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Introduction

In Diophantine approximation, we study the approximation of an irrational number by rationals. Denote by t = min n∈Z |t -n| the distance from a real t to the nearest integer. In 1842, Dirichlet [START_REF] Dirichlet | Verallgemeinerung eines Satzes aus der Lehre von den Kettenbrüchen nebst einige Anwendungen auf die Theorie der Zahlen[END_REF] showed his celebrated theorem in Diophantine approximation:

Dirichlet theorem Let θ, Q be real numbers with Q ≥ 1. There exists an integer n with 1 ≤ n ≤ Q, such that nθ < Q -1 .

Following Waldschmidt [START_REF] Waldschmidt | Recent advances in Diophantine approximation, Number theory, analysis and geometry[END_REF], we call Dirichlet theorem a uniform approximation theorem. A weak form of the theorem, called an asymptotic approximation theorem, was already known (e.g., Legendre's 1808 book [32, pp.18-19]) 1 before Dirichlet: for any real θ, there exist infinitely many integers n such that nθ < n -1 . In the literature, much more attention has been paid to the asymptotic approximation.

The first inhomogeneous asymptotic approximation result is due to Minkowski [START_REF] Minkowski | Diophantische Approximationen[END_REF] in 1907. Let θ be an irrational number. Let y be a real number which is not equal to any mθ + ℓ with m, ℓ ∈ N. Minkowski proved that there exist infinitely many integers n such that nθy < 1 4|n| .

In 1924, Khinchine [START_REF] Ya | Einige Sätze über Kettenbrüche, mit Anwendungen auf die Theorie der Diophantischen Approximationen[END_REF] proved that for a continuous function Ψ : N → R + , if

x → xΨ(x) is non-increasing, then the set L Ψ := {θ ∈ R : nθ < Ψ(n) for infinitely many n} has Lebesgue measure zero if the series Ψ(n) converges and has full Lebesgue measure otherwise. The expected similar result by deleting the non-increasing condition on Ψ is the famous Duffin-Schaeffer conjecture [START_REF] Duffin | Khintchine's problem in metric Diophantine approximation[END_REF]. One could find the recent progresses towards this conjecture in Haynes-Pollington-Velani-Sanju [START_REF] Haynes | The Duffin-Schaeffer conjecture with extra divergence[END_REF] and Beresnevich-Harman-Haynes-Velani [START_REF] Beresnevich | The Duffin-Schaeffer conjecture with extra divergence II[END_REF].

For the inhomogeneous case, Khinchine's theorem was extended to the set L Ψ (y) := {θ ∈ R : nθy < Ψ(n) for infinitely many n} by Szüsz [START_REF] Szüsz | Über die metrische Theorie der diophantischen Approximation[END_REF] and Schmidt [START_REF] Schmidt | Metrical theorems on fractional parts of sequences[END_REF]. On the other hand, it follows from the Borel-Cantelli Lemma that the Lebesgue measure of L Ψ [θ] := {y ∈ R : nθy < Ψ(n) for infinitely many n} is zero whenever the series Ψ(n) converges. However, it seems not easy to obtain a full Lebesgue measure result. In 1955, Kurzweil [START_REF] Kurzweil | On the metric theory of inhomogeneous Diophantine approximations[END_REF] showed that, if the irrational θ is of bounded type (the partial quotients of the continued fraction of θ is bounded), then for a monotone decreasing function Ψ : N → R + , with Ψ(n) = ∞, the set L Ψ [θ] has full Lebesgue measure. In 1957, Cassels [START_REF] Cassels | An introduction to Diophantine approximation[END_REF] proved that for almost all θ, the set L Ψ [θ] has full Lebesgue measure if Ψ(n) = ∞. For new results in this direction, we refer to the recent works Laurent-Nogueira [START_REF] Laurent | Inhomogeneous approximation with coprime integers and lattice orbits[END_REF], Kim [START_REF] Kim | Refined shrinking target property of rotations[END_REF], and Fuchs-Kim [START_REF] Fuchs | On Kurzweil's 0-1 law in inhomogeneous Diophantine approximation[END_REF].

At the end of twenties of last century, the concept of Hausdorff dimension had been introduced into the study of Diophantine approximation. We refer the reader to [START_REF] Falconer | Fractal geometry. Mathematical foundations and applications[END_REF] for the definition and properties of the Hausdorff dimension. Using the notion of Hausdorff dimension, Jarník ([22], 1929) and independently Besicovitch ( [START_REF] Besicovitch | Sets of fractional dimensions (IV): on rational approximation to real numbers[END_REF], 1934) studied the size of the set of asymptoticly well-approximated numbers.

They proved that for any τ ≥ 1, the Hausdorff dimension of the set L τ (0) := θ ∈ R : nθ < n -τ for infinitely many n is 2/(τ + 1).

The corresponding inhomogeneous question was solved by Levesley [START_REF] Levesley | A general inhomogeneous Jarník-Besicovitch theorem[END_REF] in 1998:

for any τ ≥ 1, and any real number y, the Hausdorff dimension of the set L τ (y) := θ ∈ R : nθy < n -τ for infinitely many n which is different from L τ (0), is also 2/(τ + 1).

As in the Lebesgue measure problems, for the inhomogeneous case, one is also concerned with the Hausdorff dimension of the sets of inhomogeneous terms. For a fixed irrational θ, let us denote L τ [θ] := y ∈ R : nθy < n -τ for infinitely many n .

In 2003, Bugeaud [START_REF] Bugeaud | A note on inhomogeneous diophantine approximation[END_REF] and independently, Schmeling and Troubetzkoy [START_REF] Schmeling | Inhomogeneous Diophantine approximation and angular recurrence properties of the billiard flow in certain polygons[END_REF] showed that for any τ ≥ 1 the Hausdorff dimension of the set L τ [θ] is 1/τ .

In analogy to the asymptotic approximation, for τ > 0, we consider the following uniform approximation sets:

U τ (y) := θ ∈ R : for all large Q, 1 ≤ ∃n ≤ Q such that nθ -y < Q -τ , U τ [θ] := y ∈ R : for all large Q, 1 ≤ ∃n ≤ Q such that nθ -y < Q -τ .
The points in U τ (y) and U τ [θ] are called Dirichlet uniformly well-approximated numbers. The set U τ (0) is referred to as homogeneous uniform approximation. In general, except for a countable set, U τ (y) and U τ [θ] are contained in L τ (y) and L τ [θ] correspondingly, since the uniform approximation property is stronger than the asymptotic approximation property.

We see from Dirichlet Theorem that U 1 (0) = R. However, Khintchine ( [25], 1926) showed that for all τ > 1, U τ (0) is Q. Consult [START_REF] Kleinbock | A zero-one Law for improvements to Dirichlet's Theorem[END_REF] for the uniform approximation by general error functions. In general, for y ∈ R, the set U 1 (y) does not always contain all irrationals. Thus, there is no inhomogeneous analogy of the Dirichlet

Theorem. The question on the size of U τ (y) for general y ∈ R is largely open.

For higher dimensional analogy of U τ (0), Cheung [START_REF] Cheung | Hausdorff dimension of the set of singular pairs[END_REF] proved that the set of points (θ 1 , θ 2 ) such that for any δ > 0, for all large Q, there exists

n ≤ Q such that max nθ 1 , nθ 2 < δ/Q 1 2 ,
is of Hausdorff dimension 4/3. This result was recently generalized to dimension larger than 2 by Cheung and Chevallier [START_REF] Cheung | Hausdorff dimension of singular vectors[END_REF].

In this paper, we mainly study the set U τ [θ]. We will restrict ourselves to the unit circle T = R/Z, for which the dimension results will be the same to those on R. The points in T are considered as the same if their fractional parts are the same.

The irrationality exponent of θ is given by w(θ) := sup{s > 0 : nθ < n -s for infinitely many n}.

We remark that the usual irrationality exponent is defined as 1 + w(θ). See for example [START_REF] Bugeaud | Distribution Modulo One and Diophantine Approximation[END_REF][START_REF] Waldschmidt | Recent advances in Diophantine approximation, Number theory, analysis and geometry[END_REF]. It was shown in Propositions 9 and 10 of [START_REF] Kim | The waiting time for irrational rotations[END_REF] that U τ [θ] is of Lebesgue measure 1 if τ < 1/w(θ) or 0 if τ > 1/w(θ) (see also [START_REF] Kim | The recurrence time of irrational rotations[END_REF] for a related result). Denote by dim H the Hausdorff dimension. Let q n = q n (θ) be the denominator of the n-th convergent of the continued fraction of θ. The following main theorems show that dim H (U τ [θ]) can be obtained using the sequence q n (θ) and strongly depends on the irrationality exponent of θ:

Theorem 1. Let θ be an irrational with w(θ) > 1. Then U τ [θ] = T if τ < 1/w(θ); U τ [θ] = {iθ ∈ T : i ≥ 1, i ∈ Z} if τ > w(θ); and dim H (U τ [θ]) =              lim k→∞ log n 1+1/τ k k-1 j=1 n 1/τ j n j θ log(n k n k θ -1 ) , 1 w(θ) < τ < 1, lim k→∞ -log k-1 j=1 n j n j θ 1/τ log (n k n k θ -1 ) , 1 < τ < w(θ).
where n k is the (maximal) subsequence of (q k ) such that

   n k n k θ τ < 1, if 1/w(θ) < τ < 1, n τ k n k θ < 2, if 1 < τ < w(θ).
By a careful calculation for the case of τ = 1 combined with Theorem 1, we have the following bounds of dimension in terms of w(θ).

