξ[βj ,βl+1](βj)

ξ[βj,βl+1](ᾱl+1)
− 1 < −C(ε). �

Theorem 2.14. Let k ∈ N0. There exists a configuration 0 = β0 < β1 < . . . < βk−1 < βk = 1
such that the function

u∞,klayer(r) := u∞,1-layer(r; βj−1, βj) for r ∈ [βj−1, βj), j = 0, . . . , k, (2.38)

is continuous. In addition, the βj satisfy

ξ′(βj)

ζ ′(βj)
=
ξ(αj+1)− ξ(αj)

ζ(αj+1)− ζ(αj)
, j = 1, . . . , k − 1. (2.39)
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Proof. For P = (P1, . . . , Pk−1) ∈ T to be chosen later, let us introduce the operator

(I − P )(β1, . . . , βk−1) = (β1 − P1, . . . , βk−1 − Pk−1) .

We want to show that the homotopy H = (H(1), . . . , H(k−1)) defined by

H(t, β1, . . . , βk−1) = tM∞(β1, . . . , βk−1) + (1− t)(I − P )(β1, . . . , βk−1) (2.40)

satisfies
H(t, β1, . . . , βk−1) 6= 0 for every t ∈ [0, 1] and (β1, . . . , βk−1) ∈ ∂T. (2.41)

Here M∞ is extended to ∂T thanks to Lemma 2.11.
In the following take ε < ε̄/2, with ε̄ such that the statements of Lemmas 2.10, 2.12 and

2.13 hold true.
Let us first consider H on (∂T )1, as defined in (2.33). We write

(∂T )1 = ∪k−1
j=1(∂T )1,j , (∂T )1,j := {(β1, . . . , βk−1) ∈ (∂T )1 : βj ≤ ε ≤ βj+1}

By Lemma 2.10 there exists C > 0 such that

H(j)(t, β1, . . . , βk−1) < −tC + (1− t)(ε− Pj) on (∂T )1,j ,

for every j = 1, . . . , k− 1. This quantity is negative for every t ∈ [0, 1] provided that Pj > ε
for every j.

Let us consider H on (∂T )k. We write

(∂T )k = ∪k−1
j=1(∂T )k,j, (∂T )k,j := {(β1, . . . , βk−1) ∈ (∂T )k : βj−1 ≤ 1− ε ≤ βj}.

Then, by Lemma 2.12,

H(j)(t, β1, . . . , βk−1) > tC + (1− t)(1− ε− Pj) on (∂T )k,j,

and this quantity is positive for every t ∈ [0, 1] provided that Pj < 1− ε for every j.
Finally, let us consider H on (∂T )j , for a fix j = 1, . . . , k − 1. We define

(∂T )−j,−1 = {(β1, . . . , βk−1) ∈ (∂T )j : βj−1 = βj ≤ ε},
(∂T )−j,l = {(β1, . . . , βk−1) ∈ (∂T )j : βl ≤ βj−1 − ε ≤ βl+1},

for l = 0, . . . , j − 2, and

(∂T )+j,m = {(β1, . . . , βk−1) ∈ (∂T )j : βm−1 ≤ βj + ε ≤ βm},
(∂T )+j,k+1 = {(β1, . . . , βk−1) ∈ (∂T )j : βj−1 = βj ≥ 1− ε},

for m = j + 1, . . . , k, so that

(∂T )j = ∪k
m=j+1

(

(∂T )−j,−1 ∩ (∂T )+j,m
)

∪j−2
l=0 ∪k+1

m=j+1

(

(∂T )−j,l ∩ (∂T )+j,m
)

.

Let us show that on each piece of this decomposition at least one component of H does not
vanish.

On (∂T )−j,−1∩ (∂T )+j,m, m = j+1, . . . , k, we have βm−1 ≤ βj +ε ≤ 2ε and βm ≥ βj +ε ≥ ε.
Lemma 2.10 implies

M (m−1)
∞ (β1, . . . , βk−1) < −C on (∂T )−j,−1 ∩ (∂T )+j,m,

so that

H(m−1)(t, β1, . . . , βk−1) < −Ct+ (1− t)(2ε− Pm−1) < 0 on (∂T )−j,−1 ∩ (∂T )+j,m,

for every m = j + 1, . . . , k.
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Next consider (∂T )−j,l ∩ (∂T )+j,m, for l = 0, . . . , j − 2 and m = j + 1, . . . , k. Lemma 2.13
implies that

M (l+1)
∞ > C and M (m−1)

∞ < −C on (∂T )−j,l ∩ (∂T )+j,m,

hence

H(l+1) > Ct+ (1− t)(βl+1 − Pl+1), H(m−1) < −Ct + (1− t)(βm−1 − Pm−1)

on (∂T )−j,l ∩ (∂T )+j,m. Suppose by contradiction that both H(l+1) and H(m−1) vanish on

(∂T )−j,l ∩ (∂T )+j,m, then

βj−1 − ε ≤ βl+1 < Pl+1 < Pm−1 < βm−1 ≤ βj + ε = βj−1 + ε,

which is not possible provided that |Pl+1 − Pm−1| > 2ε.
Finally on (∂T )−j,l ∩ (∂T )+j,k+1, l = 0, . . . , j − 2, we have βl ≤ βj−1 − ε ≤ 1 − ε and

βl+1 ≥ βj−1 − ε ≥ 1− 2ε. Lemma 2.12 implies

H(l+1) > Ct + (1− t)(1− 2ε− Pl+1) > 0 on (∂T )−j,l ∩ (∂T )+j,k+1,

for every l = 0, . . . , j − 2.
By (2.40) we get that

deg (M∞(β1, . . . , βk−1), T, 0) = deg (I − P, T, 0) = 1. (2.42)

Then the equation
M∞(β1, . . . , βk−1) = 0 (2.43)

admits at least a solution in T . �

Proposition 2.15. We have

u∞,k−layer =

k
∑

j=1

AjG(r, αj), (2.44)

where (α1, . . . , αk) is a critical point of the function ϕ defined in (1.6) and (A1, . . . , Ak) is a
solution of the system (1.7).

Proof. By construction, u∞,k−layer is the juxtaposition of k 1-layer solutions u∞,1-layer(r; βj−1, βj)
as defined in (2.30). The βj are such that the juxtaposition is continuous, that is to say (2.39)
holds. Recall that each 1-layer solution attains it maximum value 1 at r = αj , with αj sat-
isfying (2.29), therefore (A1, . . . , Ak) solves the system (1.7). We only have to prove that
(α1, . . . , αk) is a critical point of ϕ.

Let us write relation (2.29) more explicitely for βj satisfying (2.39):

ξ′(α1)

ξ(α1)
+
ζ ′(α1)[ξ(α2)− ξ(α1)]− ξ′(α1)[ζ(α2)− ζ(α1)]

ξ(α2)ζ(α1)− ζ(α2)ξ(α1)
= 0, (2.45)

ζ ′(αj)[ξ(αj)− ξ(αj−1)]− ξ′(αj)[ζ(αj)− ζ(αj−1)]

ξ(αj)ζ(αj−1)− ζ(αj)ξ(αj−1)

+
ζ ′(αj)[ξ(αj+1)− ξ(αj)]− ξ′(αj)[ζ(αj+1)− ζ(αj)]

ξ(αj+1)ζ(αj)− ζ(αj+1)ξ(αj)
= 0 j = 2, . . . , k − 1,

(2.46)

ζ ′(αk)[ξ(αk)− ξ(αk−1)]− ξ′(αk)[ζ(αk)− ζ(αk−1)]

ξ(αk)ζ(αk−1)− ζ(αk)ξ(αk−1)
+
ζ ′(αk)

ζ(αk)
= 0. (2.47)
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We have to prove that

ϕ′(α1, . . . , αk) = 0 if and only if (α1, . . . , αk) satisfys (2.45)− (2.47)

We have

ϕ(s1, . . . , sk) = |∂B1| ·
k
∑

j=1

sN−1
j

[

u′∞,+(sj; βj−1, sj)− u′∞,−(sj ; sj, βj)
]

= |∂B1| ·
k
∑

j=1

sN−1
j

[

ξ′[βj−1,βj ]
(sj)

ξ[βj−1,βj ](sj)
−
ζ ′[βj−1,βj ]

(sj)

ζ[βj−1,βj ](sj)

]

=: |∂B1| ·
k
∑

j=1

Φj ,

(2.48)

with the βj satisfying (see (2.39))

ξ′(βj)

ζ ′(βj)
=
ξ(sj+1)− ξ(sj)

ζ(sj+1)− ζ(sj)
, j = 1, . . . , k − 1. (2.49)

We compute ∂ϕ/∂sj for j = 2, . . . , k− 1 (the cases j = 1 and j = k being similar). For such
j, using relation (2.49), rearranging the terms, and recalling (2.6), we obtain

Φj =
ζ(sj)[ξ(sj−1)− ξ(sj+1)] + ζ(sj−1)[ξ(sj+1)− ξ(sj)] + ζ(sj+1)[ξ(sj)− ξ(sj−1)]

[ξ(sj)ζ(sj−1)− ξ(sj−1)ζ(sj)][ξ(sj+1)ζ(sj)− ξ(sj)ζ(sj+1]
. (2.50)

When we compute ∂ϕ/∂sj , only the terms Φj−1, Φj and Φj+1 intervene. Some tedious
computations provide

∂Φj−1

∂sj
=
ζ ′(sj)[ξ(sj)− ξ(sj−1)]− ξ′(sj)[ζ(sj)− ζ(sj−1)]

[ξ(sj)ζ(sj−1)− ξ(sj−1)ζ(sj)]2
=:

ζ ′(sj)N1 − ξ′(sj)N2

D2
1

, (2.51)

∂Φj+1

∂sj
=
ζ ′(sj)[ξ(sj+1)− ξ(sj)]− ξ′(sj)[ζ(sj+1)− ζ(sj)]

[ξ(sj+1)ζ(sj)− ξ(sj)ζ(sj+1)]2
=:

ζ ′(sj)N3 − ξ′(sj)N4

D2
2

(2.52)

and
∂Φj

∂sj
=
ζ ′(sj)N5 − ξ′(sj)N6

D2
1D

2
2

, (2.53)

where

N5 := ξ(sj−1)D2[ζ(sj+1)N1 − ξ(sj+1)N2]− ξ(sj+1)D1[ζ(sj−1)N3 − ξ(sj−1)N4], (2.54)

N6 := ζ(sj−1)D2[ζ(sj+1)N1 − ξ(sj+1)N2]− ζ(sj+1)D1[ζ(sj−1)N3 − ξ(sj−1)N4]. (2.55)

We sum the contributions to obtain, for j = 2, . . . , k − 1,

∂ϕ

∂sj
=
∂Φj−1

∂sj
+
∂Φj

∂sj
+
∂Φj+1

∂sj

=
Φj

D1D2
{ξ′(sj)(N2D2 +N4D1)− ζ ′(sj)(N1D2 +N3D1)} . (2.56)

Therefore ∂ϕ/∂sj = 0 if and only if (2.46) holds. Similarly, one can prove that ∂ϕ/∂s1 = 0
is equivalent to (2.45) and ∂ϕ/∂sk = 0 is equivalent to (2.47). �

We conclude this section with the following conjecture, which seems natural to us, since
we have proved in Lemma 2.4 that the 1-layer solution of the limit problem is unique.

