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ONE-DIMENSIONAL SYMMETRY AND LIOUVILLE TYPE RESULTS

FOR THE FOURTH ORDER ALLEN-CAHN EQUATION IN R
N

DENIS BONHEURE AND FRANÇOIS HAMEL

Abstract. In this paper, we prove an analogue of Gibbons’ conjecture for the extended
fourth order Allen-Cahn equation in R

N , as well as Liouville type results for some solutions
converging to the same value at infinity in a given direction. We also prove a priori
bounds and further one-dimensional symmetry and rigidity results for semilinear fourth
order elliptic equations with more general nonlinearities.

Dedicated to Häım Brezis with deep admiration

1. Introduction and main results

We consider the equation

(1.1) γ∆2u−∆u = u− u3 in R
N

with γ > 0, which is a fourth order model arising in many bistable physical, chemical or
biological systems. When γ = 0 in (1.1), we recognize the well known Allen-Cahn equation

(1.2) −∆u = u− u3 in R
N ,

also called the scalar Ginzburg-Landau equation or the FitzHugh-Nagumo equation. When
the solution u is positive and the right-hand side is of the type u−u2, this equation is also
known as the Fisher or Kolmogorov-Petrovski-Piskunov equation, originally introduced
in 1937 [29, 38] as a model for studying biological populations.

After scaling, the equation (1.1) with γ > 0 can be written as

(1.3) ∆2u− β∆u = u− u3 in R
N

with β = 1/
√
γ. Equation (1.3) with β > 0 is usually referred to as the extended Fisher-

Kolmogorov equation. It was proposed in 1988 by Dee and van Saarloos [17] as a higher
order model equation for physical systems that are bistable. The term bistable indicates
that the equation (1.2) and its extended version (1.3) have two uniform stable states
u(x) = ±1 separated by a third uniform state u(x) = 0 which is unstable. When β
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is negative, equation (1.3) is related to the stationary version of the Swift-Hohenberg
equation

∂u

∂t
− κu+ (1 + ∆)2u+ u3 = 0

where κ ∈ R. This equation was proposed by Swift and Hohenberg [48] as a model in the
study of Rayleigh-Bénard convection. When κ > 1, this equation can be transformed after
multiplication and scaling into

∂u

∂t
+ (κ− 1)3/2[∆2u− β∆u+ u3 − u] = 0

with β = −2/
√
κ− 1 < 0.

For these model equations, a question of great interest is the existence of time-
independent phase transitions, i.e. solutions that connect two uniform states in one spatial
direction. The second order equation (1.2) has been the subject of a tremendous amount
of publications in the past 30 years. Its popularity certainly comes in part from several
challenging conjectures raised by De Giorgi [16] in 1978. The most famous one, still not
completely solved, is:

Conjecture 1.1 (De Giorgi’s conjecture). Suppose that u is a bounded entire solution

of (1.2) such that uxN
(x) > 0 for every x ∈ R

N . Then the level sets of u are hyperplanes,

at least in dimension N ≤ 8.

De Giorgi’s conjecture has been proved in dimension N = 2, see [4, Theorem 1.9]
and [31, Theorem 1.1] and in dimension N = 3, see [1, Theorem 1.1]. The conjecture is
still open when 4 ≤ N ≤ 8, though a positive answer was given in [47] under the additional
assumption

(1.4) lim
xN→±∞

u(x1, . . . , xN) = ±1 for every x′ = (x1, . . . , xN−1) ∈ R
N−1

(see also [26] for more general conditions), while in dimension N ≥ 9 a counterexample
has been established in [18]. We refer to the survey [25] for more details.

On the contrary, up to our knowledge, the fourth order extension (1.3) of the Allen-
Cahn equation has been only investigated in one spatial dimension, see for instance [45].
In dimension N > 1, we are only aware of [30, 34] where Γ-limits of scaled energy func-
tionals associated to (1.3) were investigated, and [9] where the authors look for qualitative
properties of solutions in a bounded domain under Navier boundary conditions.

The aim of our present work is to make a first study of bounded solutions of (1.3) in
any space dimension and in particular to establish one-dimensional symmetry and related
Liouville type results.

First of all, we state the analogue of De Giorgi’s conjecture for the fourth order Allen-
Cahn equation (1.3).