Theorem 2. For any irrational θ with w(θ) = 1, we have

U τ [θ] = T if τ < 1; U τ [θ] = {iθ : i ≥ 1, i ∈ Z} if τ > 1;
and

1 2 ≤ dim H (U τ [θ]) ≤ 1, if τ = 1.
Theorem 3. For any irrational θ with w(θ) = w > 1, we have

w/τ -1 w 2 -1 ≤ dim H (U τ [θ]) ≤ 1/τ + 1 w + 1 , 1 w ≤ τ ≤ 1, 0 ≤ dim H (U τ [θ]) ≤ w/τ -1 w 2 -1 , 1 < τ ≤ w. Moreover, if w(θ) = ∞, then dim H (U τ [θ]) = 0 for all τ > 0.
We will show in Examples 16, 17, 18 and 19, that the upper and lower bounds of Theorems 2 and 3 can be all reached.

Remark 4. Consider the case τ > 1. By optimizing the upper bound in Theorem 3

with respect to w, we have for τ > 1,

dim H (U τ [θ]) ≤ 1 2τ (τ + √ τ 2 -1) ,
and the equality holds when

w = τ + √ τ 2 -1. We then deduce that dim H (U τ [θ]) < 1 2τ 2 < 1 2τ
for all τ > 1.

As we have mentioned, for all τ > 1, U τ [θ] is included in L τ [θ] except for a countable set of points. In fact, excluding the countable set {nθ : n ∈ N}, the set L τ [θ] is a level set of the lower limit of the hitting time for the irrational rotation x → x + θ (see for example Lemma 4.2 of [START_REF] Fan | A multifractal mass transference principle for Gibbs measures with applications to dynamical Diophantine approximation[END_REF] and Lemma 3.2 of [START_REF] Liao | Diophantine approximation by orbits of expanding Markov maps[END_REF]), while the set U τ [θ] is a level set of upper limit of the same hitting time. So the fact that U τ [θ] is almost included in L τ [θ] follows directly from the fact that lower limit is less than the upper limit. Recall that dim H (L τ [θ]) = 1/τ for all τ > 1. Our result then shows that the inclusion is strict in the sense of Hausdorff dimension: the former is strictly less than one-half of the latter one by Hausdorff dimension.

We will also prove the following theorem on the continuity of the Hausdorff dimension of the set U τ [θ] with respect to the parameter τ .

Theorem 5. For each irrational θ, dim H (U τ [θ]) is a continuous function of τ on (0, 1) ∪ (1, ∞).
Finally, we note that our results give an answer for the case of dimension one of Problem 3 in Bugeaud and Laurent [START_REF] Bugeaud | On exponents of homogeneous and inhomogeneous Diophantine approximation[END_REF]. We also remark that the uniform approximation problem for the b-ary and β-expansion has been recently studied by Bugeaud and Liao [START_REF] Bugeaud | Uniform Diophantine approximation related to b-ary and βexpansions[END_REF]. The symbolic technique which is quite efficient in [START_REF] Bugeaud | Uniform Diophantine approximation related to b-ary and βexpansions[END_REF] falls in our context.

The paper is organized as follows. Some lemmas for the structure of uniform approximation set U τ [θ] are stated in Section 2. The proof of Theorem 1 is given in Section 3. In Section 4 we discuss the set U τ [θ] for τ = 1 and prove Theorem 2.

Section 5 is devoted to the proofs of Theorems 3 and 5. In the last section, we give the examples in which the bounds of Theorems 2 and 3 are attained.

Cantor structures

In this section, we first give some basic notations and properties on the continued fraction expansion of irrational numbers which will be useful later. Then we describe in detail the Cantor structure of the sets

U τ [θ].
Let θ ∈ [0, 1] be an irrational and {a k } k≥1 be the partial quotients of θ in its continued fraction expansion. The denominator q k and the numerator p k of the k-th convergent (q 0 = 1, p 0 = 0), satisfy the following relations

p n+1 = a n+1 p n + p n-1 , q n+1 = a n+1 q n + q n-1 , ∀n ≥ 1. (1) 
A corresponding useful recurrence property is

q n-1 θ = a n+1 q n θ + q n+1 θ . (2) 
We also have the equality

q n+1 q n θ + q n q n+1 θ = 1, (3) 
and the estimation

1 2q n+1 < 1 q n+1 + q n < q n θ ≤ 1 q n+1 . (4) 
Recall that the irrationality exponent of θ is defined by w(θ) := sup{s > 0 :

lim inf j→∞ j s jθ = 0}. By the theorem of best approximation (e.g. [START_REF] Rockett | Continued Fractions[END_REF]), we can show that

w(θ) = lim sup n→∞ log q n+1 log q n . (5) 
Since (q n ) is increasing, we have w(θ) ≥ 1 for every irrational number θ. The set of irrational numbers with w(θ) = 1 has measure 1 and includes the set of irrational numbers with bounded partial quotients, which is of measure 0 and of Hausdorff dimension 1. There exist numbers with w(θ) = ∞, called the Liouville numbers.

For more details on continued fractions, we refer to Khinchine's book [START_REF] Ya | Continued Fractions[END_REF].

In the following, we will investigate the Cantor structure of our main object

U τ [θ]. Denote by B(x, r
) the open ball of center x and radius r in T. Fix τ > 0.

Let

G n = n i=1 B iθ, 1 n τ and F k = q k+1 n=q k G n .
Then we have

U τ [θ] = ∞ ℓ=1 ∞ n=ℓ G n = ∞ ℓ=1 ∞ k=ℓ F k .
We will calculate the Hausdorff dimension of ∞ k=1 F k . From the construction, we will see that for all ℓ, the Hausdorff dimensions of ∞ k=ℓ F k are the same to that of ∞ k=1 F k . Thus by countable stability of the Hausdorff dimension,

dim H (U τ [θ]) = dim H ∞ k=1 F k . For m ≥ 1, set E m := m k=1 F k .
Then for each m, E m is a union of intervals, and we have

∀m ≥ 1, E m+1 ⊂ E m , and ∞ m=1 E m = ∞ k=1 F k .
We are thus led to the calculation of the Hausdorff dimension of the nested Cantor set ∞ m=1 E m . To this end, let us first investigate the structure of F k . We note that q k θp k > 0 if and only if k is even. In the following lemmas, we will only consider formulae of F k for even k's since for the odd k's we will have symmetric formulae.

The well-known Three Step Theorem (e.g. [START_REF] Slater | Gaps and steps for the sequence nθ (mod 1)[END_REF]) shows that by the points {iθ} q k i=1 , the unit circle T is partitioned into q k intervals of length q k-1 θ or q k-1 θ + q k θ . Furthermore, for even k, we have

T \ {-iθ : 0 ≤ i < q k } = q k-1 i=1 ((i -q k )θ, (i -q k-1 )θ) ∪ q k i=q k-1 +1 ((i -q k )θ, (i -q k -q k-1 )θ) = q k-1 i=1 (iθ -q k θ , iθ + q k-1 θ ) ∪ q k i=q k-1 +1 (iθ -q k θ , iθ + q k θ -q k-1 θ ). ( 6 
)
We remind that here and further throughout the paper, we will always consider iθ as a point in T, but not in R. So the absolute values of these points are always less than 1. In particular, q k θ = q k θ if k is even.

Lemma 6. (i) If 2 1 q k+1 τ > q k-1 θ + q k θ , (7) 
then we have F k = T.

(ii) For the case of τ = 1 and a k+1 = 1, we have F k = T.

Proof. (i) For each q k ≤ n ≤ q k+1 we have

2 1 n τ ≥ 2 1 q k+1 τ > q k-1 θ + q k θ .
Since any two neighboring points in {iθ : 1 ≤ i ≤ q k } are distanced by q k-1 θ or q k-1 θ + q k θ , all intervals overlap. Hence,

G n = n i=1 B iθ, n -τ = T.
The result then follows.

(ii) If a k+1 = 1, then by ( 2) and (3) we have

q k+1 ( q k-1 θ + q k θ ) = q k+1 (2 q k θ + q k+1 θ ) = 2q k+1 q k θ + (q k + q k-1 ) q k+1 θ = 2 -q k q k+1 θ + q k-1 q k+1 θ < 2. Hence, by (i), if τ = 1, F k = T. Lemma 7. For any τ ≤ 1, we have (i) F k ⊃ q k i=1 iθ - 1 q k+1 τ , iθ + min 1≤c≤a k+1 +1 (c -1) q k θ + 1 (cq k + i -1) τ .
(ii)

F k ⊃ q k i=1 iθ -q k θ , iθ + C τ 1 q τ k q k θ 1 τ +1 -2 q k θ , where C τ = τ 1 τ +1 + τ -τ τ +1 . Note that 1 < C τ ≤ 2. (iii) F k ⊂ q k i=1 iθ -τ -τ τ +1 q k θ q k τ τ +1 , iθ + C τ q k θ q k τ τ +1 .
Proof. (i) Let n be an integer such that q k ≤ n ≤ q k+1 for some k ∈ N. Then if k is even (the case when k is odd is the same up to symmetry), for each i with

1 ≤ i ≤ q k we have G n = n j=1 B jθ, n -τ ⊃ B iθ, 1 n τ ∪ B (q k + i)θ, 1 n τ ∪ • • • ∪ B n -i q k q k + i θ, 1 n τ . Notice that for q k ≤ n ≤ q k+1 1 n τ ≥ 1 n ≥ 1 q k+1 > q k θ . (8) 
Thus, the above n-i q k intervals overlap and for each 1

≤ i ≤ q k G n ⊃ iθ - 1 n τ , iθ + n -i q k q k θ + 1 n τ .
For each

1 ≤ i ≤ q k , if (c -1)q k + i ≤ n ≤ cq k + i -1, then n -i q k q k θ + 1 n τ ≥ (c -1) q k θ + 1 (cq k + i -1) τ .
Therefore, we have for each 1

