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DIRICHLET UNIFORMLY WELL-APPROXIMATED NUMBERS

DONG HAN KIM AND LINGMIN LIAO

Abstract. Fix an irrational number θ. For a real number τ > 0, consider

the numbers y satisfying that for all large number Q, there exists an integer

1 ≤ n ≤ Q, such that ‖nθ − y‖ < Q−τ , where ‖ · ‖ is the distance of a real

number to its nearest integer. These numbers are called Dirichlet uniformly

well-approximated numbers. For any τ > 0, the Haussdorff dimension of the

set of these numbers is obtained and is shown to depend on the Diophantine

property of θ. It is also proved that with respect to τ , the only possible

discontinuous point of the Hausdorff dimension is τ = 1.

1. Introduction

In Diophantine approximation, we study the approximation of an irrational num-

ber by rationals. Denote by ‖t‖ = minn∈Z |t− n| the distance from a real t to the

nearest integer. In 1842, Dirichlet [12] showed his celebrated theorem in Diophan-

tine approximation:

Dirichlet theorem Let θ, Q be real numbers with Q ≥ 1. There exists an integer

n with 1 ≤ n ≤ Q, such that ‖nθ‖ < Q−1.

Following Waldschmidt [42], we call Dirichlet theorem a uniform approximation

theorem. A weak form of the theorem, called an asymptotic approximation theorem,

was already known (e.g., Legendre’s 1808 book [32, pp.18–19])1 before Dirichlet:

for any real θ, there exist infinitely many integers n such that ‖nθ‖ < n−1. In the

literature, much more attention has been paid to the asymptotic approximation.

The first inhomogeneous asymptotic approximation result is due to Minkowski

[35] in 1907. Let θ be an irrational number. Let y be a real number which is not

equal to any mθ + ℓ with m, ℓ ∈ N. Minkowski proved that there exist infinitely

many integers n such that ‖nθ − y‖ < 1
4|n| .
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In 1924, Khinchine [24] proved that for a continuous function Ψ : N → R+, if

x 7→ xΨ(x) is non-increasing, then the set

LΨ := {θ ∈ R : ‖nθ‖ < Ψ(n) for infinitely many n}

has Lebesgue measure zero if the series
∑

Ψ(n) converges and has full Lebesgue

measure otherwise. The expected similar result by deleting the non-increasing

condition on Ψ is the famous Duffin-Schaeffer conjecture [13]. One could find the

recent progresses towards this conjecture in Haynes–Pollington–Velani–Sanju [18]

and Beresnevich–Harman–Haynes–Velani [3].

For the inhomogeneous case, Khinchine’s theorem was extended to the set

LΨ(y) := {θ ∈ R : ‖nθ − y‖ < Ψ(n) for infinitely many n}

by Szüsz [41] and Schmidt [38]. On the other hand, it follows from the Borel-Cantelli

Lemma that the Lebesgue measure of

LΨ[θ] := {y ∈ R : ‖nθ − y‖ < Ψ(n) for infinitely many n}

is zero whenever the series
∑

Ψ(n) converges. However, it seems not easy to obtain

a full Lebesgue measure result. In 1955, Kurzweil [30] showed that, if the irrational

θ is of bounded type (the partial quotients of the continued fraction of θ is bounded),

then for a monotone decreasing function Ψ : N → R+, with
∑

Ψ(n) = ∞, the set

LΨ[θ] has full Lebesgue measure. In 1957, Cassels [8] proved that for almost all

θ, the set LΨ[θ] has full Lebesgue measure if
∑

Ψ(n) = ∞. For new results in

this direction, we refer to the recent works Laurent–Nogueira [31], Kim [27], and

Fuchs–Kim [17].

At the end of twenties of last century, the concept of Hausdorff dimension had

been introduced into the study of Diophantine approximation. We refer the reader

to [14] for the definition and properties of the Hausdorff dimension. Using the

notion of Hausdorff dimension, Jarńık ([22], 1929) and independently Besicovitch

([2], 1934) studied the size of the set of asymptoticly well-approximated numbers.

They proved that for any τ ≥ 1, the Hausdorff dimension of the set

Lτ (0) :=
{

θ ∈ R : ‖nθ‖ < n−τ for infinitely many n
}

is 2/(τ + 1).

The corresponding inhomogeneous question was solved by Levesley [33] in 1998:

for any τ ≥ 1, and any real number y, the Hausdorff dimension of the set

Lτ (y) :=
{

θ ∈ R : ‖nθ − y‖ < n−τ for infinitely many n
}

which is different from Lτ (0), is also 2/(τ + 1).
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As in the Lebesgue measure problems, for the inhomogeneous case, one is also

concerned with the Hausdorff dimension of the sets of inhomogeneous terms. For

a fixed irrational θ, let us denote

Lτ [θ] :=
{

y ∈ R : ‖nθ − y‖ < n−τ for infinitely many n
}

.

In 2003, Bugeaud [4] and independently, Schmeling and Troubetzkoy [37] showed

that for any τ ≥ 1 the Hausdorff dimension of the set Lτ [θ] is 1/τ .

In analogy to the asymptotic approximation, for τ > 0, we consider the following

uniform approximation sets:

Uτ (y) :=
{

θ ∈ R : for all large Q, 1 ≤ ∃n ≤ Q such that ‖nθ − y‖ < Q−τ
}

,

Uτ [θ] :=
{

y ∈ R : for all large Q, 1 ≤ ∃n ≤ Q such that ‖nθ − y‖ < Q−τ
}

.

The points in Uτ (y) and Uτ [θ] are called Dirichlet uniformly well-approximated

numbers. The set Uτ (0) is referred to as homogeneous uniform approximation. In

general, except for a countable set, Uτ (y) and Uτ [θ] are contained in Lτ (y) and

Lτ [θ] correspondingly, since the uniform approximation property is stronger than

the asymptotic approximation property.

We see from Dirichlet Theorem that U1(0) = R. However, Khintchine ([25], 1926)

showed that for all τ > 1, Uτ (0) is Q. Consult [29] for the uniform approximation

by general error functions. In general, for y ∈ R, the set U1(y) does not always

contain all irrationals. Thus, there is no inhomogeneous analogy of the Dirichlet

Theorem. The question on the size of Uτ (y) for general y ∈ R is largely open.

For higher dimensional analogy of Uτ (0), Cheung [9] proved that the set of points

(θ1, θ2) such that for any δ > 0, for all large Q, there exists n ≤ Q such that

max
{

‖nθ1‖, ‖nθ2‖
}

< δ/Q
1
2 ,

is of Hausdorff dimension 4/3. This result was recently generalized to dimension

larger than 2 by Cheung and Chevallier [10].

In this paper, we mainly study the set Uτ [θ]. We will restrict ourselves to the

unit circle T = R/Z, for which the dimension results will be the same to those on

R. The points in T are considered as the same if their fractional parts are the same.

The irrationality exponent of θ is given by

w(θ) := sup{s > 0 : ‖nθ‖ < n−s for infinitely many n}.

We remark that the usual irrationality exponent is defined as 1+w(θ). See for ex-

ample [5, 42]. It was shown in Propositions 9 and 10 of [28] that Uτ [θ] is of Lebesgue

measure 1 if τ < 1/w(θ) or 0 if τ > 1/w(θ) (see also [26] for a related result). De-

note by dimH the Hausdorff dimension. Let qn = qn(θ) be the denominator of the
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n-th convergent of the continued fraction of θ. The following main theorems show

that dimH (Uτ [θ]) can be obtained using the sequence qn(θ) and strongly depends

on the irrationality exponent of θ:

Theorem 1. Let θ be an irrational with w(θ) > 1. Then Uτ [θ] = T if τ < 1/w(θ);

Uτ [θ] = {iθ ∈ T : i ≥ 1, i ∈ Z} if τ > w(θ); and

dimH (Uτ [θ]) =



























lim
k→∞

log
(

n
1+1/τ
k

∏k−1
j=1 n

1/τ
j ‖njθ‖

)

log(nk‖nkθ‖−1)
,

1

w(θ)
< τ < 1,

lim
k→∞

− log
(

∏k−1
j=1 nj‖njθ‖1/τ

)

log (nk‖nkθ‖−1)
, 1 < τ < w(θ).

where nk is the (maximal) subsequence of (qk) such that






nk‖nkθ‖τ < 1, if 1/w(θ) < τ < 1,

nτ
k‖nkθ‖ < 2, if 1 < τ < w(θ).

By a careful calculation for the case of τ = 1 combined with Theorem 1, we have

the following bounds of dimension in terms of w(θ).

Theorem 2. For any irrational θ with w(θ) = 1, we have Uτ [θ] = T if τ < 1;

Uτ [θ] = {iθ : i ≥ 1, i ∈ Z} if τ > 1; and

1

2
≤ dimH (Uτ [θ]) ≤ 1, if τ = 1.

Theorem 3. For any irrational θ with w(θ) = w > 1, we have

w/τ − 1

w2 − 1
≤ dimH (Uτ [θ]) ≤

1/τ + 1

w + 1
,

1

w
≤ τ ≤ 1,

0 ≤ dimH (Uτ [θ]) ≤
w/τ − 1

w2 − 1
, 1 < τ ≤ w.

Moreover, if w(θ) = ∞, then dimH (Uτ [θ]) = 0 for all τ > 0.

We will show in Examples 16, 17, 18 and 19, that the upper and lower bounds

of Theorems 2 and 3 can be all reached.

Remark 4. Consider the case τ > 1. By optimizing the upper bound in Theorem 3

with respect to w, we have for τ > 1,

dimH (Uτ [θ]) ≤
1

2τ(τ +
√
τ2 − 1)

,

and the equality holds when w = τ +
√
τ2 − 1. We then deduce that

dimH (Uτ [θ]) <
1

2τ2
<

1

2τ
for all τ > 1.

As we have mentioned, for all τ > 1, Uτ [θ] is included in Lτ [θ] except for a countable

set of points. In fact, excluding the countable set {nθ : n ∈ N}, the set Lτ [θ] is a
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level set of the lower limit of the hitting time for the irrational rotation x 7→ x+ θ

(see for example Lemma 4.2 of [16] and Lemma 3.2 of [34]), while the set Uτ [θ] is

a level set of upper limit of the same hitting time. So the fact that Uτ [θ] is almost

included in Lτ [θ] follows directly from the fact that lower limit is less than the

upper limit. Recall that dimH(Lτ [θ]) = 1/τ for all τ > 1. Our result then shows

that the inclusion is strict in the sense of Hausdorff dimension: the former is strictly

less than one-half of the latter one by Hausdorff dimension.

