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GROUP SIZE EFFECT ON THE SUCCESS OF WOLVES

HUNTING

Ramón Escobedo, Denys Dutykh, Cristina Muro, Lee Spector

& Raymond P. Coppinger

Abstract. — Social foraging shows unexpected features such as the exis-
tence of a group size threshold to accomplish a successful hunt. Above this
threshold, additional individuals do not increase the probability of capturing
the prey. Recent direct observations of wolves (Canis lupus) in Yellowstone
Park show that the group size threshold when hunting its most formidable
prey, bison (Bison bison), is nearly three times greater than when hunting
elk (Cervus elaphus), a prey that is considerably less challenging to capture
than bison. These observations provide empirical support to a computational
particle model of group hunting which was previously shown to be effective
in explaining why hunting success peaks at apparently small pack sizes when
hunting elk. The model is based on considering two critical distances be-
tween wolves and prey: the minimal safe distance at which wolves stand from
the prey, and the avoidance distance at which wolves move away from each
other when they approach the prey. The minimal safe distance is longer when
the prey is more dangerous to hunt. We show that the model explains effec-
tively that the group size threshold is greater when the minimal safe distance
is longer. Actually, the model reveals that the group size threshold results
from the nonlinear combination of the variations of both critical distances.
Although both distances are longer when the prey is more dangerous, they
contribute oppositely to the value of the group size threshold: the group size
threshold is smaller when the avoidance distance is longer. This unexpected
mechanism gives rise to a global increase of the group size threshold when
considering bison with respect to elk, but other prey more dangerous than elk
can lead to specific critical distances that can give rise to the same group size
threshold. Our results show that the computational model can guide further
research on group size effects, suggesting that more experimental observations
should be obtained for other kind of prey as e.g. moose (Alces alces).
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Résumé. — La recherche collective de la nourriture montre des phénomènes
inattendus comme l’existence de la taille optimale pour un groupe de chasseur
afin de réussir la chasse. Au-dessus de ce seuil, les individus supplémentaires
n’augmentent pas la probabilité de capturer la proie. Des observations directes
récentes des loups (Canis lupus) dans Yellowstone Park montrent que ce seuil
pour la chasse d’un bison (Bison bison) est environ trois fois plus grand que
dans la chasse d’un cerf élaphe (Cervus elaphus), une proie qui est considé-
rablement plus simple à capturer. Ces observations fournissent des données
empiriques pour un modèle mathématique qui décrit le processus de la chasse
d’un groupe de loups. Ce modèle a été validé récemment et ses prédictions
semblent indiquer que la taux de succès a un maximum pour les groupes de
taille plutôt modérée. Ce modèle fait intervenir deux distances critiques : la
distance minimale de sécurité entre les loups et la proie, et une autre distance
d’évitement (cette fois-ci entre les loups) afin d’assurer la sécurité lorsqu’ils
s’approchent de la proie. La distance minimale de sécurité est d’autant plus
grande que la proie est dangereuse. Dans cette étude nous montrons que le
seuil pour la taille de groupe est plus grand lorsque la distance de sécurité
est plus longue. En effet, le modèle montre que l’existence de ce seuil pro-
vient d’une combinaison nonlinéaire complexe des deux distances de sécurité
à la fois. Bien que ces deux distances sont plus longues lorsque la proie est
plus dangereuse, elles contribuent de manière opposée à la valeur du seuil :
la taille critique du groupe est plus petite lorsque la distance d’évitement est
plus longue. Ce mécanisme inattendu a pour l’effet l’augmentation globale du
seuil lorsqu’on considère un bison par raport à un cerf mais les autres proies
plus dangeureuses que le cerf peuvent avoir des distances de sécurité telles que
le seuil serait le même que pour le bison. Le bon accord entre nos résultats et
les observations montrent que ce modèle mathématique peut être utilisé afin
d’étudier les effets sur la taille du groupe optimal. D’autres observations sont
nécessaires sur les autres types de la proie comme un élan (Alces alces), par
exemple.
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“Plus on est de fous, plus on rit”.

(The more the merrier)

La maison de campagne,

Dancourt (1688).

1. Introduction

Applied to social foraging, this French proverb illustrates the intuitive idea

that the greater the number of individuals participating in a hunt, the easier

the capture of the prey. It explains also a second idea: the greater the number

of hunters, the larger the prey they can capture.

Whatever the social circumstances, whoever uses this allocution is always

conscious of the incontrovertible fact that there is a limit. In fact, observational

data from a range of large social predators show that above an optimal group

size, the benefit per individual participating in the hunt does not increase

and can even decline; see [3] and the extensive list of references therein.