≤ i ≤ q k F k = q k+1 n=q k G n ⊃ q k+1 n=q k iθ - 1 n τ , iθ + n -i q k q k θ + 1 n τ ⊃ iθ - 1 q τ k+1 , iθ + min 1≤c≤a k+1 +1 (c -1) q k θ + 1 (cq k + i -1) τ . (ii) By elementary calculus, inf x≥0 x q k θ + 1 (xq k ) τ = τ 1 τ +1 + τ -τ τ +1 q k θ q k τ τ +1
. Thus, we have min

1≤c≤a k+1 +1 (c -1) q k θ + 1 ((c + 1)q k ) τ ≥ τ 1 τ +1 + τ -τ τ +1 q k θ q k τ τ +1 -2 q k θ .
Hence, by (i) and ( 8), we have

F k ⊃ q k i=1 iθ -q k θ , iθ + τ 1 τ +1 + τ -τ τ +1 q k θ q k τ τ +1 -2 q k θ . (iii) Let c := τ q τ k q k θ 1 τ +1 .
We will distinguish two cases. If c ≤ a k+1 , then we have

F k = q k+1 n=q k G n ⊂ G cq k = cq k i=1 B(iθ, (cq k ) -τ ) = q k i=1 B(iθ, (cq k ) -τ ) ∪ B((q k + i)θ, (cq k ) -τ ) ∪ • • • ∪ B ((c -1)q k + i)θ, (cq k ) -τ . Since 1 cq k τ ≥ 1 cq k ≥ 1 a k+1 q k ≥ 1 q k+1 > q k θ ,
the above c intervals in the union overlap and we have

F k ⊂ q k i=1 iθ -(cq k ) -τ , iθ + (c -1)q k θ + (cq k ) -τ .
By the definition of c, we have

F k ⊂ q k i=1 iθ - τ q k q k θ -τ τ +1 , iθ + 1 q k τ q k q k θ 1 τ +1 q k θ + τ q k q k θ -τ τ +1 = q k i=1 iθ -τ -τ τ +1 q k θ q k τ τ +1 , iθ + τ 1 τ +1 + τ -τ τ +1 q k θ q k τ τ +1 .
Then the assertion follows.

If c > a k+1 , i.e.,

τ q τ k q k θ 1 τ +1 > a k+1 , then we have τ 1 τ +1 + 2τ -τ τ +1 q k θ q k τ τ +1 > 1 + 2 τ a k+1 q k θ ≥ 3a k+1 q k θ > q k-1 θ + q k θ .
Thus,

q k i=1 iθ -τ -τ τ +1 q k θ q k τ τ +1 , iθ + τ 1 τ +1 + τ -τ τ +1 q k θ q k τ τ +1 = T,
and the assertion trivially holds. Lemma 8. Suppose τ > 1.

(i) We have

q k i=1 B iθ, q -τ k+1 ⊂ F k ⊂ q k+1 i=1 B iθ, q -τ k+1
and for large q k the balls B iθ, q -τ k+1 ,

1 ≤ i ≤ q k+1 , are disjoint. (ii) If q -τ k+1 + q -τ k ≤ q k θ , then F k = q k i=1 B iθ, q -τ k+1 . (iii) For large q k max(c k ,1)•q k i=1 B iθ, q -τ k+1 ⊂ F k ⊂ (2c k +3)q k i=1 B iθ, q -τ k+1 .
where

c k := 1 q τ k q k θ 1 τ +1 . Proof. (i) For each 1 ≤ i ≤ q k and q k ≤ n ≤ q k+1 , B iθ, q -τ k+1 ⊂ n j=1 B jθ, n -τ .
Thus,

q k i=1 B iθ, q -τ k+1 ⊂ q k+1 n=q k   n j=1 B jθ, n -τ   = F k .
On the other hand,

F k = q k+1 n=q k G n ⊂ G q k+1 = q k+1 i=1 B iθ, q -τ k+1 . (9) 
Since τ > 1, for large q k , (hence for lager q k+1 ),

2q -τ k+1 < 1 2q k+1 < q k θ . (10) 
Thus, the balls B iθ, q -τ k+1 , 1 ≤ i ≤ q k+1 , are disjoint. (ii) Suppose that there exists x ∈ F k \ q k i=1 B iθ, q -τ k+1 . By (i), we have x ∈ B jθ, q -τ k+1 for some

q k + 1 ≤ j ≤ q k+1 . Since x ∈ F k ⊂ G q k , there exists 1 ≤ i ≤ q k such that x ∈ B iθ, q -τ k . Since |iθ -jθ| ≥ q k θ and x ∈ B jθ, q -τ k+1 ∩ B iθ, q -τ k = ∅, we have q k θ < q k -τ + q k+1 -τ , which is a contradiction. (iii) Suppose c k ≥ 2. Then for 1 ≤ m ≤ c k -1, and for large q k , m q k θ ≤ 1 q τ k q k θ 1 τ +1 -1 q k θ = q k θ q k τ τ +1 -q k θ ≤ 1 (c k q k ) τ - 1 (q k+1 ) τ ≤ 1 ((c k -m + 1)q k ) τ - 1 (q k+1 ) τ , (11) 
where for the second inequality we use [START_REF] Cheung | Hausdorff dimension of singular vectors[END_REF].

Let i be an integer satisfying q k < i ≤ c k q k . For each n with q k ≤ n < i, choose

m as i -mq k ≤ n < i -(m -1)q k . Then 1 ≤ m ≤ c k -1 and n ≤ (c k -m + 1)q k .
By [START_REF] Coelho | Limit laws of entrance times for homeomorphisms of the circle[END_REF] we have

B iθ, q -τ k+1 ⊂ B (i -mq k )θ, ((c k -m + 1)q k ) -τ ⊂ B (i -mq k )θ, n -τ ⊂ G n .
We also have for i

≤ n ≤ q k+1 , B iθ, q -τ k+1 ⊂ G n Therefore, for q k < i ≤ c k q k , B(iθ, q -τ k+1 ) ⊂ q k+1 n=q k G n = F k .
Hence, if c k ≥ 2, we have

c k q k i=q k +1 B iθ, q -τ k+1 ⊂ F k .
On the other hand, we have already proved in (i) that

q k i=1 B iθ, q -τ k+1 ⊂ F k .
Therefore, the first inclusion for the case c k ≤ 1 in (iii) follows.

For large q k , (c k + 2)

q k θ > 1 q τ k q k θ 1 τ +1 + 1 q k θ = q k θ q k τ τ +1 + q k θ > 1 ((c k + 1)q k ) τ + 1 (q k+1 ) τ .
Suppose (2c k + 3)q k < i ≤ q k+1 . Then for any j with 1 ≤ j ≤ (c k + 1)q k we have [START_REF] Cheung | Hausdorff dimension of the set of singular pairs[END_REF] we have

|iθ -jθ| ≥ (c k + 2) q k θ , thus B iθ, q -τ k+1 ∩ B jθ, ((c k + 1)q k ) -τ = ∅, which implies B iθ, q -τ k+1 ∩ G (c k +1)q k = ∅. Hence, B iθ, q -τ k+1 ∩ F k = ∅. Therefore, by
F k ⊂ (2c k +3)q k i=1 B iθ, q -τ k+1 , (12) 
which is the second inclusion in (iii).

Proof of Theorem 1

We will use the following known facts in fractal geometry to calculate the Haus- 

dorff dimensions. Let E 0 ⊃ E 1 ⊃ E 2 ⊃ . . .
< ε i+1 < ε i for each i. Then dim H (F ) ≥ lim i→∞ log(m 1 • • • m i-1 ) -log(m i ε i ) .
Fact 10 ([14], p.59). Suppose F can be covered by ℓ i sets of diameter at most δ i

with δ i → 0 as i → ∞. Then dim H (F ) ≤ lim i→∞ log ℓ i -log δ i .
Now we are ready to prove Theorem 1. Recall that

F k = q k+1 n=q k n i=1 B iθ, n -τ .
By the discussion at the beginning of Section 2, we need to calculate the Hausdorff dimension of the set

F = ∞ n=1 E n , with E n = n k=1 F k .
The dimension of F is the same to that of U τ [θ].