We will also prove the following theorem on the continuity of the Hausdorff

dimension of the set Uτ [θ] with respect to the parameter τ .

Theorem 5. For each irrational θ, dimH (Uτ [θ]) is a continuous function of τ on

(0, 1) ∪ (1,∞).

Finally, we note that our results give an answer for the case of dimension one

of Problem 3 in Bugeaud and Laurent [6]. We also remark that the uniform ap-

proximation problem for the b-ary and β-expansion has been recently studied by

Bugeaud and Liao [7]. The symbolic technique which is quite efficient in [7] falls in

our context.

The paper is organized as follows. Some lemmas for the structure of uniform

approximation set Uτ [θ] are stated in Section 2. The proof of Theorem 1 is given

in Section 3. In Section 4 we discuss the set Uτ [θ] for τ = 1 and prove Theorem 2.

Section 5 is devoted to the proofs of Theorems 3 and 5. In the last section, we give

the examples in which the bounds of Theorems 2 and 3 are attained.

2. Cantor structures

In this section, we first give some basic notations and properties on the continued

fraction expansion of irrational numbers which will be useful later. Then we describe

in detail the Cantor structure of the sets Uτ [θ].

Let θ ∈ [0, 1] be an irrational and {ak}k≥1 be the partial quotients of θ in its

continued fraction expansion. The denominator qk and the numerator pk of the

k-th convergent (q0 = 1, p0 = 0), satisfy the following relations

pn+1 = an+1pn + pn−1, qn+1 = an+1qn + qn−1, ∀n ≥ 1. (1)

A corresponding useful recurrence property is

‖qn−1θ‖ = an+1‖qnθ‖+ ‖qn+1θ‖. (2)

We also have the equality

qn+1‖qnθ‖+ qn‖qn+1θ‖ = 1, (3)
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and the estimation

1

2qn+1
<

1

qn+1 + qn
< ‖qnθ‖ ≤ 1

qn+1
. (4)

Recall that the irrationality exponent of θ is defined by w(θ) := sup{s > 0 :

lim infj→∞ js‖jθ‖ = 0}. By the theorem of best approximation (e.g. [36]), we can

show that

w(θ) = lim sup
n→∞

log qn+1

log qn
. (5)

Since (qn) is increasing, we have w(θ) ≥ 1 for every irrational number θ. The set of

irrational numbers with w(θ) = 1 has measure 1 and includes the set of irrational

numbers with bounded partial quotients, which is of measure 0 and of Hausdorff

dimension 1. There exist numbers with w(θ) = ∞, called the Liouville numbers.

For more details on continued fractions, we refer to Khinchine’s book [23].

In the following, we will investigate the Cantor structure of our main object

Uτ [θ]. Denote by B(x, r) the open ball of center x and radius r in T. Fix τ > 0.

Let

Gn =

n
⋃

i=1

B

(

iθ,
1

nτ

)

and Fk =

qk+1
⋂

n=qk

Gn.

Then we have

Uτ [θ] =

∞
⋃

ℓ=1

∞
⋂

n=ℓ

Gn =

∞
⋃

ℓ=1

∞
⋂

k=ℓ

Fk.

We will calculate the Hausdorff dimension of
⋂∞

k=1 Fk. From the construction,

we will see that for all ℓ, the Hausdorff dimensions of
⋂∞

k=ℓ Fk are the same to that

of
⋂∞

k=1 Fk. Thus by countable stability of the Hausdorff dimension,

dimH(Uτ [θ]) = dimH

( ∞
⋂

k=1

Fk

)

.

For m ≥ 1, set

Em :=

m
⋂

k=1

Fk.

Then for each m, Em is a union of intervals, and we have

∀m ≥ 1, Em+1 ⊂ Em, and

∞
⋂

m=1

Em =

∞
⋂

k=1

Fk.

We are thus led to the calculation of the Hausdorff dimension of the nested Cantor

set
⋂∞

m=1 Em. To this end, let us first investigate the structure of Fk.

We note that qkθ − pk > 0 if and only if k is even. In the following lemmas,

we will only consider formulae of Fk for even k’s since for the odd k’s we will have

symmetric formulae.
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The well-known Three Step Theorem (e.g. [39]) shows that by the points {iθ}qki=1,

the unit circle T is partitioned into qk intervals of length ‖qk−1θ‖ or ‖qk−1θ‖+‖qkθ‖.
Furthermore, for even k, we have

T \ {−iθ : 0 ≤ i < qk}

=

qk−1
⋃

i=1

((i − qk)θ, (i− qk−1)θ) ∪
qk
⋃

i=qk−1+1

((i− qk)θ, (i − qk − qk−1)θ)

=

qk−1
⋃

i=1

(iθ − ‖qkθ‖, iθ + ‖qk−1θ‖) ∪
qk
⋃

i=qk−1+1

(iθ − ‖qkθ‖, iθ + ‖qkθ‖ − ‖qk−1θ‖).

(6)

We remind that here and further throughout the paper, we will always consider iθ

as a point in T, but not in R. So the absolute values of these points are always less

than 1. In particular, qkθ = ‖qkθ‖ if k is even.

Lemma 6. (i) If

2

(

1

qk+1

)τ

> ‖qk−1θ‖+ ‖qkθ‖, (7)

then we have Fk = T.

(ii) For the case of τ = 1 and ak+1 = 1, we have Fk = T.

Proof. (i) For each qk ≤ n ≤ qk+1 we have

2

(

1

n

)τ

≥ 2

(

1

qk+1

)τ

> ‖qk−1θ‖+ ‖qkθ‖.

Since any two neighboring points in {iθ : 1 ≤ i ≤ qk} are distanced by ‖qk−1θ‖ or

‖qk−1θ‖+ ‖qkθ‖, all intervals overlap. Hence,

Gn =
n
⋃

i=1

B
(

iθ, n−τ
)

= T.

The result then follows.

(ii) If ak+1 = 1, then by (2) and (3) we have

qk+1 (‖qk−1θ‖+ ‖qkθ‖) = qk+1 (2‖qkθ‖ + ‖qk+1θ‖)

= 2qk+1‖qkθ‖ + (qk + qk−1) ‖qk+1θ‖

= 2− qk‖qk+1θ‖+ qk−1‖qk+1θ‖ < 2.

Hence, by (i), if τ = 1, Fk = T. �

Lemma 7. For any τ ≤ 1, we have

(i)

Fk ⊃
qk
⋃

i=1

(

iθ −
(

1

qk+1

)τ

, iθ + min
1≤c≤ak+1+1

(

(c− 1)‖qkθ‖+
1

(cqk + i− 1)τ

))

.
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(ii)

Fk ⊃
qk
⋃

i=1

(

iθ − ‖qkθ‖, iθ +

(

Cτ

(

1

qτk‖qkθ‖

)
1

τ+1

− 2

)

‖qkθ‖
)

,

where Cτ = τ
1

τ+1 + τ−
τ

τ+1 . Note that 1 < Cτ ≤ 2.

(iii)

Fk ⊂
qk
⋃

i=1

(

iθ − τ−
τ

τ+1

(‖qkθ‖
qk

)
τ

τ+1

, iθ + Cτ

(‖qkθ‖
qk

)
τ

τ+1

)

.

Proof. (i) Let n be an integer such that qk ≤ n ≤ qk+1 for some k ∈ N. Then if

k is even (the case when k is odd is the same up to symmetry), for each i with

1 ≤ i ≤ qk we have

Gn =

n
⋃

j=1

B
(

jθ, n−τ
)

⊃ B

(

iθ,
1

nτ

)

∪B

(

(qk + i)θ,
1

nτ

)

∪ · · · ∪B

(

(

⌊

n− i

qk

⌋

qk + i
)

θ,
1

nτ

)

.

Notice that for qk ≤ n ≤ qk+1

1

nτ
≥ 1

n
≥ 1

qk+1
> ‖qkθ‖. (8)

Thus, the above
⌊

n−i
qk

⌋

intervals overlap and for each 1 ≤ i ≤ qk

Gn ⊃
(

iθ − 1

nτ
, iθ +

⌊

n− i

qk

⌋

qkθ +
1

nτ

)

.

For each 1 ≤ i ≤ qk, if (c− 1)qk + i ≤ n ≤ cqk + i− 1, then
⌊

n− i

qk

⌋

‖qkθ‖ +
1

nτ
≥ (c− 1)‖qkθ‖ +

1

(cqk + i− 1)τ
.

Therefore, we have for each 1 ≤ i ≤ qk

Fk =

qk+1
⋂

n=qk

Gn ⊃
qk+1
⋂

n=qk

(

iθ − 1

nτ
, iθ +

⌊

n− i

qk

⌋

qkθ +
1

nτ

)

⊃
(

iθ − 1

qτk+1

, iθ + min
1≤c≤ak+1+1

(

(c− 1)‖qkθ‖ +
1

(cqk + i− 1)τ

))

.

(ii) By elementary calculus,

inf
x≥0

(

x‖qkθ‖+
1

(xqk)τ

)

=
(

τ
1

τ+1 + τ−
τ

τ+1

)

(‖qkθ‖
qk

)
τ

τ+1

.

Thus, we have

min
1≤c≤ak+1+1

(

(c− 1)‖qkθ‖+
1

((c+ 1)qk)τ

)

≥
(

τ
1

τ+1 + τ−
τ

τ+1

)

(‖qkθ‖
qk

)
τ

τ+1

− 2‖qkθ‖.
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Hence, by (i) and (8), we have

Fk ⊃
qk
⋃

i=1

(

iθ − ‖qkθ‖, iθ +
(

τ
1

τ+1 + τ−
τ

τ+1

)

(‖qkθ‖
qk

)
τ

τ+1

− 2‖qkθ‖
)

.

(iii) Let

c :=

⌈

(

τ

qτk‖qkθ‖

)
1

τ+1

⌉

.

We will distinguish two cases. If c ≤ ak+1, then we have

Fk =

qk+1
⋂

n=qk

Gn ⊂ Gcqk =

cqk
⋃

i=1

B(iθ, (cqk)
−τ )

=

qk
⋃

i=1

B(iθ, (cqk)
−τ ) ∪B((qk + i)θ, (cqk)

−τ ) ∪ · · · ∪B
(

((c− 1)qk + i)θ, (cqk)
−τ
)

.

