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Center of Mass Estimation for Polyarticulated System in Contact -
A Spectral Approach

Justin Carpentier1,2, Mehdi Benallegue1,2, Member, IEEE,, Nicolas Mansard1,2, Member, IEEE, and
Jean-Paul Laumond1,2, Member, IEEE

Abstract—This paper deals with the problem of estimating
the position of center of mass for a polyarticulated system (e.g.
a humanoid robot or a human body), which makes contact
with its environment. The only sensors providing measurements
on this point are either interaction force sensors or kinematic
reconstruction applied to a dynamic model of the system. We
first study the observability of the center of mass position
using these sensors and we show that the accuracy domain of
each measurement can be easily described through a spectral
analysis. We finally introduce an original approach based on the
theory of complementary filtering to efficiently merge these input
measurements and obtain an estimation of the center of mass
position. This approach is extensively validated in simulation
using a model of humanoid robot where (i) we confirm the
spectral analysis of the signal errors and (ii) we show that the
complementary filter offers a lower average reconstruction error
than the classical Kalman filter. Some experimental applications
of this filter on real signals are also presented.

I. MOTIVATION

The comunities of biomechanics and humanoid robotics
share a common interest in the estimation of center of mass
(CoM) position. From a biomechanics perspective, it concerns
the CoM position of the human body which depends on a very
large number of parameters, including soft tissues shapes and
densities. These parameters are classically reduced to articular
angles coupled to a mass distribution model considering
perfectly rigid limbs [2]. Nevertheless, the CoM of humans is
at the heart of classical biomechanical studies on equilibrium
and locomotion [3]. Indeed, CoM trajectories constitute a
synthetic, mechanically and geometrically relevant motion
descriptor [4], and its dynamics carries also information about
the contact forces necessary to compensate for the gravity and
ensure locomotion. The more accurate is the reconstruction of
the CoM trajectory, the more precise will be the extraction of
features and phenomena from studied motions.

In robotics, the CoM of a humanoid robot depends on the
configuration of the robot and the dynamical model. Although
the modeling error is much lower for humanoid robots than
for humans, they are usually extracted from CAD data and
may contain discrepancies with the final robot. Furthermore
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Parts of this paper have been submitted to the 15th IEEE-RAS Humanoids
Conference [1]. Despite some similarities in the the text, the conference
submission presents a different approach based on zero moment point which
cannot be applied to non-planar contacts and which is only efficient in
horizontal plane.
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Fig. 1: The problem of merging measurements for CoM reconstruction in the
presence of noises and modeling errors.

the aging of the robot in addition to material updates and
repairs lead the robot inertial parameters to drift from the
initial model, and may require a new calibration process [5].
Despite that, the CoM is the main control variable for walking
motion generation. For instance, this control aims for example
to ensure displacement in space while respecting balance
criteria often related to interaction forces [6]. The modeling
errors inducing misestimation of the CoM position may then
endanger the balance of humanoid robots [7].

There are two kinds of sensors that provide data about the
position of center of mass. The first one is the reconstruction
of the multibody kinematics using any motion capture
technique (optical, IMUs, etc.). The technique requires also
the dynamical model representing the inertial parameters of
the system. This approach suffers from modeling errors and
provides usually biased estimations. The second kind of
sensors measures interaction forces and moments with the
environment. The forces provide CoM accelerations. Moments
are more closely related to the position of the CoM, through a
straight line in the space named the central axis of the contact
wrench. However this axis is not exactly passing through the
center of mass because of the possible variation of angular
momentum due to gesticulation [8]. Moreover the position of
the CoM along this axis cannot always be known precisely. In
addition, all these signals suffer also from measurement noise
reducing the estimation quality.

Let us suppose then that we have these three input signals.
The first is the biased kinematics reconstruction. The second
signal is the acceleration provided by force measurement. And
the third signal is the central axis provided by forces and
moments. The first contribution of this paper is to study the
properties of observability provided by these signals. Then
we describe one important property that characterizes these



signals : they have different spectral distributions of errors
and noises. This means that for a given frequency range
of the CoM trajectory, there is a signal providing a better
estimation than others. We finally develop a complete method
for multi-sensor data fusion to merge all these signals into one
estimator (see Figure 1).

We propose to use data fusion based on complementary
filtering. Complementary filtering is a common technique
which consists in merging input signals that suffer from
errors that lie in different bandwidths into one output signal.
Furthermore, it is a simple and real-time method that provides
theoretically unbiased, noise-free and non-phase-shifted
estimation of the CoM position.

In Section II we describe the dynamical system providing
the relations between the available signals and the CoM
trajectory. Section III analyses the observability conditions of
the center of mass position. In section IV we develop our linear
complementary filter for the three signals. In Section V we
show how our method behaves against noisy measurements
in a simulated environment where the ground truth is
immediately accessible and we compare the performances
to estimation by a Kalman filter fusion. In SectionVI, two
scenarios of application of our method on real signals are
depicted. And in Section VII, we compare our method to
related works.