Conjecture 2.16. The configuration (β1, . . . , βk−1) in Theorem 2.14 is unique.
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3. Existence of the increasing and decreasing solutions

3.1. The increasing solution in the ball. Let 0 ≤ α < β ≤ 1. If u ∈ H1
rad(Bβ \ Bα),

we can assume it is continuous in (α, β] (α included if positive) and the following set is well
defined

C+,[α,β] = {u ∈ H1
rad(Bβ \Bα) : u ≥ 0 and u(r) ≤ u(s) for every α < r ≤ s ≤ β}.

Observe that if α = 0 and u ∈ C+,[α,β], then u ∈ C(Bβ) and in particular it is a bounded
function. In fact, since u is non-decreasing, we can assume continuity also at the origin by
letting u(0) = limr→0+ u(r). Moreover, u is differentiable almost everywhere and u′(r) ≥ 0
where it is defined.

Lemma 3.1. Let u ∈ C+,[α,β] solve
{

−∆u + u = up in Bβ \Bα

∂νu = 0 on ∂(Bβ \Bα).
(3.1)

Then

(i) either u ≡ 1, or u(α) < 1 and u(β) > 1;

(ii) |u| ≤ e1/2 in Bβ \Bα;

(iii) |u′| < 1 in Bβ \Bα.

Proof. (i) Integrating the equation for u in Bβ \Bα we obtain
∫

Bβ\Bα
u(1− up−1) dx = 0.

(ii) By multiplying the equation for u by u′ we obtain

u′′u′ − uu′ + upu′ = −N − 1

r
(u′)2. (3.2)

Hence the Lyapunov function

L(r) =
|u′(r)|2

2
− u(r)2

2
+
u(r)p+1

p+ 1

satisfies L′(r) = −N−1
r

(u′)2 ≤ 0. As a consequence, we have L(r) ≤ L(0) = −u(0)2

2
+ u(0)p+1

p+1
≤

0 by point (i), for every α ≤ r ≤ β. This implies

u(r) ≤ u(β) ≤
(

p+ 1

2

)
1

p−1

(3.3)

and hence the claim.
(iii) Since the function x2

2
− xp+1

p+1
achieves its maximum at x = 1, the inequality L(r) ≤ 0

implies |u′(r)|2 ≤ p−1
p+1

. �

Proposition 3.2. Let λrad2 (α, β) be the second radial eigenvalue of −∆+ Id in Bβ \Bα with
Neumann boundary conditions. If p > λrad2 (α, β) there exists up,+(r) = up,+(r;α, β) ∈ C+,[α,β]

which solves (3.1) and such that a suitable rescaling achieves

cp,+(α, β) = inf
{

Qp,[α,β](u) : u ∈ C+,[α,β], ‖u‖∞ <
√
e+ 1

}

, (3.4)

where Qp,[α,β] was defined in (2.2). By the maximum principle, up,+ is strictly increasing.
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Proof. Fix q > 1, q < N+2
N−2

if N ≥ 3, and s0 =
√
e+ 1. Define the following C1 function

fp(s) =







0 if s ≤ 0
sp if 0 ≤ s ≤ s0
sp0 + psp−1

0 (s− s0) + (s− s0)
q if s ≥ s0,

and let Fp(s) =
∫ s

0
f(t) dt,

Ẽp,[α,β](u) =

∫

Bβ\Bα

( |∇u|2
2

+
u2

2
− Fp(u)

)

dx. (3.5)

In [4, Thm. 1.3, Prop. 4.7] it is proved that there exists a strictly increasing radial solution
of (3.1), which achieves the following mountain pass level in C+,[α,β]

c′p,+(α, β) = inf
γ∈Γp,+(α,β)

max
t∈[0,1]

Ẽp,[α,β](γ(t)),

where

Γp,+(α, β) = {γ ∈ C([0, 1], C+,[α,β]) : γ(0) = 0, Ẽp,[α,β](γ(1)) < 0}.
Given this result, it will be enough to show that a suitable rescaling of this solution

achieves cp,+(α, β). To this aim, let

c′′p,+(α, β) = inf

{

Ẽp,[α,β](u) : u ∈ C+,[α,β], ‖u‖2H1 =

∫

Bβ\Bα

fp(u)u dx

}

.

It is standard to see that c′p,+(α, β) = c′′p,+(α, β), see for example [24, Thm. 4.2], with the
only difference that we have to work in the cone C+,[α,β]. Therefore there exists up,+ ∈ C+,[α,β],
strictly increasing, which achieves c′′p,[α,β] and solves (3.1) with fp(u) in place of up. Since the

conclusions of Lemma 3.1 still hold with fp(u) in place of up, we have

|up,+| ≤ e1/2 in Bβ \Bα and hence fp(up,+) = upp,+ in Bβ \Bα.

Let us show that w = cp,+(α, β)
− 1

p−1up,+ achieves cp,+(α, β) and solves −∆w + w =
cp,+(α, β)w

p, which concludes the proof. On the one hand we have

cp,+(α, β) ≤ Qp,[α,β](up,+) = ‖up,+‖
2(1− 2

p+1)
H1 =

(

2
p+ 1

p− 1
c′′p,+(α, β)

)
p−1
p+1

. (3.6)

On the other hand, tpw is an admissible test function for c′′p,+(α, β), with

tp = ‖w‖
2

p−1

H1 ‖w‖−
p+1
p−1

p+1 .

Hence

c′′p,+(α, β) ≤ Ẽp,[α,β](tpw) =
p− 1

2(p+ 1)
‖tpw‖2H1 =

p− 1

2(p+ 1)
cp,+(α, β)

p+1
p−1 .

This implies that the inequalities in (3.6) are indeed equalities and in turn that up,+ can be
chosen as a multiple of w. �

Remark 3.3. For a fix p, if 0 < ᾱ < β̄ are such that there exists the solution up,+(·; ᾱ, β̄),
then by the continuity of λrad2 (α, β), there exist 0 < A1 < ᾱ < A2, B1 < β̄ < B2 such that
the solution up,+(·;α, β) exists for every (α, β) ∈ (A1, A2) × (B1, B2). In case ᾱ = 0, there
exist B1 < β̄ < B2 such that the analogous holds in the ball.



18 BONHEURE, GROSSI, NORIS, AND TERRACINI

Remark 3.4. We see from the previous proof that up,+ equivalently achieves

inf
u∈C+,[α,β]

Q̃p,[α,β](u), where Q̃p,[α,β](u) =
‖u‖2H1

(

∫

Bβ\Bα
Fp(u) dx

)
2

p+1

.

As an additional information, we next show that the increasing solution is a local min-
imizer of Q̃p,[α,β] in H1

rad(Bβ \ Bα). This implies for instance that the Morse index of the
corresponding critical point of

Ep,[α,β](u) =

∫

Bβ\Bα

( |∇u|2
2

+
u2

2
− up+1

p+ 1

)

dx.

is 1. Indeed we have that up,+ is an eigenfunction of the operator

v 7→ −∆v + v − pup−1
p,+ v

associated with the negative eigenvalue 1−p while for smooth functions v orthogonal to up,+
in H1

rad(Bβ \Bα), we have

E ′′
p,[α,β](up,+)[v, v] =

∫

Bβ\Bα

(

|∇v|2 + v2 − pup−1
p,+ v

2
)

dx ≥ 0

as a consequence of the fact that up,+ is a local minimizer of the functional Q̃p,[α,β]. The
claim then follows by density.

Theorem 3.5. The increasing solution up,+ is a local minimizer of Q̃p,[α,β] in H
1
rad(Bβ \Bα).

We first show the minimality with respect to smooth variations.

Lemma 3.6. There exists ε > 0 such that for every function satisfying

ϕ ∈ C2
rad(Bβ \Bα), ϕ

′(α) = ϕ′(β) = 0, ‖ϕ− up,+(·;α, β)‖C2 < ε, (3.7)

it holds Q̃p,[α,β](up,+) ≤ Q̃p,[α,β](ϕ) (Q̃p,[α,β] is defined in Remark 3.4).

Proof. It will be enough to find ε > 0 such that ϕ satisfying (3.7) implies ϕ ∈ C+,[α,β]. As
up,+(r) ≥ up,+(α) > 0, then for ε < up,+(α)/2 we have ϕ > 0 in Bβ \ Bα. Let us show that
ϕ is increasing.