Conjecture 1.2 (Analogue of De Giorgi’s conjecture for the fourth order Allen-Cahn
equation (1.3)). Suppose that β ≥

√
8 and that u is a bounded entire solution of (1.3) such

that uxN
(x) > 0 for every x ∈ R

N . Then the level sets of u are hyperplanes, at least in

dimension N ≤ 8.

This is the expected extension for the fourth order Allen-Cahn equation (1.3) of the
famous De Giorgi’s conjecture for the second order Allen-Cahn equation (1.2). Indeed,
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as for (1.2), the conjecture for (1.3) is supported by a Γ-limit analysis [30, 34] and the
convergence to the area functional (and the Bernstein problem). Therefore we expect
the conjecture to hold true only for N ≤ 8 as for the Allen-Cahn equation. Regarding
the condition β ≥

√
8 (which means 0 < γ ≤ 1/8 in (1.1)), it comes from the fact that

monotone one-dimensional solutions do not exist for 0 ≤ β <
√
8, see for instance [45] and

Section 2 below. In fact, one can even wonder whether there exist non-planar standing
fronts, i.e. satisfying (1.4), when 0 ≤ β <

√
8, due to the rich dynamics of bounded

solutions in this range of the parameter.

Open question 1.3 (Existence of non planar standing fronts for the fourth order Allen-
Cahn equation (1.3)). If N ≥ 2 and 0 ≤ β <

√
8, are there any solutions of (1.3) satis-

fying (1.4) and whose level sets are not hyperplanes ?

Motivated by the developments on Conjecture 1.1, we propose to study Conjec-
ture 1.2 in connection with the additional assumption (1.4) when the limits are uniform
in (x1, . . . , xN−1) ∈ R

N−1, namely

(1.5) lim
xN→±∞

u(x1, . . . , xN ) = ±1 uniformly in (x1, . . . , xN−1) ∈ R
N−1.

For the second order Allen-Cahn equation (1.2), under the assumption (1.5), De Giorgi’s
conjecture is known as Gibbons’ conjecture [32]. In this case, the restriction on the di-
mension and the monotonicity assumption ∂xN

u(x) > 0 are unnecessary and Gibbons’
conjecture is true for any N ≥ 1: indeed, it was proved in [3, 5, 21] that, for any N ≥ 1,
any bounded solution u of (1.2) satisfying (1.5) is one-dimensional and thus only depends
on the variable xN , that is u(x) = u(xN) = tanh(xN/

√
2 + a) for some a ∈ R. Further-

more, u is monotone increasing in xN . We also refer to [22, 27] for further results with
discontinuous nonlinearities and in a more abstract setting covering nonlocal operators and
fully nonlinear equations.

In our first main result, we prove a result related to Gibbons’ conjecture for the fourth
order equation (1.3). Again the dimension does not play any role here, but an additional
quantitative bound on u is assumed.

Theorem 1.4. For any integer N ≥ 1 and any real number β ≥
√
8, if u is a classical

bounded solution of (1.3) in R
N satisfying the uniform limits (1.5) and ‖u‖L∞(RN ) <

√
5,

then u only depends on the variable xN and is increasing in xN .

We expect that the assumption ‖u‖L∞(RN ) <
√
5 can be removed though we have to

leave that question as open for the moment (see the open question 3.9 in Section 3 below).
This bound can be slightly relaxed for β >

√
8 and replaced by a bound depending on β

(see Corollary 4.6 in Section 4 below). In fact, as β → +∞, this quantitative a priori
bound becomes somehow just qualitative. Furthermore, we prove in Section 4 a more
general version of Theorem 1.4 with a more general right-hand side f(u) instead of u− u3

in (1.3), as well as some further results for solutions which are a priori assumed to range
in one side of ±1 (see Corollaries 4.5 and 4.6 below).

On the other hand, the assumption β ≥
√
8 is necessary for the conclusion of Theorem 1.4

to hold, since, even in dimension N = 1, no bounded monotone solutions of (1.3) exist
if 0 ≤ β <

√
8, see [45]. However one can still ask whether a weaker statement than

Theorem 1.4 hold or not when 0 ≤ β <
√
8, namely if its content holds true without the

conclusion regarding the monotonicity in the direction xN .
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Our second main result deals with a Liouville type property for solutions which are
uniformly asymptotic to the same equilibria in a given direction.