Since
(

1

cqk

)τ

≥ 1

cqk
≥ 1

ak+1qk
≥ 1

qk+1
> ‖qkθ‖,

the above c intervals in the union overlap and we have

Fk ⊂
qk
⋃

i=1

(

iθ − (cqk)
−τ , iθ + (c− 1)qkθ + (cqk)

−τ
)

.

By the definition of c, we have

Fk ⊂
qk
⋃

i=1

(

iθ −
(

τqk
‖qkθ‖

)− τ
τ+1

, iθ +
1

qk

(

τqk
‖qkθ‖

)
1

τ+1

‖qkθ‖ +
(

τqk
‖qkθ‖

)− τ
τ+1

)

=

qk
⋃

i=1

(

iθ − τ−
τ

τ+1

(‖qkθ‖
qk

)
τ

τ+1

, iθ +
(

τ
1

τ+1 + τ−
τ

τ+1

)

(‖qkθ‖
qk

)
τ

τ+1

)

.

Then the assertion follows.

If c > ak+1, i.e.,
(

τ

qτk‖qkθ‖

)
1

τ+1

> ak+1,

then we have

(

τ
1

τ+1 + 2τ−
τ

τ+1

)

(‖qkθ‖
qk

)
τ

τ+1

>

(

1 +
2

τ

)

ak+1‖qkθ‖ ≥ 3ak+1‖qkθ‖

> ‖qk−1θ‖+ ‖qkθ‖.

Thus,

qk
⋃

i=1

(

iθ − τ−
τ

τ+1

(‖qkθ‖
qk

)
τ

τ+1

, iθ +
(

τ
1

τ+1 + τ−
τ

τ+1

)

(‖qkθ‖
qk

)
τ

τ+1

)

= T,

and the assertion trivially holds. �
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Lemma 8. Suppose τ > 1.

(i) We have
qk
⋃

i=1

B
(

iθ, q−τ
k+1

)

⊂ Fk ⊂
qk+1
⋃

i=1

B
(

iθ, q−τ
k+1

)

and for large qk the balls B
(

iθ, q−τ
k+1

)

, 1 ≤ i ≤ qk+1, are disjoint.

(ii) If q−τ
k+1 + q−τ

k ≤ ‖qkθ‖, then

Fk =

qk
⋃

i=1

B
(

iθ, q−τ
k+1

)

.

(iii) For large qk

max(ck,1)·qk
⋃

i=1

B
(

iθ, q−τ
k+1

)

⊂ Fk ⊂
(2ck+3)qk
⋃

i=1

B
(

iθ, q−τ
k+1

)

.

where

ck :=

⌊

(

1

qτk‖qkθ‖

)
1

τ+1

⌋

.

Proof. (i) For each 1 ≤ i ≤ qk and qk ≤ n ≤ qk+1,

B
(

iθ, q−τ
k+1

)

⊂
n
⋃

j=1

B
(

jθ, n−τ
)

.

Thus,
qk
⋃

i=1

B
(

iθ, q−τ
k+1

)

⊂
qk+1
⋂

n=qk





n
⋃

j=1

B
(

jθ, n−τ
)



 = Fk.

On the other hand,

Fk =

qk+1
⋂

n=qk

Gn ⊂ Gqk+1
=

qk+1
⋃

i=1

B
(

iθ, q−τ
k+1

)

. (9)

Since τ > 1, for large qk, (hence for lager qk+1),

2q−τ
k+1 <

1

2qk+1
< ‖qkθ‖. (10)

Thus, the balls B
(

iθ, q−τ
k+1

)

, 1 ≤ i ≤ qk+1, are disjoint.

(ii) Suppose that there exists x ∈ Fk \ ⋃qk
i=1 B

(

iθ, q−τ
k+1

)

. By (i), we have x ∈
B
(

jθ, q−τ
k+1

)

for some qk + 1 ≤ j ≤ qk+1. Since x ∈ Fk ⊂ Gqk , there exists

1 ≤ i ≤ qk such that x ∈ B
(

iθ, q−τ
k

)

. Since |iθ−jθ| ≥ ‖qkθ‖ and x ∈ B
(

jθ, q−τ
k+1

)

∩
B
(

iθ, q−τ
k

)

6= ∅, we have ‖qkθ‖ < qk
−τ + qk+1

−τ , which is a contradiction.

(iii) Suppose ck ≥ 2. Then for 1 ≤ m ≤ ck − 1, and for large qk,

m‖qkθ‖ ≤
(

( 1

qτk‖qkθ‖
)

1
τ+1 − 1

)

‖qkθ‖ =
(‖qkθ‖

qk

)
τ

τ+1 − ‖qkθ‖

≤ 1

(ckqk)τ
− 1

(qk+1)τ
≤ 1

((ck −m+ 1)qk)τ
− 1

(qk+1)τ
,

(11)
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where for the second inequality we use (10).

Let i be an integer satisfying qk < i ≤ ckqk. For each n with qk ≤ n < i, choose

m as i−mqk ≤ n < i − (m− 1)qk. Then 1 ≤ m ≤ ck − 1 and n ≤ (ck −m+ 1)qk.

By (11) we have

B
(

iθ, q−τ
k+1

)

⊂ B
(

(i −mqk)θ, ((ck −m+ 1)qk)
−τ
)

⊂ B
(

(i −mqk)θ, n
−τ
)

⊂ Gn.

We also have for i ≤ n ≤ qk+1,

B
(

iθ, q−τ
k+1

)

⊂ Gn

Therefore, for qk < i ≤ ckqk,

B(iθ, q−τ
k+1) ⊂

qk+1
⋂

n=qk

Gn = Fk.

Hence, if ck ≥ 2, we have

ckqk
⋃

i=qk+1

B
(

iθ, q−τ
k+1

)

⊂ Fk.

On the other hand, we have already proved in (i) that

qk
⋃

i=1

B
(

iθ, q−τ
k+1

)

⊂ Fk.

Therefore, the first inclusion for the case ck ≤ 1 in (iii) follows.

For large qk,

(ck + 2)‖qkθ‖ >

(

( 1

qτk‖qkθ‖
)

1
τ+1

+ 1

)

‖qkθ‖ =

(‖qkθ‖
qk

)
τ

τ+1

+ ‖qkθ‖

>
1

((ck + 1)qk)τ
+

1

(qk+1)τ
.

Suppose (2ck + 3)qk < i ≤ qk+1. Then for any j with 1 ≤ j ≤ (ck + 1)qk we have

|iθ − jθ| ≥ (ck + 2)‖qkθ‖, thus

B
(

iθ, q−τ
k+1

)

∩B
(

jθ, ((ck + 1)qk)
−τ
)

= ∅,

which implies

B
(

iθ, q−τ
k+1

)

∩G(ck+1)qk = ∅.
Hence,

B
(

iθ, q−τ
k+1

)

∩ Fk = ∅.
Therefore, by (9) we have

Fk ⊂
(2ck+3)qk
⋃

i=1

B
(

iθ, q−τ
k+1

)

, (12)

which is the second inclusion in (iii). �
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3. Proof of Theorem 1

We will use the following known facts in fractal geometry to calculate the Haus-

dorff dimensions. Let E0 ⊃ E1 ⊃ E2 ⊃ . . . be a decreasing sequence of sets, with

each En a union of finite number of disjoint intervals. Set

F =

∞
⋂

n=0

En.

Fact 9 ([14], p.64). Suppose each interval of Ei−1 contains at least mi intervals of

Ei (i = 1, 2, . . . ) which are separated by gaps of at least εi, where 0 < εi+1 < εi for

each i. Then

dimH(F ) ≥ lim
i→∞

log(m1 · · ·mi−1)

− log(miεi)
.

Fact 10 ([14], p.59). Suppose F can be covered by ℓi sets of diameter at most δi

with δi → 0 as i → ∞. Then

dimH(F ) ≤ lim
i→∞

log ℓi
− log δi

.

Now we are ready to prove Theorem 1. Recall that

Fk =

qk+1
⋂

n=qk

(

n
⋃

i=1

B
(

iθ, n−τ
)

)

.

By the discussion at the beginning of Section 2, we need to calculate the Hausdorff

dimension of the set

F =

∞
⋂

n=1

En, with En =

n
⋂

k=1

Fk.

The dimension of F is the same to that of Uτ [θ].

Proof of Theorem 1. (i) If τ < 1/w(θ), by (5) we have for all large k,

2

(

1

qk+1

)τ

>
2

qk
>

1

qk
+

1

qk+1
≥ ‖qk−1θ‖ + ‖qkθ‖.

Thus by Lemma 6 (i), for all large k, Fk is the whole circle T. Hence,

Uτ [θ] =

∞
⋃

ℓ=1

∞
⋂

k=ℓ

Fk = T.

(ii) If τ > w(θ), then we have qτk‖qkθ‖ > 2 for all large k, thus

q−τ
k+1 + q−τ

k < 2q−τ
k ≤ ‖qkθ‖ for large k. (13)

By Lemma 8 (ii), for large k

Fk =

qk
⋃

i=1

B
(

iθ, q−τ
k+1

)

.
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Thus,

Fk ∩ Fk+1 =

(

qk
⋃

i=1

B
(

iθ, q−τ
k+1

)

)

∩





qk+1
⋃

j=1

B
(

iθ, q−τ
k+2

)



 .

By (13), for 1 ≤ i 6= j ≤ qk+1 we have |iθ − jθ| ≥ ‖qk+1θ‖ > q−τ
k+2 + q−τ

k+1, thus

Fk ∩ Fk+1 =

qk
⋃

j=1

B
(

iθ, q−τ
k+2

)

.

Inductively, for each ℓ ≥ 0 we get

Fk ∩ Fk+1 ∩ · · · ∩ Fk+ℓ =

qk
⋃

i=1

B
(

iθ, q−τ
k+ℓ+1

)

. (14)

Hence, we conclude

Uτ [θ] =

∞
⋃

ℓ=1

∞
⋂

k=ℓ

Fk = {iθ : i ≥ 1}.

(iii) Assume that 1/w(θ) < τ < 1. If qk‖qkθ‖τ ≥ 1 then we have

2

(

1

qk+1

)τ

> 2‖qkθ‖τ > ‖qkθ‖τ + ‖qkθ‖

≥ 1

qk
+ ‖qkθ‖ > ‖qk−1θ‖ + ‖qkθ‖.

