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Granular methods to synthesise environmental sound textures (e.g. rain, wind, fire, traffic, crowds) preserve the richness and nuances of actual recordings, but need a preselection of timbrally stable source excerpts to avoid unnaturally-sounding jumps in sound character. To overcome this limitation, we add a description of the timbral content of each sound grain to choose successive grains from similar regions of the timbre space. We define two different timbre similarity measures, one based on perceptual sound descriptors, and one based on MFCCs. A listening test compared these two distances to an unconstrained random grain choice as baseline and showed that the descriptor-based distance was rated as most natural, the MFCC based distance generally as less natural, and the random selection always worst.

INTRODUCTION

The synthesis of credible environmental sound textures such as wind, rain, fire, crowds, traffic noise, is a crucial component for many applications in computer games, installations, audiovisual production, cinema. Often, sound textures are part of the soundscape of a long scene, and in interactive applications such as games and installations, the length of the scene is not determined in advance. Therefore, it is advantageous to be able to play a given texture for an arbitrary amount of time, but simple looping would introduce repetition that is easy to pick out. Using very long loops, or layering several loops can avoid this problem (and is the way sound designers currently do this), but this stipulates that a long enough recording of a stable environmental texture is available, and uses up a lot of media and memory space. We present here a method to extend an environmental sound texture recording for an arbitrary amount of time, without the need for the source recording to be of a stable and uniform timbre or density. This means, a sound designer can use a recording that fits the scene in atmosphere, but without needing to isolate a stable and sufficiently long loop, since our method will ensure smooth timbral transitions, while still varying the texture to avoid repetition effects.

Our method is based on randomised granular playback with control of the similarity between grains using two different timbral distance measure that are compared in an evaluation: a timbral distance based on audio descriptors, and an MFCC-based distance. We also compare to purely randomised playback as a baseline.

PREVIOUS AND RELATED WORK

The method presented here situates itself in the granular synthesis-based approaches to sound textures, as opposed to ones based on signal or physical models. These methods need a recording as source material from which sound grains are picked and played back. Granular playback takes advantage of the richness of actual recorded sound, in contrast to other methods based on pure synthesis [START_REF] Farnell | Designing Sound[END_REF], see the state-of-the-art overview on sound texture synthesis [START_REF] Schwarz | State of the art in sound texture synthesis[END_REF] for further discussion and a general introduction of sound textures. Fröjd and Horner [START_REF] Fröjd | Sound texture synthesis using an overlap-add/granular synthesis approach[END_REF] use purely randomised playback of long grains (around one second), with half-grain cross-fade, and slight randomisation of playback parameters (detuning, amplification) to avoid repetition. O'Leary and Röbel's Montage approach [START_REF] Leary | A two level montage approach to sound texture synthesis with treatment of unique events[END_REF][START_REF] Leary | A montage approach to sound texture synthesis[END_REF] exchanges grains by timbral similarity to avoid repetition, while following template sequences from the original, and introduce a spectral cross-fade minimising phase distortion.

Specifically, the present research draws on previous work on corpus-based sound texture synthesis [START_REF] Schwarz | Interactive Sound Texture Synthesis through Semi-Automatic User Annotations[END_REF][START_REF] Schwarz | Descriptorbased sound texture sampling[END_REF], that can also be seen as content-aware granular synthesis, and extends the work of Fröjd and Horner [START_REF] Fröjd | Sound texture synthesis using an overlap-add/granular synthesis approach[END_REF] by the explicit modeling and control of timbral similarity on randomised granular playback. Other methods to extend a given texture are based on modeling of higher-order statistical properties [START_REF] Bruna | Audio Texture Synthesis with Scattering Moments[END_REF][START_REF] Liao | On the modeling of sound textures based on the STFT representation[END_REF][START_REF] Mcdermott | Sound texture synthesis via filter statistics[END_REF][START_REF] Josh | Sound texture perception via statistics of the auditory periphery: evidence from sound synthesis[END_REF]. All these latter methods need a source recording with stable and uniform texture content while our proposed method can work with more varied textures by being aware of the timbral content of all grains.

Other methods for sound textures go further by modeling and recreating the typical transitions occurring in the source texture by wavelet-or Markov-trees [START_REF] Dubnov | Synthesis of audio sound textures by learning and resampling of wavelet trees[END_REF][START_REF] Kersten | Sound texture synthesis with hidden markov tree models in the wavelet domain[END_REF][START_REF] Kokaram | Wavelet based high resolution sound texture synthesis[END_REF]. A recent approach by Heittola et al. [START_REF] Heittola | Method for creating location-specific audio textures[END_REF] quite similar to ours is aimed at full soundscape synthesis to recreate the acoustic environment of a specific location for digital maps. There, the timbral similarity is calculated on MFCCs and their deltas averaged over four second grains. The resulting similarity matrix serves to coalesce adjacent grains into longer segments, and to cluster these in order to control the smoothness of transitions.