Theorem 1.5. For any integer N ≥ 1 and any real number β ≥
√
8, if u is a classical

bounded solution of (1.3) in R
N satisfying

(1.6)





lim
xN→±∞

u(x1, . . . , xN )=−1 uniformly in (x1, . . . , xN−1)∈R
N−1 and sup

RN

u < 1,

or

lim
xN→±∞

u(x1, . . . , xN )=1 uniformly in (x1, . . . , xN−1)∈R
N−1 and inf

RN

u > −1,

then u is constant, that is, u = 1 in R
N or u = −1 in R

N

In Theorem 1.5, in contrast to Theorem 1.4, there is no quantitative a priori bound on
the L∞(RN ) norm of u. Indeed, the condition (1.6) contains in particular the fact that u is a
priori assumed to be on one side of −1 or 1, and such bounded solutions then automatically
range in [−1, 1] (see Corollary 3.8 below, and Corollaries 3.4 and 4.5 for further results). On
the other hand, as for Theorem 1.4, the condition β ≥

√
8 is necessary for the conclusion

to hold, since for 0 ≤ β <
√
8, even in dimension N = 1, there are bounded solutions

of (1.3) and satisfying (1.6) which are not constant, see e.g. [7, 36, 35, 43]. Notice lastly
that, thanks to the interior elliptic estimates (see Section 3), if u is a classical bounded
solution of (1.3) in R

N such that u− 1 ∈ Lp(RN) and infRN u > −1 (resp. u+1 ∈ Lp(RN)
and sup

RN u < 1) for some p ∈ [1,+∞), then u(x) → 1 (resp. −1) as |x| → +∞,
whence (1.6) is automatically fulfilled. As a consequence of Theorem 1.5, it follows that
if β ≥

√
8 and if u is a classical bounded solution of (1.3) with u ± 1 ∈ Lp(RN) for

some p ∈ [1,+∞) and infRN |u∓ 1| > 0, then u is constant, i.e. u = ∓1 in R
N .

For the second order Allen-Cahn equation (1.2), any bounded solution u satisfies auto-
matically ‖u‖L∞(RN ) ≤ 1 and either u = ±1 in R

N or −1 < u < 1 in R
N , as an imme-

diate consequence of the strong maximum principle. Furthermore, if u(x1, . . . , xN) → 1
(resp. −1) as xN → ±∞ uniformly in (x1, . . . , xN−1) ∈ R

N−1, then infRN u > −1
(resp. supRN u < 1). By comparing u with shifts of the one-dimensional profile
tanh(xN/

√
2), it follows that u is constant equal to 1 (resp. −1). This Liouville-type

result, which in the one-dimensional case follows from e.g. [2, 28], is actually a special case
of more general results demonstrated in [23]. It can also be proved with the same method
–in the simpler second order case– as Theorem 1.5 of the present paper and provides an
alternative proof to [13, Theorem 2]. Further Liouville type results for the solutions u of
Ginzburg-Landau systems can be found in [20, 24].

As opposed to the second order Allen-Cahn equation (1.2), there are bounded solutions u
of the fourth order Allen-Cahn equation (1.3) satisfying ‖u‖L∞(RN ) > 1, for 0 ≤ β <

√
8,

see e.g. [45, Chapters 4 & 5]. For β ≥
√
8, the bound ‖u‖L∞(RN ) ≤ 1 is expected. But even

if β ≥
√
8 and u is a priori assumed to satisfy ‖u‖L∞(RN ) ≤ 1 (the bound ‖u‖L∞(RN ) <

√
5

is actually sufficient to have ‖u‖L∞(RN ) ≤ 1), it is still an open question to know whether

the limits u(x1, . . . , xN ) → 1 (resp. −1) as xN → ±∞ uniformly in (x1, . . . , xN−1) ∈ R
N−1

imply infRN u > −1 (resp. supRN u < 1). This is why these properties are a priori assumed
simultaneously in (1.6).
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Remark 1.6. In Theorems 1.4 and 1.5, we point out that if u ∈ L∞(RN) solves (1.3) in
the sense of distributions, then it is automatically of class C∞ (and in particular, it is a
classical solution), see the beginning of Section 3 for more details.