Proof of Theorem 1. (i) If τ < 1/w(θ), by [START_REF] Bugeaud | Distribution Modulo One and Diophantine Approximation[END_REF] we have for all large k,

2 1 q k+1 τ > 2 q k > 1 q k + 1 q k+1 ≥ q k-1 θ + q k θ .
Thus by Lemma 6 (i), for all large k, F k is the whole circle T. Hence,

U τ [θ] = ∞ ℓ=1 ∞ k=ℓ F k = T.
(ii) If τ > w(θ), then we have q τ k q k θ > 2 for all large k, thus

q -τ k+1 + q -τ k < 2q -τ k ≤ q k θ for large k. ( 13 
)
By Lemma 8 (ii), for large k

F k = q k i=1 B iθ, q -τ k+1 .
Thus,

F k ∩ F k+1 = q k i=1 B iθ, q -τ k+1 ∩   q k+1 j=1 B iθ, q -τ k+2   .
By [START_REF] Duffin | Khintchine's problem in metric Diophantine approximation[END_REF], for 1 ≤ i = j ≤ q k+1 we have |iθ -jθ| ≥ q k+1 θ > q -τ k+2 + q -τ k+1 , thus

F k ∩ F k+1 = q k j=1 B iθ, q -τ k+2 .
Inductively, for each ℓ ≥ 0 we get

F k ∩ F k+1 ∩ • • • ∩ F k+ℓ = q k i=1 B iθ, q -τ k+ℓ+1 . (14) 
Hence, we conclude

U τ [θ] = ∞ ℓ=1 ∞ k=ℓ F k = {iθ : i ≥ 1}. (iii) Assume that 1/w(θ) < τ < 1. If q k q k θ τ ≥ 1 then we have 2 1 q k+1 τ > 2 q k θ τ > q k θ τ + q k θ ≥ 1 q k + q k θ > q k-1 θ + q k θ .
By Lemma 6 (i), we have F k = T. Since removing such sets F k from the intersection F = ∞ k=1 F k does not change F , we only consider F k such that q k q k θ τ < 1. Suppose for some k

q k q k θ τ < 1. ( 15 
)
Then 1 4

q k θ q k τ τ +1 < 1 4q k < 1 2 q k-1 θ . (16) 
For 1 ≤ i ≤ q k , put Fk (i) := iθq k θ , iθ + 1 4

q k θ q k τ τ +1 -q k θ .
By [START_REF] Falconer | Techniques in Fractal Geometry[END_REF], for any constant c > 0 for large k

c q k θ q k τ τ +1 > c q k θ τ > q k θ . ( 17 
)
Since C τ > 1, by [START_REF] Fuchs | On Kurzweil's 0-1 law in inhomogeneous Diophantine approximation[END_REF] and Lemma 7 (ii)

Fk := q k i=1 Fk (i) ⊂ F k . (18) 
By ( 16), the intervals in Fk (i)'s are disjoint and distanced by more than 1 2 q k-1 θ . We estimate the number of subintervals of Fk+ℓ in each Fk (i) by the Denjoy-Koksma inequality (see, e.g., [START_REF] Herman | Sur la conjugaison différentiable des difféomorphismes du cercle à des rotations[END_REF]): let T be an irrational rotation by θ and f be a real valued function of bounded variation on the unit interval. Denote by var(f ) the total variation of f on the unit interval. Then for any x

q k -1 n=0 f (T n x) -q k f dx ≤ var(f ). ( 19 
)
For a given interval I, by the Denjoy-Koksma inequality [START_REF] Herman | Sur la conjugaison différentiable des difféomorphismes du cercle à des rotations[END_REF], we have

# {1 ≤ n ≤ q k : nθ ∈ I} = q k -1 n=0 1 I (T n x) ≥ q k |I| -2.
Since Fk+ℓ consists of the disjoint intervals at q k+ℓ orbital points, we have for each

1 ≤ i ≤ q k # 1 ≤ n ≤ q k+ℓ : Fk+ℓ (n) ∩ Fk (i) = ∅ ≥ q k+ℓ • 1 4 q k θ q k τ τ +1 -2 and # 1 ≤ n ≤ q k+ℓ : Fk+ℓ (n) ⊂ Fk (i) ≥ q k+ℓ 4 q k θ q k τ τ +1 -4.
By applying (17), we deduce

# 1 ≤ n ≤ q k+ℓ : Fk+ℓ (n) ⊂ Fk (i) ≥ q k+ℓ 5 q k θ q k τ τ +1
.

Let {n i } be the sequence of all integers satisfying

n i n i θ τ < 1.
We remark that since 1/w(θ) < τ , by the definition of w(θ), there are infinitely many such n i 's. Further, by the Legendre's theorem ( [START_REF] Legendre | Essai sur la théorie des nombres, Chez Courcier, Imprimeur-Libaraire pour les Mathématiques[END_REF], pp. 27-29), we have

n i = q ki for some k i . Since F k = T if k = k i , the Cantor set F is F = ∞ k=1 F k = ∞ i=1 F ki .

Now we will apply

Fact 9. Let Ẽi := i j=1 Fkj ⊂ i j=1 F kj .
Then ∞ i=1 Ẽi ⊂ F. Keeping the notations m i , ε i as in Fact 9, we have for i large enough,

m i ≥ q ki 5 q ki-1 θ q ki-1 τ τ +1 , ε i ≥ 1 2 q ki-1 θ . ( 20 
)
Since the lower limit will not be changed if we modify finite number of m i and ε i 's, we can suppose that the estimates [START_REF] Hill | Ergodic theory of shrinking targets[END_REF] hold for all i. Hence, by Fact 9

dim H (F ) ≥ lim i log(m 1 • • • m i ) -log(m i+1 ε i+1 ) ≥ lim i τ τ +1 log( n1θ ••• ni-1θ n1•••ni-1 ) + log(n 1 • • • n i ) -i log 5 τ τ +1 log(n i / n i θ ) = lim i log( n 1 θ • • • n i-1 θ ) + 1 τ log(n 1 • • • n i-1 ) + (1 + 1 τ ) log n i log(n i / n i θ )
.

The last equality follows from the fact that n k increases super-exponentially when

w(θ) > 1.
For the the upper bound of dim H (F ), by Lemma 7 (iii), we have

F k ⊂ q k i=1 iθ -C τ q k θ q k τ τ +1 , iθ + C τ q k θ q k τ τ +1 := Fk .
By the Denjoy-Koksma inequality [START_REF] Herman | Sur la conjugaison différentiable des difféomorphismes du cercle à des rotations[END_REF], the number of subintervals of Fki contained in each interval of Fki-1 is at most

2C τ q ki q ki-1 θ q ki-1 τ τ +1 + 4.
Therefore, Ēi := i j=1 Fkj can be covered by ℓ i sets of diameter at most δ i , with

ℓ i ≤ q k1 2C τ q k2 q k1 θ q k1 τ τ +1 + 4 • • • 2C τ q ki q ki-1 θ q ki-1 τ τ +1 + 4 , δ i ≤ 2C τ q ki θ q ki τ τ +1 . ( 21 
)
By [START_REF] Fuchs | On Kurzweil's 0-1 law in inhomogeneous Diophantine approximation[END_REF] 2C τ q ki q ki-1 θ q ki-1

τ τ +1 > 2C τ q ki q ki-1 θ τ > 2C τ q ki q ki-1 θ > C τ > 1.
Thus by the fact that x + 4 ≤ 5x for x ≥ 1, we have

ℓ i ≤ (10C τ ) i-1 (n 1 • • • n i-1 ) 1 τ +1 n i ( n 1 θ • • • n i-1 θ ) τ τ +1 , δ i ≤ 2C τ n i θ n i τ τ +1 .
Hence, by Fact 10, we have

dim H (F ) ≤ lim i log ℓ i -log δ i ≤ lim i log( n 1 θ • • • n i-1 θ ) + 1 τ log(n 1 • • • n i-1 ) + (1 + 1 τ ) log n i log(n i / n i θ )
.

(iv) Suppose 1 < τ < w(θ). Let {n i } be the sequence of all integers satisfying

n τ i n i θ < 2.
Remark that by the definition of w(θ), there are infinitely many such n i 's. Applying the Legendre's theorem ( [START_REF] Legendre | Essai sur la théorie des nombres, Chez Courcier, Imprimeur-Libaraire pour les Mathématiques[END_REF], pp. 27-29), we have n i = q ki for some k i .

If k = k i , then q -τ k+1 + q -τ k ≤ 2q -τ k ≤ q k θ . Thus by Lemma 8 (ii)

F k = q k i=1 B iθ, q -τ k+1 .
Therefore, by ( 14)

ki+1-1 ℓ=ki+1 F ℓ = q k i +1 j=1 B jθ, q -τ ki+1 . (22) 
Also since |iθ -jθ| ≥ q ki θ > q -τ ki+1 for 1 ≤ i = j ≤ q ki+1 , we deduce that

max(c k i ,1)q k i j=1 B jθ, q -τ ki+1 =   max(c k i ,1)q k i j=1 B jθ, q -τ ki+1   ∩   q k i +1 j=1 B jθ, q -τ ki+1   .
Thus, by Lemma 8 (iii) and ( 22)

max(c k i ,1)q k i j=1 B jθ, q -τ ki+1 ⊂ F ki ∩   ki+1-1 ℓ=ki+1 F ℓ   = ki+1-1 ℓ=ki F ℓ .
Take Fi := max(c k i ,1)q k i j=1 B jθ, q -τ ki+1 and Ẽi :=

i j=1 Fj . Then ∞ i=1 Ẽi ⊂ F.
By the definition of c k , if c ki ≥ 1, then q τ ki q ki θ ≤ 1. Using τ > 1, we have for large k

(c ki -1) q ki θ + 1 q τ ki+1 ≤ 1 q τ ki q ki θ 1 τ +1 q ki θ -q ki θ + 1 q τ ki+1 < 1 q τ ki q ki θ q ki θ - 1 2q ki+1 + 1 q τ ki+1 < 1 q τ ki .
Therefore, for each 1

≤ j ≤ q ki B jθ, q -τ ki ∩ Fi = max(c k i ,1)-1 h=0 B (hq ki + j)θ, q -τ ki+1 .
The number of intervals of Fi in each interval B jθ, q -τ ki of Fi-1 is

m i = max(c ki , 1) = max       1 q τ ki q ki θ 1 τ +1     , 1   ( 23 
)
and the gaps between intervals in Fi is at least

ǫ i ≥ q ki θ - 2 (q ki+1 ) τ .
Since max(⌊x⌋, 1) ≥ x 2 for any real x ≥ 0, we have

m i ≥ 1 2 1 q τ ki q ki θ 1 τ +1 .
For large i, from τ > 1, we deduce

ǫ i ≥ q ki θ - 2 (q ki+1 ) τ ≥ q ki θ 2 .
Therefore, by Fact 9

dim H (F ) ≥ lim i log(m 1 • • • m i-1 ) -log(m i ε i ) ≥ lim k -τ τ +1 log(n 1 n 1 θ 1/τ n 2 n 2 θ 1/τ • • • n i-1 n i-1 θ 1/τ ) -(i -1) log 2 τ τ +1 log(n i / n i θ ) + log 4 = lim k -log(n 1 n 1 θ 1/τ n 2 n 2 θ 1/τ • • • n i-1 n i-1 θ 1/τ ) log(n i / n i θ ) .
For the upper bound, by [START_REF] Jarník | Zur metrischen Theorie der diophantischen Approximation[END_REF] and Lemma 8 (i), (iii),

Fi := min((2c k i +3)q k i ,q k i +1 ) j=1 B jθ, q -τ ki+1 ⊃ ki+1-1 ℓ=ki F ℓ . Then F ⊂ ∞ i=1
Fi .