TEXTURE SYNTHESIS

Our method is derived from corpus-based concatenative synthesis (CBCS) [START_REF] Schwarz | Corpus-based concatenative synthesis[END_REF], where grains are played back from a corpus of segmented and descriptor-annotated sounds. Usually, CBCS is used to control the timbral evolution of the synthesised sound while still using original recordings as the sound source. This can be applied to texture synthesis to match the sound to the evolution of a given scene [START_REF] Schwarz | Interactive Sound Texture Synthesis through Semi-Automatic User Annotations[END_REF], see also the example video of interactive wind texture synthesis in a 2D descriptor space1 , when the descriptor target is given directly by the sound designer, or by the game engine. However, in the application described here, we don't want to control the timbral output directly, but have the system synthesise a varying texture without audible repetitions nor artefacts such as abrupt timbral or loudness changes. To this end, we use a timbral distance measure d between the last played grain and all other grains as candidates, and randomly select a successor grain from the timbrally closest grains, thus generating a random walk through the timbral space of the recording, that never takes too far a step, but that potentially still traverses the whole space of expression of the recording.

The algorithm proceeds as follows:

1. We construct a corpus of one or more recordings, segment it into grains (here of length 800 ms without overlap), and analyse each grain i for its timbral characteristics in a feature vector u i .

In our experiments we used two variants of annotation giving rise to two different distance measures:

(a) An analysis of the 7 audio descriptors validated by [START_REF] Schwarz | Interactive Sound Texture Synthesis through Semi-Automatic User Annotations[END_REF], extracted with the IRCAMDESCRIP-TOR library [START_REF] Peeters | A large set of audio features for sound description (similarity and classification) in the Cuidado project[END_REF]: The mean of the instantaneous descriptors Loudness, FundamentalFrequency, Noisiness, SpectralCentroid, Spectral-Spread, SpectralSlope over all frames of size 23 ms.

(b) An analysis of the timbral shape in terms of the mean of the mel-frequency cepstral coefficients (MFCCs) over the segment.

2. For synthesis, we start with a seed grain q, selected randomly or given manually to start off with a certain timbral content.

3. When a grain is triggered, c = 5 successor grains are searched by a (c + 1)-nearest neighbour search, i.e., given the current grain's descriptor values u q as query point, the kD-tree [START_REF] Wim | PCA-based branch and bound search algorithms for computing K nearest neighbors[END_REF][START_REF] Schwarz | Scalability in content-based navigation of sound databases[END_REF] finds in logarithmic time the c candidate grains with descriptor values closest to the query (and the query grain q itself, since it has a distance of zero). The distance function is a weighted Euclidean distance, with weights given by the inverse standard deviation to normalise the search space. Multiplying the weights allows us further to give more importance to certain descriptors, or to exclude them from influencing the search.

4. The successor grain s is chosen randomly from the c candidate grains. If s is within one second of q, a new grain s is picked from the candidates, to avoid picking grains too close to each other.

5.

To avoid too regular triggering of new grains, the duration and time of the next grain are randomly drawn within a 600-1000 ms range, and a random start offset of +/-200 ms is applied to each grain.

6. Played grains are overlapped by 200 ms, and an equal-power sinusoidal cross-fade is applied during the overlap.

7. While the desired length of the output texture is not reached, the chosen grain s becomes the query grain q, and the algorithm continues at step 3.

Implementation

The prototype system is implemented in Max/MSP using the MuBu (Multi-Buffer) extension library [START_REF] Schnell | MuBu & friends -assembling tools for content based real-time interactive audio processing in Max/MSP[END_REF], with the integration of the batch analysis module pipo.ircamdescriptor.2 

RESULTS AND EVALUATION

The method presented here is evaluated in an ongoing listening test accessible online. 3 At the time of writing, 31 subjects took the test.

The test consists of a questionnaire with 7 second extracts of 7 sound examples listed in table 1. This small test database contains sounds from [START_REF] Dubnov | Synthesis of audio sound textures by learning and resampling of wavelet trees[END_REF] that are widely used in evaluation of sound textures [START_REF] Fröjd | Sound texture synthesis using an overlap-add/granular synthesis approach[END_REF][START_REF] Lu | Audio textures: Theory and applications[END_REF] and thus partially allows comparison of the results. Other sounds were contributed by [START_REF] Schwarz | Interactive Sound Texture Synthesis through Semi-Automatic User Annotations[END_REF] and by the partners of the PHYSIS project. 4 All sounds were chosen for their properties of being a non-uniform environmental sound texture, i.e. containing some variation in texture and timbre, but not clearly distinguishable short sound events. An exception is the Baby Crying sound, that is here as an extreme counterexample, since it contains very different and well-separated cries. Table 3. Naturalness rating mean and standard deviation over all subjects.

Sound Example Description

For each example, the original, and 4 test stimuli of 7 s length are presented. The stimuli contain in randomised order the 3 syntheses (by descriptor distance, MFCC distance, random), and the original as hidden reference. For each stimulus, the subject is asked to rate the aspect of Naturalness on a scale of 0-100, with labels given in table 2. Note that the question of Sound Quality does not make sense for this evaluation since no signal processing other than long cross-fades is applied, and therefore the perceived sound quality is the same for all stimuli. We linearly scaled the collected naturalness ratings individually for each subject (over all sounds) to a range of 0 to 100. The rationale is that the relative ratings of overly enthusiastic or overly critical subjects are thus made comparable with the rest of the subjects. We can see in figures 3 and 4 that only a few subjects (notably 1, 12, 14, 27) exhibit very narrow rating ranges.