Outline. The rest of the paper is organized as follows. We first review in Section 2
some results in the one-dimensional case N = 1. Section 3 is concerned with the proof of
some a priori bounds, for fourth order equations with a right-hand side f(u) more general
than u−u3, when β > 0 is either any positive real number or a large enough real number.
These bounds are obtained by writing the fourth order equation (1.3) as a system of two
second order elliptic equations, see (3.10)-(3.11) below. We point out that this system
does not satisfy the maximum principle in general. Only the structure of the equation
will be used and specific arguments will be developed to establish some a priori bounds.
Lastly, Theorems 1.4 and 1.5 are proved in Section 4. There, we will use a sliding method,
inspired by second order equations. More precisely, one uses a sliding method for both u
and a function involving ∆u and one proves that both functions are simultaneously strictly
monotone in any direction which is not orthogonal to xN . To do so, for β > 0 large enough,
the fourth order equation (1.3) is decomposed as a system of two second order equations for
which we prove some weak comparison principles in half spaces (see Lemmas 4.7 and 4.10
below).

2. A quick review of the 1D case

The study of the equation

(2.7) u′′′′ − βu′′ = u− u3

for positive values of the parameter β goes back at least to Peletier and Troy in [42, 43]
where they proved, among other things, the existence of kinks for all β > 0. Van den
Berg [50] proved that, when β ≥

√
8, the bounded solutions of (2.7) behave like the

bounded solutions of the stationary Allen-Cahn equation

−u′′ = u− u3

This implies that there exist two kinks (up to translations), one monotone increasing
from −1 to +1 and its symmetric, while there are no pulses. When 0 ≤ β <

√
8, the set

of kinks and pulses is much more rich. For this range of β, kinks and pulses cannot be
monotone anymore as at β =

√
8 both equilibria ±1 bifurcate from saddle-nodes to saddle-

foci. The linearization of (2.7) around the equilibria then shows that the solutions oscillate
when they are close to ±1 with small derivatives up to the third order. As β becomes
smaller than

√
8, infinitely many kinks and pulses appear. Peletier and Troy [43] proved

the existence of two infinite sequences of both kinks and pulses. The two sequences of kinks
consist of odd kinks having 2n+1 zeros and differ in the amplitude of the oscillations. The
pulses are even with 2n zeros. Again, the two sequences can be distinguished according to
the amplitude of the oscillations. Other families of kinks and pulses were shown to exist [7,
35, 36]. Basically, these solutions can be distinguished by the number of jumps from −1
to +1 and the oscillations around these equilibria in between the jumps. The complex
structure of these solutions can be quantified by defining homotopy classes, see [35].

Different methods have been used to deal with equation (2.7). Peletier and Troy intro-
duced in [42, 43] a topological shooting method that can be used to track kinks and pulses
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as well as periodic solutions. In [46], it is shown that kinks and periodic solutions can be
obtained using variational arguments. For instance, if β ≥ 0, the functional

Jβ(u) =

∫ +∞

−∞

[1
2

(
(u′′2) + βu′2

)
+

1

4
(u2 − 1)2

]
dx

has a minimum in the function space X = χ + H2(R) where χ is a C∞ function that
satisfies χ(x) = −1 for x ≤ −1 and χ(x) = 1 for x ≥ 1. When β ≥

√
8, this minimizer

is the unique heteroclinic connection from −1 to +1, while for β <
√
8 it is called the

principal heteroclinic as it only has one zero.
The dynamics of equation (2.7) with β < 0 is much less understood. Numerical experi-

ments [49] suggest that a large variety of the solutions found for β positive still exist for a
certain range of negative values of β.

In the study of ternary mixtures containing oil, water and amphiphile, a modification
of a Ginzburg-Landau model yields for the free energy a functional of the form (see [33])

Φ(u) =

∫

RN

[c(∇2u)2 + g(u)|∇u|2 + f(u)] dx dy dz,

where the scalar order parameter u is related to the local difference of concentrations of
water and oil. The function g(u) quantifies the amphiphilic properties and the “poten-
tial” f(u) is the bulk free energy of the ternary mixture. In some relevant situations g may
take negative values to an extent that is balanced by the positivity of c and f .

The admissible density profiles may therefore be identified with critical points of Φ in a
suitable function space. In the simplest case where the order parameter depends only on
one spatial direction, u = u(x) is defined on the real line and (after scaling) the functional
becomes

(2.8) F (u) =

∫ +∞

−∞

[1
2

(
u′′2 + g(u)u′2

)
+ f(u)

]
dx

whose Euler-Lagrange equation is given by

u′′′′ − g(u)u′′ − g′(u)u′2

2
+ f ′(u) = 0.