Moreover, this optimal group size is surprisingly small, ranging from 2 to 5

in carnivores [3], which leads to the hypothesis that there is probably not

support among the fundamental evolutionary forces for living in groups.

There are two potential reasons for the leveling of hunting success in groups

whose sizes are above the optimal value:

1. interference between inept hunters,

2. individual withholding of effort.

Experimental and theoretical research is currently exploring which one of the

two factors has the most important contribution.

Recently, MacNulty et al. (2012) [3] reported and analyzed wolf (Canis

lupus) observational data when hunting elk (Cervus elaphus) in Yellowstone

National Park, finding that, for wolf-pack sizes greater than N = 4, where N

is the number of wolves participating in the hunt, a decline in wolf effort is

responsible for impeding large groups from reaching a greater hunting success:

wolves withhold effort to reduce high hunting costs such as injury (the rate with

which a wolf’s performance decreases is correlated with the danger associated

with the task) [3].

Escobedo et al. (2014) [1] used a computational particle model to evaluate

the existence of a physical mechanism by which complex behavioral patterns

emerge in groups greater than the optimal size observed in nature [3]. These

complex patterns result from destabilization of a regular polygonal formation
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that wolf-packs tend to adopt when surrounding a prey. The radius of this

regular polygon varies in time according to the instantaneous value of a critical

distance, namely, the safe distance dc(t), at which wolves position themselves

so as not to be injured by the prey. The distances for elk, bison and moose are

shown in Fig. 1. The peril of being injured increases as distance decreases [4],

so that when wolves arrive at this safe distance dc(t) they cease to approach

the prey. The distance dc(t) varies during the hunt due to variation in how

this peril is perceived at each instant; as the prey gets tired, dc(t) decreases,

but can rise abruptly if the prey prompts a sudden counterattack. When

dc(t) is smaller than a critical threshold d∗c , the polygonal formation loses its

stability and the stable spatial configuration becomes multi-orbital: the wolves

are distributed along (at least) two orbits, with one orbit closer to the prey

and one or more orbits further from the prey than the vertices of the (now

unstable) polygonal formation.

Escobedo et al. (2014) [1] hypothesizes that the multi-orbital configuration

induces the emergence of privileged positions, and therefore of disadvantageous

positions, and that this leads to the disruption of the hunt [1]. They showed

that the threshold d∗c is greater in larger pack sizes, so that dc(t) takes values

under d∗c more easily in larger packs, so that the hunt is more easily disrupted

in larger packs; see Fig. 1 in [1]. Thus, an optimal pack size exists above

which dc(t) decreases below d∗c systematically, therefore compromising the

hunting success.

Very recently, MacNulty et al. (2014) [5] have reported observational data

about wolves hunting their most formidable prey, bison (Bison bison), again

in Yellowstone, where bison are three times more difficult to kill (by wolves)

than elk [5]. The main observation is that, again, there exists an optimal wolf-

pack size at which hunting success levels off, and that this wolf-pack size is

N = 11, a fairly common (and not so small) wolf-pack size (which can reach

25 individuals [6]). MacNulty et al. [5] attribute the increase in optimal group

size to two possible factors:

1. a higher level of cooperation between wolves when hunting larger prey,

due to the very low capture rate of a single hunter,

2. the stabilization of the spatial configurations displayed by large packs,

due to the observation that the safe distance between the wolves and the

prey is longer when facing more dangerous prey.
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Noticeably, MacNulty et al. (2014) [5] base this second hypothesis on the

extrapolation of the insights provided by the computational particle model

of Escobedo et al. (2014) [1].

The present work is thus motivated by, first, the new observational data pre-

sented by MacNulty et al. (2014) [5], and second, by the explicit mention of our

model as one of the two potential explanations of the observed phenomenon.

We show here that the interpretation of MacNulty et al. (2014) [5] corrobo-

rates the modelled conclusions that, for more dangerous prey, the threshold

of the safe distance under which the regular pack formation is unstable, d∗c , is

greater. However, the model reveals that the mechanism of variation of the

optimal pack size for hunting success is more complex and unpredictable, as

it results from the nonlinear combination of two effects with opposite contri-

bution to the variation of the optimal pack size. We present this mechanism

in the next section Hypothesis; our results and our discussion are presented

together in section Results, and we conclude in section Conclusions. Materials

and methods are presented in the supporting information.

1.1. Hypothesis. — Our hypothesis is that the way a wolf approaches a

prey is different from one prey species to another. The prudence with which

a wolf moves near a prey defines two characteristic safe distances to the prey:

the avoidance distance da, at which wolves move away from each other to have

a better vision of the prey and enough room for escaping maneuvers; and the

minimal safe distance ds, shorter than da, at which wolves move away from

the prey not to be harmed by the horns or the legs of the prey. We assume

that all wolves have the same perception of danger, so that each prey species

defines specific values of ds and da, characterized by the morphological and

behavioral traits of each prey species. Thus, both ds and da are assumed to

remain constant during the hunt.