Since u′p,+(α) = u′p,+(β) = 0 and u′p,+(r) > 0 for r ∈ (α, β), there exists r̄ ∈ (α, β) such
that

min
r∈[α,α+r̄]

u′′p,+(r) > 0 and max
r∈[β−r̄,β]

u′′p,+(r) < 0.

By choosing

ε <
1

2
min

{

min
[α,α+r̄]

u′′p,+,− max
[β−r̄,β]

u′′p,+

}

,

we have ϕ′′ > 0 in [α, α + r̄] and ϕ′′ < 0 in [β − r̄, β], for every ϕ satisfying (3.7). Then,
using the fact that ϕ′(α) = ϕ′(β) = 0, we deduce

ϕ′(r) =

∫ r

α

ϕ′′(s) ds > 0, r ∈ (α, α+ r̄], ϕ′(r) = −
∫ β

r

ϕ′′(s) ds > 0, r ∈ [β − r̄, β).

Finally, since u′p,+(r) > 0 in [α + r̄, β − r̄], by choosing

ε <
1

2
min

r∈[α+r̄,β−r̄]
u′p,+(r),
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we also have ϕ′ > 0 in (α+ r̄, β − r̄) for every ϕ satisfying (3.7). Therefore ϕ ∈ C+,[α,β]. �

Proof of Theorem 3.5. Let us show that there exists ε > 0 such that

ϕ ∈ H1
rad(Bβ \Bα), ‖ϕ− up,+‖H1 < ε (3.8)

implies Q̃p,[α,β](up,+) ≤ Q̃p,[α,β](ϕ). We proceed as in [7]. Suppose by contradiction that there

exists a sequence ϕn satisfying (3.8) with ε = 1/n and Q̃p,[α,β](ϕn) < Q̃p,[α,β](up,+). Since

inf{Q̃p,[α,β](ϕ) : ϕ ∈ H1
rad(Bβ \ Bα), ‖ϕ− up,+‖H1 ≤ 1/n} is attained, we can assume that

it is achieved by ϕn, so that

Q̃′
p,[α,β](ϕn)[ψ] = µn(ϕn − up,+, ψ)H1 (3.9)

for some Lagrange multiplier µn and for very test function ψ ∈ H1(Bβ \ Bα). Therefore ϕn

satisfies

(1− µn)(−∆ϕn + ϕn) = fp(ϕn)− µn(−∆up,+ + up,+), ϕ′
n(α) = ϕ′

n(β) = 0.

Let us show that µn < 0. If ‖ϕn−up,+‖H1 < 1/n then µn = 0. If otherwise ‖ϕn−up,+‖H1 =
1/n, let t > 0 and ψ be such that ϕn + tψ ∈ H1

rad(Bβ \Bα) and ‖ϕn + tψ − up,+‖H1 ≤ 1/n.
Then

1

n2
≥ ‖ϕn + tψ − up,+‖2H1 =

1

n2
+ 2t(ϕn − up,+, ψ)H1 + t2‖ψ‖2H1,

so that
2t(ϕn − up,+, ψ)H1 ≤ 0. (3.10)

On the other hand, by the definition of ϕn, we have Q̃p,[α,β](ϕn+tψ)−Q̃p,[α,β](ϕn) ≥ 0, which

in the limit t→ 0, t > 0, provides Q̃′
p,[α,β](ϕn)[ψ] ≥ 0. By comparing the last inequality with

(3.9) and (3.10), we obtain µn ≤ 0.
By using the equation satisfied by up,+, we can rewrite (3.9) as

(1− µn) {−∆(ϕn − up,+) + ϕn − up,+} = fp(ϕn)− fp(up,+).

As ϕn → up,+ in H1 as n→ ∞ and µn ≤ 0, the bootrstap argument implies that ϕn → up,+
in C2(Bβ \ Bα). This contradicts Lemma 3.6, thus providing that up,+ locally minimizes

Q̃p,[α,β] in the H1
rad-topology. �

3.2. The decreasing solution in the annulus. As said before, finding a radial solution of
(2.1) in an annulus is easily done, whatever p > 1, by minimizing the quotient Qp,[α,β] defined
in (2.2) in H1

rad(Bβ \ Bα). One expects that this produces a radially decreasing solution.
One can show this fact for large p. In order to obtain a decreasing solution for a broader
range of p (we leave as a conjecture the fact that the minimizer of Qp,[α,β] is non increasing
whatever p > 1), we introduce the cone

C−,[α,β] = {u ∈ H1
rad(Bβ \Bα) : u ≥ 0 and u(r) ≥ u(s) for every α < r ≤ s ≤ β}.

Observe that here we assume α > 0. Then u ∈ C(Bβ \Bα) and in particular it is a bounded
function. Moreover, u is differentiable almost everywhere and u′(r) ≤ 0 where it is defined.

Proposition 3.7. If α > 0 and p > λrad2 (α, β) there exists up,−(r) = up,−(r;α, β) ∈ C−,[α,β]

which solves (3.1) and such that a suitable rescaling achieves

cp,−(α, β) = inf{Qp,[α,β](u) : u ∈ C−,[α,β]}, (3.11)

The proof is classical. Observe that by the maximum principle, up,− is strictly decreasing.
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4. Behaviour of the monotone solutions as p→ +∞
In this section we will prove the following convergence result.

Proposition 4.1. Denote by u∞,+(r) = u∞,+(r;α, β) the unique solution of






−∆u+ u = 0 in Bβ \Bα

∂νu = 0 on ∂Bα

u = 1 on ∂Bβ .
(4.1)

As p→ ∞ we have that up,+ → u∞,+ in H1(Bβ \Bα) ∩ C0,γ(Bβ \Bα) for every γ ∈ (0, 1).

The proof of this result is inspired by [13]. We divide it in several steps.

Lemma 4.2. There exists ū ∈ C+,[α,β] satisfying ‖ū‖∞ = ū(β) = 1 such that, up to a
subsequence, it holds

up,+ ⇀ ū in H1(Bβ \Bα), up,+ → ū in C0,γ(Bβ \Bα), for every γ ∈ (0, 1).

Proof. Given any η ∈ C+,[α,β] with ‖η‖∞ <
√
e + 1 we have, by the Hölder inequality (see

(3.4) for the definition of cp,+(α, β)),

cp,+(α, β) ≤
‖η‖2H1

‖η‖2p+1

≤ |Bβ \Bα|
p−1
p+1

‖η‖2H1

‖η‖22
,

which is bounded by a constant non depending on p. On the other hand, the equation for
up,+ provides

cp,+(α, β) = ‖up,+‖
2 p−1
p+1

H1 = ‖up,+‖p−1
p+1. (4.2)

We deduce that the H1-norm of the up,+ is bounded uniformly in p and hence the weak
convergence. The Hölder convergence comes from Lemma 3.1 (iii).

Being up,+ positive and strictly increasing for every p, ū is non-negative and non-decreasing
by the pointwise convergence. Let us show that ‖ū‖∞ = 1. On the one hand, ‖ū‖∞ ≥ 1 since

up,+(β) > 1 for every p and the convergence is C0,γ(Bβ \Bα). Suppose by contradiction that
‖ū‖∞ = ū(β) > 1. Then there exists r̄ < β and δ > 0 such that up,+(r) > 1 + δ for every
r ∈ (r̄, β). By integrating (3.1) in (r̄, β) we obtain

u′p,+(r̄) >
1

r̄N−1

∫ β

r̄

(up−1
p,+ − 1)rN−1 dr → ∞,

thus contradicting Lemma 3.1 (iii). �

Lemma 4.3. It holds
lim sup
p→∞

‖up,+‖p+1 ≤ 1.

Proof. For every q > p we have, by the Hölder inequality,

‖up,+‖p+1 ≤ ‖up,+‖q+1|Bβ \Bα|
1

p+1
− 1

q+1 .

Therefore

lim sup
p→∞

‖up,+‖p+1 ≤ lim sup
p→∞

lim
q→∞

(

‖up,+‖q+1|Bβ \Bα|
1

p+1
− 1

q+1

)

= lim sup
p→∞

(

‖up,+‖∞|Bβ \Bα|
1

p+1

)

= ‖ū‖∞ = 1,

by Lemma 4.2. �
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Lemma 4.4. For every u ∈ C+,[α,β], u 6≡ 0, there exists a sequence {wp} ⊂ C+,[α,β] such that

lim
p→∞

‖wp − u‖H1 = 0, ‖u‖∞ ≤ lim inf
p→∞

‖wp‖p+1.

Proof. We take wp of the form σpu with σp > 1, so that wp ∈ C+,[α,β]. In order to choose

σp, let f(σ) = ‖σu‖p+1. Since f is continuous, f(1) < ‖u‖∞|Bβ \ Bα|
1

p+1 and f(σ) → ∞ as

σ → ∞, there exists σp ∈ (1,∞) such that ‖σpu‖p+1 = ‖u‖∞|Bβ \ Bα|
1

p+1 . It only remains
to prove that σp → 1 as p → ∞. Suppose on the contrary that σp > 1 + δ for some δ > 0
and for every p large. Then

‖u‖∞ = lim
p→∞

(

‖u‖∞|Bβ \Bα|
1

p+1

)

= lim
p→∞

‖σpu‖p+1 > (1 + δ) lim
p→∞

‖u‖p+1,

which provides 1 > 1 + δ, a contradiction. �

Proof of Proposition 4.1. Let

c∞,+ = inf
{

‖u‖2H1 : u ∈ C+,[α,β], ‖u‖∞ = 1
}

= inf
{

Q∞,[α,β](u) : u ∈ C+,[α,β], u 6≡ 0
}

,
(4.3)

where Q∞,[α,β] is defined in (2.3). By Lemma 4.2 we have

c∞,+ ≤ ‖ū‖2H1 ≤ lim inf
p→∞

‖up,+‖2H1 = lim inf
p→∞

(cp,+‖up,+‖2p+1). (4.4)

Using Lemma 4.3 we conclude that c∞,+ ≤ lim infp→∞ cp,+. On the other hand, given any
u ∈ C+,[α,β], u 6≡ 0, Lemma 4.4 provides

Q∞,[α,β](u) ≥ lim sup
p→∞

Qp,[α,β](wp) ≥ lim sup
p→∞

cp,+.