This model has been considered in [7, 10, 12]. It appears also as a simplification of a
nonlocal model due to Andelman et al. [37]. We refer to Leizarowitz and Mizel [40],
Coleman, Marcus, and Mizel [15] and Mizel, Peletier and Troy [41]. For studies in higher
dimension, we refer to Fonseca and Mantegazza [30], Chermisi et al. [14] and Hilhorst et
al. [34]. In the the last quoted paper, the Hessian ∇2u is replaced by ∆u as a simplification
of the model. This second order energy functional with the Hessian matrix of u replaced
by ∆u was also proposed as model for phase-field theory of edges in anisotropic crystals
by Wheeler [51]. Finally, we also mention the study of amphiphilic films in [39].

Functionals of the form (2.8) were considered with either a double-well or a triple-well
potential f and a function g that can change sign. The case of a triple-well is especially
relevant in the theory of ternary mixtures. We refer to [8, 11, 45] for further references.

3. A priori bounds

In this section, we consider fourth order equations of the type (1.3) with any positive
real number β > 0 and with a more general right-hand side. Namely, we consider the
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equation

(3.9) ∆2u− β∆u = f(u) in R
N ,

where f : R → R is any locally Lipschitz-continuous function. We first notice that, from
standard elliptic interior estimates [6, 19], any bounded solution u of (3.9) in the sense of
distributions is actually of class C4,α(RN), for any α ∈ [0, 1). Therefore, bounded solutions
are nothing but classical bounded solutions. By iteration, it follows that, if f is C∞(R),
then the bounded solutions u are of class C∞(RN) with bounded derivatives at any order.
In particular, any bounded solution u of the fourth order Allen-Cahn equation (1.3) in the
sense of distributions is of class C∞(RN) and has bounded derivatives at any order.

Our goal in this section is to get some a priori pointwise bounds for the bounded solutions
of (3.9), in terms of the function f appearing in the right-hand side. The key-step is given
in the following lemma. To lighten some subscript expressions, we use repeatedly the
notations

Mu := sup
RN

u and mu := inf
RN

u,

where u is a given function.

Lemma 3.1. Let β > 0 and let f : R → R be locally Lipschitz-continuous. If u is a

bounded solution of (3.9), then

sup
0<µ≤β2/4

[
min

mu≤s≤Mu

(f(s)
µ

+ s
)]

≤ inf
RN

u ≤ sup
RN

u ≤ inf
0<µ≤β2/4

[
max

mu≤s≤Mu

(f(s)
µ

+ s
)]
.

Proof. Remember first that u is actually a classical solution of (3.9) with bounded and
Hölder continuous derivatives up to the fourth order. Fix any real number µ ∈ (0, β2/4]
and let λ ∈ (0, β) be such that

λ (β − λ) = µ.

Step 1: proof of the right inequality. Define the C2 bounded function

(3.10) v = ∆u− λ u.

The function v solves

(3.11) ∆v − (β − λ) v = ∆2u− β∆u+ λ (β − λ) u = f(u) + µ u in R
N .

Let (xn)n∈N be a sequence of points in R
N such that u(xn) → Mu as n → +∞. Denote

un(x) = u(x+ xn) and vn(x) = v(x+ xn)

for all n ∈ N and x ∈ R
N . It follows from the aforementioned interior estimates and Ascoli-

Arzela theorem that, up to extraction of a subsequence, the functions un and vn converge lo-
cally uniformly in R

N to two functions u∞ ∈ C4(RN) and v∞ ∈ C2(RN) solving (3.9), (3.10)
and (3.11) with (u∞, v∞) instead of (u, v). Furthermore, u∞(0) = Mu ≥ u∞(x) for
all x ∈ R

N . Therefore, ∆u∞(0) ≤ 0 and

v∞(0) = ∆u∞(0)− λ u∞(0) ≤ −λ u∞(0) = −λMu.

On the other hand, v∞ ≥ mv in R
N , whence

(3.12) mv ≤ −λMu.
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Similarly, let (ξn)n∈N be a sequence of points in R
N such that v(ξn) → mv as n → +∞

and denote

Un(x) = u(x+ ξn) and Vn(x) = v(x+ ξn).

As in the previous paragraph, up to extraction of a subsequence, the functions Un and Vn

converge locally uniformly in R
N to two functions U∞ ∈ C4(RN) and V∞ ∈ C2(RN) sol-

ving (3.9), (3.10) and (3.11) with (U∞, V∞) instead of (u, v). Furthermore,

V∞(0) = mv ≤ V∞(x) for all x ∈ R
N .