The hypothesis is that the more dangerous the prey, the greater the values

of ds and da, but not necessarily in the same proportion: a prey can be more

dangerous, but only at closer distances, if, e.g., it is much weightier, or only

at longer distances, if, e.g., the horns are larger. Similarly, when close to the

end, some prey trigger sudden counterattacks towards individual wolves, while

some others sweep the area around them with their horns. Fig. 1 illustrates

this diversity showing the three circular regions around the prey defined by

ds and da, whose width depends on the prey species, for three typical prey of

wolf-packs: elk, bison and moose. The general formulation of our hypothesis
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Figure 1. Safe distances ds and da for (A) elk, (B) bison and (C)

moose. Dashed line: minimal safe distance ds at which a wolf would

stand from the prey; dot-dashed line: avoidance distance da at which

wolves move away from each other when they approach the prey. Both

ds and da are assumed greater when facing bison.

is as follows. Let S1 be a prey species less dangerous than S2. Then, we have

(i) d2s = αsd
1
s, (ii) d2a = αad

1
a, with αs,a > 1.

This means that d2s > d1s and d2a > d1a, but not necessarily in the same

proportion, i.e. , αs is not necessarily of the same order than αa.

In the particular case of bison and elk, bison are much larger than elk, more

aggressive, and more likely to injure or kill wolves that attack them [5], so

(i) dbisons > delks , (ii) dbisona > delka ,
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and we assume that αs ≈ αa, although this is not necessarily the case for other

species.

The avoidance distance da was already introduced in [1]; ds is introduced

here for the first time in the context of this model, although the instantaneous

safe distance dc(t) was also already used in [1] (but was introduced in [7]). As

we showed in [1], the bifurcation threshold d∗c is determined univocally by the

pack size N and the avoidance distance da: d
∗
c ≡ d∗c(N, da). Thus, the minimal

safe distance ds, which is a kind of lower bound of dc(t) for all t > 0, can be

smaller or greater than d∗c .

In fact, it is precisely this relation that will determine the optimal pack

size. The argument is as follows. During a hunt, the instantaneous safe

distance dc(t) is always greater than the absolute minimal safe distance ds.

If d∗c is smaller than ds, then dc(t) can not reach the bifurcation value d∗c
at which complex patterns emerge, because d∗c < ds < dc(t), so the hunt is

never disrupted, meaning that N is smaller or equal to the optimal pack size

NOPT(ds, da). However, if d∗c is greater than ds, then dc(t) can take values

below d∗c and complex patterns can emerge, meaning that, for the given value

of da, the pack size N is greater than the optimal value NOPT(ds, da).

The study thus reduces to obtain computationally the value of d∗c as a

function of N and da, and then to determine the optimal size for a given

value of ds. This is carried out in the next Section Results, finding that, for a

fixed da, NOPT(ds, da) is greater when ds is greater, and that, for a fixed ds,

NOPT(ds, da) is smaller when da is greater.

2. Results

We used the computational particle model introduced in [1] to derive the

safe distance threshold d∗c(N, da) as a function of N and da for N = 2, . . . , 12

and da = 1.5 to 2 with increments of ∆da = 0.1. The numerical method is

described in Section Materials and Methods. The result is shown in Fig. 2.

Let us analyze first the particular case da = delka = 1.5, whose data were

obtained in [1]. The rest of data are presented here for the first time. See then

Fig. 3.

For N ≤ 5, no bifurcation points exist: the regular polygon is stable for

all dc(t)). For N > 5, there is always a bifurcation point d∗c(N, da) that

separates the interval of values of dc(t) where complex behavioral patterns

emerge (dc < d∗c) from the interval of values for which the wolf-pack tends to

the regular polygonal formation (d∗c < dc).
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Figure 2. Bifurcation points d∗c(N, da) for different values of N and

da. Symbols denote the bifurcation points. Lines joining symbols

corresponds to the same value of da. First line starting from the

left is delka = 1.5, detailed in Fig. 3. Successive lines to the right

correspond to increments of ∆da = 0.1.

The time-varying safe distance dc(t) can decrease below d∗c only if ds < d∗c .

Then, if ds > d∗c(N), the optimal group size for hunting success is greater or

equal to N , and if ds < d∗c(N), the optimal group size is smaller than N . Thus,

if d∗c(N) < ds < d∗c(N+1) for N > 5, the optimal group size is N because dc(t)

can take values below d∗c(N + 1) (and complex formations of packs of N + 1

wolves), but not below d∗c(N) (so that the packs of N wolves will always display

the regular polygon of N vertices).