By a similar calculation of ( 23), we deduce that each Ēi := i j=1 Fj can be covered by ℓ i sets of diameter at most δ i , with

ℓ i ≤ (2c k1 + 3) • • • (2c ki-1 + 3) ≤ 2 1 n τ 1 n 1 θ 1 τ +1 + 5 • • • 2 1 n τ i-1 n i-1 θ 1 τ +1 + 5 , δ i ≤ (2c ki + 3) q ki θ + 2 q τ ki+1 ≤ 2 1 n τ i n i θ 1 τ +1 + 5 • n i θ .
Note that (q τ ki q ki θ ) -1/(τ +1) > 2 -1/(τ +1) > 2 -1/2 , and 2x + 5 < 10x for x > 2 -1/2 . Then we have

ℓ i ≤ 10 i-1 1 n τ 1 n 1 θ • • • 1 n τ i-1 n i-1 θ 1 τ +1 , δ i ≤ 10 n i θ n i τ τ +1 . Thus by Fact 10, dim H (F ) ≤ lim i log ℓ i -log δ i ≤ lim i -log(n 1 n 1 θ 1/τ n 2 n 2 θ 1/τ • • • n i-1 n i-1 θ 1/τ ) + (i -1) log 10 log(n i / n i θ ) -log 10 = lim i -log(n 1 n 1 θ 1/τ n 2 n 2 θ 1/τ • • • n i-1 n i-1 θ 1/τ ) log(n i / n i θ ) .
The last equality is from the super-exponentially increasing of n k when w(θ) > 1.

4. The case of τ = 1 and proof of Theorem 2

For the case of τ = 1, we need more accurate estimation on the size of intervals of F k . We first prove the following two lemmas which describe the subintervals contained in F k .

Lemma 11. If

1 (b+1)(b+2) ≤ q k q k θ < 1 b(b+1) , for some b ≥ 1, then 1≤i≤q k iθ - 1 q k+1 , iθ + (b -1)q k θ + 1 (b + 1)q k ⊂ F k . Proof. Since 1 (b+1)(b+2)q k ≤ q k θ < 1 b(b+1)q k , for any integer c ≥ 1 (b -c) q k θ + 1 (b + 1)q k - 1 (c + 1)q k = (b -c) q k θ - 1 (b + 1)(c + 1)q k ≤ 0.
Therefore, for all c ≥ 1 and 1

≤ i ≤ q k (b -1) q k θ + 1 (b + 1)q k ≤ (c -1) q k θ + 1 (c + 1)q k ≤ (c -1) q k θ + 1 cq k + i .
Applying Lemma 7 (i), we complete the proof.

For each k ≥ 0, denote

r k+1 :=    4a k+1 + 5 -3, a k+1 = 2, 1, a k+1 = 2.
We remark that 0 ≤ r k+1 < a k+1 and the first values of r k+1 are The first values of rk+1 can be easily calculated:

r k+1 =          0, a k+1 = 1, 1, a k+1 = 2, 3, 4,
rk+1 =                      0, a k+1 = 1, 1, a k+1 = 2, 3, 1, a k+1 = 4, a k+2 = 1, 2, a k+1 = 4, a k+2 ≥ 2,
2, a k+1 = 5, 6, 7.

Note that for a k+1 = 4 or a k+2 ≥ 2 (i.e., for all cases except a k+1 = 4, a k+2 = 1)

rk+1 + 1 ≥ a k+1 + 1 ≥ q k+1 q k . ( 24 
)
We can also check

rk+1 ≤ a k+1 2 for a k+1 ≥ 1, ( 25 
) rk+1 + 1 ≤ 1 5 (4a k+1 -1) for a k+1 ≥ 3. ( 26 
)
Lemma 12. For each k ≥ 1 with a k+1 ≥ 2, we have

q k i=1 (iθ -q k θ , iθ + r k+1 q k θ + q k+1 θ ) ⊂ F k .
Moreover, if a k+1 = 4 and a k+2 ≥ 2, then

             q k i=1 iθ -q k θ , iθ + rk+1 q k θ + q k+1 θ ⊂ F k , if a k = 1, (r k +1)q k-1 i=1 iθ -q k θ , iθ + rk+1 q k θ + q k+1 θ ⊂ F k , if a k ≥ 2.
Proof. For the first part of the proof, We distinguish two cases.

(i) Suppose a k+1 = 2. Then r k+1 = 1 and 1 4 < q k q k θ < 1 2 . Thus, by applying Lemma 11 for b = 1, we have

1≤i≤q k iθ - 1 q k+1 , iθ + 1 2q k ⊂ F k . ( 27 
)
Using the equality (3) for n = k -1, and observing q k+1 = a k+1 q k + q k-1 = 2q k + q k-1 , we have

1 2q k + 1 q k+1 = 1 q k - 1 2q k - 1 q k+1 = q k q k-1 θ + q k-1 q k θ q k - q k+1 -2q k 2q k q k+1 = q k-1 θ + q k-1 q k q k θ - 1 2q k+1 > q k-1 θ .
Then by [START_REF] Kim | Refined shrinking target property of rotations[END_REF], for q k-1 < i ≤ q k (iθq k θ , iθ + q k θ + q k+1 θ )

⊂ iθ - 1 q k+1 , iθ + 1 2q k ∪ (i -q k-1 )θ - 1 q k+1 , (i -q k-1 )θ + 1 2q k ⊂ F k . ( 28 
)
On the other hand, by [START_REF] Beresnevich | The Duffin-Schaeffer conjecture with extra divergence II[END_REF], and the assumption a k+1 = 2, we can check

q k θ + q k+1 θ < 1 q k + q k-1 , q k+1 θ < 1 2q k + q k-1
.

Thus, for 1 ≤ i ≤ q k-1 (iθ -q k θ , iθ + q k θ + q k+1 θ ) ⊂ iθ - 1 q k+1 , iθ + min 1 q k + q k-1 , q k θ + 1 2q k + q k-1 ⊂ F k , ( 29 
)
where the second inclusion is from Lemma 7 (i).

Combining ( 28) and ( 29), we conclude that for a k+1 = 2

1≤i≤q k (iθ -q k θ , iθ + q k θ + q k+1 θ ) ⊂ F k .
(ii) Assume a k+1 ≥ 3. There exists an integer b ≥ 1 satisfying

b(b + 1) < 1 q k q k θ ≤ (b + 1)(b + 2).
Thus, we have b(b

+ 1) -1 ≤ a k+1 ≤ (b + 1)(b + 2) -1.
By the fact 1 q k > q k-1 θ = a k+1 q k θ + q k+1 θ , we have

1 (b + 1)q k > a k+1 -b b + 1 q k θ + b q k θ + q k+1 θ b + 1 > a k+1 -b b + 1 q k θ + q k+1 θ . ( 30 
)
We will apply Lemma 11 and we will distinguish three parts according to the value of a k+1 .

If b 2 + b -1 ≤ a k+1 ≤ b 2 + 2b -1, then ⌊ √ 4a k+1 + 5⌋ = 2b + 1 and by (30) (2b -2) q k θ + q k+1 θ < (b -1) q k θ + 1 (b + 1)q k . If b 2 + 2b ≤ a k+1 ≤ b 2 + 3b, then ⌊ √ 4a k+1 + 5⌋ = 2b + 2 and by (30) (2b -1) q k θ + q k+1 θ < (b -1) q k θ + 1 (b + 1)q k .
Finally if a k+1 = b 2 + 3b + 1 we have ⌊ √ 4a k+1 + 5⌋ = 2b + 3 and by [START_REF] Kurzweil | On the metric theory of inhomogeneous Diophantine approximations[END_REF] 2b

q k θ + q k+1 θ < (b -1) q k θ + 1 (b + 1)q k .
Therefore, in all cases, we have

4a k+1 + 5 -3 q k θ + q k+1 θ ≤ (b -1) q k θ + 1 (b + 1)q k .
By Lemma 11, we have

1≤i≤q k (iθ -q k θ , iθ + r k+1 q k θ + q k+1 θ ) ⊂ F k .
Now we prove the second assertion of the lemma. We will apply Lemma 7 (i).