Therefore,

f(U∞(0)) + µU∞(0) = ∆V∞(0)− (β − λ) V∞(0) ≥ −(β − λ) V∞(0) = −(β − λ)mv.

Using the fact that 0 < λ < β and λ (β − λ) = µ, one infers from (3.12) that

f(U∞(0)) + µU∞(0) ≥ (β − λ) λMu = µMu.

Since infRN u ≤ U∞ ≤ sup
RN u in R

N and µ > 0, it follows that

sup
RN

u = Mu ≤ max
mu≤s≤Mu

(f(s)
µ

+ s
)

and since µ ∈ (0, β2/4] was arbitrary, the right inequality in the conclusion of Lemma 3.1
follows.

Step 2: proof of the left inequality. Define ũ = −u and ṽ = −v and observe that
ṽ = ∆ũ− λ ũ and ∆ṽ − (β − λ) ṽ = g(ũ) + µ ũ in R

N with g(s) = −f(−s). Step 1 implies
that, for every 0 < µ ≤ β2/4,

− inf
RN

u = sup
RN

ũ ≤ max
mũ≤s≤Mũ

(g(s)
µ

+ s
)
= − min

mu≤s′≤Mu

(f(s′)
µ

+ s′
)

by setting s = −s′. Since µ ∈ (0, β2/4] can be arbitrary, the left inequality in the conclusion
of Lemma 3.1 follows and the proof of Lemma 3.1 is thereby complete. �

Remark 3.2. For the fourth-order Allen-Cahn equation (1.3), the estimates given in
Lemma 3.1 improve the bounds given in [44, 50], even in dimension N = 1, if

√
2 ≤ β ≤

√
8.

It can also be used to improve the bound given in [34] for a range of the parameter.

In the proof of Theorems 1.4 and 1.5, we shall first show that the considered solutions u
of (1.3) range in the interval [−1, 1]. To do so, we need some conditions on β, namely, β
should not be too small (since there are some one-dimensional solutions of (1.3) satis-
fying (1.5) and not ranging in [−1, 1] when 0 ≤ β <

√
8). More generally speaking, for

the equation (3.9), we will give some improved pointwise estimates depending on β. We
assume that, as far as the locally Lipschitz-continuous function f : R → R is concerned,
there exist two real numbers α− < α+ such that

(3.13) f(α±) = 0, f > 0 on (−∞, α−), f < 0 on (α+,+∞) and f 6≡ 0 on [α−, α+].

There is then a smallest real number βf > 0 such that

(3.14) ∀µ ≥
β2
f

4
, ∀ s ∈ [α−, α+], α− ≤ f(s)

µ
+ s ≤ α+.
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For the function f(u) = u− u3 in (1.3), α± = ±1 and βf =
√
8. But, here, apart from the

fact that f is not identically equal to 0 on the interval [α−, α+], we do not assume anything
about the behavior of f on this interval and about its number of sign changes.

The following lemma provides some sufficient conditions depending on β and on u for a
solution u of (3.9) to range in the interval [α−, α+].

Lemma 3.3. Let f be a locally Lipschitz-continuous function satisfying (3.13) and let

βf > 0 be as in (3.14). Then there is a nonincreasing map m : [βf ,+∞) → [−∞, α−) and
there is a nondecreasing map M : [βf ,+∞) → (α+,+∞] such that, if β ≥ βf and u is any

classical bounded solution of (3.9) with

(3.15) m(β) < inf
RN

u ≤ sup
RN

u < M(β),

then

(3.16) α− ≤ u ≤ α+ in R
N .

Furthermore, m(β) → −∞ and M(β) → +∞ as β → +∞.

Proof. We begin by defining the functions m and M . For any β ≥ βf , we denote

(3.17) m(β) = sup
{
s ∈ (−∞, α−];

4 f(s)

β2
+ s = α− + α+ − s

}

and

(3.18) M(β) = inf
{
s ∈ [α+,+∞);

4 f(s)

β2
+ s = α− + α+ − s

}
,

with the usual convention that sup ∅ = −∞ and inf ∅ = +∞. Notice that m(β) < α−

and α+ < M(β) since f is continuous with f(α±) = 0, and α− < α+. Furthermore,
since f > 0 on (−∞, α−), it follows that β 7→ m(β) is nonincreasing on [βf ,+∞) and even
decreasing on the interval, if any, where it is finite. Similarly, since f < 0 on (α+,+∞),
the function β 7→ M(β) is nondecreasing on [βf ,+∞) and even increasing on the interval,
if any, where it is finite. Lastly, since α− < α+, it is immediate to see that m(β) → −∞
and M(β) → +∞ as β → +∞.