This result does not depend on the value of da, so that the general result can

be formulated as follows: the optimal wolf-pack size NOPT(ds, da) is determined

by

NOPT(ds, da) = max
{

N ≥ 5 : d∗c(N, da) < ds < d∗c(N + 1, da)
}

, (1)

where we have considered that d∗c(N, da) = 0 for N ≤ 5 and for all da. See the

wide horizontal segments in Fig. 3, denoting the value of NOPT as a function

of ds for the fixed value of da = 1.5. This result means that the value

NOPT(d
elk
s , delka ) = 5 we obtained in [1] when hunting elk is valid provided

delks < d∗c(6) ≈ 1.14. Another example is shown in Fig. 3 for ds = 1.25:

d∗c(7) ≈ 1.21, d∗c(8) ≈ 1.29, so dc(t) can take values in [ds, d
∗
c(8)] but not in

[d∗c(7), ds], so the optimal size is NOPT = 7.
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Figure 3. Optimal wolf-pack size NOPT(ds, da) for a fixed value

of da = 1.5. Filled squares denote the bifurcation points d∗c(N, da)

delimiting the region where complex behavioral patterns emerge (gray

region). Horizontal wide segments denote the optimal wolf-pack size

for ds ∈ [0.9, 1.6]. Vertical lines denote the minimal safe distance ds
for two kinds of prey, delks = 1 (dashed line) and dbisons = 1.5 (dot-

dashed line), and a third example for ds = 1.25 (dotted line). See

also Fig. 1 in [1].

Expression (1) shows that, for a fixed value of da, the optimal pack size

NOPT(ds, ·) is an increasing function of ds. On the other hand, Fig. 2 shows

that for greater values of da, the lines of bifurcation points appear as if they

were shifted to the right, and this, quite regularly: an increment of ∆da = 0.1

produces a shift of ∆dc ≈ 0.06 to the right. (1) Thus, the region of complex

patterns propagates to the right as da grows, meaning that, for a fixed value

of ds, NOPT(·, da) is a decreasing function of da.

Let us show an example. Assume that ds = 1.4 and da = 1.7. For a wolf-

pack of size N = 8, we obtain d∗c(N = 8, da = 1.7) ≈ 1.38, so the point

(ds, N) = (1.4, 8) is in the white region, d∗c < ds, and wolf-packs of size

N = 8 will never reach the threshold distance under which complex patterns

are triggered. In turn, for a wolf-pack of size N = 9, the point (ds, N) = (1.4, 9)

1. An empirical relation is d∗
c
(N, da) = d∗

c
(N, delk

a
+ ∆da) = d∗

c
(N, delk

a
) + k∆dc, for

k = 0, . . . , 5.
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is in the Grey region, so that dc(t) can take values below d∗c(9), thus triggering

complex patters and disrupting the hunt. Therefore, the optimal wolf-pack

size for (ds, da) = (1.4, 1.7) is N = 8.

Assume now that da = 1.8. Then, the Grey region expands to the right,

d∗c(N = 8, da = 1.7) < d∗c(N = 8, da = 1.8), meaning that dc(t) can more

easily decrease below d∗c . Then, wolf-packs of size N = 8 will display complex

patterns when dc(t) ∈ (ds, d
∗
c), so that the optimal wolf-pack size for (ds, da) =

(1.4, 1.8) is N < 8.

The conclusion is that both distances ds and da contribute oppositely to the

variation of the optimal wolf-pack size when the prey is more dangerous:

ds is larger ⇒ NOPT is larger; da is larger ⇒ NOPT is smaller. (2)

The variation of the optimal pack size when the prey is more dangerous is

therefore the result of the nonlinear combination of two opposite effects: a

longer safe distance at which wolves can stand from the prey enables more

individuals to occupy a single (stable) orbit, but a longer avoidance distance

requires more space (for escaping maneuvers from a more dangerous prey),

such that the single orbit is destabilized, and the wolf-pack is split into a

multi-orbital configuration.

Such a nonlinear combination gives rise generally to a modulated increase

of the optimal pack size when the kind of prey changes from ordinary to more

dangerous. This is what happens to the model when we change from elk to

bison. In this case, the respective increments of ds and da are assumed to

be of the same order. This leads to a net increase from N elk
OPT = 5 (for, say,

delks = 1.1 and delka = 1.5, as in [1]), to Nbison
OPT = 11 (as in [5], and that our

model reproduces, e.g. for dbisons = 1.7 and dbisona = 1.9). However, a decrease

of the optimal pack size can also take place, provided the increment in da is

greater than the increment in ds.