To this end, we will obtain in the following many estimates of the form:

(b -1) q k θ + 1 bq k + i (1 ≤ i ≤ q k ).
(a) If a k = 1, then we have

q k q k+1 θ = q k-1 q k+1 θ + q k-2 q k+1 θ ≤ (a k+2 -1)q k-1 q k+1 θ + q k-2 q k+1 θ < a k+2 q k-1 q k+1 θ < q k-1 q k θ .
Hence, for all b ≥ 1 (b + 1)q k ((3b) q k θ + q k+1 θ ) ≤ 4q k q k θ + 2q k q k+1 θ < 4q k q k θ + q k-1 q k θ + q k q k+1 θ = q k+1 q k θ + q k q k+1 θ = 1, which yields that for all b ≥ 1

2 q k θ + q k+1 θ < (b -1) q k θ + 1 (b + 1)q k .
Therefore, by Lemma 7 (i), we have

1≤i≤q k (iθ -q k θ , iθ + 2 q k θ + q k+1 θ ) ⊂ F k .
(b) Suppose a k ≥ 2. We will prove for all b ≥ 1

2 q k θ + q k+1 θ < (b -1) q k θ + 1 bq k + (r k + 1)q k-1 ,
which is equivalent to

(bq k + (r k + 1)q k-1 ) ((3 -b) q k θ + q k+1 θ ) < 1.
In fact, for 1 ≤ b ≤ 3, by ( 25), we have

(bq k + (r k + 1)q k-1 ) ((3 -b) q k θ + q k+1 θ ) ≤ bq k + a k 2 + 1 q k-1 ((3 -b) q k θ + q k+1 θ ) = (3b -b 2 )q k q k θ + (b -1)q k q k+1 θ + (3 -b)a k 2 + 2 -b q k-1 q k θ + a k 2 + 1 q k-1 q k+1 θ + q k q k+1 θ + q k-1 q k θ . (31) 
By ( 2) and ( 1) respectively, we have the estimations:

q k+1 θ ≤ 1 a k+2 q k θ and q k-1 < q k a k . ( 32 
)
Thus, for 1

≤ b ≤ 2 (3b -b 2 )q k q k θ + (b -1)q k q k+1 θ + (3 -b)a k 2 + 2 -b q k-1 q k θ + a k 2 + 1 q k-1 q k+1 θ < 3b -b 2 + b -1 a k+2 + 3 -b 2 + 2 -b a k + 1 2 + 1 a k 1 a k+2 q k q k θ .
By using the assumption a k+2 ≥ 2 and 1 ≤ b ≤ 2, we then deduce

(bq k + (r k + 1)q k-1 ) ((3 -b) q k θ + q k+1 θ ) ≤ 3b -b 2 + b -1 2 + 3 -b 2 + 2 -b 2 + 1 2 q k q k θ + q k q k+1 θ + q k-1 q k θ = 5 2 + 5b 2 -b 2 q k q k θ + q k q k+1 θ + q k-1 q k θ ≤ 4q k q k θ + q k-1 q k θ + q k q k+1 θ = 1.
For the last equality, we have used the assumption a k+1 = 4 and the fact (3).

If b = 3, then from ( 31) and [START_REF] Legendre | Essai sur la théorie des nombres, Chez Courcier, Imprimeur-Libaraire pour les Mathématiques[END_REF] we have

(bq k + (r k + 1)q k-1 ) ((3 -b) q k θ + q k+1 θ ) ≤ 3q k + a k 2 + 1 q k-1 q k+1 θ < 7 2 + 1 a k q k q k+1 θ ≤ 4q k q k+1 θ < 1.
For b ≥ 4, it is easy to see that

(bq k + (r k + 1)q k-1 ) ((3 -b) q k θ + q k+1 θ ) < 0 < 1.
Thus, for each 1 ≤ i ≤ (r k + 1)q k-1 , we have for any b ≥ 1

2 q k θ + q k+1 θ < (b -1) q k θ + 1 bq k + (r k + 1)q k-1 ≤ (b -1) q k θ + 1 bq k + i .
By Lemma 7 (i), we have

(r k +1)q k-1 i=1 iθ -q k θ , iθ + rk+1 q k θ + q k+1 θ ⊂ F k .
The proof of Lemma 12 is completed. Now we are ready to give a new nested Cantor subset of U τ [θ]. Remind that we assume k is even. We denote

D k :=        T, a k+1 = 1, q k i=1 (iθ -q k θ , iθ + rk+1 q k θ + q k+1 θ ) . a k+1 ≥ 2. ( 33 
)
For the case k is odd, we have the symmetric formula:

D k := q k i=1 (iθ -rk+1 q k θ -q k+1 θ , iθ + q k θ ) . (34) 
Then, by Lemma 12, we have

D k ⊂ F k , thus D := ∞ k=1 D k ⊂ ∞ k=1 F k .
Now we will investigate the numbers of subintervals of D k+ℓ in each interval of D k . Let (u m ) be the Fibonacci sequence defined by u 0 = 0, u 1 = 1 and u m+1 =

u m + u m-1 .
Lemma 13. Suppose that a k+1 ≥ 2, a k+ℓ+1 ≥ 2 and a k+m = 1 for all 2 ≤ m ≤ ℓ.

Then the number of points of jθ, 1 ≤ j ≤ q k+ℓ in each interval of D k is

u ℓ rk+1 + u ℓ+1 ≥ q k+ℓ √ q k q k+1 .
Proof. For each integer n ≥ 0 we have a unique representation (called Ostrowski's expansion, see [START_REF] Rockett | Continued Fractions[END_REF]):

n = ∞ m=0 c m+1 q m , where 0 ≤ c 1 < a 1 , 0 ≤ c m+1 ≤ a m+1 , and c m = 0 if c m+1 = a m+1 . If j = k+ℓ-1 m=k c m+1 q m
is an integer with its representation coefficients:

0 ≤ c k+1 ≤ rk+1 < a k+1 , 0 ≤ c m+1 ≤ a m+1 = 1 (k < m ≤ k + ℓ), (35) 
then, by the fact that q k θp k > 0 if and only if k is even, we have

jθ = c k+1 q k θ + c k+2 q k+1 θ + • • • + c k+ℓ q k+ℓ-1 θ ≤ rk+1 q k θ + a k+3 q k+2 θ + a k+5 q k+4 θ + • • • < rk+1 q k θ + q k+1 θ , jθ ≥ a k+2 q k+1 θ + a k+4 q k+3 θ + • • • > -q k θ .
Thus, for each i with 1

≤ i ≤ q k iθ -q k θ < (i + j)θ < iθ + rk+1 q k θ + q k+1 θ .
The number of the above integer j's of which expansion satisfying [START_REF] Minkowski | Diophantische Approximationen[END_REF] is the number of ℓ-tuples of (c k+1 , c k+2 , . . . , c k+ℓ ) such that

0 ≤ c k+1 ≤ rk+1 < a k+1 , 0 ≤ c m+1 ≤ 1 = a m+1 for k + 1 ≤ m ≤ k + ℓ -1 and 
c m c m+1 = 0 for k + 1 ≤ m ≤ k + ℓ -1,
which is u ℓ rk+1 + u ℓ+1 . Note that if ℓ = 1, then the number of j's satisfying ( 35)

is rk+1 + 1 = u 1 rk+1 + u 2 . Hence, for each 1 ≤ i ≤ q k #{1 ≤ j ≤ q k+ℓ : jθ ∈ (iθ -q k θ , iθ + rk+1 q k θ + q k+1 θ )} = u ℓ rk+1 + u ℓ+1 .
If a k+1 = 4 or ℓ = 1, then using [START_REF] Ya | Einige Sätze über Kettenbrüche, mit Anwendungen auf die Theorie der Diophantischen Approximationen[END_REF] and the fact q k+ℓ = u ℓ q k+1 + u ℓ-1 q k , the number of points satisfies

u ℓ rk+1 + u ℓ+1 = u ℓ (r k+1 + 1) + u ℓ-1 ≥ u ℓ q k+1 q k + u ℓ-1 q k q k+1 = u ℓ q k+1 + u ℓ-1 q k √ q k q k+1 = q k+ℓ √ q k q k+1 .
If a k+1 = 4 and ℓ ≥ 2, then q k+1 q k < 5, thus

q k+1 q k -2 1 - q k q k+1 < √ 5 -2 1 -1 √ 5 < 1 2 ≤ u ℓ-1 u ℓ , which is equivalent to 2u ℓ + u ℓ-1 > u ℓ q k+1 q k + u ℓ-1 q k q k+1 .
Therefore, we have

u ℓ rk+1 + u ℓ+1 = u ℓ + u ℓ+1 = 2u ℓ + u ℓ-1 > u ℓ q k+1 q k + u ℓ-1 q k q k+1 = u ℓ q k+1 + u ℓ-1 q k √ q k q k+1 = q k+ℓ √ q k q k+1 .
We use the mass distribution principle (e.g. [START_REF] Falconer | Techniques in Fractal Geometry[END_REF]): Theorem 15. For τ = 1 and for any irrational

θ dim H (U τ [θ]) ≥ 1 w(θ) + 1 .
Proof. We may assume w(θ) < ∞. If a k = 1 for all large k, then Lemma 6 [START_REF] Besicovitch | Sets of fractional dimensions (IV): on rational approximation to real numbers[END_REF] implies that U τ [θ] = T. Thus we assume that a k ≥ 2 for infinitely many k's. Let (k i ) be the increasing sequence of integers such that k 0 = 0 and

{k 1 , k 2 , . . . } = {k ∈ N : a k+1 ≥ 2}.
Denote by m i the number of intervals of D ki contained in each interval of D ki-1 .