II. THE UNDERACTUATED POLYARTICULATED SYSTEMS

In this section, we briefly recall the equations of the
dynamics of a free-floating system with an polyarticulated
structure like a humanoid robot or the human body. The main
idea is to make the link between the measured quantities (i.e.
the estimates of the position of the CoM, the central axis of
the contact wrench, and the forces) and the under-actuated
dynamics, namely the dynamics reduced around the CoM.

A. The under-actuated dynamics
We first consider the Lagrangian dynamics of a n

degrees of freedom free-floating based system which makes
N contacts with the surrounding environment. We name
q ∈ Q def

= SE(3)× Rn the configuration vector of the system
and q̇, q̈ its first and second time derivatives. The Lagrangian
dynamics reads:

M(q)q̈ + b(q, q̇) = G(q) + S>τ +
∑
i

J>i (q)φi, (1)

where M stands for the mass matrix, b for the centrifugal and
Coriolis effects, G for the action of the gravity field. S is a
selection matrix which distributes the torque τ over the joints
space, Ji is the jacobian of the contact point i and φi is the
vectorial representation of the unilateral contact wrenches [9]
acting on the robot and it is composed of a linear fi and
angular τi components.

This dynamical equation can be split into two parts: the
under-actuated dynamics, i.e the dynamics of the free-floating
base (denoted by b) and the dynamics of the actuated segments
(denoted by a):[

Mb

Ma

]
q̈ +

[
bb
ba

]
=

[
Gb
Ga

]
+

[
06

τ

]
+
∑
i

[
Ji,b Ji,a

]>
φi (2)

The first row of (2) is the so-called Newton-Euler equation
of a moving body, having a mass m, a position c relative to
the inertial frame, a linear and angular momenta denoted by
p and L respectively. The point c is nothing more than the
center of mass of the whole anthropomorphic system.

In a more classical manier, this under-actuated dynamics
can be rewritten as:

ṗ =
∑
i

fi −mg (3)

L̇ =
∑
i

(pi − c)× fi + τi, (4)

where × denotes the cross product operator, pi is the position
of the contact point i relative to the inertial frame and g is the
gravity field. In order to simplify the notations, we set down:

φc =

[
fc
τc

]
def
=

[ ∑
i fi∑

i pi × fi + τi

]
, (5)

the resulting wrench of contact forces and moments expressed
at the center O of the inertial frame. Finally, knowing that
p

def
= mċ and injecting (3) into (4) leads to:

mc× (c̈+ g) + L̇ = τc (6)

B. The Zero-Moment Point

We make the hypothesis that all contact points lie on the
same plane. Without any loss of generality, we assume this
plane corresponds to the flat ground with normal vector n,
aligned with the gravity field g. The ZMP (also known as the
center of pressure [10]), is then defined as the point on the
contact plane where the moment component of the resulting
wrench is aligned with the normal axis of the plane. The
equation of the ZMP (denoted z) is then given by:

zx,y =

−
τ yc
fzc
τxc
fzc

 and zz = 0 (7)

We can now inject the two first rows of (6) into (7), which
leads to the expression of the ZMP position as a function of
c and L and their time derivatives:

zx,y = cx,y − cz

c̈z + gz
c̈x,y +

1

m(c̈z + gz)

[
−L̇y
L̇x

]
(8)

Numerous works in humanoid robotics use the ZMP as a
criterion for balance on flat ground. Indeed, as long as the ZMP
remains strictly inside the convex hull of the support polygon,
support feet don’t tip around their edge and the contact is
firmly maintained on the ground [11]. Therefore controlling
the position of ZMP enables to generate balanced moving
locomotion for humanoid robots.

Most of ZMP-based control make the simplification of
considering negligible variations of angular momentum around
the CoM (L̇ ≈ 0). This makes the CoM lie on the straight line
that passes through ZMP and follows the direction of contact
force vector fc. We name this line the ZMP axis.

In addition, most walking pattern generators for robots
consider also that height of the CoM is constant. This



simplification is named cart-table model [6]. In this context
we obtain the linearized version of the ZMP:

zx,y = cx,y − c
z

gz
c̈x,y, (9)

which is linear in both variables cx,y and c̈x,y .

C. The Central Axis of the Contact Wrench

The notion of central axis of the contact wrench have
been extensively used in robotics, either to justify the concept
of zero-moment point [10] or to extend this concept for
multi-contacts scenarios as depicted in [12], [13] or more
recently in [14]. In the following, we recall the notion of
central axis and use it as a descriptor of movement.

Definition 1. The central axis Wc of the contact wrench φc
is defined as the set of points where the torque of the wrench
τWc

is aligned with the resulting force fc. Relatively to the
inertial frame center in O, this axis is uniquely defined by:

Wc =

{
P ∈ E3,

−−→
OP =

fc × τc
fc · fc

+ λnc, λ ∈ R
}
, (10)

where · denotes the dot product operator, E3 is the euclidian
space centered in O and nc is the direction cosine of fc.