By Lemma 6 (i), we have Fk = T. Since removing such sets Fk from the intersection

F =
⋂∞

k=1 Fk does not change F , we only consider Fk such that qk‖qkθ‖τ < 1.

Suppose for some k

qk‖qkθ‖τ < 1. (15)

Then
1

4

(‖qkθ‖
qk

)
τ

τ+1

<
1

4qk
<

1

2
‖qk−1θ‖. (16)

For 1 ≤ i ≤ qk, put

F̃k(i) :=

(

iθ − ‖qkθ‖, iθ +
1

4

(‖qkθ‖
qk

)
τ

τ+1

− ‖qkθ‖
)

.

By (15), for any constant c > 0 for large k

c

(‖qkθ‖
qk

)
τ

τ+1

> c‖qkθ‖τ > ‖qkθ‖. (17)

Since Cτ > 1, by (17) and Lemma 7 (ii)

F̃k :=

qk
⋃

i=1

F̃k(i) ⊂ Fk. (18)

By (16), the intervals in F̃k(i)’s are disjoint and distanced by more than 1
2‖qk−1θ‖.

We estimate the number of subintervals of F̃k+ℓ in each F̃k(i) by the Denjoy-

Koksma inequality (see, e.g., [19]): let T be an irrational rotation by θ and f be
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a real valued function of bounded variation on the unit interval. Denote by var(f)

the total variation of f on the unit interval. Then for any x

∣

∣

∣

∣

∣

qk−1
∑

n=0

f(T nx) − qk

∫

f dx

∣

∣

∣

∣

∣

≤ var(f). (19)

For a given interval I, by the Denjoy-Koksma inequality (19), we have

# {1 ≤ n ≤ qk : nθ ∈ I} =

qk−1
∑

n=0

1I(T
nx) ≥ qk|I| − 2.

Since F̃k+ℓ consists of the disjoint intervals at qk+ℓ orbital points, we have for each

1 ≤ i ≤ qk

#
{

1 ≤ n ≤ qk+ℓ : F̃k+ℓ(n) ∩ F̃k(i) 6= ∅
}

≥ qk+ℓ ·
1

4

(‖qkθ‖
qk

)
τ

τ+1

− 2

and

#
{

1 ≤ n ≤ qk+ℓ : F̃k+ℓ(n) ⊂ F̃k(i)
}

≥ qk+ℓ

4

(‖qkθ‖
qk

)
τ

τ+1

− 4.

By applying (17), we deduce

#
{

1 ≤ n ≤ qk+ℓ : F̃k+ℓ(n) ⊂ F̃k(i)
}

≥ qk+ℓ

5

(‖qkθ‖
qk

)
τ

τ+1

.

Let {ni} be the sequence of all integers satisfying

ni‖niθ‖τ < 1.

We remark that since 1/w(θ) < τ , by the definition of w(θ), there are infinitely

many such ni’s. Further, by the Legendre’s theorem ([32], pp. 27–29), we have

ni = qki
for some ki.

Since Fk = T if k 6= ki, the Cantor set F is

F =

∞
⋂

k=1

Fk =

∞
⋂

i=1

Fki
.

Now we will apply Fact 9. Let

Ẽi :=

i
⋂

j=1

F̃kj
⊂

i
⋂

j=1

Fkj
.

Then
⋂∞

i=1 Ẽi ⊂ F. Keeping the notations mi, εi as in Fact 9, we have for i large

enough,

mi ≥
qki

5

(‖qki−1
θ‖

qki−1

)
τ

τ+1

, εi ≥
1

2
‖qki−1θ‖. (20)
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Since the lower limit will not be changed if we modify finite number of mi and εi’s,

we can suppose that the estimates (20) hold for all i. Hence, by Fact 9

dimH(F ) ≥ lim
i

log(m1 · · ·mi)

− log(mi+1εi+1)

≥ lim
i

τ
τ+1 log(

‖n1θ‖···‖ni−1θ‖
n1···ni−1

) + log(n1 · · ·ni)− i log 5
τ

τ+1 log(ni/‖niθ‖)

= lim
i

log(‖n1θ‖ · · · ‖ni−1θ‖) + 1
τ log(n1 · · ·ni−1) + (1 + 1

τ ) logni

log(ni/‖niθ‖)
.

The last equality follows from the fact that nk increases super-exponentially when

w(θ) > 1.

For the the upper bound of dimH(F ), by Lemma 7 (iii), we have

Fk ⊂
qk
⋃

i=1

(

iθ − Cτ

(‖qkθ‖
qk

)
τ

τ+1

, iθ + Cτ

(‖qkθ‖
qk

)
τ

τ+1

)

:= F̄k.

By the Denjoy-Koksma inequality (19), the number of subintervals of F̄ki
contained

in each interval of F̄ki−1
is at most

2Cτqki

(‖qki−1
θ‖

qki−1

)
τ

τ+1

+ 4.

Therefore, Ēi :=
⋂i

j=1 F̄kj
can be covered by ℓi sets of diameter at most δi, with

ℓi ≤ qk1

(

2Cτ qk2

(‖qk1
θ‖

qk1

)
τ

τ+1

+ 4

)

· · ·
(

2Cτqki

(‖qki−1
θ‖

qki−1

)
τ

τ+1

+ 4

)

,

δi ≤ 2Cτ

(‖qki
θ‖

qki

)
τ

τ+1

.

(21)

By (17)

2Cτ qki

(‖qki−1
θ‖

qki−1

)
τ

τ+1

> 2Cτqki
‖qki−1

θ‖τ > 2Cτ qki
‖qki−1

θ‖ > Cτ > 1.

Thus by the fact that x+ 4 ≤ 5x for x ≥ 1, we have

ℓi ≤ (10Cτ )
i−1 (n1 · · ·ni−1)

1
τ+1 ni (‖n1θ‖ · · · ‖ni−1θ‖)

τ
τ+1 , δi ≤ 2Cτ

(‖niθ‖
ni

)
τ

τ+1

.

Hence, by Fact 10, we have

dimH(F ) ≤ lim
i

log ℓi
− log δi

≤ lim
i

log(‖n1θ‖ · · · ‖ni−1θ‖) + 1
τ log(n1 · · ·ni−1) + (1 + 1

τ ) logni

log(ni/‖niθ‖)
.

(iv) Suppose 1 < τ < w(θ). Let {ni} be the sequence of all integers satisfying

nτ
i ‖niθ‖ < 2.
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Remark that by the definition of w(θ), there are infinitely many such ni’s. Applying

the Legendre’s theorem ([32], pp. 27–29), we have ni = qki
for some ki.

If k 6= ki, then q−τ
k+1 + q−τ

k ≤ 2q−τ
k ≤ ‖qkθ‖. Thus by Lemma 8 (ii)

Fk =

qk
⋃

i=1

B
(

iθ, q−τ
k+1

)

.

Therefore, by (14)
ki+1−1
⋂

ℓ=ki+1

Fℓ =

qki+1
⋃

j=1

B
(

jθ, q−τ
ki+1

)

. (22)

Also since |iθ − jθ| ≥ ‖qki
θ‖ > q−τ

ki+1 for 1 ≤ i 6= j ≤ qki+1, we deduce that

max(cki ,1)qki
⋃

j=1

B
(

jθ, q−τ
ki+1

)

=





max(cki ,1)qki
⋃

j=1

B
(

jθ, q−τ
ki+1

)



 ∩





qki+1
⋃

j=1

B
(

jθ, q−τ
ki+1

)



 .

Thus, by Lemma 8 (iii) and (22)

max(cki ,1)qki
⋃

j=1

B
(

jθ, q−τ
ki+1

)

⊂ Fki
∩





ki+1−1
⋂

ℓ=ki+1

Fℓ



 =

ki+1−1
⋂

ℓ=ki

Fℓ.

Take

F̃i :=

max(cki ,1)qki
⋃

j=1

B
(

jθ, q−τ
ki+1

)

and Ẽi :=

i
⋂

j=1

F̃j .

Then
∞
⋂

i=1

Ẽi ⊂ F.

By the definition of ck, if cki
≥ 1, then qτki

‖qki
θ‖ ≤ 1. Using τ > 1, we have for

large k

(cki
− 1) ‖qki

θ‖+ 1

qτki+1

≤
(

1

qτki
‖qki

θ‖

)
1

τ+1

‖qki
θ‖ − ‖qki

θ‖+ 1

qτki+1

<
1

qτki
‖qki

θ‖‖qki
θ‖ − 1

2qki+1
+

1

qτki+1

<
1

qτki

.

Therefore, for each 1 ≤ j ≤ qki

B
(

jθ, q−τ
ki

)

∩ F̃i =

max(cki ,1)−1
⋃

h=0

B
(

(hqki
+ j)θ, q−τ

ki+1

)

.

The number of intervals of F̃i in each interval B
(

jθ, q−τ
ki

)

of F̃i−1 is

mi = max(cki
, 1) = max













(

1

qτki
‖qki

θ‖

)
1

τ+1







 , 1



 (23)
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and the gaps between intervals in F̃i is at least

ǫi ≥ ‖qki
θ‖ − 2

(qki+1
)τ

.

Since max(⌊x⌋, 1) ≥ x
2 for any real x ≥ 0, we have

mi ≥
1

2

(

1

qτki
‖qki

θ‖

)
1

τ+1

.

For large i, from τ > 1, we deduce

ǫi ≥ ‖qki
θ‖ − 2

(qki+1
)τ

≥ ‖qki
θ‖

2
.

Therefore, by Fact 9

dimH(F ) ≥ lim
i

log(m1 · · ·mi−1)

− log(miεi)

≥ lim
k

− τ
τ+1 log(n1‖n1θ‖1/τn2‖n2θ‖1/τ · · ·ni−1‖ni−1θ‖1/τ )− (i− 1) log 2

τ
τ+1 log(ni/‖niθ‖) + log 4

= lim
k

− log(n1‖n1θ‖1/τn2‖n2θ‖1/τ · · ·ni−1‖ni−1θ‖1/τ )
log(ni/‖niθ‖)

.

For the upper bound, by (22) and Lemma 8 (i), (iii),

F̄i :=

min((2cki+3)qki ,qki+1)
⋃

j=1

B
(

jθ, q−τ
ki+1

)

⊃
ki+1−1
⋂

ℓ=ki

Fℓ.

