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Smooth Granular Sound Texture Synthesis by Control of Timbral Similarity

Diemo Schwarz, Sean O’Leary
Ircam—CNRS-UPMC

firstname.secondname@ircam. fr

ABSTRACT

Granular methods to synthesise environmental sound tex-
tures (e.g. rain, wind, fire, traffic, crowds) preserve the
richness and nuances of actual recordings, but need a
preselection of timbrally stable source excerpts to avoid
unnaturally-sounding jumps in sound character. To over-
come this limitation, we add a description of the timbral
content of each sound grain to choose successive grains
from similar regions of the timbre space. We define two
different timbre similarity measures, one based on per-
ceptual sound descriptors, and one based on MFCCs. A
listening test compared these two distances to an uncon-
strained random grain choice as baseline and showed that
the descriptor-based distance was rated as most natural, the
MFCC based distance generally as less natural, and the
random selection always worst.

1. INTRODUCTION

The synthesis of credible environmental sound textures
such as wind, rain, fire, crowds, traffic noise, is a crucial
component for many applications in computer games, in-
stallations, audiovisual production, cinema. Often, sound
textures are part of the soundscape of a long scene, and in
interactive applications such as games and installations, the
length of the scene is not determined in advance. There-
fore, it is advantageous to be able to play a given texture
for an arbitrary amount of time, but simple looping would
introduce repetition that is easy to pick out. Using very
long loops, or layering several loops can avoid this prob-
lem (and is the way sound designers currently do this), but
this stipulates that a long enough recording of a stable en-
vironmental texture is available, and uses up a lot of media
and memory space.

We present here a method to extend an environmental
sound texture recording for an arbitrary amount of time,
without the need for the source recording to be of a stable
and uniform timbre or density. This means, a sound de-
signer can use a recording that fits the scene in atmosphere,
but without needing to isolate a stable and sufficiently long
loop, since our method will ensure smooth timbral tran-
sitions, while still varying the texture to avoid repetition
effects.
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Our method is based on randomised granular playback
with control of the similarity between grains using two dif-
ferent timbral distance measure that are compared in an
evaluation: a timbral distance based on audio descriptors,
and an MFCC-based distance. We also compare to purely
randomised playback as a baseline.

2. PREVIOUS AND RELATED WORK

The method presented here situates itself in the granular
synthesis-based approaches to sound textures, as opposed
to ones based on signal or physical models. These meth-
ods need a recording as source material from which sound
grains are picked and played back. Granular playback
takes advantage of the richness of actual recorded sound,
in contrast to other methods based on pure synthesis [4],
see the state-of-the-art overview on sound texture synthe-
sis [19] for further discussion and a general introduction
of sound textures. Frojd and Horner [5] use purely ran-
domised playback of long grains (around one second), with
half-grain cross-fade, and slight randomisation of play-
back parameters (detuning, amplification) to avoid repe-
tition. O’Leary and Rdébel’s Montage approach [14, 15]
exchanges grains by timbral similarity to avoid repetition,
while following template sequences from the original, and
introduce a spectral cross-fade minimising phase distor-
tion.

Specifically, the present research draws on previous work
on corpus-based sound texture synthesis [20, 21], that can
also be seen as content-aware granular synthesis, and ex-
tends the work of Frojd and Horner [5] by the explicit mod-
eling and control of timbral similarity on randomised gran-
ular playback. Other methods to extend a given texture
are based on modeling of higher-order statistical proper-
ties [1, 9, 11, 12]. All these latter methods need a source
recording with stable and uniform texture content while
our proposed method can work with more varied textures
by being aware of the timbral content of all grains.

Other methods for sound textures go further by model-
ing and recreating the typical transitions occurring in the
source texture by wavelet- or Markov-trees [3, 7, 8].

A recent approach by Heittola et al. [6] quite similar
to ours is aimed at full soundscape synthesis to recreate
the acoustic environment of a specific location for digi-
tal maps. There, the timbral similarity is calculated on
MFCCs and their deltas averaged over four second grains.
The resulting similarity matrix serves to coalesce adjacent
grains into longer segments, and to cluster these in order to
control the smoothness of transitions.
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3. TEXTURE SYNTHESIS