Therefore we have obtained
c∞,+ = lim

p→∞
cp,+.

In turn, the inequalities in (4.4) are indeed equalities, which implies both that up,+ → ū in
H1(Bβ \Bα) and that ū achieves c∞,+ (with ‖ū‖∞ = 1).

It only remains to show that u∞,+ is the unique function, having L∞-norm equal to 1,
which achieves c∞,+. On the one hand, u∞,+ uniquely achieves

inf
{

‖u‖2H1 : u = 1 on ∂Bβ

}

≤ c∞,+.

On the other hand, u∞,+ is radial and satisfies

u′∞,+(r) =
1

rN−1

∫ r

α

tN−1u∞,+(t) dt ≥ 0, ∀ r ∈ (α, β),

so that u∞,+ is an admissible test function for c∞,+. �

Remark 4.5. Note that we cannot have the C1-convergence of the solution up to r = β.
Indeed u′p,+(β) = 0 and u′∞,+(β) > 0.

An analogous result holds for the decreasing solution in the annulus.

Proposition 4.6. Let α > 0. Denote by u∞,−(r) = u∞,−(r;α, β) the unique solution of






−∆u+ u = 0 in Bβ \Bα

∂νu = 0 on ∂Bβ

u = 1 on ∂Bα.
(4.5)
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As p→ ∞ we have that up,− → u∞,− in H1(Bβ \Bα) ∩ C0,γ(Bβ \Bα) for every γ ∈ (0, 1).

We conclude this section with a result that we will need later.

Lemma 4.7. We have

lim
p→∞

up,+(β;α, β)
p

p
=

1

2

(

u′∞,+(β;α, β)
)2
. (4.6)

Proof. The Pohozaev identity provides
(

N − 2

2
− N

p+ 1

)
∫

Bβ\Bα

|∇up,+|2 dx+
(

N

2
− N

p+ 1

)
∫

Bβ\Bα

u2p,+ dx

=

∫

∂(Bβ\Bα)

(

u2p,+
2

− up+1
p,+

p+ 1

)

dσ,

so that

|∂Bβ |
p+ 1

up,+(β)
p+1 =

|∂Bα|
p + 1

up,+(α)
p+1 −

(

N − 2

2
− N

p+ 1

)
∫

Bβ\Bα

|∇up,+|2 dx

−
(

N

2
− N

p+ 1

)
∫

Bβ\Bα

u2p,+ dx+

∫

∂(Bβ\Bα)

u2p,+
2

dσ.

(4.7)

On the other hand, writing the Pohozaev identity satisfied by u∞,+ we obtain,

|∂Bβ |
2

u′∞,+(β)
2 = −N − 2

2

∫

Bβ\Bα

|∇u∞,+|2 dx−
N

2

∫

Bβ\Bα

u2∞,+ dx+

∫

∂(Bβ\Bα)

u2∞
2
dσ. (4.8)

The convergence up,+ → u∞,+ in H1(Bβ \ Bα) proved in Proposition 4.1 and the fact that
up,+(α) < 1 imply that the right hand side in (4.7) converges to the right hand side in
(4.8). �

5. Uniqueness and nondegeneracy of the monotone solutions

5.1. Uniqueness. In this section we show that the minimal energy solution in the cone
found in the previous section is unique.

Theorem 5.1. The value cp,+(α, β) is uniquely achieved by a multiple of up,+(·;α, β) for p
large enough.

Proof. Step 1. Following [12, Theorem 1.5], we perform a blow-up analysis of up,+. Let

zp(r) =
p

‖up,+‖∞
(up,+(β + εpr)− ‖up,+‖∞) , r ∈

[

−β − α

εp
, 0

]

, (5.1)

where ‖up,+‖∞ = up,+(β) and

pε2p =
1

‖up,+‖p−1
∞

. (5.2)

From Lemma 4.7 we obtain that, for p large enough,

pεp =

√
p

‖up,+‖
p−1
2∞

→
√
2

u′∞,+(β)
as p→ ∞, (5.3)

so that, in particular, εp → 0 as p→ ∞.
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We claim that for every R > 0 there exists C > 0 independent of p such that

|zp(r)|+ |z′p(r)| ≤ C, r ∈ (−R, 0). (5.4)

Of course, zp ≤ 0. In order to obtain a bound from below, write

zp(−R) = − pεpR

‖up,+‖∞
· up,+(β − εpR)− up,+(β)

−εpR
= −Cu′p,+(ξp),

for some ξp ∈ (β − εpR, β), by the mean value theorem and (5.3). The last quantity is
bounded from below by Lemma 3.1 iii). This lemma, together with (5.3), also provides

|z′p| =
pεp

‖up,+‖∞
|u′p,+| ≤ C,

so that (5.4) is proved.
From (5.4) and the equation solved by zp:

{

−z′′p − (N−1)εp
β+εpr

z′p + pε2p

(

1 + zp
p

)

=
(

1 + zp
p

)p

for r ∈
(

−β−α
εp
, 0
)

zp(0) = z′p(0) = 0,
(5.5)

we can see that also z′′p is bounded in (−R, 0). Therefore there exists z∞ ∈ C1(−∞, 0) such

that zp → z∞ in C1
loc(−∞, 0) and we can pass to the limit in (5.5), obtaining that z∞ satisfies

− z′′ = ez in (−∞, 0). (5.6)

All the solutions to this equation are given by

z(r) = log
4A2e

√
2(Ar+B)

(

1 + e
√
2(Ar+B)

)2 , A, B ∈ R. (5.7)

Using that z∞(0) = z′∞(0) = 0, we deduce

zp(r) → z∞(r) = log
4e

√
2r

(

1 + e
√
2r
)2 in C1

loc(−∞, 0). (5.8)

Step 2. We argue by contradiction and suppose that there exists ũp,+(·;α, β) ∈ C+,[α,β], ũp,+ 6≡
up,+, which solves the equation and such that a suitable multiple achieves cp,+(α, β). All the
results proved in Sections 4 apply to ũp,+ since it has the same variational characterization
as up,+ and all the arguments can be repeated.

Since ũp,+ 6≡ up,+, the following normalized function is well defined

wp =
up,+ − ũp,+

‖up,+ − ũp,+‖∞
. (5.9)

Letting Kp(r) =
∫ 1

0
(tup,+(r) + (1− t)ũp,+(r))

p−1dt, we have that wp solves
{

−(rN−1w′
p)

′ + rN−1wp = rN−1pKpwp for r ∈ (α, β)

w′
p(α) = w′

p(β) = 0, |wp| ≤ 1.
(5.10)

We claim that there exists C > 0 independent of p such that

|w′
p(r)| ≤ Cp for every r ∈

(

α+ β

2
, β

)

. (5.11)
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Integrating (5.10) in ((α + β)/2, r), for (α+ β)/2 ≤ r ≤ β, we obtain

|w′
p(r)|rN−1 ≤

∫ r

α+β

2

tN−1|wp(t)|dt+ p

∫ r

α+β

2

tN−1|Kp(t)||wp(t)|dt. (5.12)

Since |wp| ≤ 1, we have

|w′
p(r)| ≤ C + p

∫ r

α+β
2

tN−1|Kp(t)|dt. (5.13)

On the other hand we have that
∫ β

α+β

2

|Kp(r)|rN−1dr ≤ C. (5.14)

This comes from the inequality

|xp − yp| ≤ p|x− y| (max{x, y})p−1 , for every x, y > 0, (5.15)

applied as follows

|Kp(r)| =
|up,+(r)p − ũp,+(r)

p|
p|up,+(r)− ũp,+(r)|

≤ (max{up,+(r), ũp,+(r)})p−1 , (5.16)

and from the fact that
∫

Bβ\Bα

up+1
p,+ dx+

∫

Bβ\Bα

ũp+1
p,+ dx ≤ C, (5.17)

uniformly in p, by the H1-bound in Lemma 4.2 and relation (4.2). So the claim (5.11) is
proved.

Thanks to this C1-bound, we can perform a blow-up analysis of wp, similar to the one in
Step 1. Let εp be as in (5.2) and let vp(r) = wp(β + εpr) for r ∈ (−(β − α)/εp, 0), so that

{

−v′′p − (N−1)εp
β+εpr

v′p + ε2pvp = pε2pKp(β + εpr)vp for r ∈
(

−β−α
εp
, 0
)

v′p(α) = v′p(β) = 0, |vp| ≤ 1.
(5.18)

By (5.11) we deduce that

|v′p(r)| ≤ C for r ∈
(

−β − α

2εp
, 0

)

. (5.19)

Let us show that
pε2pKp(β + εpr) → ez∞ (5.20)

locally in the compact subsets of (−∞, 0), with z∞ defined in (5.8). To this aim, consider
the function zp introduced in (5.1) and analogously let

pε̃2p =
1

‖ũp,+‖p−1
∞

, z̃p(r) =
p

‖ũp,+‖∞
(ũp,+(β + ε̃pr)− ‖ũp,+‖∞) , (5.21)

so that

ũp,+(β + εpr) = ‖ũp,+‖∞
(

1 +
1

p
z̃p

(

εp
ε̃p
r

))

. (5.22)

Since the asymptotic in (5.3) holds for both εp and ε̃p, we deduce

εp
ε̃p

→ 1,
‖up,+‖∞
‖ũp,+‖∞

→ 1 as p→ +∞, (5.23)
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so that, using also (5.8),

z̃p

(

εp
ε̃p
r

)

→ z∞(r) as p→ ∞. (5.24)

Using this and (5.23) again, we have

Kp(β + εpr) = ‖up,+‖p−1
∞

∫ 1

0

{

1 +
1

p

[

tzp(r) + (1− t)z̃p

(

εp
ε̃p
r

)]

+ op(1)