Let us illustrate this nonlinear effect with an example. Consider a prey S1

with (d
(1)
s , d

(1)
a ) = (1.3, 1.5). Then, N

(1)
OPT(1.3, 1.5) = 8. Now consider a more

dangerous prey S2 with (d
(2)
s , d

(2)
a ) = (1.51, 1.6), i.e., d

(2)
s is quite larger than

d
(1)
s but d

(2)
a is slightly larger than d

(1)
a . Then, the optimal pack size grows

to N
(2)
OPT(1.51, 1.6) = 11. However, if d

(2)
a is also quite larger than d

(1)
a , then

N
(2)
OPT can remain unchanged (N

(2)
OPT(1.51, 1.9) = 8 for d

(2)
a = 1.9), or even

decrease (N
(2)
OPT(1.51, 2) = 7 for d

(2)
a = 2).

This probably could happened for other prey species (e.g. , moose) or in

special hunting conditions (e.g. , snow), where large horns and large legs are

an advantage to repel wolves. Our results serve also for other prey species, for
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which the variation of the optimal wolf-pack size with respect to the case of

the elk is not necessarily straightforward.

3. Conclusion

We have illustrated that MacNulty et al. (2014) made a good prediction

based on our model. We have presented a mathematical formulation of the

hypothesis about the main factor making hunting success to level off at an

optimal group size also when hunting formidable prey, which is the disruption

of the group for sizes greater than this optimal group size. We have confirmed

that the optimal group size is generally larger when hunting more dangerous

prey. Moreover, we have revealed an unexpected nonlinear mechanism which

contributes to modulate this increase of the optimal size. The mechanism con-

sists of the nonlinear combination of two opposite effects induced respectively

by the increase of both critical distances ds and da when the prey is more

dangerous. Our results show that the model is able to explain the recently

reported observational data, thus validating our hypothesis. The model will

serve to guide researchers in further observations, in particular to consider

other prey such as moose (Alces alces, see Fig. 1) and other ungulates. Of

special interest would be real data about critical distances.
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4. Methods and model

We use a computational particle model where particles represent wolves

and prey and their behavior obeys Newton’s second law. Interactions between

agents (wolf-prey and wolf-wolf) are described in terms of radial attractive and

repulsive forces. Critical distances define regions where interactions change

qualitatively. We use continuous interaction functions so that transitions

between regions are smooth. The model describes the dynamics of a pack

of N wolves hunting a single prey. The description covers the phase of the

hunt which starts right after the phase where a prey has been isolated from

the group of prey and is pursued by the wolves, and is valid until the killing

phase starts and the prey stops moving definitively, it falls down, and it is

dissected by the wolves.

We consider that the hunt consists of a series of fast and slow dynamic

transitions of the prey-wolves system between stable spatial configurations

determined by the time-variation of the critical distance dc(t). Depending

on the duration of these transitions with respect to the time required to enter

the basin of attraction of the stable states, the system may adopt a spatial

configuration where wolves are uniformly distributed in one single orbit around

the prey or may exhibit abrupt changes between multi-orbital configurations.

At the beginning of the hunt, the prey displays an energetic behavior with

abrupt changes in its trajectory and can even face one or more wolves. There,

dc(t) is at its maximum value. As time evolves, the prey becomes tired and

wolves gain confidence to get closer to the prey, so that dc(t) decreases. Before

falling down, the prey may exhibit sudden counterattacks, making dc(t) to

rise abruptly. The prey can find a way to escape, or, alternatively, repeat

the strategy, making dc(t) to variate smoothly or abruptly, until the prey falls

down or escapes definitively.

The model is described in detail in [1], where numerical simulations of

the spatial configurations and the convergence process of the system towards

the stable configuration are provided for a number of cases. The emphasis

in [1] was to describe in detail how complex patterns emerge and lead to the

disruption of the hunt due to the interaction of wolves, both in the multi-orbital

configurations and in the transition between stable configurations when dc is

close to d∗c . We obtained the stable spatial configurations towards which the

prey-wolves system converges when dc is kept constant in time for different

values of the pack size N . We also established the parameter conditions under

which the cohesion of the system is preserved, that is, the distance from wolves
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to the prey is bounded so that wolves do not go to infinity. The study was

carried out for the case of a middle size prey (elk), and the size of a pack was

considered constant during the hunt.

The characterization of the stable configurations is done in a reduced model

where the effects of noise and perturbations have been removed, in order to

expose the essential features of the model which are responsible for the spe-

cific patterns under study. Adding noise and perturbation do not qualitatively

change the results, that is, for a given value of (N, dc), the perturbed model

gives rise to a configuration qualitatively identical to the stable configuration

given by the unperturbed model for this value of (N, dc). Quantitative differ-

ences can slightly affect, for example, the critical value of d∗c , the exact location

of the agents (but not the geometric formation of the pack), the orientation of

the flocking motion, or the velocity of rotation of the milling formation.