Our method is derived from corpus-based concatenative
synthesis (CBCS) [18], where grains are played back from
a corpus of segmented and descriptor-annotated sounds.
Usually, CBCS is used to control the timbral evolution of
the synthesised sound while still using original recordings
as the sound source. This can be applied to texture syn-
thesis to match the sound to the evolution of a given scene
[20], see also the example video of interactive wind texture
synthesis in a 2D descriptor space ' , when the descriptor
target is given directly by the sound designer, or by the
game engine. However, in the application described here,
we don’t want to control the timbral output directly, but
have the system synthesise a varying texture without audi-
ble repetitions nor artefacts such as abrupt timbral or loud-
ness changes. To this end, we use a timbral distance mea-
sure d between the last played grain and all other grains
as candidates, and randomly select a successor grain from
the timbrally closest grains, thus generating a random walk
through the timbral space of the recording, that never takes
too far a step, but that potentially still traverses the whole
space of expression of the recording.
The algorithm proceeds as follows:

1. We construct a corpus of one or more recordings,
segment it into grains (here of length 800 ms with-
out overlap), and analyse each grain ¢ for its timbral
characteristics in a feature vector ;.

In our experiments we used two variants of annota-
tion giving rise to two different distance measures:

(a) An analysis of the 7 audio descriptors validated
by [20], extracted with the IRCAMDESCRIP-
TOR library [16]: The mean of the instanta-
neous descriptors Loudness, FundamentalFre-
quency, Noisiness, SpectralCentroid, Spectral-
Spread, SpectralSlope over all frames of size
23 ms.

(b) An analysis of the timbral shape in terms of
the mean of the mel-frequency cepstral coeffi-
cients (MFCCs) over the segment.

2. For synthesis, we start with a seed grain ¢, selected
randomly or given manually to start off with a cer-
tain timbral content.

3. When a grain is triggered, ¢ = 5 successor grains
are searched by a (¢ + 1)-nearest neighbour search,
i.e., given the current grain’s descriptor values u,
as query point, the kD-tree [2, 22] finds in logarith-
mic time the ¢ candidate grains with descriptor val-
ues closest to the query (and the query grain q itself,
since it has a distance of zero). The distance func-
tion is a weighted Euclidean distance, with weights
given by the inverse standard deviation to normalise
the search space. Multiplying the weights allows us
further to give more importance to certain descrip-
tors, or to exclude them from influencing the search.

!http://imtr.ircam.fr/imtr/Sound_Texture_Synthesis

4. The successor grain s is chosen randomly from the
c candidate grains. If s is within one second of ¢, a
new grain s is picked from the candidates, to avoid
picking grains too close to each other.

5. To avoid too regular triggering of new grains, the du-
ration and time of the next grain are randomly drawn
within a 600-1000 ms range, and a random start off-
set of +/- 200 ms is applied to each grain.

6. Played grains are overlapped by 200 ms, and an
equal-power sinusoidal cross-fade is applied during
the overlap.

7. While the desired length of the output texture is not
reached, the chosen grain s becomes the query grain
q, and the algorithm continues at step 3.

3.1 Implementation

The prototype system is implemented in Max/MSP us-
ing the MuBu (Multi-Buffer) extension library [17],
with the integration of the batch analysis module
pipo.ircamdescriptor. 2

4. RESULTS AND EVALUATION

The method presented here is evaluated in an ongoing lis-
tening test accessible online.® At the time of writing, 31
subjects took the test.

The test consists of a questionnaire with 7 second ex-
tracts of 7 sound examples listed in table 1. This small
test database contains sounds from [3] that are widely
used in evaluation of sound textures [5, 10] and thus par-
tially allows comparison of the results. Other sounds were
contributed by [20] and by the partners of the PHYSIS
project.* All sounds were chosen for their properties of
being a non-uniform environmental sound texture, i.e. con-
taining some variation in texture and timbre, but not clearly
distinguishable short sound events. An exception is the
Baby Crying sound, that is here as an extreme counterex-
ample, since it contains very different and well-separated
cries.