Then

F ⊂
∞
⋂

i=1

F̄i.

By a similar calculation of (23), we deduce that each Ēi :=
⋂i

j=1 F̄j can be covered

by ℓi sets of diameter at most δi, with

ℓi ≤ (2ck1
+ 3) · · · (2cki−1

+ 3)

≤
(

2

(

1

nτ
1‖n1θ‖

)
1

τ+1

+ 5

)

· · ·
(

2

(

1

nτ
i−1‖ni−1θ‖

)
1

τ+1

+ 5

)

,

δi ≤ (2cki
+ 3)‖qki

θ‖+ 2

qτki+1

≤
(

2

(

1

nτ
i ‖niθ‖

)
1

τ+1

+ 5

)

· ‖niθ‖.

Note that

(qτki
‖qki

θ‖)−1/(τ+1) > 2−1/(τ+1) > 2−1/2,

and 2x+ 5 < 10x for x > 2−1/2. Then we have

ℓi ≤ 10i−1

(

1

nτ
1‖n1θ‖

· · · 1

nτ
i−1‖ni−1θ‖

)
1

τ+1

, δi ≤ 10

(‖niθ‖
ni

)
τ

τ+1

.
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Thus by Fact 10,

dimH(F ) ≤ lim
i

log ℓi
− log δi

≤ lim
i

− log(n1‖n1θ‖1/τn2‖n2θ‖1/τ · · ·ni−1‖ni−1θ‖1/τ ) + (i − 1) log 10

log(ni/‖niθ‖)− log 10

= lim
i

− log(n1‖n1θ‖1/τn2‖n2θ‖1/τ · · ·ni−1‖ni−1θ‖1/τ )
log(ni/‖niθ‖)

.

The last equality is from the super-exponentially increasing of nk when w(θ) > 1.

�

4. The case of τ = 1 and proof of Theorem 2

For the case of τ = 1, we need more accurate estimation on the size of intervals

of Fk. We first prove the following two lemmas which describe the subintervals

contained in Fk.

Lemma 11. If 1
(b+1)(b+2) ≤ qk‖qkθ‖ < 1

b(b+1) , for some b ≥ 1, then

⋃

1≤i≤qk

(

iθ − 1

qk+1
, iθ + (b− 1)qkθ +

1

(b + 1)qk

)

⊂ Fk.

Proof. Since 1
(b+1)(b+2)qk

≤ ‖qkθ‖ < 1
b(b+1)qk

, for any integer c ≥ 1

(b− c)‖qkθ‖+
1

(b+ 1)qk
− 1

(c+ 1)qk
= (b − c)

(

‖qkθ‖ −
1

(b+ 1)(c+ 1)qk

)

≤ 0.

Therefore, for all c ≥ 1 and 1 ≤ i ≤ qk

(b− 1)‖qkθ‖+
1

(b+ 1)qk
≤ (c− 1)‖qkθ‖+

1

(c+ 1)qk
≤ (c− 1)‖qkθ‖+

1

cqk + i
.

Applying Lemma 7 (i), we complete the proof. �

For each k ≥ 0, denote

rk+1 :=







⌊

√

4ak+1 + 5
⌋

− 3, ak+1 6= 2,

1, ak+1 = 2.

We remark that 0 ≤ rk+1 < ak+1 and the first values of rk+1 are

rk+1 =



















0, ak+1 = 1,

1, ak+1 = 2, 3, 4,

2, ak+1 = 5, 6, 7.

Define inductively

r̃k+1 :=







rk+1 + 1 = 2, if ak+1 = 4 and ak+2 ≥ 2,

rk+1, otherwise.
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The first values of r̃k+1 can be easily calculated:

r̃k+1 =











































0, ak+1 = 1,

1, ak+1 = 2, 3,

1, ak+1 = 4, ak+2 = 1,

2, ak+1 = 4, ak+2 ≥ 2,

2, ak+1 = 5, 6, 7.

Note that for ak+1 6= 4 or ak+2 ≥ 2 (i.e., for all cases except ak+1 = 4, ak+2 = 1)

r̃k+1 + 1 ≥
√

ak+1 + 1 ≥
√

qk+1

qk
. (24)

We can also check

r̃k+1 ≤ ak+1

2
for ak+1 ≥ 1, (25)

r̃k+1 + 1 ≤ 1

5
(4ak+1 − 1) for ak+1 ≥ 3. (26)

Lemma 12. For each k ≥ 1 with ak+1 ≥ 2, we have

qk
⋃

i=1

(iθ − ‖qkθ‖, iθ + rk+1‖qkθ‖+ ‖qk+1θ‖) ⊂ Fk.

Moreover, if ak+1 = 4 and ak+2 ≥ 2, then


























qk
⋃

i=1

(

iθ − ‖qkθ‖, iθ + r̃k+1‖qkθ‖+ ‖qk+1θ‖
)

⊂ Fk, if ak = 1,

(r̃k+1)qk−1
⋃

i=1

(

iθ − ‖qkθ‖, iθ + r̃k+1‖qkθ‖+ ‖qk+1θ‖
)

⊂ Fk, if ak ≥ 2.

Proof. For the first part of the proof, We distinguish two cases.

(i) Suppose ak+1 = 2. Then rk+1 = 1 and 1
4 < qk‖qkθ‖ < 1

2 . Thus, by applying

Lemma 11 for b = 1, we have

⋃

1≤i≤qk

(

iθ − 1

qk+1
, iθ +

1

2qk

)

⊂ Fk. (27)

Using the equality (3) for n = k − 1, and observing qk+1 = ak+1qk + qk−1 =

2qk + qk−1, we have

1

2qk
+

1

qk+1
=

1

qk
−
(

1

2qk
− 1

qk+1

)

=
qk‖qk−1θ‖+ qk−1‖qkθ‖

qk
− qk+1 − 2qk

2qkqk+1

= ‖qk−1θ‖ +
qk−1

qk

(

‖qkθ‖ −
1

2qk+1

)

> ‖qk−1θ‖.
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Then by (27), for qk−1 < i ≤ qk

(iθ − ‖qkθ‖, iθ + ‖qkθ‖+ ‖qk+1θ‖)

⊂
(

iθ − 1

qk+1
, iθ +

1

2qk

)

∪
(

(i− qk−1)θ −
1

qk+1
, (i− qk−1)θ +

1

2qk

)

⊂ Fk.

(28)

On the other hand, by (3), and the assumption ak+1 = 2, we can check

‖qkθ‖+ ‖qk+1θ‖ <
1

qk + qk−1
, ‖qk+1θ‖ <

1

2qk + qk−1
.

Thus, for 1 ≤ i ≤ qk−1

(iθ − ‖qkθ‖, iθ + ‖qkθ‖+ ‖qk+1θ‖)

⊂
(

iθ − 1

qk+1
, iθ +min

(

1

qk + qk−1
, ‖qkθ‖+

1

2qk + qk−1

))

⊂ Fk, (29)

where the second inclusion is from Lemma 7 (i).

Combining (28) and (29), we conclude that for ak+1 = 2

⋃

1≤i≤qk

(iθ − ‖qkθ‖, iθ + ‖qkθ‖+ ‖qk+1θ‖) ⊂ Fk.

(ii) Assume ak+1 ≥ 3. There exists an integer b ≥ 1 satisfying

b(b+ 1) <
1

qk‖qkθ‖
≤ (b + 1)(b+ 2).

Thus, we have b(b+ 1)− 1 ≤ ak+1 ≤ (b+ 1)(b+ 2)− 1.

By the fact
1

qk
> ‖qk−1θ‖ = ak+1‖qkθ‖+ ‖qk+1θ‖,

we have

1

(b+ 1)qk
>

ak+1 − b

b+ 1
‖qkθ‖+

b‖qkθ‖+ ‖qk+1θ‖
b+ 1

>
ak+1 − b

b+ 1
‖qkθ‖+ ‖qk+1θ‖.

(30)

We will apply Lemma 11 and we will distinguish three parts according to the value

of ak+1.

If b2 + b− 1 ≤ ak+1 ≤ b2 + 2b− 1, then ⌊√4ak+1 + 5⌋ = 2b+ 1 and by (30)

(2b− 2) ‖qkθ‖+ ‖qk+1θ‖ < (b− 1)‖qkθ‖+
1

(b+ 1)qk
.

If b2 + 2b ≤ ak+1 ≤ b2 + 3b, then ⌊√4ak+1 + 5⌋ = 2b+ 2 and by (30)

(2b− 1) ‖qkθ‖+ ‖qk+1θ‖ < (b− 1)‖qkθ‖+
1

(b+ 1)qk
.
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Finally if ak+1 = b2 + 3b+ 1 we have ⌊√4ak+1 + 5⌋ = 2b+ 3 and by (30)

2b‖qkθ‖+ ‖qk+1θ‖ < (b − 1)‖qkθ‖+
1

(b + 1)qk
.

Therefore, in all cases, we have

(⌊

√

4ak+1 + 5
⌋

− 3
)

‖qkθ‖+ ‖qk+1θ‖ ≤ (b− 1)‖qkθ‖ +
1

(b+ 1)qk
.

By Lemma 11, we have

⋃

1≤i≤qk

(iθ − ‖qkθ‖, iθ + rk+1‖qkθ‖+ ‖qk+1θ‖) ⊂ Fk.

Now we prove the second assertion of the lemma. We will apply Lemma 7 (i).

To this end, we will obtain in the following many estimates of the form:

(b − 1)‖qkθ‖+
1

bqk + i
(1 ≤ i ≤ qk).

(a) If ak = 1, then we have

qk‖qk+1θ‖ = qk−1‖qk+1θ‖+ qk−2‖qk+1θ‖

≤ (ak+2 − 1)qk−1‖qk+1θ‖+ qk−2‖qk+1θ‖

< ak+2qk−1‖qk+1θ‖ < qk−1‖qkθ‖.

Hence, for all b ≥ 1

(b + 1)qk ((3− b)‖qkθ‖+ ‖qk+1θ‖) ≤ 4qk‖qkθ‖+ 2qk‖qk+1θ‖

< 4qk‖qkθ‖+ qk−1‖qkθ‖+ qk‖qk+1θ‖

= qk+1‖qkθ‖+ qk‖qk+1θ‖ = 1,

which yields that for all b ≥ 1

2‖qkθ‖ + ‖qk+1θ‖ < (b− 1)‖qkθ‖+
1

(b + 1)qk
.