Here we focus on the effect of a larger prey (bison), and we show that

the same model serves to illustrate that more dangerous prey allow a greater

number of wolves to participate in the hunt before the critical pack size at

which hunting success peaks is reached. This is done by simply considering a

minimum safe distance ds as the closest distance to the prey that wolves can

reach; ds is the distance that wolves will never cross, unless they enter in the

killing phase, where the prey is already down. The distance ds is of course

larger if the prey is larger or is perceived as more dangerous by the wolves; see

Fig. 1. Considering the optimal size as a function of the two critical distances,

i.e. NOPT ≡ NOPT(ds, da), the first argument is thus that delks < dbisons implies

N elk
OPT < Nbison

OPT , that is, the optimal size is an increasing function of ds.

The identification of the second mechanism that contributes to the variation

of the threshold of the group size when the prey is perceived as more dangerous

is based on the fact that the critical distance da is also larger when facing a

more dangerous prey. Numerical simulations provide us with the critical value

d∗c for different values of da (see Fig. 2), thus illustrating that this mechanism

contributes to the decrease of the optimal wolf-pack size. The second argument

is thus that delka < dbisona implies N elk
OPT > Nbison

OPT , that is, the optimal size is a

decreasing function of ds. It is the nonlinear combination of these two effects

that gives rise to the resulting optimal wolf-pack size.

4.1. The model. — The prey is denoted by P and the wolves by Wi,

i = 1, . . . , N , where N is the wolf-pack size. The position of the agents

(prey and wolves) is denoted by the N + 1 vectors ~ui(t) = (xi(t), yi(t)),

i = p, 1, . . . , N . Wolves and prey obey Newton’s second law m~a = ~F , where
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~a = ~̇v is the acceleration vector, ~v = ~̇u is the velocity vector and ~F is the

resultant of the forces acting on the agent. The dot denotes derivation with

respect to time (~a = ~̇v = ~̈u).

The dynamical system consists of 2(N + 1) ordinary differential equations,

~̇ui(t) = ~vi(t), i = p, 1, . . . , N,

mp~̇vp(t) =

N
∑

i=1

~Fp,i(t)− νp~vp(t),

mi~̇vi(t) = ~Fi,p(t) +

N
∑

j=1,j 6=i

~Fi,j(t)− νi~vi(t), i = 1, . . . , N,

where ~Fp,i, i = 1, . . . , N , are the N repulsive forces exerted by the wolves

on the prey, ~Fi,p, i = 1, . . . , N , is the long-range attractive and short-range

repulsive force ~Fi,p exerted by the prey on the i-th wolf, ~Fi,j, j = 1, . . . , N ,

j 6= i, is the repulsive forces exerted on th ei-th wolf by the other N−1 wolves,

and −νi~vi, i = p, 1, . . . , N , are ground friction forces in the opposite direction

of motion, with coefficient of friction ν, considered identical for all wolves,

νi = νj , ∀i, j = 1, . . . , N , and larger for preys than for wolves, νp > νi.

Attractive-repulsive interaction forces between two agents are described by

radial functions based on the distance separating both agents. Here we use

the classical formulation of Gazi & Passino [2]. Other interaction potentials

(Lennard-Jones, Morse) can be used. More precisely, we use the specific one

introduced by Shi & Xie [8] and interpreted in the original model [1] as the

most biologically realistic, because there the repulsion increases to infinity as

the distance between two individuals goes to zero, and the attraction decreases

to zero as the distance grows to infinity.

More explicitly, the system can be written as follows,

~̇ui(t) = ~vi(t), i = p, 1, . . . , N, (3)

~̇vp(t) =
CW
P

mp

N
∑

i=1

~up(t)− ~ui(t)

‖~ui(t)− ~up(t)‖2
− νp

mp

~vp(t). (4)

~̇vi(t) =
CP
W

mi

~up(t)− ~ui(t)

‖~ui(t)− ~up(t)‖2
(

1− d2c(t)

‖~ui(t)− ~up(t)‖2
)

(5)

−
N
∑

j=1,j 6=i

CW
W

mi

~uj(t)− ~ui(t)

‖~ui(t)− ~uj(t)‖2
φi,j(t)−

νi
mi

~vi(t), (6)
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Parameter Value∗ Physical meaning

mp 1–2 mass of the prey (elk: 350–400 Kg, bison: 700–900 Kg)

mi 0.1 mass of wolf Wi (35–40 Kg)