Sound Example
Lapping Waves
Desert Wind
Stadium Crowd

Description

long-term structure

wind with occasional gusts
atmosphere, occasional cheering
and honking

various speeds of water flow

not actually a texture, containing
structured variation

Water Faucet
Formula One

Traffic Jam motor sounds, honking, some
shouts
Baby Crying not actually a texture, containing

large variation

Table 1. List of test sound database and description

2 http://forumnet.ircam.fr/product/max-sound-box
3 http://ismm.ircam.fr/sound-texture-transition-control-evaluation
4 http://sites.google.com/site/physisproject
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mfcc

random

71.82 (£ 23.58)
61.97 (+ 26.19)
23.03 (& 18.52)
25.34 (+ 18.11)
17.43 (& 19.61)
56.23 (£ 29.07)
13.07 (& 15.38)

46.01 (£ 25.16)
23.24 (£ 23.11)
25.83 (4 20.18)
14.18 (£ 15.11)
12.85 (£ 15.71)
52.97 (£ 27.07)
15.89 (& 21.02)

orig descr
Lapping Waves  85.09 (£ 20.70) 73.04 (£ 19.76)
Desert Wind 92.46 (+ 08.70)  59.90 (4 22.28)
Stadium Crowd 91.65 (£ 13.36) 56.22 (£ 29.05)
Water Faucet 86.82 (£ 16.93) 55.38 (£ 24.01)
Formula One 95.15 (£ 08.57)  29.55 (& 20.62)
Traffic Jam 77.36 (£ 26.44) 59.01 (£ 31.47)
Baby 95.43 (£ 09.45) 17.98 (£ 15.15)
Total 89.14 (£ 17.30) 50.16 (£ 29.76)

38.41 (£ 31.37)

27.28 (£ 26.15)

Table 3. Naturalness rating mean and standard deviation over all subjects.

For each example, the original, and 4 test stimuli of 7 s
length are presented. The stimuli contain in randomised
order the 3 syntheses (by descriptor distance, MFCC dis-
tance, random), and the original as hidden reference. For
each stimulus, the subject is asked to rate the aspect of
Naturalness on a scale of 0-100, with labels given in ta-
ble 2. Note that the question of Sound Quality does not
make sense for this evaluation since no signal processing
other than long cross-fades is applied, and therefore the
perceived sound quality is the same for all stimuli.

We linearly scaled the collected naturalness ratings indi-
vidually for each subject (over all sounds) to a range of 0
to 100. The rationale is that the relative ratings of overly
enthusiastic or overly critical subjects are thus made com-
parable with the rest of the subjects. We can see in figures 3
and 4 that only a few subjects (notably 1, 12, 14, 27) ex-
hibit very narrow rating ranges.

The collected data is summarised in figure 1. We can
see that the descriptor-based similarity measure generally
obtains better ratings than the MFCC based one, that the
random grain choice is rated worst, and that the originals
are rated very high, with only a few outliers.

To test if the observed differences of means are signif-
icant or simply due to chance, further statistical analysis
has been carried out using the ANOVA (analysis of vari-
ance) method with Bonferroni correction. Here the null
hypothesis H is that means are equal, and differences are
due to chance, and the alternative hypothesis H 4 is that the
means are not equal. The p-values and significance levels >
for each pair of comparisons are given in tables 4 and 5 for
the raw and scaled ratings, respectively. The scaling seems
to augment the contrast of the results, leading to a rise in
significance level for a few pairs in the ANOVA results.

ANOVA confirms that globally the descriptor-based sim-
ilarity is preferred over MFCC, and both are preferred over
the random method. However, the detailed analysis shows

Score  Label

0-19 Very unnatural: repetitions, jumps, cuts.
20-39  Somewhat unnatural

40-59  Somewhat natural

60-79  Very natural

80-100  As natural as original

Table 2. Naturalness rating scale
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Figure 1. Box plot of the scaled naturalness ratings

per type of stimulus, showing the median (middle line),
quartile range (box), min/max (whiskers), and outliers
(crosses).

that only for Stadium Crowd and Water Faucet, and to
a lesser degree for Formula One, descriptor and MFCC-
based distance are rated significantly different. We hypoth-
esise that especially these sounds benefit greatly from the
more detailed descriptors Loudness and FundamentalFre-
quency, as they contain sequences of pitched foreground
events. For all sounds but Traffic Jam and Baby Crying the
descriptor-based distance is significantly rated better than
the random method, while for the MFCC-based distance
this is only so for Lapping Waves and Desert Wind. An-
other remark is that for Lapping Waves and Traffic Jam
the original is not rated significantly different from the
descriptor-based method, and for the former sound this
also applies to the MFCC-based method.