Then by Lemma 13 we have

m i ≥ q ki √ q ki-1 q ki-1+1 . ( 36 
)
Define µ on D given by

µ(I) = i n=1 1 m n
for each interval I of the form (jθq ki θ , jθ + rki+1 q ki θ + q ki+1 θ ) with 1 ≤ j ≤ q ki in D ki . Note that

|j 1 -j 2 | ≥ q ki-1 θ for 1 ≤ j 1 , j 2 ≤ q ki and j 1 = j 2 . ( 37 
)
Let U be an interval with

q ki+1-1 θ ≤ |U | < q ki-1 θ
for some i ≥ 1. Then by [START_REF] Schmeling | Inhomogeneous Diophantine approximation and angular recurrence properties of the billiard flow in certain polygons[END_REF], U intersects at most (|U |/ q ki+1-1 θ + 2) interval of D ki+1 . Thus, we have

µ(U ) ≤ 1 m 1 m 2 • • • m i+1 |U | q ki+1-1 θ + 2 ≤ 3|U | m 1 m 2 • • • m i+1 q ki+1-1 θ . (38) 
If a ki+1 ≥ 3, then by [START_REF] Schmeling | Inhomogeneous Diophantine approximation and angular recurrence properties of the billiard flow in certain polygons[END_REF] the smallest gap between two intervals in D ki is at least

q ki-1 θ -(r ki+1 + 1) q ki θ -q ki+1 θ = (a ki+1 -1 -rki+1 ) q ki θ > a ki+1 -1 -rki+1 a ki+1 + 1 q ki-1 θ ≥ q ki-1 θ 5 > |U | 5 ,
where we use ( 2) and ( 26) for the first and the second inequalities. Thus U intersects at most 6 intervals of D ki and

µ(U ) ≤ 6 m 1 m 2 • • • m i . ( 39 
)
If a ki+1 = 2, then each interval in D ki is of length (r ki+1 + 1) q ki θ + q ki+1 θ = 2 q ki θ + q ki+1 θ = q ki-1 θ > |U | Therefore, U intersects at most 2 intervals of D ki . Thus

µ(U ) ≤ 2 m 1 m 2 • • • m i . (40) 
Hence, [START_REF] Schmidt | Metrical theorems on fractional parts of sequences[END_REF], [START_REF] Slater | Gaps and steps for the sequence nθ (mod 1)[END_REF] and [START_REF] Sprindžuk | Metric Theory of Diophantine Approximations[END_REF] imply that

µ(U ) ≤ 6 m 1 m 2 • • • m i+1 min |U | q ki+1-1 θ , m i+1 .
For any 0 < s < 1, since min(x, y) ≤ x s y 1-s for x, y ≥ 1, we have

µ(U ) ≤ 6 m 1 m 2 • • • m i |U | m i+1 q ki+1-1 θ s .
By [START_REF] Rockett | Continued Fractions[END_REF], we have

µ(U ) ≤ 6 √ q k0 q k0+1 q k1 √ q k1 q k1+1 q k2 • • • √ q ki-1 q ki-1+1 q ki √ q ki q ki+1 |U | q ki+1 q ki+1-1 θ s ≤ 6 q k0 q k1 q k1 q k2 • • • q ki-1 q ki 2 √ q ki q ki+1 |U | s ≤ 12 √ q ki q ki+1 |U | s √ q ki . (41) 
Let s be any real number satisfying

s < 1 w + 1 = lim i→∞ log q ki log q ki + log q ki+1 .
Then by [START_REF] Szüsz | Über die metrische Theorie der diophantischen Approximation[END_REF] for sufficiently small |U |

µ(U ) ≤ 12|U | s .
Therefore, by Fact 14, we have

dim H (U τ [θ]) ≥ dim H ∞ i=1 D i ≥ s.
Proof of Theorem 2. When τ < 1 or τ > 1, the proof is the same as that of Theorem 1. The case of τ = 1 follows from Theorem 15.

Proofs of Theorems 3 and 5

Using Theorem 15, we can prove Theorem 3.

Proof of Theorem 3. Let us use the same notation (q kj ) j≥1 for the subsequences selected in Theorem 1 for the two cases 1/w(θ) < τ < 1 and 1 < τ < w(θ). Then by the fact that n j = q kj increases super-exponentially, we can replace n j θ by q -1 kj +1 and rewrite the formula in Theorem 1 as follows.

dim

H (U τ [θ]) =              lim i→∞ log i-1 j=1 (q 1/τ kj q -1 kj +1 ) • q 1+1/τ ki log(q ki q ki+1 ) , if 1 w(θ) < τ < 1, lim i→∞ -log i-1 j=1 q kj q -1/τ kj +1 log (q ki q ki+1 ) , if 1 < τ < w(θ).
Further, let w j be the real numbers defined by 2q kj +1 = q wj kj for the case 1/w(θ) < τ < 1 and 4q kj +1 = q wj kj for the case 1 < τ < w(θ). Then by (4), w j ≥ 1/τ if 1/w(θ) < τ < 1 and w j ≥ τ if 1 < τ < w(θ). By (5), we have lim j→∞ w j = w(θ), [START_REF] Waldschmidt | Recent advances in Diophantine approximation, Number theory, analysis and geometry[END_REF] and the dimension dim

H (U τ [θ]) is equal to                lim i→∞   1 + 1 τ w i + 1 - i-1 j=1 w j -1 τ w i + 1 • log q kj log q ki   , if 1 w(θ) < τ < 1, lim i→∞ i-1 j=1 wj τ -1 w i + 1 • log q kj log q ki , if 1 < τ < w(θ). (43) 
Now fix w(θ) = w ∈ (1, +∞]. For all j < i, we have

0 < log q kj log q ki = log q kj log q kj+1 • • • log q ki-1 log q ki ≤ log q kj log q kj +1 • • • log q ki-1 log q ki-1+1 = 1 w j • • • w i-1 . Hence, if 1 w < τ < 1, 0 ≤ (w j - 1 τ ) • log q kj log q ki ≤ 1 w j+1 • • • w i-1 - 1 τ w j • • • w i-1
,

and if 1 < τ < w, 0 ≤ w j τ -1 • log q kj log q ki ≤ 1 τ w j+1 • • • w i-1 - 1 w j • • • w i-1
.

Let

S i-1 = 1 w 1 • • • w i-1 + 1 w 2 • • • w i-1 + • • • + 1 w i-1 .
Then for 1/w < τ < 1 lim i→∞

1 w i + 1 1 τ + 1 τ -1 S i-1 + 1 w 1 • • • w i-1 ≤ dim H (U τ [θ]) ≤ lim i→∞ 1 + 1 τ w i + 1 and for 1 < τ < w 0 ≤ dim H (U τ [θ]) ≤ lim i→∞ 1 w i + 1 1 τ -1 - 1 τ S i-1 - 1 τ w 1 • • • w i-1 .
If w = ∞, then lim w i = ∞ for both two cases 0 = 1/w(θ) < τ < 1 and

1 < τ < w(θ) = ∞. Thus by (43), we have dim H (U τ [θ]) ≤        lim i→∞ 1 + 1 τ w i + 1 = 0, 0 < τ < 1, lim i→∞ 1 w i + 1 • 1 τ = 0, 1 < τ < ∞. Therefore, dim H (U τ [θ]) = 0 for all τ > 0.
If w < ∞, then by [START_REF] Waldschmidt | Recent advances in Diophantine approximation, Number theory, analysis and geometry[END_REF], for any ε > 0 there is N such that if i ≥ N then

S i-1 = 1 w 1 • • • w i-1 + • • • + 1 w i-1 > 1 (w + ε) i-N + • • • + 1 w + ǫ = 1 -(w + ǫ) -i+N w + ǫ -1 .
Thus, for 1/w < τ < 1

1 w + 1 1 τ + 1 τ -1 1 w -1 ≤ dim H (U τ [θ]) ≤ 1 + 1 τ w + 1 ,
and for 1 < τ < w

0 ≤ dim H (U τ [θ]) ≤ 1 w + 1 1 τ -1 - 1 τ 1 w -1 .
For the case of τ = 1, we complete the proof by Theorem 15.

Now we are ready to prove Theorem 5.

Proof of Theorem 5. Let 1/w < τ ′ < τ < 1 and (k i ) and (k ′ i ) be the maximal sequences of

q ki q ki θ τ < 1, q k ′ i q k ′ i θ τ ′ < 1.
Note that (k ′ i ) is a subsequence of (k i ). Let w j , w ′ j be the real numbers defined by 2q kj +1 = q wj kj , 2q k

′ j +1 = q w ′ j k ′ j
as in the proof of Theorem 3. Recall that for all j, we have w j τ ≥ 1 and w ′ j τ ′ ≥ 1. Thus, by noting the fact q kj+1 ≥ q kj +1 > q kj 1/τ , we have

1 + 1/τ w i + 1 - i-1 j=1 w j -1/τ w i + 1 • log q kj log q ki = 1 + 1/τ ′ w i + 1 - 1/τ ′ -1/τ w i + 1 - i-1 j=1 w j -1/τ ′ w i + 1 • log q kj log q ki - i-1 j=1 1/τ ′ -1/τ w i + 1 • log q kj log q ki ≥ 1 + 1/τ ′ w i + 1 - i-1 j=1 w j -1/τ ′ w i + 1 • log q kj log q ki - i j=1 1/τ ′ -1/τ 1/τ i-j (1 + 1/τ ) ≥ 1 + 1/τ ′ w i + 1 - i-1 j=1 w j -1/τ ′ w i + 1 • log q kj log q ki - τ -τ ′ τ ′ (1 -τ 2 ) . ( 44 
)
Let s be the index such that k

′ s < k i < k ′ s+1 . Noting that w j -1/τ ′ ≤ 0 if k j is not in the subsequence (k ′ i ), we have 1 + 1/τ ′ w i + 1 - i-1 j=1 w j -1/τ ′ w i + 1 • log q kj log q ki ≥ 1 + 1/τ ′ w i + 1 - s j=1 w ′ j -1/τ ′ w i + 1 • log q k ′ j log q ki . (45) 
By the choice of s, we know

q ki ≥ q k ′ s +1 = q w ′ s k ′ s .
Hence, the right hand side of ( 45) is bigger than