For each point P of this axis, the value of the torque τP is
equal to (τc · nc)nc. We may also interpret the central axis
as the set of points where the moment has a minimal norm of
value τc ·nc. This trait is due to the orthogonality property of
the cross product operator and to the equiprojectivity property
of the wrench field.

1) Approximation of the CoM position: As in the case of
the ZMP, if we neglect the variation of angular momentum
around the center of mass (say L̇ ≈ 0) and we inject (3) into
(6), we obtain:

c× fc ≈ τc (11)

In other words, under this approximation the center of mass
c belongs to the central axis Wc.

We now introduce an other point cp which is the orthogonal
projection of c onto the central axis Wc. The expression of
cp is then given by:

cp =
fc × τc
fc · fc

+ (c · nc)nc (12)

The projection cp is nothing more than a good approximation
of c as soon as the variations of angular momentum around
the center of mass become negligible relatively to τc.

D. The zero moment point versus the projection on central
axis of contact wrench

Figure 2 illustrates the difference between the zero-moment
point and the central axis of the contact wrench.

We can also mention the following property linking the
central axis of the wrench contact to the zero-moment point
concept:

Theorem 1. (i) The ZMP axis and the central axis Wc

coincide if and only if (ii-a) the direction cosine of the contact

ZMP

  
     Contact 
   wrench
  central
axis

  Force  Force
 vector vector
  Force  Force
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Cart-table
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Real
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Fig. 2: A graphic representation of the comparison between the central axis of
the contact wrench and the ZMP. The ZMP part is depicted in red and shows
the approximation made by the cart table model. The line joining the ZMP
to the CoM of the cart-table model is parallel to the contact force vector. The
central axis part is shown in blue. It is the line of minimal moment norm,
also parallel to the contact force vector.

force vector is equal to n or (ii-b) the contact torque vector
is orthogonal to the contact forces, i.e. τc · nc = 0.

The demonstration is left to Appendix A.

III. OBSERVABILITY OF CENTER OF MASS POSITION

We aim at observing the trajectory of the center of mass
online using the available measurements. We consider that the
position of the CoM together with its second order derivatives
can be set as a dynamical system of the form:

ẋ = Ax+Bu, (13)

where x> =
[
c> ċ> c̈>

]
is the state vector, u ∈ R3 is

the jerk (third time derivative) of the center of mass, and the
matrices A and B defined as following:

A =

0 I 0
0 0 I
0 0 0

 and B =

0
0
I

 , (14)

where each 0 and I is 3 × 3 zero and identity matrices
respectively.

In this section, we study the observability of the center of
mass position given the signals we described earlier. First,
we consider the variations of angular momentum around the
CoM are negligible. In this context, we show that when we
have the force and moment measurements only, the center of
mass position is not generally fully observable, but only the
components orthogonal to the contact forces vector. We show
then that the reconstruction of the CoM does not improve the
observability but enables to bound the estimation error along
forces vector. We discuss then the conditions and domains of
validity of the assumption of negligible variation of angular
momentum around CoM, introducing the spectral approach
that we propose in the following section.



A. Observability with force/moment signals

Eq. (5) provides the expression of force and moment
measurements. By considering the variations of the angular
momentum L̇ negligible we can rewrite this signal as:[

y1
y2

]
def
= h(x) =

[
m(c̈+ g)

mc× (c̈+ g)

]
(15)

We first see that the moments measurement y2 is nonlinear
with regard to the state vector. This is due to the bilinear
property of the cross product.

It appears clearly that the measurement is invariant for CoM
position modifications along the contact force vector fc, i.e.
∀λ ∈ R:

h

c+ λfc
ċ
c̈

 =

[
m(c̈+ g)

m(c+ λ(c̈+ g))× (c̈+ g)

]
= h

cċ
c̈


(16)

This implies that for certain trajectories, for example when
fc is constant (u = 0), the state is indistinguishable along
one axis, which assesses the non-observability of the full
CoM position in that case. Moreover, this non-observability
property remains even when L̇ is non-negligible. Particularly,
this situation happens when the polyarticulated system is static
with fc = mg.

Of course, this indistinguishability problem does not
appear for all possible CoM trajectories. Indeed there exist
theoretically inputs u which guarantee the distinguishability
of all the state space. However, first, we have no control on the
input u which drives the motion we observe. Second, for the
majority of humans and robots motions the most important part
of contact forces tend to be used to compensate the gravity.
This means the forces are mostly vertical during all the time.
This leads us to conclude that it is unlikely that any estimation
of the altitude cz based on these measurements will reach
high precision compared to other components, except for very
dynamic motions. This theoretical assertion is validated in
Section V.

In order to assess the observability of other axes, let’s
consider the worst case u = 0 and study it in details using the
observability matrix obtained by successive Lie derivatives of
h by the vector field generated by matrix A [15]:

M =


0 0 mI

−m[c̈+ g]× 0 m[c]×
0 0 0
0 −m[c̈+ g]× m[ċ]×
0 0 0
0 0 −m[g]×

 (17)

where [·]× is the skew symmetric matrix operator that
enables to perform cross product. The rank of this matrix M is
7 for all states such that c̈+g 6= 0. More importantly, we can
see that the components of the CoM position and velocities
which lie in the span space of [c̈ + g]× are observable. In
other words, the axes of c and ċ which are orthogonal to the
contact force vector m(c̈+ g) are always observable.