}p−1

dt

∼ ‖up,+‖p−1
∞ ez∞(r) as p→ ∞,

proving (5.20).
By combining (5.18), (5.19) and (5.20), we deduce that also v′′p is bounded, so there exists

v∞ ∈ C1(−∞, 0) such that
vp → v∞ in C1

loc(−∞, 0). (5.25)

Moreover v∞ solves
{

−v′′ = ez∞v in (−∞, 0)

v′(0) = 0, |v| ≤ 1.
(5.26)

It is known, see [12, Lemma 4.2], that

v(r) = A
1− e

√
2r

1 + e
√
2r

+B

(

√
2r

1− e
√
2r

1 + e
√
2r

+ 2

)

, A, B ∈ R. (5.27)

Since v∞ is bounded, we immediately obtain that B = 0. On the other hand, the condition
v′∞(0) = 0 implies that A = 0. Therefore

vp → v∞ ≡ 0 in C1
loc(−∞, 0). (5.28)

Step 3. We will see that v∞ ≡ 0 contradicts the fact that ‖wp‖∞ = 1 for every p. Let
mp ∈ [α, β] be such that wp(mp) = 1 and let (up to a subsequence) mp → m∞ ∈ [α, β].
Denoting by G[α,β](r, t) the Green function of the operator −u′′ − N−1

r
u′ + u with Neumann

boundary conditions u′(α) = u′(β) = 0, we have

wp(r) =

∫ β

α

G[α,β](r, t)pKp(t)wp(t)dt. (5.29)

Then

1 = wp(mp) =

∫ β

α

G[α,β](mp, t)pKp(t)wp(t)dt =

∫ β

α+β

2

G[α,β](mp, t)pKp(t)wp(t)dt+ op(1),

where we used the fact that up,+(t) ≤ C < 1 for t ∈ [(α + β)/2, β]. By applying the change
of variables t = β + εps, we obtain

1 = pεp

∫ 0

−β−α

2εp

G[α,β](mp, β + εps)Kp(β + εps)vp(s)ds+ op(1)

= pεpG[α,β](mp, β)

∫ 0

−β−α

2εp

Kp(β + εps)vp(s)ds

+pεp

∫ 0

−β−α

2εp

(

G[α,β](mp, β + εps)−G[α,β](mp, β)
)

Kp(s)vp(s)ds+ op(1)

=: I1,p + I2,p + op(1). (5.30)
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Let us observe that there exists C > 0 such that, for any r, α, β ∈ [0, 1], the following holds

|G(r, α)−G(r, β)| ≤ C|α− β|. (5.31)

This can be seen for example by making use of relations (2.7)-(2.10), we omit the details.
Then, using (5.15) we can estimate I2,p as follows

|I2,p| ≤ Cpε2p‖up,+‖p∞
∫ 0

−β−α

2εp

|s|
(

1 +
zp(s)

p

)p

|vp(s)|ds

≤ C‖up,+‖∞
∫ 0

−β−α

2εp

|s|ezp(s)|vp(s)|ds, (5.32)

where we used (5.2). We claim that
∫ 0

−β−α
2εp

|s|ezp(s)|vp(s)|ds→ 0 as p→ ∞. (5.33)

Since we know that vp → 0 a.e. as p → ∞, it will be enough to show that the Lebesgue
dominate convergence theorem applies. To this aim we use the following lemma, of which
we postpone the proof to Section 5.2.

Lemma 5.2. There exist p̄ > 1, s̄ ∈ (−(β − α)/(2εp̄), 0), C > 0 such that

z′p(s) ≥ C (5.34)

for every p > p̄ and s ∈ (−(β − α)/(2εp), s̄).

Given p̄ and s̄ as above, we compute

zp(s) = −
∫ 0

s

z′p(τ)dτ = −
∫ s̄

s

z′p(τ)dτ −
∫ 0

s̄

z′p(τ)dτ ≤ −C(s̄− s) ≤ Cs, (5.35)

for every p > p̄ and s ∈ (−(β − α)/(2εp), s̄), which gives (5.33).
So we have proved that |I2,p| → 0 as p→ ∞, so that (5.30) becomes

1 = pεpG[α,β](mp, β)

∫ 0

−β−α
2εp

Kp(β + εps)vp(s)ds+ op(1). (5.36)

On the other hand, (5.28) implies (repeating the same procedure as before),

op(1) = wp(β) =

∫ β

α

G[α,β](β, t)pKp(t)wp(t)dt =

∫ β

α+β

2

G[α,β](β, t)pKp(t)wp(t)dt+ op(1)

= pεpG[α,β](β, β)

∫ 0

−β−α
2εp

Kp(β + εps)vp(s)ds

+pεp

∫ 0

−β−α

2εp

(

G[α,β](β, β + εps)−G[α,β](β, β)
)

Kp(β + εps)vp(s)ds+ op(1)

= pεpG[α,β](β, β)

∫ 0

−β−α

2εp

Kp(β + εps)vp(s)ds+ op(1), (5.37)

which contradicts (5.36). This concludes the proof of Theorem 5.1. �
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Corollary 5.3. Let us suppose that (αn, βn) → (α, β) with α < β. Then there exists
p0 = p0(α, β) > 1 such that, for every n, the value cp0,+(αn, βn) is uniquely achieved by a
multiple of up,+(·;αn, βn).

Proof. It is enough to repeat step by step the proof of Theorem 5.1. We just remark that

the functions zp and vp are now defined in
(

−βn−αn

εp
, 0
)

and by assumption this interval

converges again to (−∞, 0). This applies also to Lemma 5.2. �

5.2. Proof of Lemma 5.2.

Lemma 5.4. Recall that cp,+(α, β) is defined in Proposition 3.2. We have that

cp,+(α, β) = |∂Bβ |u′∞,+(β;α, β) + op(1) as p→ ∞. (5.38)

Proof. By definition we have

cp,+(α, β) = Qp,[α,β](up,+) =

(

|∂B1|
∫ β

α

up+1
p,+ (t)tN−1dt

)

p−1
p+1

. (5.39)

Then, recalling the blow up procedure (5.1), (5.8), we obtain

cp,+(α, β)
p+1
p−1

|∂B1|
=

∫ β

α

up+1
p,+ (t)tN−1dt = εp

∫ 0

−β−α

εp

up+1
p,+ (β + εps)(β + εps)

N−1ds

= εp‖up,+‖p+1
∞

∫ 0

−β−α
εp

(

1 +
zp(s)

p

)p+1

(β + εps)
N−1ds

≥ εp‖up,+‖p+1
∞ βN−1

∫ 0

−∞
ez∞(s)ds, (5.40)

where in the last step we applied Fatou’s lemma. Next by (5.2), (5.8) and Lemma 4.7, we
obtain

cp,+(α, β)
p+1
p−1

|∂B1|
≥ βN−1

(‖up,+‖p∞
p

)
1
2

(
√
2 + op(1)) = βN−1u′∞,+(β) + op(1).

On the other hand, taking u∞,+ as test function for cp,+(α, β), we have

cp,+(α, β) ≤ Qp,[α,β](u∞,+) = |∂B1|βN−1
u′∞,+(β)

1 + op(1)
, (5.41)

where in the last line we used the equation satisfied by u∞,+. �

Corollary 5.5. For every δ > 0 there exist s(δ) < 0 and p(δ) > 1 such that, for every
p > p(δ) and s ∈ (−(β − α)/εp, s(δ)), the following holds

∫ s

−β−α

εp

(

1 +
zp(τ)

p

)p+1

(β + εpτ)
N−1dτ < δ. (5.42)

Proof. For any δ > 0 let us choose s(δ) such that

βN−1

∫ s(δ)

−∞
ez∞(τ)dτ <

δ

3
. (5.43)
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We point out that a consequence of (5.40) and (5.41) of Lemma 5.4 is that
∫ 0

−β−α

εp

(

1 +
zp(τ)

p

)p+1

(β + εpτ)
N−1dτ → βN−1

∫ 0

−∞
ez∞(τ)dτ, (5.44)

as p→ ∞, hence we can choose p1(δ) such that, for every p ≥ p1(δ),
∣

∣

∣

∣

∣

∫ 0

−β−α

εp

(

1 +
zp(τ)

p

)p+1

(β + εpτ)
N−1dτ − βN−1

∫ 0

−∞
ez∞(τ)dτ

∣

∣

∣

∣

∣

<
δ

3
. (5.45)

Next, using the uniform convergence of zp to z∞ on the compact sets of (−∞, 0] let us choose
p2(δ) such that, for p ≥ p2(δ),

∫ 0

s(δ)

∣

∣

∣

∣

∣

(

1 +
zp(τ)

p

)p+1

(β + εpτ)
N−1 − βN−1ez∞(τ)

∣

∣

∣

∣

∣

dτ <
δ

3
. (5.46)

Finally, let p3(δ) be such that −(β − α)/εp < s(δ) for every p ≥ p3(δ) and set p(δ) :=
max {p1(δ), p2(δ), p3(δ)}.

If p > p(δ) and s ∈ (−(β − α)/εp, s(δ)), we have
∫ s

−β−α

εp

(

1 +
zp(τ)

p

)p+1

(β + εpτ)
N−1dτ ≤

∫ s(δ)

−β−α

εp

(

1 +
zp(τ)

p

)p+1

(β + εpτ)
N−1dτ

= βN−1

∫ s(δ)

−∞
ez∞(τ)dτ +

∫ 0

−β−α

εp

(

1 +
zp(τ)

p

)p+1

(β + εpτ)
N−1dτ − βN−1

∫ 0

−∞
ez∞(τ)dτ

−
(

∫ 0

s(δ)

(

1 +
zp(τ)

p

)p+1

(β + εpτ)
N−1dτ − βN−1

∫ 0

s(δ)

ez∞(τ)dτ

)

< δ,

(5.47)

which proves the claim. �

Proof of Lemma 5.2. Writing the equation satisfied by up,+ we obtain

− u′p,+(β + εps)(β + εps)
N−1 +

∫ β+εps

α

up,+(t)t
N−1 =

∫ β+εps

α

upp,+(t)t
N−1dt, (5.48)

which implies by (5.1),

‖up,+‖∞
pεp

z′p(s)(β + εps)
N−1 =

∫ β+εps

α

up,+(t)t
N−1dt

−εp‖up,+‖p∞
∫ s

−β−α

εp

(

1 +
zp(t)

p

)p

(β + εpt)
N−1dt.