Consider now any classical bounded solution u of (3.9) with β ≥ βf , and assume
that sup

RN u > α+. Lemma 3.1 implies that

(3.19) min
mu≤s≤Mu

(4 f(s)
β2

+ s
)
≤ inf

RN

u ≤ sup
RN

u ≤ max
mu≤s≤Mu

(4 f(s)
β2

+ s
)
.

By (3.13), there holds f(α+) = 0 and 4f(s)/β2 + s < s for all s ∈ (α+,+∞), whence

(3.20) max
α+≤s≤Mu

(4 f(s)
β2

+ s
)
< sup

RN

u.

On the other hand,

(3.21) max
α−≤s≤α+

(4 f(s)
β2

+ s
)
≤ α+ < sup

RN

u
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by (3.14) (and β ≥ βf ) and our assumption α+ < sup
RN u. It then follows

from (3.19), (3.20) and (3.21) that infRN u < α− and

sup
RN

u ≤ max
mu≤s≤α−

(4 f(s)
β2

+ s
)
.

Similarly, if u is any classical bounded solution of (3.9) with β ≥ βf and infRN u < α−,
then sup

RN u > α+ and

min
α+≤s≤Mu

(4 f(s)
β2

+ s
)
≤ inf

RN

u.

Consider now any classical bounded solution u of (3.9) with β ≥ βf and (3.15), that is,

m(β) < inf
RN

u ≤ sup
RN

u < M(β),

and assume that the conclusion (3.16) does not hold (that is, either supRN u > α+

or infRN u < α−). It then follows from the previous two paragraphs that these last two
properties hold simultaneously and that

(3.22) min
α+≤s≤Mu

(4 f(s)
β2

+ s
)
≤ inf

RN

u < α− < α+ < sup
RN

u ≤ max
mu≤s≤α−

(4 f(s)
β2

+ s
)
.

Since infRN u > m(β) by assumption, it follows from the definition of m(β) and f(α−) = 0
with α− < α+, that

4 f(s)

β2
+ s < α− + α+ − s for all s ∈

[
inf
RN

u, α−

]
,

whence

(3.23) sup
RN

u ≤ max
mu≤s≤α−

(4 f(s)
β2

+ s
)
< max

mu≤s≤α−

(α− + α+ − s) = α− + α+ − inf
RN

u

by (3.22). Similarly, since sup
RN u < M(β), one infers from the definition of M(β)

that 4 f(s)/β2 + s > α− + α+ − s for all s ∈ [α+, supRN u], whence

(3.24) α− + α+ − sup
RN

u = min
α+≤s≤Mu

(α− + α+ − s) < min
α+≤s≤Mu

(4 f(s)
β2

+ s
)
≤ inf

RN

u

by (3.22). The inequalities (3.23) and (3.24) being impossible simultaneously, one has
reached a contradiction. As a conclusion, the property (3.16) holds and the proof of
Lemma 3.3 is thereby complete. �

An interesting lesson of the proof of Lemma 3.3 is the fact that, when β ≥ βf , the
conditions sup

RN u > α+ and infRN u < α− hold simultaneously, independently of the a
priori bounds (3.15). In other words, any of the two inequalities in (3.16) implies the other
one, as stated in the following corollary.

Corollary 3.4. Let f be a locally Lipschitz-continuous function satisfying (3.13) and

let βf > 0 be as in (3.14). If β ≥ βf and u is a classical bounded solution of (3.9)
such that either u ≤ α+ in R

N or u ≥ α− in R
N , then α− ≤ u ≤ α+ in R

N .
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Lemma 3.3 also provides an improvement of some pointwise bounds of u. This improve-
ment is valid even when β = βf , since m(βf) < α− and M(βf ) > α+. In other words,
there is ε > 0 such that, if β ≥ βf and u is a classical bounded solution of (3.9) such
that α− − ε ≤ u ≤ α+ + ε in R

N , then α− ≤ u ≤ α+ in R
N .