The equality c̈ + g = 0 corresponds to the case of
free falling of the CoM, the force measurement is null and
unsurprisingly only the CoM acceleration is observable. This

situation happens in particular during jumps and flight phases
of running.

We conclude from this observability analysis that CoM
estimations based on the force and moment measurements
alone may obtain precise results in horizontal position within
the limitations of the assumption that L̇ = 0. Regarding CoM
height, the observation is likely to drift from the real value,
especially with the double integration of a noisy force signal.

This leads us to introduce the other measurement of the
CoM position, which is the geometry-based reconstruction.

B. Geometry-based CoM reconstruction

A polyarticulated system with rigid limbs evolves in the
configuration space Q. And the current CoM position depends
on the current configuration. In fact, if we have an accurate
model of the kinematic tree and mass distribution of the
multibody system, the configuration q is sufficient to rebuild
the CoM position. In this context, the observability of the
CoM position is complete, and the estimation rather easy. This
is why the vast majority of robots just use this method not
only for reconstruction but also for planning and closed-loop
control of CoM trjectories.

However this reconstruction relies entirely on the accuracy
of the dynamic model. In particular this means that for
humans, it requires either to use anthropomorphic tables
with important modeling errors [2] or to estimate inertial
parameters using relatively long and tedious identification
techniques [16]. Robots also suffer from a drift between the
initial model and the actual multibody system due to ageing,
maintenance and upgrades which may require also inertial
identification [5]. These considerations lead to write this CoM
position measurement as:

y0 = c+ b, (18)

where b ∈ R3 represents biases due to modeling error. The
value of b depends nonlinearly on the joint configuration with
an unknown function. So we have no choice but considering
that it evolves following its own unknown dynamics. Therefore
we have to concatenate the vector b to the state vector x.

Nevertheless, most studied motions for robots and humans
evolve in a small subset of the configuration space. For
example during walking, a human remains upright with legs
and arms broadly to the bottom. In this case, we may consider
that the bias b is relatively constant. This assumption gives us
the new state dynamics:

˙̄x = Āx̄+ B̄u, (19)

where x̄> =
[
x> b>

]
is the augmented state vector and

the matrices Ā and B̄ are matrices of appropriate dimensions
defined as following:

Ā =

[
A 0
0 0

]
and B̄ =

[
B
0

]
, (20)

The first thing we see is that the response of this
dynamical system is still invariant for any modifications
of the CoM position along fc. Specifically, the vector[
(c+ λfc)

> ċ> c̈> (b− λfc)>
]

is not distiguishable
from x̄ when u = 0.



To see more clearly what modifications to observability this
addition provides, let’s study the observability matrix for the
case u = 0 provided by this model (with removed zero lines):

M̄ =



0 0 mI 0
−m[c̈+ g]× 0 m[c]× 0

I 0 0 I
0 −m[c̈+ g]× m[ċ]× 0
0 I 0 0
0 0 −m[g]× 0
0 0 I 0


(21)

The rank of the matrix is 11 if c̈ + g 6= 0 for a 12
dimensional state. Indeed, this new model does obviously not
enable the CoM position to be fully observable, but it provides
full observability of the velocity ċ. This improvement is due to
the assumption of a constant b. That means that even if biased,
the geometry-based estimation of the CoM remains relatively
a reliable measurement for velocity estimations.

Of course another guarantee can be provided if we assume
that the bias is bounded ‖b‖ < bmax, where ‖.‖ is any real
norm and bmax is a positive scalar, which implies that we can
build an estimation with less than bmax error by ignoring the
biases.

All this observability study until now does not take into
account multiple sources of error. Indeed, the estimation
relies also on the actual rigidity of multibody limbs and the
precision of the configuration estimation. Indeed, regarding
the estimation of the joint angles, if robots have usually
precise and reliable joint encoders, no technique is available
to obtain such precise joint angles for humans, due to the
presence of soft tissues and to the motion capture technique.
Furthermore, the sensors themselves may generate errors due
to measurement noises and disturbances. Finally, the force
and moment measurements were studied with the hypothesis
that variations of angular momentum around the CoM are
negligible. We see next in which context these assumptions
are valid and which part of each signal is the most trustable.