1 + 1/τ ′ w i + 1 - w ′ s -1/τ ′ (w i + 1)w ′ s - s-1 j=1 w ′ j -1/τ ′ w i + 1 • log q k ′ j w ′ s log q k ′ s , which is equal to 1 + 1/w ′ s τ ′ (w i + 1) - s-1 j=1 w ′ j -1/τ ′ (w i + 1)w ′ s • log q k ′ j log q k ′ s .
Reminding the fact 1/τ ≤ w i ≤ 1/τ ′ , we then deduce that

1 + 1/τ ′ w i + 1 - i-1 j=1 w j -1/τ ′ w i + 1 • log q kj log q ki ≥ 1 + 1/w ′ s τ ′ + 1 - s-1 j=1 w ′ j -1/τ ′ (1 + 1/τ )w ′ s • log q k ′ j log q k ′ s . By verifying (1 + 1/τ )w ′ s > w ′ s + 1 and 1 + 1/w ′ s τ ′ + 1 ≥ 1 + 1/τ ′ w ′ s + 1 , we obtain 1 + 1/τ ′ w i + 1 - i-1 j=1 w j -1/τ ′ w i + 1 • log q kj log q ki ≥ 1 + 1/τ ′ w ′ s + 1 - s-1 j=1 w ′ j -1/τ ′ w ′ s + 1 • log q k ′ j log q k ′ s . (46) 
Therefore, combining (44) and (46), we have for k

′ s ≤ k i < k ′ s+1 , 1 + 1/τ w i + 1 - i-1 j=1 w j -1/τ w i + 1 • log q kj log q ki ≥ 1 + 1/τ ′ w ′ s + 1 - s-1 j=1 w ′ j -1/τ ′ w ′ s + 1 • log q k ′ j log q k ′ s - τ -τ ′ τ ′ (1 -τ 2 )
.

Hence, by (43), we have

dim H (U τ [θ]) = lim i→∞   1 + 1/τ w i + 1 - i-1 j=1 w j -1/τ w i + 1 • log q kj log q ki   ≥ lim s→∞   1/τ ′ + 1 w ′ s + 1 - s-1 j=1 w ′ j -1/τ ′ w ′ s + 1 • log q k ′ j log q k ′ s   - τ -τ ′ τ ′ (1 -τ 2 ) = dim H (U τ ′ [θ]) - τ -τ ′ τ ′ (1 -τ 2 )
.

Let 1 < τ < τ ′ < w. Let (k i ) and (k ′ i ) be the sequence of

q τ ki q ki θ < 2, q τ ′ k ′ i q k ′ i θ < 2.
Clearly, (k ′ i ) is a subsequence of (k i ). Let w i be the real numbers defined by 4q ki+1 = q wi ki as in the proof of Theorem 3. Recall that for all j, we have w j ≥ τ . Then, by (43), we have

dim H (U τ [θ]) = lim i→∞ i-1 j=1 w j /τ -1 w i + 1 • log q kj log q ki = lim i→∞   i-1 j=1
w j /τ ′ -1 w i + 1 • log q kj log q ki + i-1 j=1 w j (τ ′τ ) τ τ ′ (w i + 1)

• log q kj log q ki   ≤ lim i→∞   i-1 j=1 w j /τ ′ -1 w i + 1 • log q kj log q ki   + lim i→∞   i-1 j=1 w j (τ ′ -τ ) τ τ ′ (τ + 1)τ i-j   ≤ lim i→∞   i-1 j=1 w j /τ ′ -1 w i + 1 • log q k ′ j log q k ′ i   + w(τ ′ -τ ) τ τ ′ (τ 2 -1) . Hence, dim H (U τ [θ]) -dim H (U τ ′ [θ]) ≤ (τ ′ -τ )w τ τ ′ (τ 2 -1) . Since U τ [θ] ⊃ U τ ′ [θ], dim H (U τ [θ]) -dim H (U τ ′ [θ]) ≥ 0.
Therefore, the claim holds.

Examples

The following examples show that the upper and lower bounds in Theorems 2 and 3 can not be replaced by smaller or larger numbers.

Example 16. Let θ be of irrational exponent w(θ) = w > 1 with q k+1 > q w k for all k. Then the subsequence k i in the proof of Theorem 1 is given by k i = i.

Put q ki+1 = q wi ki . Then lim i→∞ w i = w.

For 1/w < τ < 1, we have dim H (U τ [θ]) = lim i→∞ log(q 1/τ 1

q 1 θ q 1/τ 2 q 2 θ • • • q 1/τ i-1 q i-1 θ • q 1+ 1 τ i ) log(q i / q i θ ) = lim i→∞ log(q 1/τ 1 q 1/τ -1 2 • • • q 1/τ -1 i-1 • q 1/τ i ) log(q i q i+1 ) = lim i→∞ 1 1 + w i 1 τ w 1 • • • w i-1 + 1 τ -1 w 2 • • • w i-1 + • • • + 1 τ -1 w i-1 + 1 τ = 1 1 + w 1 τ -1 w -1 + 1 τ .
For 1 < τ < w, we have dim H (U τ [θ]) = lim i→∞ log(q 1 q 1 θ 1/τ q 2 q 2 θ 1/τ • • • q i-1 q i-1 θ 1/τ ) log(q i / q i θ ) = lim i→∞ log q 1 q 1-1/τ 2

• • • q 1-1/τ i-1

• q -1/τ i log(q i q i+1 ) = lim

i→∞ 1 1 + w i 1 τ w 1 • • • w i-1 + 1 τ -1 w 2 • • • w i-1 + • • • + 1 τ -1 w i-1 + 1 τ = 1 1 + w 1 τ -1 w -1 + 1 τ .
Therefore, for each 1/w < τ < w we have

dim H (U τ [θ]) = w τ -1 w 2 -1 .
Example 17. Assume that θ is an irrational of w(θ) = w > 1 with the subsequence {k i } of q ki+1 > q w ki satisfying that a n+1 = 1 for n = k i and q ki > q ki-1+1

2 i
. Then we have lim i→∞ log q k1 log q ki + log q k2 log q ki + • • • + log q ki-1 log q ki = 0.

Since w i converges to w, by (43), the Hausdorff dimension of U τ [θ] is 1/τ +1 w+1 and 0, respectively for 1/w < τ < 1 and τ > 1.

If τ = 1, then, by the proof of (4), dim H (U τ [θ]) ≥ lim i→∞ log q ki + 1≤k<ki a k+1 =1 log q k+1 q k log q ki + log q ki+1 -ki≤k<ki+1 a k+1 =1 log q k+1 q k ≥ lim i→∞ log q ki + log q kilog q ki-1+1 log q ki + log q ki+1 ≥ lim i→∞ 2log q ki-1+1 / log q ki 1 + log q ki+1 / log q ki ≥ lim i→∞ 2 -2 -i 1 + log q ki+1 / log q ki = 2 w + 1 .

Hence, we have 

F k ⊂ q k i=1 iθ -2 q k θ q k 1 2 , iθ + 2 q k θ q k 1 2
.

Thus, by [START_REF] Hill | The shrinking target problem for matrix transformations of tori[END_REF], F k can be covered by ℓ k sets of diameter at most δ k , with

ℓ k ≤ q 1 4q 2 q 1 θ q 1 1 2 + 4 • • • 4q k q k-1 θ q k-1 1 2 + 4 ≤ 8 k-1 q 1 q 2 q 1 1 2 • • • q k q k-1 1 2 = 8 k-1 (q 1 q k ) 1 2 , δ k ≤ 4 q k θ q k 1 2 < 4 1 q k q k+1 1 2 .
Here we use the fact x + 1 ≤ 2x for x ≥ 1 for the second inequality for ℓ k . Thus, dim H (U τ [θ]) ≤ lim k log ℓ k log δ k = lim k (k -1) log 8 + 1 2 (log q k + log q 1 ) log 4 + 1 2 (log q k + log q k+1 ) . = 0, 1 ≤ lim k→∞ log q k+1 log q k ≤ lim k→∞ log(a k+1 + 1) + log q k log q k = 1.

Therefore, dim H (U τ [θ]) ≤ lim k log q k log q k + log q k+1 = 1 2 .

Hence, by Theorem 15, we have

dim H (U τ [θ]) =          1, τ < 1, 1 
2 , τ = 1, 0 τ > 1.

2, a k+1 = 5 r

 5 k+1 + 1 = 2, if a k+1 = 4 and a k+2 ≥ 2, r k+1 , otherwise.

Fact 14 (

 14 Mass Distribution Principle). Let E ⊂ R n and let µ be a finite Borel measure with µ(E) > 0. Suppose that there are numbers s ≥ 0, c > 0 and δ 0 > 0 such that µ(U ) ≤ c|U | s for all sets U with |U | ≤ δ 0 , where | • | stands for the Euclidean diameter. Then dim H (E) ≥ s. Now we are ready to estimate the Hausdorff dimension of U 1 [θ].

Example 18 .√ 5 - 1 2Example 19 .

 185119 dim H (U τ [θ]) = Let θ = , of which partial quotients a k = 1 for all k. Note that w(θ) = 1. By Lemma 6, U τ [θ] = T for τ = 1. Thus, we have dim H (U τ [θ]) = Let θ be the irrational with partial quotient a k = k for all k. Then w(θ) = 1. Consider the case of τ = 1. By Lemma 7 (iii), we have

Since log q k+1 ≥ k+1 i=1 log a i = k+1 i=2 log i ≥ k+1 1 (

 1 log x)dx = (k + 1) log(k + 1)k,

  be a decreasing sequence of sets, with each E n a union of finite number of disjoint intervals. Set Fact 9 ([14], p.64). Suppose each interval of E i-1 contains at least m i intervals of E i (i = 1, 2, . . . ) which are separated by gaps of at least ε i , where 0

	F =	∞	E n .
		n=0	
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