5. CONCLUSIONS AND FUTURE WORK

A possible explanation for the general superiority of the
descriptor-based similarity measure over the MFCC based
one is that the perceptual descriptors better capture cer-
tain aspects of the sound character of environmental tex-
tures beyond pure spectral shape (that is represented by
MFCCs). We can hypothesise that some of this informa-
tion is related to pitch content, as expressed by the Fun-
damentalFrequency and Noisiness descriptors. More re-



Desert Wind Stadium Crowd Water Faucet Formula One Traffic Jam Baby

Lapping Waves

Figure 2. Box plot of the scaled naturalness ratings per source sound and type of stimulus (orig, descr, mfcc, random).
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Figure 4. Box and dot plot of the per-subject naturalness rating after scaling (o original, ¢ descr, V mfcc, X random).

Figure 3. Box and dot plot of the per-subject naturalness rating prior to scaling (o original, ¢ descr, V mfcc, x random).
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orig orig orig descr descr mfcc

descr mfcc random mfcc random random
Lapping Waves 0.1772 0.2037 0.0000 **** 1.0000 0.0003 ***  (0,0002 ***
Desert Wind 0.0000 **** 0,0000 **** (.0000 **** 1.0000 0.0000 ****  (,0000 ****
Stadium Crowd 0.0000 ****  (0.0000 **** (.0000 **** (0.0000 **** (0.0000 **** 1.0000
Water Faucet 0.0000 **** 0.0000 **** 0.0000 **** (0.0000 **** (0.0000 **** 0.1179
Formula One 0.0000 *#*%  0,0000 ****  (0.0000 **** (.1576 0.0106 * 1.0000
Traffic Jam 0.0833 0.0338 * 0.0115 * 1.0000 1.0000 1.0000
Baby 0.0000 ****  0,0000 ****  (.0000 **** 1.0000 1.0000 1.0000
total 0.0000 ****  0.0000 **** 0.0000 **** (0.0002 ***  0.0000 **** (0.0002 ***

Table 4. P-values and significance class> for each pair of differences of means on unscaled naturalness ratings.

orig orig orig descr descr mfcc

descr mfcc random mfcc random random
Lapping Waves  0.2360 0.1409 0.0000 **** 1,0000 0.0000 ***%  (0,000]1 ***
Desert Wind 0.0000 **** (0,0000 ****  (.0000 ****  1,0000 0.0000 ***%  (,0000 ****
Stadium Crowd 0.0000 **#**  (0,0000 **** (0.0000 **** (0.0000 **** (0,0000 **** 1.0000
Water Faucet 0.0000 ***% (0,0000 ****  (.,0000 ****  (0,0000 **** (0,0000 ****  (.1408
Formula One 0.0000 ***% 0,0000 ****  (0.0000 ****  (0.0365 * 0.0012 ** 1.0000
Traffic Jam 0.0858 0.0297 * 0.0075 ** 1.0000 1.0000 1.0000
Baby 0.0000 **** (0,0000 ****  (.0000 ****  1,0000 1.0000 1.0000
total 0.0000 **** (0,0000 **** (.0000 **** (0.0000 **** (0,0000 ****  (.000] ****

Table 5. P-values and significance class> for each pair of differences of means on scaled naturalness ratings.

search is necessary to test this hypothesis and to link it with
recent findings about fundamental mechanisms of sound
texture perception [13].

While the presented method is not a sequence model that
tries to model and generate the temporality of variation
given an environmental recording, it can regenerate at least
some of the naturally occurring variation in texture record-
ings. This has the two advantages of having a more var-
ied output for background atmosphere sounds that uses the
whole range of sound occurring in a source recording, and
that the sound designer does not have to limit herself to sta-
ble textural recordings, or has to hunt down long-enough
stretches of stable texture in longer recordings.

Although this is not the topic of this article, synthesis can
be started off at specific-sounding grains in the recording
as seeds, in order to start the texture with a given atmo-
sphere (e.g. start with calm wind to not startle the listener
at the beginning of a new scene with a gust of wind). This
could, for instance, be achieved using a scatter-plot inter-
face that allows to visualise the timbral space in 2D as
popularised by the CATART software.® With a little fu-
ture work, the texture could then be made to move towards
another type of sound by specifying its feature vector and
favouring transitions that move towards that point in the
descriptor space. More future work should check the influ-

5 The significance level depending on the p-value is habitually repre-
sented by a number of stars as follows:

Level ‘ # ok EE e EEE T

p< | 005 001 0001 00001

6 http://ismm.ircam.fr/catart

ence and possible automatic estimation of the neighbour-
hood parameter (the number of candidates c).

To conclude, we hope that this method can improve
the workflow of sound designers for interactive or post-
production applications, and further augment the advan-
tages that procedural audio has to offer over fixed media in
order to foster uptake by the industry.
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