Therefore, by Lemma 7 (i), we have

⋃

1≤i≤qk

(iθ − ‖qkθ‖, iθ + 2‖qkθ‖ + ‖qk+1θ‖) ⊂ Fk.

(b) Suppose ak ≥ 2. We will prove for all b ≥ 1

2‖qkθ‖+ ‖qk+1θ‖ < (b − 1)‖qkθ‖+
1

bqk + (r̃k + 1)qk−1
,

which is equivalent to

(bqk + (r̃k + 1)qk−1) ((3− b)‖qkθ‖ + ‖qk+1θ‖) < 1.
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In fact, for 1 ≤ b ≤ 3, by (25), we have

(bqk + (r̃k + 1)qk−1) ((3− b)‖qkθ‖+ ‖qk+1θ‖)

≤
(

bqk +
(ak
2

+ 1
)

qk−1

)

((3− b)‖qkθ‖+ ‖qk+1θ‖)

= (3b− b2)qk‖qkθ‖+ (b − 1)qk‖qk+1θ‖+
(

(3 − b)ak
2

+ 2− b

)

qk−1‖qkθ‖

+
(ak
2

+ 1
)

qk−1‖qk+1θ‖+ qk‖qk+1θ‖+ qk−1‖qkθ‖.

(31)

By (2) and (1) respectively, we have the estimations:

‖qk+1θ‖ ≤ 1

ak+2
‖qkθ‖ and qk−1 <

qk
ak

. (32)

Thus, for 1 ≤ b ≤ 2

(3b− b2)qk‖qkθ‖+ (b − 1)qk‖qk+1θ‖

+

(

(3− b)ak
2

+ 2− b

)

qk−1‖qkθ‖+
(ak
2

+ 1
)

qk−1‖qk+1θ‖

<

(

3b− b2 +
b− 1

ak+2
+

3− b

2
+

2− b

ak
+

(

1

2
+

1

ak

)

1

ak+2

)

qk‖qkθ‖.

By using the assumption ak+2 ≥ 2 and 1 ≤ b ≤ 2, we then deduce

(bqk + (r̃k + 1)qk−1) ((3− b)‖qkθ‖ + ‖qk+1θ‖)

≤
(

3b− b2 +
b− 1

2
+

3− b

2
+

2− b

2
+

1

2

)

qk‖qkθ‖+ qk‖qk+1θ‖ + qk−1‖qkθ‖

=

(

5

2
+

5b

2
− b2

)

qk‖qkθ‖+ qk‖qk+1θ‖ + qk−1‖qkθ‖

≤ 4qk‖qkθ‖+ qk−1‖qkθ‖ + qk‖qk+1θ‖ = 1.

For the last equality, we have used the assumption ak+1 = 4 and the fact (3).

If b = 3, then from (31) and (32) we have

(bqk + (r̃k + 1)qk−1) ((3 − b)‖qkθ‖+ ‖qk+1θ‖) ≤
(

3qk +
(ak
2

+ 1
)

qk−1

)

‖qk+1θ‖

<

(

7

2
+

1

ak

)

qk‖qk+1θ‖

≤ 4qk‖qk+1θ‖ < 1.

For b ≥ 4, it is easy to see that

(bqk + (r̃k + 1)qk−1) ((3− b)‖qkθ‖ + ‖qk+1θ‖) < 0 < 1.

Thus, for each 1 ≤ i ≤ (r̃k + 1)qk−1, we have for any b ≥ 1

2‖qkθ‖ + ‖qk+1θ‖ < (b− 1)‖qkθ‖ +
1

bqk + (r̃k + 1)qk−1
≤ (b− 1)‖qkθ‖+

1

bqk + i
.
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By Lemma 7 (i), we have

(r̃k+1)qk−1
⋃

i=1

(

iθ − ‖qkθ‖, iθ + r̃k+1‖qkθ‖+ ‖qk+1θ‖
)

⊂ Fk. �

The proof of Lemma 12 is completed.

Now we are ready to give a new nested Cantor subset of Uτ [θ]. Remind that we

assume k is even. We denote

Dk :=















T, ak+1 = 1,

qk
⋃

i=1

(iθ − ‖qkθ‖, iθ + r̃k+1‖qkθ‖+ ‖qk+1θ‖) . ak+1 ≥ 2.
(33)

For the case k is odd, we have the symmetric formula:

Dk :=

qk
⋃

i=1

(iθ − r̃k+1‖qkθ‖ − ‖qk+1θ‖, iθ + ‖qkθ‖) . (34)

Then, by Lemma 12, we have Dk ⊂ Fk, thus

D :=

∞
⋂

k=1

Dk ⊂
∞
⋂

k=1

Fk.

Now we will investigate the numbers of subintervals of Dk+ℓ in each interval of

Dk. Let (um) be the Fibonacci sequence defined by u0 = 0, u1 = 1 and um+1 =

um + um−1.

Lemma 13. Suppose that ak+1 ≥ 2, ak+ℓ+1 ≥ 2 and ak+m = 1 for all 2 ≤ m ≤ ℓ.

Then the number of points of jθ, 1 ≤ j ≤ qk+ℓ in each interval of Dk is

uℓr̃k+1 + uℓ+1 ≥
qk+ℓ√
qkqk+1

.

Proof. For each integer n ≥ 0 we have a unique representation (called Ostrowski’s

expansion, see [36]):

n =

∞
∑

m=0

cm+1qm,

where 0 ≤ c1 < a1, 0 ≤ cm+1 ≤ am+1, and cm = 0 if cm+1 = am+1.

If

j =

k+ℓ−1
∑

m=k

cm+1qm

is an integer with its representation coefficients:

0 ≤ ck+1 ≤ r̃k+1 < ak+1, 0 ≤ cm+1 ≤ am+1 = 1 (k < m ≤ k + ℓ), (35)
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then, by the fact that qkθ − pk > 0 if and only if k is even, we have

jθ = ck+1qkθ + ck+2qk+1θ + · · ·+ ck+ℓqk+ℓ−1θ

≤ r̃k+1qkθ + ak+3qk+2θ + ak+5qk+4θ + · · · < r̃k+1‖qkθ‖ + ‖qk+1θ‖,

jθ ≥ ak+2qk+1θ + ak+4qk+3θ + · · · > −‖qkθ‖.

Thus, for each i with 1 ≤ i ≤ qk

iθ − ‖qkθ‖ < (i+ j)θ < iθ + r̃k+1‖qkθ‖+ ‖qk+1θ‖.

The number of the above integer j’s of which expansion satisfying (35) is the number

of ℓ-tuples of (ck+1, ck+2, . . . , ck+ℓ) such that

0 ≤ ck+1 ≤ r̃k+1 < ak+1, 0 ≤ cm+1 ≤ 1 = am+1 for k + 1 ≤ m ≤ k + ℓ− 1

and

cmcm+1 = 0 for k + 1 ≤ m ≤ k + ℓ− 1,

which is uℓr̃k+1 + uℓ+1. Note that if ℓ = 1, then the number of j’s satisfying (35)

is r̃k+1 + 1 = u1r̃k+1 + u2. Hence, for each 1 ≤ i ≤ qk

#{1 ≤ j ≤ qk+ℓ : jθ ∈ (iθ − ‖qkθ‖, iθ + r̃k+1‖qkθ‖ + ‖qk+1θ‖)} = uℓr̃k+1 + uℓ+1.

If ak+1 6= 4 or ℓ = 1, then using (24) and the fact qk+ℓ = uℓqk+1 + uℓ−1qk, the

number of points satisfies

uℓr̃k+1 + uℓ+1 = uℓ(r̃k+1 + 1) + uℓ−1 ≥ uℓ

√

qk+1

qk
+ uℓ−1

√

qk
qk+1

=
uℓqk+1 + uℓ−1qk√

qkqk+1
=

qk+ℓ√
qkqk+1

.

If ak+1 = 4 and ℓ ≥ 2, then qk+1

qk
< 5, thus

√

qk+1

qk
− 2

1−
√

qk
qk+1

<

√
5− 2

1− 1√
5

<
1

2
≤ uℓ−1

uℓ
,

which is equivalent to

2uℓ + uℓ−1 > uℓ

√

qk+1

qk
+ uℓ−1

√

qk
qk+1

.

Therefore, we have

uℓr̃k+1 + uℓ+1 = uℓ + uℓ+1 = 2uℓ + uℓ−1

> uℓ

√

qk+1

qk
+ uℓ−1

√

qk
qk+1

=
uℓqk+1 + uℓ−1qk√

qkqk+1
=

qk+ℓ√
qkqk+1

.

�

We use the mass distribution principle (e.g. [15]):
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Fact 14 (Mass Distribution Principle). Let E ⊂ Rn and let µ be a finite Borel

measure with µ(E) > 0. Suppose that there are numbers s ≥ 0, c > 0 and δ0 > 0

such that

µ(U) ≤ c|U |s

for all sets U with |U | ≤ δ0, where | · | stands for the Euclidean diameter. Then

dimH(E) ≥ s.

Now we are ready to estimate the Hausdorff dimension of U1[θ].

Theorem 15. For τ = 1 and for any irrational θ

dimH (Uτ [θ]) ≥
1

w(θ) + 1
.

Proof. We may assume w(θ) < ∞. If ak = 1 for all large k, then Lemma 6 (2)

implies that Uτ [θ] = T. Thus we assume that ak ≥ 2 for infinitely many k’s. Let

(ki) be the increasing sequence of integers such that k0 = 0 and

{k1, k2, . . . } = {k ∈ N : ak+1 ≥ 2}.

Denote by mi the number of intervals of Dki
contained in each interval of Dki−1

.