νp 2–4 prey friction coefficient

νi 1 wolf friction coefficient

CP
W 2 coefficient of the force that the prey exerts on a wolf

CW
W 0.5 coefficient of the interaction force between wolves

CW
P 0.2 coefficient of the force that a wolf exerts on the prey

dc 1–2 safe distance for wolves not to be harmed by the prey

da 1–2 avoidance distance for wolves to move away from each other

cw 0.5 width coefficient of Gaussian function φi,j (width=1/
√
2cw)

Table 1. Parameter values. ∗Typical values taken from [1].

where CP
W , CW

W and CW
P are positive constants adjusting the relative intensity

of forces, so that e.g. the attraction that the prey exerts on the wolves is more

intense than the repulsion than the wolves exert on the prey. This system must

be solved with appropriate initial conditions, which should avoid pathological

cases like when all agents are aligned. Parameter values shown in Table 1 are

those used in our previous work [1].

More details on the ethology of wolf-pack hunting strategies or on Canids be-

havior can be found in the original introduction of the model and in references

therein [7, 1].

4.2. Critical distances. — The parameter dc(t) denotes the safe distance

at which a wolf stops to approach the prey in order to avoid to be armed during

a possible counterattack of the prey. The role of dc(t) in Eq. (5) is to delimit

the regions where the wolf is attracted or repulsed by the prey. Denoting by

Ri(t) = ‖~ui(t)− ~up(t)‖ the instantaneous distance of the i-th wolf to the prey,

we have that, when the wolf is far from the prey, i.e. , Ri(t) > dc(t), the force

is attractive, while when the wolf is too close to the prey, i.e., Ri(t) < dc(t),

the prey is repulsed. The value dc(t) is thus the balance point Ri(t) = dc(t) at

which the wolf is not attracted nor repulsed by the prey.

When wolves approach the prey, a larger critical distance da(t) > dc(t) exists

at which the wolves start to move away from each other, more specifically, from
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those other wolves that are also at this distance from the prey. This short-

range repulsion is due to the natural need of individual space and to collision

avoidance, and is stronger in stress situations as in the presence of a prey; a

larger individual space is needed to have a better visibility of the prey and to

move freely in response to possible attacks from the prey [7, 1]. The effects

of this second critical distance is introduced in the model through a repulsive

interaction between wolves that becomes active when both wolves are at a

distance da(t) to the prey. This is the sum term in Expression (6), whose value

contributes to the behavior of the i-th and j-th wolves when the function

φ(Ri(t), Rj(t)) is not negligible:

φi,j = φ(Ri(t), Rj(t)) = exp
{

−cw

[

(

Ri(t)− da(t)
)2

+
(

Rj(t)− da(t)
)2
]}

.

The function φi,j is a Gaussian function centered in (da(t), da(t)) and of width

1/
√
2cw. Its maximum value is one and is reached when both wolves Wi and

Wj are at distance da from the prey: Ri(t) = Rj(t) = da(t). The intensity of

the repulsion between Wi and Wj goes rapidly to zero as one of them is far

from being at distance da(t) from P .

The value and behavior of dc(t) and da(t) are different for each wolf, de-

pending mainly on the history of the wolf in previous hunting events, but also

on the size and the health of the wolf. Here we will assume that wolves are

homogeneous and have the same perception of the state of the prey, so that

dc(t) and da(t) preserve their respective value and time-variation across all

wolves: dic(t) = dc(t) and dia(t) = da(t) ∀i = 1, . . . , N .

A key point for the analysis of how the optimal pack size depends on the

size of the prey is that both critical distances dc(t) and da(t) vary in time due

to their dependence on the instantaneous perception of the state of the prey

that wolves have. At the beginning of the hunt, the prey is fresh to react and

even persecute and harass the wolf so that dc(t) and da(t) are at their higher

respective value. As the prey gets tired, the wolves become more confident and

the critical distances decrease regularly, although not monotonically, because

the prey is still able to display sudden reactions to try to injure some of the

surrounding wolves, making dc(t) and da(t) to increase abruptly.

More interestingly, dc(t) and da(t) take larger values when hunting more

dangerous prey. As pointed out by MacNulty et al. (2014), bison are the most

difficult prey for wolves to kill, three times more difficult to kill than elk, with

respect to which bison are not only larger, but also more aggressive and more

likely to injure or kill wolves that attack them [5].