(5.49)

Using (5.2), (5.3) and the fact that s ∈ (−(β − α)/2εp, 0), we obtain, for p large enough,

z′p(s) ≥
1

2

√
2

u′∞,+(β)

1

βN−1

∫
α+β

2

α

up,+(t)t
N−1dt

−2

(

2

α + β

)N−1 ∫ s

−β−α

εp

(

1 +
zp(t)

p

)p

(β + εpt)
N−1dt =: I1 − I2,p(s).

(5.50)
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By Corollary 5.5, with ε = I1/2, there exist p̄ and s̄ such that

I2,p(s) <
I1
2

for every p > p̄, s ∈
(

−β − α

εp
, s̄

)

. (5.51)

The Hölder inequality with exponents (p+ 1)/p and p + 1 provides
∫ s

−β−α

εp

(

1 +
zp(t)

p

)p

(β + εpt)
N−1dt

≤
(

∫ s

−β−α
εp

(

1 +
zp(t)

p

)p+1

(β + εpt)
N−1dt

)
p

p+1

·
(

∫ 0

−β−α
εp

(β + εpt)
N−1dt

)
1

p+1

≤
(

∫ s

−β−α

εp

(

1 +
zp(t)

p

)p+1

(β + εpt)
N−1dt

)
p

p+1

Cε
− 1

p+1
p . (5.52)

We notice that

ε−1
p ∼ p√

2
u′∞,+(β) so that ε

− 1
p+1

p → 1 as p→ ∞. (5.53)

By combining (5.50)-(5.53) we obtain that z′p(s) ≥ I1/2 for every p > p̄ and s ∈ (−(β −
α)/εp, s̄). �

5.3. Nondegeneracy. With very few changes with respect to the proof of the uniqueness,
one can prove the following nondegeneracy result,

Theorem 5.6. Let vp solve
{

−(rN−1v′)′ + rN−1v = rN−1pup−1
p,+ v for r ∈ (α, β)

v′(α) = v′(β) = 0.
(5.54)

Then vp ≡ 0 for p large.

Proof. As in the proof of Theorem 5.1, Step 2, we suppose by contradiction that there exists
a nontrivial solution of (5.54). The blow-up analysis of this solution can be performed
exactly as in the proof to Theorem 5.1, reaching the contradiction in the sae way. Here the
calculations are indeed easier because there is only one blow-up parameter εp, hence (5.23)
holds automatically. Also, in the analogous of (5.10) there is upp in place of Kp, so that (5.14)
is trivial. �

5.4. C1 dependence on the boundary points. The following result is inspired from [17,
Lemma 3.4].

Lemma 5.7. Let p be fixed and let 0 < A1 < A2 < B1 < B2 be as in Remark 3.3. Define

I = {(r, α, β) : A1 < α < A2, B1 < β < B2, α < r < β} .
Then the map I ∋ (r, α, β) 7→ up,+(r;α, β) is continuous.

Similarly, in the case of the ball, let 0 < B1 < B2 be as in Remark 3.3 and I =
{(r, β) : B1 < β < B2, 0 ≤ r < β}. Then the map I ∋ (r, β) 7→ up,+(r; 0, β) is continuous.
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Proof. We prove the result in the case of the annulus, the case of the ball being analogous.
Let (r, αn, βn) be a sequence in I such that αn → α∗, βn → β∗. Let ûp,+(r;αn, βn) be the
trivial extension of up,+(r;αn, βn) in the interval [A,B] := [A1, B2] (extend as a constant
outside (αn, βn)). Define ûp,+(r;α∗, β∗) analogously. Since {ûp,+(·;αn, βn)}n is bounded in
H1(BB \BA), there exists ũ ∈ H1(BB \BA) such that (up to a subsequence)

ûp,+(·;αn, βn)⇀ ũ weakly in H1(BB \BA).

In order to conclude the proof it will be enough to show that ũ ≡ up,+(·;α∗, β∗). Let
ϕ ∈ C∞

c (Bβ∗
\ Bα∗

). Then ϕ ∈ C∞
c (Bβn

\ Bαn
) for n sufficiently large and the H1-weak

convergence implies
∫

Bβ∗\Bα∗

(∇ũ · ∇ϕ+ ũϕ) dx =

∫

Bβ∗\Bα∗

ũpϕdx.

Therefore both ũ and up,+(·;α∗, β∗) solve equation (3.1) in Bβ∗
\Bα∗

. Moreover, by the point-
wise convergence, ũ is non-negative and non-decreasing (and hence positive and increasing
by the maximum principle) and, by Lemma 3.1 (ii), it satisfies ‖ũ‖∞ <

√
e+ 1. Therefore ũ

can be used as a test function for cp,+(α∗, β∗).
Suppose by contradiction that ũ 6≡ up,+(·;α∗, β∗). Then the uniqueness of the minimal

energy solution in the cone with variable intervals proved in Corollary 5.3 implies

Qp,[α∗,β∗](ũ) > Qp,[α∗,β∗](up,+(·;α∗, β∗)). (5.55)

On the other hand, the H1-weak convergence implies

Qp,[α∗,β∗](ũ) ≤ lim inf
n→∞

Qp,[α∗,β∗](ûp,+(·;αn, βn)). (5.56)

We use (5.55), (5.56) and the continuity if Qp,[α,β] with respect to α, β, to obtain

lim
n→∞

Qp,[αn,βn](ûp,+(·;α∗, β∗)) = Qp,[α∗,β∗](up,+(·;α∗, β∗)) < Qp,[α∗,β∗](ũ)

≤ lim inf
n→∞

Qp,[α∗,β∗](ûp,+(·;αn, βn)) = lim
n→∞

Qp,[αn,βn](up,+(·;αn, βn)).

This implies that ûp,+(·;α∗, β∗) achieves cp,+(αn, βn) for n large, which contradicts Theorem
5.1.
Finally, by the uniqueness of the minimal solution in [α, β] it is standard to show that the
sequences αn and βn do converge. �

Lemma 5.8. In the same assumptions of the previous lemma, the maps I ∋ (r, α, β) 7→
up,+(r;α, β) and I ∋ (r, β) 7→ up,+(r; 0, β) are of class C1.

Proof. Again we prove the result only in the case of the annulus and we set [A,B] := [A1, B2].
Let

ûp,+(s;α, β) = h
2

p−1up,+(hs+ k;α, β),

with

h =
α− β

A− B
and k =

Aβ − Bα

A− B
.

Then ûp,+ ∈ H1
rad(BB \BA) and solves

−û′′p,+ − h
N − 1

hs+ k
û′p,+ + h2ûp,+ = (ûp,+)

p.
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We define a functional Φ : H2
rad(BB\BA)∩{u > 0}×{(α, β) : A1 < α < A2, B1 < β < B2} →

L2(BB \BA) as follows

Φ(u;α, β) = −u′′ − h
N − 1

hs + k
u′ + h2u− up.

The Implicit Function Theorem applies to Φ(u;α, β) = 0 near the point (ûp,+;α, β). Indeed
we have

∂uΦ(ûp,+(·;α, β);α, β))[ψ̂] = −ψ̂′′ − h
N − 1

hs + k
ψ̂′ + h2ψ̂ − p(ûp,+)

p−1ψ̂.

Letting ψ̂(s) = ψ(hs+k) and rescaling back to the original variable hs+k = r, the previous
expression becomes

h2(−ψ′′ − N − 1

r
ψ′ + ψ − pup−1

p,+ψ).

The nondegeneracy of up,+ proved in Theorem 5.6 implies that ∂uΦ(ûp,+(·;α, β);α, β)) is
injective. Being a Fredholm operator of index 0, it is also surjective.

By the Implicit Function Theorem there exists locally a C1 map (α, β) 7→ u(·;α, β) such
that Φ(u(·;α, β);α, β) = 0. Then Lemma 5.7 implies that (α, β) 7→ up,+(·;α, β) is of class
C1. �

Lemma 5.9. Fix 0 ≤ α < 1. For every ε > 0 we have that

up,+(·;α, β) → u∞,+(·;α, β) in H1(Bβ \Bα) ∩ C0,γ(Bβ \Bα) for every γ ∈ (0, 1),

as p → ∞, uniformly in β for α + ε ≤ β ≤ 1. Analogously, fix 0 < β ≤ 1, then for every
ε > 0 the convergence is uniform for 0 ≤ α ≤ β − ε.

Proof. We only prove the first statement. First we claim that for every ε > 0 there exists
C = C(ε) such that

cp,+(α, β) + ‖up,+(·;α, β)‖2H1 + ‖up,+(·;α, β)‖p+1
p+1 ≤ C

for every p > 1, β ∈ [α+ε, 1]. To prove the claim we proceed similarly to Lemma 4.2. Given
any η ∈ C+,[α,1] satisfying ‖η‖∞ <

√
e+ 1, we have

cp,+(α, β) ≤
‖η‖2H1(Bβ\Bα)

‖η‖2Lp+1(Bβ\Bα)

≤ |Bβ \Bα|
p−1
p+1

‖η‖2H1(Bβ\Bα)

‖η‖2L2(Bβ\Bα)

≤ |B1 \Bα|
p−1
p+1

‖η‖2H1(B1\Bα)

‖η‖2L2(Bα+ε\Bα)

(5.57)
for every p > 1, β ∈ [α + ε, 1]. This together with (4.2) proves the claim.