Then by Lemma 13 we have

mi ≥
qki√

qki−1
qki−1+1

. (36)

Define µ on D given by

µ(I) =
i
∏

n=1

1

mn

for each interval I of the form (jθ − ‖qki
θ‖, jθ + r̃ki+1‖qki

θ‖+ ‖qki+1θ‖) with 1 ≤
j ≤ qki

in Dki
. Note that

|j1 − j2| ≥ ‖qki−1θ‖ for 1 ≤ j1, j2 ≤ qki
and j1 6= j2. (37)

Let U be an interval with

‖qki+1−1θ‖ ≤ |U | < ‖qki−1θ‖

for some i ≥ 1. Then by (37), U intersects at most (|U |/‖qki+1−1θ‖+2) interval of

Dki+1
. Thus, we have

µ(U) ≤ 1

m1m2 · · ·mi+1

( |U |
‖qki+1−1θ‖

+ 2

)

≤ 3|U |
m1m2 · · ·mi+1‖qki+1−1θ‖

. (38)
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If aki+1 ≥ 3, then by (37) the smallest gap between two intervals in Dki
is at

least

‖qki−1θ‖ − (r̃ki+1 + 1) ‖qki
θ‖ − ‖qki+1θ‖ = (aki+1 − 1− r̃ki+1) ‖qki

θ‖

>
aki+1 − 1− r̃ki+1

aki+1 + 1
‖qki−1θ‖

≥ ‖qki−1θ‖
5

>
|U |
5

,

where we use (2) and (26) for the first and the second inequalities. Thus U intersects

at most 6 intervals of Dki
and

µ(U) ≤ 6

m1m2 · · ·mi
. (39)

If aki+1 = 2, then each interval in Dki
is of length

(r̃ki+1 + 1)‖qki
θ‖+ ‖qki+1θ‖ = 2‖qki

θ‖+ ‖qki+1θ‖ = ‖qki−1θ‖ > |U |

Therefore, U intersects at most 2 intervals of Dki
. Thus

µ(U) ≤ 2

m1m2 · · ·mi
. (40)

Hence, (38), (39) and (40) imply that

µ(U) ≤ 6

m1m2 · · ·mi+1
min

( |U |
‖qki+1−1θ‖

,mi+1

)

.

For any 0 < s < 1, since min(x, y) ≤ xsy1−s for x, y ≥ 1, we have

µ(U) ≤ 6

m1m2 · · ·mi

( |U |
mi+1‖qki+1−1θ‖

)s

.

By (36), we have

µ(U) ≤ 6

√
qk0

qk0+1

qk1

√
qk1

qk1+1

qk2

· · ·
√
qki−1

qki−1+1

qki

( √
qki

qki+1|U |
qki+1

‖qki+1−1θ‖

)s

≤ 6

√

qk0

qk1

√

qk1

qk2

· · ·
√

qki−1

qki

(

2
√
qki

qki+1|U |
)s ≤ 12

(√
qki

qki+1|U |
)s

√
qki

.

(41)

Let s be any real number satisfying

s <
1

w + 1
= lim

i→∞

log qki

log qki
+ log qki+1

.

Then by (41) for sufficiently small |U |

µ(U) ≤ 12|U |s.

Therefore, by Fact 14, we have

dimH (Uτ [θ]) ≥ dimH

( ∞
⋂

i=1

Di

)

≥ s. �
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Proof of Theorem 2. When τ < 1 or τ > 1, the proof is the same as that of Theo-

rem 1. The case of τ = 1 follows from Theorem 15. �

5. Proofs of Theorems 3 and 5

Using Theorem 15, we can prove Theorem 3.

Proof of Theorem 3. Let us use the same notation (qkj
)j≥1 for the subsequences

selected in Theorem 1 for the two cases 1/w(θ) < τ < 1 and 1 < τ < w(θ). Then

by the fact that nj = qkj
increases super-exponentially, we can replace ‖njθ‖ by

q−1
kj+1 and rewrite the formula in Theorem 1 as follows.

dimH (Uτ [θ]) =



























lim
i→∞

log
(

∏i−1
j=1(q

1/τ
kj

q−1
kj+1) · q

1+1/τ
ki

)

log(qki
qki+1)

, if
1

w(θ)
< τ < 1,

lim
i→∞

− log
(

∏i−1
j=1 qkj

q
−1/τ
kj+1

)

log (qki
qki+1)

, if 1 < τ < w(θ).

Further, let wj be the real numbers defined by 2qkj+1 = q
wj

kj
for the case 1/w(θ) <

τ < 1 and 4qkj+1 = q
wj

kj
for the case 1 < τ < w(θ). Then by (4), wj ≥ 1/τ if

1/w(θ) < τ < 1 and wj ≥ τ if 1 < τ < w(θ). By (5), we have

lim
j→∞

wj = w(θ), (42)

and the dimension dimH (Uτ [θ]) is equal to






























lim
i→∞





1 + 1
τ

wi + 1
−

i−1
∑

j=1

wj − 1
τ

wi + 1
· log qkj

log qki



 , if
1

w(θ)
< τ < 1,

lim
i→∞

i−1
∑

j=1

wj

τ − 1

wi + 1
· log qkj

log qki

, if 1 < τ < w(θ).

(43)

Now fix w(θ) = w ∈ (1,+∞]. For all j < i, we have

0 <
log qkj

log qki

=
log qkj

log qkj+1

· · · log qki−1

log qki

≤ log qkj

log qkj+1
· · · log qki−1

log qki−1+1
=

1

wj · · ·wi−1
.

Hence, if 1
w < τ < 1,

0 ≤ (wj −
1

τ
) · log qkj

log qki

≤ 1

wj+1 · · ·wi−1
− 1

τwj · · ·wi−1
,

and if 1 < τ < w,

0 ≤
(wj

τ
− 1
)

· log qkj

log qki

≤ 1

τwj+1 · · ·wi−1
− 1

wj · · ·wi−1
.

Let

Si−1 =
1

w1 · · ·wi−1
+

1

w2 · · ·wi−1
+ · · ·+ 1

wi−1
.
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Then for 1/w < τ < 1

lim
i→∞

1

wi + 1

(

1

τ
+
(1

τ
− 1
)

Si−1 +
1

w1 · · ·wi−1

)

≤ dimH (Uτ [θ]) ≤ lim
i→∞

1 + 1
τ

wi + 1

and for 1 < τ < w

0 ≤ dimH (Uτ [θ]) ≤ lim
i→∞

1

wi + 1

(

1

τ
−
(

1− 1

τ

)

Si−1 −
1

τw1 · · ·wi−1

)

.

If w = ∞, then limwi = ∞ for both two cases 0 = 1/w(θ) < τ < 1 and

1 < τ < w(θ) = ∞. Thus by (43), we have

dimH (Uτ [θ]) ≤















lim
i→∞

1 + 1
τ

wi + 1
= 0, 0 < τ < 1,

lim
i→∞

1

wi + 1
· 1
τ
= 0, 1 < τ < ∞.

Therefore, dimH (Uτ [θ]) = 0 for all τ > 0.

If w < ∞, then by (42), for any ε > 0 there is N such that if i ≥ N then

Si−1 =
1

w1 · · ·wi−1
+ · · ·+ 1

wi−1
>

1

(w + ε)i−N
+ · · ·+ 1

w + ǫ
=

1− (w + ǫ)−i+N

w + ǫ− 1
.

Thus, for 1/w < τ < 1

1

w + 1

(

1

τ
+
(1

τ
− 1
) 1

w − 1

)

≤ dimH (Uτ [θ]) ≤
1 + 1

τ

w + 1
,

and for 1 < τ < w

0 ≤ dimH (Uτ [θ]) ≤
1

w + 1

(

1

τ
−
(

1− 1

τ

) 1

w − 1

)

.

For the case of τ = 1, we complete the proof by Theorem 15. �

Now we are ready to prove Theorem 5.

Proof of Theorem 5. Let 1/w < τ ′ < τ < 1 and (ki) and (k′i) be the maximal

sequences of

qki
‖qki

θ‖τ < 1, qk′

i
‖qk′

i
θ‖τ ′

< 1.

Note that (k′i) is a subsequence of (ki).

Let wj , w
′
j be the real numbers defined by 2qkj+1 = q

wj

kj
, 2qk′

j
+1 = q

w′

j

k′

j

as in the

proof of Theorem 3. Recall that for all j, we have wjτ ≥ 1 and w′
jτ

′ ≥ 1. Thus, by
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noting the fact qkj+1
≥ qkj+1 > qkj

1/τ , we have

1 + 1/τ

wi + 1
−

i−1
∑

j=1

wj − 1/τ

wi + 1
· log qkj

log qki

=
1 + 1/τ ′

wi + 1
− 1/τ ′ − 1/τ

wi + 1
−

i−1
∑

j=1

wj − 1/τ ′

wi + 1
· log qkj

log qki

−
i−1
∑

j=1

1/τ ′ − 1/τ

wi + 1
· log qkj

log qki

≥1 + 1/τ ′

wi + 1
−

i−1
∑

j=1

wj − 1/τ ′

wi + 1
· log qkj

log qki

−
i
∑

j=1

1/τ ′ − 1/τ

1/τ i−j(1 + 1/τ)

≥1 + 1/τ ′

wi + 1
−

i−1
∑

j=1

wj − 1/τ ′

wi + 1
· log qkj

log qki

− τ − τ ′

τ ′(1− τ2)
. (44)

Let s be the index such that k′s < ki < k′s+1. Noting that wj − 1/τ ′ ≤ 0 if kj is

not in the subsequence (k′i), we have

1 + 1/τ ′

wi + 1
−

i−1
∑

j=1

wj − 1/τ ′

wi + 1
· log qkj

log qki

≥ 1 + 1/τ ′

wi + 1
−

s
∑

j=1

w′
j − 1/τ ′

wi + 1
·
log qk′

j

log qki

. (45)

By the choice of s, we know qki
≥ qk′

s+1 = q
w′

s

k′

s
. Hence, the right hand side of (45)

is bigger than

1 + 1/τ ′

wi + 1
− w′

s − 1/τ ′

(wi + 1)w′
s

−
s−1
∑

j=1

w′
j − 1/τ ′

wi + 1
·

log qk′

j

w′
s log qk′

s

,

which is equal to

1 + 1/w′
s

τ ′(wi + 1)
−

s−1
∑

j=1

w′
j − 1/τ ′

(wi + 1)w′
s

·
log qk′

j

log qk′

s

.

Reminding the fact 1/τ ≤ wi ≤ 1/τ ′, we then deduce that

1 + 1/τ ′

wi + 1
−

i−1
∑

j=1

wj − 1/τ ′

wi + 1
· log qkj

log qki

≥ 1 + 1/w′
s

τ ′ + 1
−

s−1
∑

j=1

w′
j − 1/τ ′

(1 + 1/τ)w′
s

·
log qk′

j

log qk′

s

.