C. Validity of hypotheses, the spectral viewpoint

The variation of angular momentum around the center
of mass L̇ is due to gesticulation. It is a nonholonomic
phenomenon which depends on the configuration and joint
velocities and accelerations [8]. In general the motions of
humans and robots have relatively low L̇ compared to the
moment of contact forces c× fc alone, especially in the case
of locomotion where the center of mass moves away from the
origin. However, this gesticulation can be sufficient to deviate
the CoM position from the central axis of the contact wrench
by up to several centimeters. This imprecision can be tackled
in two methods. The first one is to estimate L̇ and subtract it
from the contact torque τc. The only way to do it is by using
the dynamic model of the polyarticulated system and applying
forward dynamics, which leads to errors due to modeling
and double derivation of joint angles. We suggest here to
resort to a second easier method that enables to avoid errors
related to L̇. The solution is to only consider the frequency
bandwidth where there is few gesticulation and therefore
negligible L̇: the low frequency range, below the fundamental
frequencies of the studied motion. Indeed, for periodic motions

tneomM

FK

Force

Frequency

Moment range FK range Force range

Fig. 3: A sketch representation of the spectral distribution of errors that would
emerge from the naive reconstruction of CoM trajectory if we use only one
signal (Geometry, Forces and projection of the CoM from Geometry onto
the Contact Wrench Central Axis). The signal with the lowest error is then
selected at each frequency bandwidth to constitute minimal-error fusion of
these signals.

such as walking, this frequency range contains almost no
gesticulation. In the case of non periodic motions, for these
frequencies of L̇ to be significant it likely requires very wide
and slow joint trajectories, which is implausible in general.
Therefore, the moments signal reduced to this domain provides
important low-bias estimations of the CoM position, especially
when there are slow and large CoM displacements like for
locomotion.

Regarding the forward kinematics (geometry-based)
estimation, it is subject to biases which occupy the lowest
frequency ranges. These frequencies have to be removed from
this signal. Nevertheless we have seen that this measurement
may provide reliable estimation of the CoM velocity.
Velocities can be seen as amplifications of higher frequencies
of CoM trajectory. Therefore there should be a frequency
range of the trajectory which can be efficiently reconstructed
using this signal.

Finally, the contact forces provide direct measurements of
the acceleration of the CoM. A double integration of this signal
leads usually to a diverging quadratic drift. This drift lies in
low and middle frequencies, but the sensor is much more
sound in the very high frequency ranges which are amplified
in the accelerations.

Consequently we propose to merge in one signal, the low
frequencies of moments, the middle frequencies of forward
kinematics and the high frequencies of an acceleration-based
CoM reconstruction. Similar reasoning concerning these
measurements can be found in [17], [18]. All these
considerations are summarized and schematized in Figure 3.

The sensors are often subject to errors partly due to
electronic noise and sampling. These errors usually lie in
higher frequencies than the desired signals. Classical filtering
techniques enable to get rid of the high frequency noises, but
if they are applied online they introduce phase shift and delays
in the signal. In the next section, we suggest a complementary



filtering solution which enables to perform online the desired
distribution of the frequency domains on different signals
and to avoid high frequency sensor noise without getting
theoretically any phase shift.

IV. THE LINEAR COMPLEMENTARY FILTER

The complementary filter [19] is well known in the field
of aerial robotics [20], for example to estimate the attitude
of a quad-rotor system by combining the gyroscopic and
accelerometer measurements. Unlike the Kalman filter [21]
which makes no distinction between the contributions of each
measurement in the frequency domain, the complementary
filter exploits the influence and the accuracy of each input
signal in their respective frequency domain and reconstructs
the integrality of the signal by a combination of filtered
measurements, with zero-phase-shift. All along this section,
we exploit the following definition:

Definition 2 (Linear Complementary Filter). We say that the
transfert function Y is the linear complementary filter of the
transfert function X if and only if X(s) + Y (s) = 1 for any
s ∈ C, s being the Laplace variable.

In the following, we gradually design the complementary
filters of the CoM position. We designate by s the Laplace
variable acting in the frequency domain. The Laplace
Transform of a temporal signal g(t), t being the time
variable, is written G(s) and sG(s) corresponds to the Laplace
Transform of its time derivative ġ(t).

A. The input signals

In Section III-C, we discussed with a spectral viewpoint the
validity domain to each input measurement.

We have three different signals conveying information
related to the CoM:
• (i) The first signal is the geometry-based reconstruction of

the CoM c̃. It suffers mainly from biases due to modeling
errors of mass distribution. It is also subject to the high
frequency sensor noise due to motion capture technology
or the measurement of the angular position of the joints.
The error between this signal and the real position of the
CoM lies then in low and high frequency domains.

• (ii) The second signal is the CoM acceleration ˜̈c extracted
from force measurements. This signal suffers also from
sensor noise. The double integration of this signal reduces
the high frequency error but generates quadratic drift,
visible in low and medium frequencies.

• (iii) The third signal provides the data carried by the
central axis of the contact wrench. But since the force and
moments signals alone don’t allow to deduce the CoM
position on this line we take the orthogonal projection
c̃p of the geometrical CoM c̃ coming from the first
measurement onto the central axis. It contains high
frequency sensor noise, but also carries error due to
the hypothesis about the weak variation of the angular
momentum around the center of mass (eq. 11). This
assumption is particularly acceptable in the low frequency
domain, specifically below natural locomotion rhythm.

Fig. 4: Diagram of the CoM complementary filter for the three input signals.

The complementary filter diagram related to these
measurements is shown in Figure 4.