By Lemma 3.1 (iii) and Lemma 5.7 we have

|u′p,+(·;α, β)| < 1, up,+(·;α, β) is equicontinuous in β,
which provides the uniform Hölder convergence by the Ascoli-Arzelá Theorem. Note that
the equicontinuity in β of up,+(·;α, β) follows by Lemma 7.1 (which holds independently).

To prove the uniform H1-convergence, we test the equation satisfied by up,+(·;α, β) −
u∞,+(·;α, β) by itself in Bβ \Bα and apply the Hölder inequality to obtain

‖up,+−u∞,+‖2H1(Bβ\Bα)
≤ ‖up,+−u∞,+‖L∞(Bβ\Bα)‖up,+‖pLp(Bβ\Bα)

+|∂Bβ ||u′∞,+(β)||up,+(β)−1|.

The uniform estimate (5.57) and the uniform Hölder convergence allow to conclude. �
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Remark 5.10. By combining the previous result with the proof of Lemma (4.6), we see that

lim
p→∞

up,+(β;α, β)
p

p
=

1

2

(

u′∞,+(β;α, β)
)2
,

uniformly for α + ε ≤ β ≤ 1, for every ε > 0.

6. Existence of the 1-layer solution

For k ∈ N0 let 0 = β0 < β1 < . . . < βk−1 < βk = 1. In this section we prove the
existence of a 1-layer radial solution of the equation (2.1) in the interval [βj−1, βj], for some
j = 1, . . . , k, by gluing the increasing solution in [βj−1, α] and the decreasing solution in
[α, βj], for a suitable α ∈ (βj−1, βj).

Theorem 6.1. For p sufficiently large there exists a radial solution up,1-layer(r; βj−1, βj) of
(2.1) in Bβj

\Bβj−1
, having exactly one maximum point at r = αj,p. Furthermore,

αj,p → αj, up,1-layer → u∞,1-layer pointwise, (6.1)

as p→ ∞, where

(

G[βj−1,βj ](r, r)

rN−1

)′
∣

∣

∣

∣

∣

r=αj

= 0, u∞,1-layer(r; βj−1, βj) =
G[βj−1,βj](r, αj)

G[βj−1,βj ](αj , αj)
(6.2)

(compare with Definition 2.9).

Proof. We juxtapose the increasing solution up,+(r; βj−1, α) to the decreasing one up,−(r;α, βj).
For a generic α ∈ (βj−1, βj) this is a discontinuous function. Our aim is to find αj,p such
that it is continuous, that is to say

up,+(αj,p; βj−1, αj,p) = up,−(αj,p;αj,p, βj). (6.3)

Since we are working with Neumann boundary conditions, the function

up,1-layer(r; βj−1, βj) =

{

up,+(r; βj−1, αj,p) in (βj−1, αj,p)
up,−(r;αj,p, βj) in (αj,p, βj)

(6.4)

is the requested solution if αj,p satisfies (6.3).
We define

Lp(·; βj−1, βj) : α ∈ (βj−1, βj) 7→
up,+(α; βj−1, α)

p − up,−(α;α, βj)
p

p
. (6.5)

We aim to prove that Lp has a zero for p sufficiently large.

(i) We proved in Lemma 5.7 (and analogous result for up,−) that Lp is continuous. This
is a consequence of the uniqueness of the increasing and decreasing solutions.

(ii) Due to Lemma 4.7 we have that

Lp(α; βj−1, βj) → L∞(α; βj−1, βj) =
u′∞,+(α; βj−1, α)

2 − u′∞,−(α;α, βj)
2

2
, (6.6)

pointwise for α ∈ [βj−1, βj ].
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(iii) By Propositions 4.1 and 4.6 and by (2.13) we have

u∞,+(r; βj−1, α) =
G[βj−1,α](r, α)

G[βj−1,α](α, α)
=
ξ[βj−1,βj ](r)

ξ[βj−1,βj ](α)
, (6.7)

u∞,−(r;α, βj) =
G[α,βj ](r, α)

G[α,βj ](α, α)
=
ζ[βj−1,βj](r)

ζ[βj−1,βj](α)
. (6.8)

Comparing with (2.18), we obtain

L∞(α; βj−1, βj) =
1

2







(

ξ′[βj−1,βj ]
(α)

ξ[βj−1,βj ](α)

)2

−
(

ζ ′[βj−1,βj]
(α)

ζ[βj−1,βj](α)

)2






= −
ϕ′
[βj−1,βj]

(α)

2|∂B1|αN−1
.

Therefore Lemma 2.4 implies that

∂

∂α
L∞(α; βj−1, βj) > 0 (6.9)

and that L∞(α; βj−1, βj) admits a unique interior zero αj .

Combining (i)-(ii)-(ii) we deduce that Lp has a zero for p sufficiently large, which provides
the existence of the 1-layer solution. �

7. Existence of the k-layer solution

In this section we write for shorter notation up,+(r) := up,+(r;α, b) and u∞,+(r) :=
u∞,+(r;α, b).

Let p be fixed. Let us recall the definition of I in Lemma 5.7. In the case of the annulus
we have

I = {(r, α, β) : A1 < α < A2, B1 < β < B2, α < r < β} ,
with 0 < A1 < A2 < B1 < B2 as in Remark 3.3. In the case of the ball we have

I = {(r, β) : B1 < β < B2, 0 ≤ r < β} ,
again with 0 < B1 < B2 as in Remark 3.3.

Lemma 7.1. Let (r, α, β) ∈ I. There exists C > 0 independent of β and p such that
∥

∥

∥

∥

∂up,+
∂β

(·;α, β)
∥

∥

∥

∥

∞
≤ C.

Proof. Notice first that ∂up,+

∂β
(r) := ∂up,+

∂β
(r;α, β) exists by Lemma 5.8 and solves



















−
(

∂up,+

∂β

)′′
− N−1

r

(

∂up,+

∂β

)′
+

∂up,+

∂β
= pup−1

p,+
∂up,+

∂β
in (α, β)

(

∂up,+

∂β

)′
(β) = −u′′p,+(β)

(

∂up,+

∂β

)′
(α) = 0.

(7.1)

Step 1. Let εp be as in (5.2) and z∞ be as in (5.8). We claim that there exists A 6= 0 such
that

vp(r) :=

∂up,+

∂β
(β + εpr)

∥

∥

∥

∂up,+

∂β

∥

∥

∥

∞

→ Az′∞(r) in C1
loc(−∞, 0).
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To prove the claim we perform the same blow-up analysis as in the proof of Theorem 5.1.
We have (compare with (5.18))







−v′′p − (N−1)εp
β+εpr

v′p + ε2pvp =
(

1 + zp
p

)p−1

vp for r ∈
(

−β−α
εp
, 0
)

|vp| ≤ 1,
(7.2)

where zp is as in (5.1). Proceeding as in (5.11)-(5.13) and (5.19), we can show that there
exists C > 0 independent of p such that

|v′p(r)| ≤ C for r ∈
(

−β − α

2εp
, 0

)

.

Indeed we have

|v′p(r)| ≤ C +

∫ 0

−β−α

2εp

(β + εpt)
N−1

(

1 +
zp
p

)p−1

dt ≤ C + βN−1

∫ 0

−∞
ez∞ dt ≤ C.

Therefore there exists v∞ such that vp → v∞ in C1
loc(−∞, 0) and v∞ solves

{

−v′′ = ez∞v for r ∈ (−∞, 0)

|v| ≤ 1.
(7.3)

We deduce form (5.27) that v∞ = Az′∞. Finally, proceeding as in Step 3 of the proof of
Theorem 5.1 one can show that A 6= 0.

Step 2. Proceeding similarly to (2.19)-(2.21), we multiply (3.1) by
∂up,+

∂β
rN−1 and (7.1) by

up,+r
N−1 and we integrate in (α, β):

− βN−1

(

∂up,+
∂β

)′
(β) up,+(β) = (p− 1)

∫ β

α

upp,+
∂up,+
∂β

rN−1 dr. (7.4)

On the one hand, by Lemma 4.7, we have
(

∂up,+
∂β

)′
(β) = −u′′p,+(β) = up;+(β)

p − up,+(β) = p

(

u′∞,+(β)
2

2
+ o(1)

)

. (7.5)

On the other hand, by performing the change of variables r = β + εps, we obtain

∫ β

α

upp,+
∂up,+
∂β

rN−1 dr = εp

∥

∥

∥

∥

∂up,+
∂β

∥

∥

∥

∥

∞
‖up,+‖p∞

∫ 0

−β−α
εp

up,+(β + εps)
p

‖up,+‖p∞
vp(s)(β+ εps)

N−1 ds,

(7.6)

with vp as in Step 1. Recalling that (see (5.1), (5.3) and (5.8))

εp‖up,+‖p∞ =
εp‖up,+‖

p+1
2∞√

p
→

u′∞,+(β)√
2

,

up,+(β + εps)
p

‖up,+‖p∞
→ ez∞ ,

and using (5.35) to pass to the limit in (7.6), we get

∫ β

α

upp,+
∂up,+
∂β

rN−1 dr =

∥

∥

∥

∥

∂up,+
∂β

∥

∥

∥

∥

∞

(

u′∞,+(β)√
2

+ o(1)

)

βN−1A

∫ 0

−∞
(ez∞z′∞+o(1)) ds. (7.7)
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Since A 6= 0 and u′∞,+(β) 6= 0, by combining (7.4), (7.5) and (7.7) we deduce that
∥

∥

∥

∂up,+

∂β

∥

∥

∥

∞
is bounded. �

Corollary 7.2. Let (r, α, β) ∈ I. There exists a function C(β) such that

∂up,+
∂β

→ C(β)u∞,+

pointwise as p→ ∞.