GROUP SIZE EFFECT ON THE SUCCESS OF WOLVES HUNTING 17

0.9 1 1.1 1.2 1.3 1.4 1.5
dc

1

1.5

2

2.5

3

Ri

0.9 1 1.1 1.2 1.3 1.4 1.5
1

1.5

2

2.5

3

Ri

0.9 1 1.1 1.2 1.3 1.4 1.5
1

1.5

2

2.5

3

Ri

0.9 1 1.1 1.2 1.3 1.4 1.5
1

1.5

2

2.5

3

Ri

0.9 1 1.1 1.2 1.3 1.4 1.5
dc

1

1.5

2

2.5

3

0.9 1 1.1 1.2 1.3 1.4 1.5
1

1.5

2

2.5

3

0.9 1 1.1 1.2 1.3 1.4 1.5
1

1.5

2

2.5

3

0.9 1 1.1 1.2 1.3 1.4 1.5
1

1.5

2

2.5

3

N=5

N=6

N=7

N=8

N=9

N=10

N=11

N=12

Figure 4. Bifurcation diagram for different wolf-pack sizes when

hunting elk ( i.e. , da = 1.5). Vertical axis: wolf-prey distance Ri =

‖~xi − ~xp‖ for i = 1, . . . , N ; horizontal axis: dc ∈ [0.9, 1.5], for

N = 5, . . . , 12. Solid (black) lines denote the radius of the orbits

where wolves are positioned when the stable spatial configuration is

reached for the corresponding value of dc. Multi-valued intervals

correspond to multi-orbital configurations. The bifurcation value d∗c
separates single-valued intervals from multivalued ones. For N = 5

there is no multi-valued intervals, for N = 6, d∗c ≈ 1.14. Dashed

(red) line denotes the radius of the regular polygon (color online).
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The variation of the spatial configuration that the wolf pack exhibits along

a hunting exercise is as follows. At the beginning of the hunt, dc(t) is large and

the wolf-pack tends to a spatial configuration described by a regular polygon

(RP) of N vertices and radius RN
RP(dc(t)). If dc(t) varies slowly, the regular

polygon is almost stationary. When dc is above d∗c , the stationary regular

polygon (SRP) is stable. As the prey gets tired, dc(t) decreases and can cross

the bifurcation point d∗c (provided d∗c > ds), so that dc(t) is in the Grey region,

where the SRP is unstable: a small perturbation of the regular polygon will

disrupt the formation and the wolves will split into two or more orbits, with

(at least) one orbit closer and (at least) one orbit further from the prey than

RN
RP, that is, Rin < RRP < Rout, where Rin (resp. Rout) is the radius of the

closest (resp. furthest) orbit to the prey.

Which orbit is a privileged position for wolves to stay depends on the

behavior of the prey: if the prey is at the end of the struggle, wolves in the

inner orbit have a better chance to approach the prey and start to dissect

it, while if the prey is still able to display a sudden counterattack, privileged

positions are those in the outer orbit, where wolves have a better chance to

avoid the blow and escape.

For example, a pack of 7 wolves will converge towards a regular heptagon

of radius RN
RP = 1.97 when dc(t) = 1.25, but, if another wolf joins the hunt,

the heptagon is destabilized and privileged positions emerge. For N = 8 and

dc = 1.25, the stable spatial configuration is a two-orbits configuration with

radii R1 = 1.88 and R2 = 2.24, while the radius of the SRP is RRP = 2.07; see

Fig. 3.

Similarly, when the prey of a wolf-pack of 7 wolves is getting tired, the value

of dc(t) decreases below d∗c and the regular polygonal configuration becomes

unstable in benefit of the multi-orbital configuration, leading again to complex

behavioral patterns with the emergence of privileged positions and enhancing

the possibility of disrupting the hunt. See the numerical simulations in the

Supplementary material of [1].

Fig. 4 shows the bifurcation point d∗c for a given value of da = 1.5 and

wolf-pack sizes from N = 5 to 12. These diagrams have been obtained by

solving numerically the wolf-prey system for a fixed value of dc until a stable

equilibrium is reached. Stable solutions can be stationary or not (see again [1]).

From these diagrams, the value of d∗c is calculated as a function of N and da,

producing Fig. 2 (for different values of da) and Fig 3 (for da = 1.5).
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Author Summary

Social foraging shows unexpected features such as the existence of an optimal

group size above which additional individuals do not favor the success of the

hunt. Previous work shows that the optimal group size is surprisingly small.

In wolves hunting elk in Yellowstone Park, hunting success levels off beyond

pack sizes of 4 individuals. This observation recently received support from

a computational agent model which showed that the reduction of hunting

success in large packs can be due to the emergence of privileged positions

in the spatial wolf-pack formation. Subsequent observations of wolves hunting

bison reinforce and document the hypothesis of the privileged positions. When

hunting bison, the optimal wolf-pack size is between 9 and 13. We show here

that this is in accordance with the computational model. Moreover, although

the optimal group size is expected to be greater when hunting more dangerous

prey, we show that this relation is surprisingly not linear: the computational

model reveals that the optimal group size actually results from the opposite

contributions of two critical distances separating wolves and prey. These

distances strongly depend on the kind of prey, and can induce a different

variation if a different prey is considered (e.g. moose).
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