B. The design of complementary filters

In the previous paragraph, we established that the forces
measurement is mainly affected by a low and medium
frequencies noise. Therefore, s2H2

1 must be made of a
high-pass filter. We can now set:

s2H2(s) =
(sτ1)

2

(1 + sτ1)2
, (22)

with τ1
def
= 1

2πf1
2 the inverse pulsation and f1 the cut-off

frequency of the high-pass filter. Therefore the transfer
function (22) is equivalent to:

H2(s) =
τ1

2

(1 + sτ1)2
(23)

and H2 corresponds to second order low-pass filter of cutting
frequency f1. At this stage, it is worth mentioning that s2H2

must be at least a second order high-pass filter to get the
transfer function H2 stable, i.e. all its poles have a strictly
negative real part.

Previously, we also established that the third signal is mainly
valid in a low frequency domain, forcing H3 to be a low-pass
filter too. The expression of H3 is then given by:

H3(s) =
1

(1 + sτ2)2
, (24)

with τ2
def
= 1

2πf2
the inverse pulsation and f2 the cut-off

frequency of the low-pass filter.
Accordingly, H1 can be directly computed as the

complement of both s2H2 and H3 filters, i.e. H1
def
= 1−s2H2−

H3. So H1 is of the following form:

H1(s) = 1− (sτ1)
2

(1 + sτ1)2
− 1

(1 + sτ2)2
, (25)

Figure 5 illustrates the bode diagrams of the designed filters
H1, H2 and H3. We can remark that H1 acts as a bandpass
filter in a bandwidth around [f2; f1]. The bandpass filter
characteristics of H1 may be also deduced from an asymptotic
study of the transfer function (25).

1the s2 term before H2 comes directly from the fact that s2C(s) is the
Laplace Transform of c̈.

2in section II, the bold τ is a vector and means the moment of the contact
forces wrench. In the current section, τ refers to the inverse pulsation in the
context of linear filtering.



Bode diagram of H1 - A band pass filter. Bode diagram of H2 - A low pass filter. Bode diagram of H3 - A low pass filter.

Fig. 5: Bode diagrams of the three designed filters H1, H2 and H3, with f1 = 4 Hz and f2 = 0.4 Hz.

V. VALIDATION STUDY

In this section, we apply the complementary filter developed
in Section IV to the case of a simulated humanoid robot
walking in straight line. The simulation framework allows:
(i) to obtain ground truth measurements, that will be used for
the evaluation of the performances of the complementary filter
and (ii) to generate noisy model and measurements which will
serve as inputs of the filter. We also compare the performance
of the designed complementary filter to a more classic Kalman
filtering approach, which uses the same kind of measures while
assuming that those sensor measures are affected by a white
noise.

A. Generation of noisy data

1) Motion generation: We use standard techniques in
humanoid robotics to generate the motion of the robot. We first
plan a CoM trajectory according to the given foot placements
and ZMP reference trajectory [6]. Then we generate a whole
body trajectory using a second-order generalized inverse
kinematics [22]; the following tasks where combined using
a strict hierarchy: the feet positions (first priority), the CoM
trajectory and a fixed orientation of the pelvis (second priority)
and finally a posture task to avoid the drift of actuated joints
(third and lowest priority).

2) Generation of noisy measurements: The second-order
kinematics produces a control based on the second derivative
of q, from which we obtain by integration q̇ and q.

These three quantities injected in the right hand side of
the unactuated part of the dynamical equation (2) give us the
resulting wrench φc of contact forces (5). The linear and
angular part of the measurement of φc are then perturbed
by a Gaussian colored noise in the high frequency domain
with standard deviation σlinear = 10 N and σangular = 10 Nm,
leading to a noisy measurements φ̃c.

The measurement of the configuration vector q is disturbed
by another Gaussian colored noise in the high frequency
domain too, with a standard deviation σconfiguration = 0.05π.
This noise replicates the effects of errors due to motion capture
techniques.

In addition, we generate an error at the level of the
dynamical model of the robot. We add a Gaussian perturbation

to the mass distribution of the body and position of the CoM
of each link. We make the hypothesis that we know the mass
and CoM position of each limb with a precision of 20%. This
process aims at generating modeling error for a humanoid
robot or for humans due to anthropometric tables. The new
dynamical model and the noisy measurements of q enable to
generate the geometry-based CoM measurement c̃.

From φ̃c combined with the geometry-based CoM and
both injected in equation (12), we obtain the perturbed CoM
projection onto the central axis of the contact wrench c̃p.

3) Identification of the mass of the anthropomorphic
system: The total mass of the system is directly measurable. It
suffices to exploit the forces measurement in static equilibrium
(half-sitting position for a humanoid robot or standing rest
position for humans), and, by taking the average value of the
vertical forces divided by the gravity value, we obtain a good
estimate of the total mass.

B. Spectral analysis of measurement errors

Before going further and applying the two filtering methods
to our simulated motion, we assess our assumptions on
the frequency bandwidth where the reliability of each
measurement holds. To do so, we study the Fourier Transform
of the error between the noisy signals and ground-truth values.