By verifying (1 + 1/τ)w′
s > w′

s + 1 and

1 + 1/w′
s

τ ′ + 1
≥ 1 + 1/τ ′

w′
s + 1

,

we obtain

1 + 1/τ ′

wi + 1
−

i−1
∑

j=1

wj − 1/τ ′

wi + 1
· log qkj

log qki

≥ 1 + 1/τ ′

w′
s + 1

−
s−1
∑

j=1

w′
j − 1/τ ′

w′
s + 1

·
log qk′

j

log qk′

s

. (46)

Therefore, combining (44) and (46), we have for k′s ≤ ki < k′s+1,

1 + 1/τ

wi + 1
−

i−1
∑

j=1

wj − 1/τ

wi + 1
· log qkj

log qki

≥ 1 + 1/τ ′

w′
s + 1

−
s−1
∑

j=1

w′
j − 1/τ ′

w′
s + 1

·
log qk′

j

log qk′

s

− τ − τ ′

τ ′(1− τ2)
.
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Hence, by (43), we have

dimH (Uτ [θ]) = lim
i→∞





1 + 1/τ

wi + 1
−

i−1
∑

j=1

wj − 1/τ

wi + 1
· log qkj

log qki





≥ lim
s→∞





1/τ ′ + 1

w′
s + 1

−
s−1
∑

j=1

w′
j − 1/τ ′

w′
s + 1

·
log qk′

j

log qk′

s



− τ − τ ′

τ ′(1− τ2)

= dimH (Uτ ′ [θ])− τ − τ ′

τ ′(1− τ2)
.

Let 1 < τ < τ ′ < w. Let (ki) and (k′i) be the sequence of

qτki
‖qki

θ‖ < 2, qτ
′

k′

i
‖qk′

i
θ‖ < 2.

Clearly, (k′i) is a subsequence of (ki).

Let wi be the real numbers defined by 4qki+1 = qwi

ki
as in the proof of Theorem 3.

Recall that for all j, we have wj ≥ τ . Then, by (43), we have

dimH (Uτ [θ]) = lim
i→∞

i−1
∑

j=1

wj/τ − 1

wi + 1
· log qkj

log qki

= lim
i→∞





i−1
∑

j=1

wj/τ
′ − 1

wi + 1
· log qkj

log qki

+

i−1
∑

j=1

wj(τ
′ − τ)

ττ ′(wi + 1)
· log qkj

log qki





≤ lim
i→∞





i−1
∑

j=1

wj/τ
′ − 1

wi + 1
· log qkj

log qki



+ lim
i→∞





i−1
∑

j=1

wj(τ
′ − τ)

ττ ′(τ + 1)τ i−j





≤ lim
i→∞





i−1
∑

j=1

wj/τ
′ − 1

wi + 1
·
log qk′

j

log qk′

i



+
w(τ ′ − τ)

ττ ′(τ2 − 1)
.

Hence,

dimH (Uτ [θ])− dimH (Uτ ′ [θ]) ≤ (τ ′ − τ)w

ττ ′(τ2 − 1)
.

Since Uτ [θ] ⊃ Uτ ′ [θ],

dimH (Uτ [θ])− dimH (Uτ ′[θ]) ≥ 0.

Therefore, the claim holds. �

6. Examples

The following examples show that the upper and lower bounds in Theorems 2

and 3 can not be replaced by smaller or larger numbers.
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Example 16. Let θ be of irrational exponent w(θ) = w > 1 with qk+1 > qwk for

all k. Then the subsequence ki in the proof of Theorem 1 is given by ki = i.

Put qki+1 = qwi

ki
. Then lim

i→∞
wi = w.

For 1/w < τ < 1, we have

dimH(Uτ [θ]) = lim
i→∞

log(q
1/τ
1 ‖q1θ‖q1/τ2 ‖q2θ‖ · · · q1/τi−1‖qi−1θ‖ · q1+

1
τ

i )

log(qi/‖qiθ‖)

= lim
i→∞

log(q
1/τ
1 q

1/τ−1
2 · · · q1/τ−1

i−1 · q1/τi )

log(qiqi+1)

= lim
i→∞

1

1 + wi

( 1
τ

w1 · · ·wi−1
+

1
τ − 1

w2 · · ·wi−1
+ · · ·+

1
τ − 1

wi−1
+

1

τ

)

=
1

1 + w

( 1
τ − 1

w − 1
+

1

τ

)

.

For 1 < τ < w, we have

dimH(Uτ [θ]) = lim
i→∞

− log(q1‖q1θ‖1/τ q2‖q2θ‖1/τ · · · qi−1‖qi−1θ‖1/τ )
log(qi/‖qiθ‖)

= lim
i→∞

− log
(

q1q
1−1/τ
2 · · · q1−1/τ

i−1 · q−1/τ
i

)

log(qiqi+1)

= lim
i→∞

1

1 + wi

( 1
τ

w1 · · ·wi−1
+

1
τ − 1

w2 · · ·wi−1
+ · · ·+

1
τ − 1

wi−1
+

1

τ

)

=
1

1 + w

( 1
τ − 1

w − 1
+

1

τ

)

.

Therefore, for each 1/w < τ < w we have

dimH (Uτ [θ]) =
w
τ − 1

w2 − 1
.

Example 17. Assume that θ is an irrational of w(θ) = w > 1 with the subsequence

{ki} of qki+1 > qwki
satisfying that an+1 = 1 for n 6= ki and qki

>
(

qki−1+1

)2i

. Then

we have

lim
i→∞

(

log qk1

log qki

+
log qk2

log qki

+ · · ·+ log qki−1

log qki

)

= 0.

Since wi converges to w, by (43), the Hausdorff dimension of Uτ [θ] is
1/τ+1
w+1 and 0,

respectively for 1/w < τ < 1 and τ > 1.
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If τ = 1, then, by the proof of (4),

dimH(Uτ [θ]) ≥ lim
i→∞

log qki
+

∑

1≤k<ki

ak+1=1

log
qk+1

qk

log qki
+ log qki+1

−
∑

ki≤k<ki+1

ak+1=1

log
qk+1

qk

≥ lim
i→∞

log qki
+
(

log qki
− log qki−1+1

)

log qki
+ log qki+1

≥ lim
i→∞

2− log qki−1+1/ log qki

1 + log qki+1/ log qki

≥ lim
i→∞

2− 2−i

1 + log qki+1/ log qki

=
2

w + 1
.

Hence, we have

dimH (Uτ [θ]) =











1 + 1
τ

w + 1
, for 1/w < τ ≤ 1,

0, for τ > 1.

Example 18. Let θ =
√
5−1
2 , of which partial quotients ak = 1 for all k. Note that

w(θ) = 1. By Lemma 6, Uτ [θ] = T for τ = 1. Thus, we have

dimH (Uτ [θ]) =







1, τ ≤ 1,

0 τ > 1.

Example 19. Let θ be the irrational with partial quotient ak = k for all k. Then

w(θ) = 1. Consider the case of τ = 1. By Lemma 7 (iii), we have

Fk ⊂
qk
⋃

i=1

(

iθ − 2
(‖qkθ‖

qk

)
1
2

, iθ + 2
(‖qkθ‖

qk

)
1
2

)

.

Thus, by (21), Fk can be covered by ℓk sets of diameter at most δk, with

ℓk ≤ q1

(

4q2

(‖q1θ‖
q1

)
1
2

+ 4

)

· · ·
(

4qk

(‖qk−1θ‖
qk−1

)
1
2

+ 4

)

≤ 8k−1q1

(

q2
q1

)
1
2

· · ·
(

qk
qk−1

)
1
2

= 8k−1 (q1qk)
1
2 ,

δk ≤ 4
(‖qkθ‖

qk

)
1
2

< 4
( 1

qkqk+1

)
1
2

.

Here we use the fact x+ 1 ≤ 2x for x ≥ 1 for the second inequality for ℓk. Thus,

dimH (Uτ [θ]) ≤ lim
k

log ℓk
− log δk

= lim
k

(k − 1) log 8 + 1
2 (log qk + log q1)

− log 4 + 1
2 (log qk + log qk+1)

.

Since

log qk+1 ≥
k+1
∑

i=1

log ai =

k+1
∑

i=2

log i ≥
∫ k+1

1

(log x)dx = (k + 1) log(k + 1)− k,
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one has

lim
k→∞

k

log qk
= 0, 1 ≤ lim

k→∞

log qk+1

log qk
≤ lim

k→∞

log(ak+1 + 1) + log qk
log qk

= 1.

Therefore,

dimH (Uτ [θ]) ≤ lim
k

log qk
log qk + log qk+1

=
1

2
.

Hence, by Theorem 15, we have

dimH (Uτ [θ]) =



















1, τ < 1,

1
2 , τ = 1,

0 τ > 1.
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[1] P. Alessandri and V. Berthé, Three distance theorems and combinatorics on words, Enseign.

Math. 44 (1998), no. 1-2, 103–132.

[2] A. S. Besicovitch, Sets of fractional dimensions (IV): on rational approximation to real num-

bers, J. London Math. Soc. 9 (1934), 126–131.

[3] V. Beresnevich, G. Harman, A. Haynes and S. Velani, The Duffin-Schaeffer conjecture with

extra divergence II, Math. Z. 275 (2013), no. 1-2, 127–133.

[4] Y. Bugeaud, A note on inhomogeneous diophantine approximation, Glasgow Math. J. 45

(2003), 105–110.

[5] Y. Bugeaud, Distribution Modulo One and Diophantine Approximation, Cambridge Univer-

sity Press, 2012.

[6] Y. Bugeaud and M. Laurent, On exponents of homogeneous and inhomogeneous Diophantine

approximation, Moscow Math. J. 5 (2005), 747–766.

[7] Y. Bugeaud and L. Liao, Uniform Diophantine approximation related to b-ary and β-

expansions, Ergod. Th. Dynam. Sys., 36, no. 1, (2016), 1–22.

[8] J. W. S. Cassels. An introduction to Diophantine approximation, Cambridge Tracts in Math-

ematics and Mathematical Physics, No. 45. Cambridge University Press, New York, 1957.

[9] Y. Cheung, Hausdorff dimension of the set of singular pairs, Ann. Math. 173 (2011), 127–167.

[10] Y. Cheung and N. Chevallier, Hausdorff dimension of singular vectors, Duke Math. J., 65

(2016), 2273-2329.

[11] Z. Coelho and E. de Faria, Limit laws of entrance times for homeomorphisms of the circle,

Israel J. Math. 93 (1996), 93–112.

[12] L. G. P. Dirichlet, Verallgemeinerung eines Satzes aus der Lehre von den Kettenbrüchen nebst
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