The collected data is summarised in figure 1. We can see that the descriptor-based similarity measure generally obtains better ratings than the MFCC based one, that the random grain choice is rated worst, and that the originals are rated very high, with only a few outliers.

To test if the observed differences of means are significant or simply due to chance, further statistical analysis has been carried out using the ANOVA (analysis of variance) method with Bonferroni correction. Here the null hypothesis H 0 is that means are equal, and differences are due to chance, and the alternative hypothesis H A is that the means are not equal. The p-values and significance levels 5 for each pair of comparisons are given in tables 4 and 5 for the raw and scaled ratings, respectively. The scaling seems to augment the contrast of the results, leading to a rise in significance level for a few pairs in the ANOVA results. ANOVA confirms that globally the descriptor-based similarity is preferred over MFCC, and both are preferred over the random method. However, the detailed analysis shows that only for Stadium Crowd and Water Faucet, and to a lesser degree for Formula One, descriptor and MFCCbased distance are rated significantly different. We hypothesise that especially these sounds benefit greatly from the more detailed descriptors Loudness and FundamentalFrequency, as they contain sequences of pitched foreground events. For all sounds but Traffic Jam and Baby Crying the descriptor-based distance is significantly rated better than the random method, while for the MFCC-based distance this is only so for Lapping Waves and Desert Wind. Another remark is that for Lapping Waves and Traffic Jam the original is not rated significantly different from the descriptor-based method, and for the former sound this also applies to the MFCC-based method.

CONCLUSIONS AND FUTURE WORK

A possible explanation for the general superiority of the descriptor-based similarity measure over the MFCC based one is that the perceptual descriptors better capture certain aspects of the sound character of environmental textures beyond pure spectral shape (that is represented by MFCCs). We can hypothesise that some of this information is related to pitch content, as expressed by the Fun-damentalFrequency and Noisiness descriptors. More re- 5 for each pair of differences of means on scaled naturalness ratings.

search is necessary to test this hypothesis and to link it with recent findings about fundamental mechanisms of sound texture perception [START_REF] Mcdermott | Summary statistics in auditory perception[END_REF].

While the presented method is not a sequence model that tries to model and generate the temporality of variation given an environmental recording, it can regenerate at least some of the naturally occurring variation in texture recordings. This has the two advantages of having a more varied output for background atmosphere sounds that uses the whole range of sound occurring in a source recording, and that the sound designer does not have to limit herself to stable textural recordings, or has to hunt down long-enough stretches of stable texture in longer recordings.

Although this is not the topic of this article, synthesis can be started off at specific-sounding grains in the recording as seeds, in order to start the texture with a given atmosphere (e.g. start with calm wind to not startle the listener at the beginning of a new scene with a gust of wind). This could, for instance, be achieved using a scatter-plot interface that allows to visualise the timbral space in 2D as popularised by the CATART software. 6 With a little future work, the texture could then be made to move towards another type of sound by specifying its feature vector and favouring transitions that move towards that point in the descriptor space. More future work should check the influ- 5 The significance level depending on the p-value is habitually represented by a number of stars as follows: To conclude, we hope that this method can improve the workflow of sound designers for interactive or postproduction applications, and further augment the advantages that procedural audio has to offer over fixed media in order to foster uptake by the industry.

Figure 1 .

 1 Figure 1. Box plot of the scaled naturalness ratings per type of stimulus, showing the median (middle line), quartile range (box), min/max (whiskers), and outliers (crosses).

  p ≤ 0.05 0.01 0.001 0.0001 6 http://ismm.ircam.fr/catart ence and possible automatic estimation of the neighbourhood parameter (the number of candidates c).

Table 1 .

 1 List of test sound database and description

	Lapping Waves	long-term structure
	Desert Wind	wind with occasional gusts
	Stadium Crowd	atmosphere, occasional cheering
		and honking
	Water Faucet	various speeds of water flow
	Formula One	not actually a texture, containing
		structured variation
	Traffic Jam	motor sounds, honking, some
		shouts
	Baby Crying	not actually a texture, containing
		large variation

Table 2 .

 2 Naturalness rating scale

	Score	Label
	0-19	Very unnatural: repetitions, jumps, cuts.
	20-39	Somewhat unnatural
	40-59	Somewhat natural
	60-79	Very natural
	80-100 As natural as original

Table 4 .

 4 Box plot of the scaled naturalness ratings per source sound and type of stimulus (orig, descr, mfcc, random). Box and dot plot of the per-subject naturalness rating prior to scaling (• original, descr, mfcc, × random). Box and dot plot of the per-subject naturalness rating after scaling (• original, descr, mfcc, × random). P-values and significance class5 for each pair of differences of means on unscaled naturalness ratings.
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Table 5 .

 5 P-values and significance class
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