Figure 6 shows the Fourier transform of the errors.
The simplest spectral distribution is the error of the force
measurement ˜̈c at the middle of the figure. It is simply
the Fourier transform of the noise we added initially, which
lies in high frequencies that are partly canceled by our H2

low-pass filter. At the top of the figure we see the error of
geometry-based estimation of the center of mass. As expected,
the error mainly lies in low and high frequencies. The medium
frequencies bandwidth shows a very clean estimation of the
CoM position. The bottom part of the figure shows the
spectral distribution of the error between the projection of the
geometry-based CoM estimation onto the noisy central axis of
the contact wrench and the real CoM. We see clearly that this
measurement is reliable only in a low frequency domain and
grows very fast with increasing frequencies. This is why we
fixed the cut-off frequency at 0.4 Hz. We see then that these
figures confirm clearly the hypotheses of Figure 3.



Fig. 6: FFT of the error of each signal. In the top, the transform of the error
between the real CoM position c and geometry-based estimation c̃. In the
middle, the error between the second CoM time-derivative c̈ and its estimation
using force measurement ˜̈c. In the bottom, the FFT of the error between the
projection of the geometry-based CoM onto the central axis of the contact
wrench (12) and the real CoM. For the three graphs, the x dimension is
represented with solid blue line, the y dimension with dotted green line and
z dimension with dashed red line.

C. Estimation and comparison with Kalman Filter

The three measurements of the walking trajectory were
fed to our complementary filter and to a Kalman filter. The
estimation of the complementary filter compared with real
values is shown on the top of Figure 7. We see that the
tracking in x and y axes is accurate. However, the tracking
in z is subject to bias. This is due to the estimation error
of the first signal along central axis. On the middle, we see
a detailed description of the reconstructed trajectory along
x axis where every output signal is displayed separately
together with their sum. On the bottom, the estimation error is
displayed for the complementary filter and Kalman filter along
the three axes. We see that the error of our complementary
filter is always inferior or equivalent to the Kalman filter. We
see also that the signal of the complementary filter contains
more high frequency noises, that partly due to our choice to
take the lowest possible orders for the band-pass filters to
keep the simplest possible formulation. We believe that more
sophisticated filters can get reduce significantly these artifacts

Fig. 7: On the top, the reconstructed trajectory thanks to the complementary
filter. On the middle, the plot shows the contribution of every signal to the
reconstruction of CoM trajectory along x axis together with the sum of the
signals. The dotted line represents the ground truth value. On the bottom, error
between the ground truth measure of the CoM position and its reconstruction
with the Kalman filter and the complementary filter.

without introducing phase shift. This phenomenon is also due
to the fact that there is certainly a small frequency bandwidth
where we have no perfectly clean signal. This can be tackled
by applying model-based filtering to the estimation, which can
also enable to avoid phase-shift, but may be subject to other
modeling errors.

In the next section we see how this method behaves against
real measurements coming from experimental setting involving
human motion.

VI. APPLICATIONS

The method describe in the two former Sections IV and V
is directly applicable to robots, as soon as they are equipped
with force/torque sensors at contacts. However, the problem
of estimating accurately the position of the center of mass for
humans represents a more difficult challenge than for robots,
because there is no easy access to a fine dynamical model and
no precise method to reconstruct joint trajectories. Therefore,
in this section, we show two applications of the proposed



method on human motions: steady walking and running on
a treadmill.

A. Walking

A 26 years old healthy male of 1.80 m height and 64 kg
weight was asked to walk on a force platform in the
most natural way. The subject was wearing optical markers
recorded using VICON motion capture system and following
the marker placement suggested by the International Society
of Biomechanics [23], [24]. A CoM trajectory was then
reconstructed using an anthropometric table providing inertial
parameters [25]. The central axis was reconstructed using
force and moment measurement and our sensor data fusion
technique was applied. The results are displayed on Figure 8.

We see that the estimation of the CoM position provided by
our method is slightly different from the trajectory obtained by
the geometry, especially in horizontal position. Since we have
no ground truth value, we cannot show that our estimation
is more accurate, but this difference could be a correction of
biases due to errors of the anthropometric table, similarly to
what happens for our simulated model of the previous section.

B. Running on a treadmill

A healthy male of 1.72 m height and 71 kg weight was
asked to run on a treadmill at a constant speed of 16 km/h
(about 4.4 m/s). The treadmill was located on a force platform
and the subject was wearing also optical markers for VICON
motion capture system, using the same marker placement as
in Section VI-A. The experimental setting is described in [26].
The geometry-based CoM trajectory was generated using the
same anthropometric table. The same reconstruction process
was executed on the recorded signals.