Lemma 7.3. We have

(N − 1)

∫ β

α

u′∞,+u∞,+r
N−3 dr = βN−1

(

u′′∞,+(β)− u′∞,+(β)
2
)

− αN−1u∞,+(α)
2, (7.8)

2

∫ β

α

u2∞,+r
N−1 dr = βN−1

(

u′∞,+(β) + βu′′∞,+(β)
)

− βNu′∞,+(β)
2 − αN−1u∞,+(α)

2. (7.9)

Proof. Proceeding similarly to (2.19)-(2.21), we multiply (4.1) by rN−1u′∞,+ and we multiply

the equation satisfied by u′∞,+ by rN−1u∞,+ to obtain

(rN−1u′′∞,+u∞,+)
′ − (rN−1(u′∞,+)

2)′ = (N − 1)u′∞,+u∞,+r
N−3.

Intergating in (α, β) and recalling that u′∞,+(α) = 0, u′′∞,+(α) = u∞,+(α), u∞,+(β) = 1, we
obtain (7.8).

Let k = ru′∞,+ so that

−k′′ − N − 1

r
k′ + k = −2u∞,+.

We multiply the last equation by rN−1u∞,+ and (4.1) by rN−1k to obtain

(k′u∞,+r
N−1)′ − ((u∞,+)

2rN)′ = 2u2∞,+r
N−1.

Intagrating in (α, β) and noticing that k′(β) = u′∞,+(β) + βu′′∞,+(β) and that k′(α) =
αu∞,+(α), we obtain (7.9). �

Lemma 7.4. For (r, α, β) ∈ I we have

p
∂up,+
∂β

(r;α, β)

∣

∣

∣

∣

r=β

= 2
u′′∞,+(β)− (u′∞,+(β))

2

u′∞,+(β)
+ o(1).

Proof. We define w := u′p,+, so that










−w′′ − N−1
r
w′ + w = pup−1

p,+w − N−1
r2
w for r ∈ (α, β)

w(α) = w(β) = 0

w′(α) = u′′p,+(α), w
′(β) = u′′p,+(β),

(7.10)

and z := ru′p,+ + 2
p−1

up,+, so that










−z′′ − N−1
r
z′ + z = pup−1

p,+ z − 2up,+ for r ∈ (α, β)

z′(β) = βu′′p,+(β), z
′(α) = αu′′p,+(α)

z(β) = 2
p−1

up,+(β), z(α) =
2

p−1
up,+(α).

(7.11)
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We multiply (7.10) by rN−1 ∂up,+

∂β
and (7.1) by rN−1w and integrate in (α, β):

βN−1u′′p,+(β)
∂up,+
∂β

(β)− αN−1u′′p,+(α)
∂up,+
∂β

(α) = (N − 1)

∫ β

α

u′p,+
∂up,+
∂β

rN−3 dr. (7.12)

Similarly, we multiply (7.11) by rN−1 ∂up,+

∂β
and (7.1) by rN−1z and we integrate in (α, β):

βNu′′p,+(β)
∂up,+
∂β

(β)− αNu′′p,+(α)
∂up,+
∂β

(α) +
2

p− 1
βN−1u′′p,+(β)up,+(β)

= 2

∫ β

α

up,+
∂up,+
∂β

rN−1 dr. (7.13)

Using Lemma 5.9, equation (7.5), Corollary 7.2 and Lemma 7.3, we can pass to the limit in
(7.12) and (7.13) to obtain

− βN−1p

(

u′∞,+(β)
2

2
+ o(1)

)

∂up,+
∂β

(β)− C(β)αN−1u∞,+(α)
2

= C(β)
{

βN−1
(

u′′∞,+(β)− u′∞,+(β)
2
)

− αN−1u∞,+(α)
2
}

+ o(1) (7.14)

and

− βNp

(

u′∞,+(β)
2

2
+ o(1)

)

∂up,+
∂β

(β)−C(β)αNu∞,+(α)
2 − 2p

p− 1
βN−1

(

u′∞,+(β)
2

2
+ o(1)

)

= C(β)
{

βN−1
(

u′∞,+(β) + βu′′∞,+(β)
)

− βNu′∞,+(β)
2 − αN−1u∞,+(α)

2
}

+ o(1). (7.15)

By combining the two previous expressions we obtain the statement. �

Remark 7.5. We infer from (7.14) and (7.15) that C(β) = −u′∞,+(β), so that Corollary
7.2 provides

∂up,+
∂β

→ −u′∞,+(β)u∞,+

pointwise as p→ ∞.

Lemma 7.6. The convergence in Lemma 7.4 is uniform in β for (r, α, β) ∈ I.

Proof. We argue by contradiction and suppose that

lim
p→+∞

sup
β∈[B1,B2]

[

p
∂up,+
∂β

(r;α, β)

∣

∣

∣

∣

r=β

− 2
u′′∞,+(β)− (u′∞,+(β))

2

u′∞,+(β)

]

≥ C > 0. (7.16)

So we can select sequences pn → +∞ and βn → β0 ∈ [B1, B2] such that

pn
∂upn,+
∂β

(r;α, βn)

∣

∣

∣

∣

r=βn

− 2
u′′∞,+(βn)− (u′∞,+(βn))

2

u′∞,+(βn)
→ C > 0, (7.17)

and the smoothness of u∞,+ implies

pn
∂upn,+
∂β

(r;α, βn)

∣

∣

∣

∣

r=βn

− 2
u′′∞,+(β0)− (u′∞,+(β0))

2

u′∞,+(β0)
→ C > 0. (7.18)

Let us consider relation (7.12) evaluated along the sequences pn, βn. By Remark 5.10 we
have

−
u′′pn,+(βn)

pn
→

u′∞,+(β0)
2

2
.
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uniformly. Moreover by repeating the proof of Lemma 7.1 with p = pn and β = βn one can
prove that

∥

∥

∥

∥

∂upn,+
∂β

(·;α, βn)
∥

∥

∥

∥

∞
≤ C, with C independent of n.

Lemma 5.9 and Remark 7.5 provide

u′pn,+(r;α, βn) → u′∞,+(r;α, β0),
∂upn,+
∂β

(r;α, βn) → −u′∞,+(β0)u∞,+(r) (7.19)

pointwise. We can apply the dominated convergence theorem to pass to the limit in (7.12)
to obtain

pn
∂upn,+
∂β

(r;α, βn)− 2
u′′∞,+(β0)− (u′∞,+(β0))

2

u′∞,+(β0)
→ 0, (7.20)

which contradicts (7.18). �

We have an anologous result for the decreasing solution.

Lemma 7.7. We have

p
∂up,−
∂α

(r;α, β)

∣

∣

∣

∣

r=α

→ 2
u′′∞,−(α)− (u′∞,−(α))

2

u′∞,−(α)

uniformly in β for (r, α, β) ∈ I.

Theorem 7.8. Let Lp(α; βj−1, βj) and L∞(α; βj−1, βj) be defined in (6.5) and (6.6) respec-
tively. There exists ε > 0 such that

Lp(·; βj−1, βj) → L∞(·; βj−1, βj) in C1(αj − ε, αj + ε). (7.21)

Proof. On the one hand we have

∂

∂α
(up,+(α; βj−1, α)) = u′p,+(α; βj−1, α) +

∂up,+
∂α

(r; βj−1, α)

∣

∣

∣

∣

r=α

=
∂up,+
∂α

(r; βj−1, α)

∣

∣

∣

∣

r=α

so that, by Lemmas 4.7 and 7.4,

∂

∂α

(

up,+(α; βj−1, α)
p

p

)

=
up,+(α; βj−1, α)

p−1

p
p
∂up,+
∂α

(r; βj−1, α)

∣

∣

∣

∣

r=α

=
1

2

(

u′∞,+(α; βj−1, α)
)2

2
u′′∞,+(α; βj−1, α)− (u′∞,+(α; βj−1, α))

2

u′∞,+(α; βj−1, α)
+ o(1). (7.22)

On the other hand, by computing explicitely the derivatives in (6.7), we obtain

∂u′∞,+

∂α
(r; βj−1, α)

∣

∣

∣

∣

r=α

= −(u′∞,+(α; βj−1, α))
2, (7.23)

and hence

∂

∂α

(

(u′∞,+(α; βj−1, α))
2

2

)

= u′∞,+(α; βj−1, α)[u
′′
∞,+(α; βj−1, α)−(u′∞,+(α; βj−1, α))

2]. (7.24)

The convergence is uniform by Lemma 7.6 and by Remark Remark 5.10. Since an analogous
result hold for the decreasing solution, the statement is proved. �

Corollary 7.9. The map αj,p(βj−1, βj) defined in Theorem 6.1 is of class C1.
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Proof. αj,p is implicitely defined by the equation Lp(αj,p; βj−1, βj) = 0, with Lp as in (6.5).
We infer from Theorem 7.8 and relation (6.9) that

∂

∂α
Lp(α; βj−1, βj) > 0,

so that the Implicit Function Theorem applies. �

Corollary 7.10. up,1-layer(βj ; βj, βj+1) is C
1 in (βj, βj+1)

Proof. It follows by the continuity of the map αj,p(βj−1, βj) and the uniqueness result for
ODE. �

Theorem 7.11. For p sufficiently large there exists a radial solution up,klayer of (1.1) having
exactly k maximum points α1,p, . . . , αk,p. Furthermore, up,klayer → u∞,klayer pointwise, as
defined in Theorem 6.1.

Proof. Let T be as in (2.31) and let Mp = (M
(1)
p , . . . ,M

(k−1)
p ) : T → R

k−1, defined as

M (j)
p (β1, . . . , βk−1) = up,1-layer(βj ; βj, βj+1)− up,1-layer(βj; βj−1, βj) (7.25)

for j = 1, . . . , k − 1.
Let us consider a domain U ⊂ T such that (M∞ (β1, . . . , βk−1)))

−1 (0) ⊂ U . Relation
(2.42) and the excision property of the topological degree imply

deg (M∞(β1, . . . , βk−1), U, 0) = 1. (7.26)

Finally, since Mp →M∞ uniformly in U , we get that

deg (Mp(β1, . . . , βk−1), U, 0) = 1, (7.27)

so that Mp admits at least one zero in U . �
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