Figure 9 illustrates the results. The motion is much more
dynamic than walking, as we see in the force measurement
on the bottom. Here, a special care has to be considered for
the flight phases. Since the central axis is not defined in this
case, the projection c̃p of the geometry-based reconstruction
c̃ was set to c̃p = c̃ itself when contact force norm is below
a threshold of 100 N. This does not jeopardize our method
since only the frequencies under 0.4 Hz were considered for
this signal. We see that there is a difference of few centimeters
for each dimension between the geometric reconstruction and
the estimation of our sensor data fusion. Similarly to the case
of walking, there is no ground truth value for the center of
mass. However, since the difference converges after 1.5 s
to a value and seems stable for several seconds after, our
explanation is that our method succeeded to correct a bias
due to anthropometric table.

Of course, a difference in the estimation could also arise
when the force and moments sensors are themselves biased.
But this magnitude of discrepancy requires an important bias,
and usually these high-end force platforms are reliable and
their calibration is a relatively easy process.

We see in the next section how former studies also
considered the sensors fusion for CoM estimation in humanoid
robotics and human bio-mechanics communities.

VII. RELATED WORK

Our CoM estimation approach is part of an active topic both
in research on human motion and in humanoid robotics [27].
For humanoids, the corrections on the CoM provided
by forward kinematics is achieved mainly using various
measurement systems [28] including force sensors [29], [30].
These solutions use mostly Kalman filtering techniques which
is agnostic of the frequency domains of each signal. On the
other hand, the CoM reconstruction has a longer history in
the field of biomechanics [31]. Moreover, since few decades,
force platforms were already considered for CoM position
estimation [32], but most of the methods did not consider the
fusion of Force sensors with direct kinematics reconstruction
of the CoM [33], [34].

To our best knowledge, the closest published work to our
method is the technique by Maus et al [18]. The Kinematic
CoM estimation was low-pass filtered and the double
time-integral of forces was high-pass filtered, then the two
signals were added. However, the use of non-complementary
filtering removes the guarantee to obtain the totality of the
initial signal with zero-phase-shift. Moreover, the double
integration of acceleration is not a stable process and this
method requires to reset regularly the integral to zero. Instead,
our method works for arbitrary durations thanks to the stability
of all our filters. In another work, Schepers et al [17]
developed the same approach as Maus et al, but with ZMP
and force measurements. In addition to theoretical guarantees
and integration stability issues, this method neglected the
accelerations when using the ZMP, which increases again the
approximation errors.

VIII. CONCLUSION

We have seen through this paper the analysis and
comparison of the observability provided by all sensing
devices to reconstruct the center of mass trajectory for
humans and for robots. These sensors can be classified by
three categories: the CoM reconstruction provided by the
geometrical reconstruction together with a model of mass
distribution, the forces that give CoM accelerations, and
the moments which provide an approximation of the CoM
position. We have established the conditions wherein we can
trust every signal the most. One key idea is to consider that
these measurements carry noises and errors, but with separated
but complementary frequency bandwidths for each signal.

Afterwards, we have shown the design and the
implementation of an estimator of the the CoM position for
humans and robots based on multi-sensor data fusion. Our
choice was to use a complementary filtering technique to
merge these signals, specifically because of its particular
suitability to merge different bandwidths of signals.

We have seen also the simulation results showing that the
complementary filtering successfully got rid of estimation
error by removing their appropriate frequency bandwidths,
whereas Kalman filtering technique could not reject fully these
errors.

It is worth to note that this method is not reduced only to
the case of walking motions. The considerations that are the



Fig. 8: CoM position reconstruction for natural walking (blue for x, green for y and red for z). On the left, the reconstructed CoM in plain line and the CoM
coming from geometry in dotted line. On the right the force measurement.

Fig. 9: CoM reconstruction for running on a treadmill (blue for x, green for y and red for z). On the left, the reconstructed CoM in plain line and the CoM
coming from geometry in dotted line. On the right, one second of force measurement

basis of our approach are valid for any kind of trajectory,
even for non-planar contacts, as soon as we have all the
required measurements. The only detail that has to be taken
into account and possibly modified is the frequency range of
the error of each signal.

Finally, one limitation to our approach is to neglect the
variations of angular momentum around the center of mass.
These variations depend on the gesticulation of the system and
they introduce errors in the estimation provided by sensors of
contact force and moment. We believe that the precision of our
method would be be improved if this parameter is explicitly
taken into consideration. Obviously, these approaches may
complexify dramatically the observation process, but they still
should be relevant and interesting to study.
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APPENDIX A
PROOF OF THEOREM 1

Theorem 1. (i) The ZMP axis and the central axis of the
contact wrench are equivalent if and only if (ii-a) the direction
cosine nc of the contact force vector is equal to n or (ii-b)
the contact torque vector is orthogonal to the contact forces,
i.e. τc · nc = 0.

Proof. The two axes matches (i) if and only if the torque
around the ZMP is given by:

τZMP = (τc · nc)nc (26)

We also know from the definition of the ZMP that τZMP is of
the following form:

τZMP = bn (27)

with b ∈ R. Both expressions (26) and (27) match if and only
if n = nc (ii-a) leading to b = τc · nc or n and nc are not
aligned, inducing τc · nc = 0 (ii-b) and b = 0.
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