However, the conclusion of Lemma 3.3 does not hold in general when β is smaller than βf .
Indeed, in dimension N = 1 with f(s) = s − s3, it follows from a continuity argument

combined with [45, Theorem 5.1.1] and [50, Theorem 4] that when 0 < β
<→
√
8 = βf , there

is a sequence of bounded solutions un such that −1−1/n < infR un < −1 < 1 < sup
R
un <

1 + 1/n.
On the other hand, when β becomes larger and larger, the a priori bounds (3.15) become

less and less restrictive, since m(β) → −∞ and M(β) → +∞ as β → +∞. More precisely,
the following corollary holds immediately.

Corollary 3.5. Let f : R → R be a locally Lipschitz-continuous function satisfying (3.13),
let βf > 0 be as in (3.14) and let A ≥ 0 be a given nonnegative real number. There

is βf,A ≥ βf such that, if β ≥ βf,A and u is a classical bounded solution of (3.9) with

‖u‖L∞(RN ) ≤ A, then α− ≤ u ≤ α+ in R
N .

Remark 3.6. At the limit when γ = 1/β2 → 0+, the fourth order equation γ∆2v−∆v =
f(v) (obtained from (3.9) with the scaling u(x) = v(x/

√
β)) converges formally to the

second order equation −∆v = f(v). For this last equation, under the assumption (3.13),
it follows easily from the maximum principle that any bounded solution v satisfies α− ≤
v ≤ α+ in R

N .

Moreover, when f is bounded or more generally when |f(s)| = O(|s|) as s → ±∞,
then it follows from the definitions (3.17) and (3.18) of m(β) and M(β) that m(β) = −∞
and M(β) = +∞ for β large enough. In other words, the L∞ constraint on u is only
qualitative for large β, and the following corollary holds.

Corollary 3.7. Let f be a locally Lipschitz-continuous function satisfying (3.13) and such

that |f(s)| = O(|s|) as s → ±∞, and let βf > 0 be as in (3.14). Then there is βf,∞ ≥ βf

such that, for any β ≥ βf,∞, any classical bounded solution u of (3.9) satisfies α− ≤ u ≤ α+

in R
N .

To complete this section, let us finally translate the previous results to the case of the
fourth order Allen-Cahn equation (1.3), that is, f(s) = s−s3. With the previous notations,
one has α± = ±1, βf =

√
8 and it is immediate to check that

−m(β) = M(β) =

√
1 +

β2

2
.

Therefore, the following corollary holds.

Corollary 3.8. Assume that β ≥
√
8. Any classical bounded solution u of (1.3) such

that ‖u‖L∞(RN ) <
√
1 + β2/2 satisfies ‖u‖L∞(RN ) ≤ 1. In particular, any classical bounded

solution u of (1.3) such that ‖u‖L∞(RN ) <
√
5 satisfies ‖u‖L∞(RN ) ≤ 1. Furthermore,

any classical bounded solution u of (1.3) such that u ≥ −1 in R
N or u ≤ 1 in R

N

satisfies ‖u‖L∞(RN ) ≤ 1.
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Open question 3.9. In dimension N = 1, it is known that any classical bounded so-
lution u of (1.3) satisfies ‖u‖L∞(R) ≤

√
2 whatever β > 0, see for instance [44]. The

crucial ingredient to prove this a priori bound in dimension 1 is the first integral of energy
which is not available in higher dimension. In particular, from Corollary 3.8, any classical
bounded solution u of (1.3) with N = 1 satisfies ‖u‖L∞(R) ≤ 1 if β ≥

√
8. We believe that

these a priori estimates hold true in higher dimensions N ≥ 2, at least when uniformity
conditions (1.5) are assumed, however we leave them as an open problem.

4. Proof of the rigidity results

This section is devoted to the proof of the main results, Theorems 1.4 and 1.5. As in
Section 3, we can actually consider more general fourth order equations of the type (3.9)
with a locally Lipschitz-continuous function f : R → R satisfying (3.13) and being decreas-
ing in neighborhoods of α± (by decreasing, we mean strictly decreasing, see in particular
the end of the proof of Lemma 4.7, where the strict monotonicity is used). Namely, the
main two results of this section are the following theorems.

Theorem 4.1. Let f : [α−, α+] → R be a Lipschitz-continuous function such that f(α±) =
0 and f is decreasing in [α−, α−+ δ] and in [α+− δ, α+] for some δ > 0. Let ω > 0 be such

that

(4.25)
f(s)− f(s′)

s− s′
+ ω ≥ 0 for all α− ≤ s 6= s′ ≤ α+.

If β ≥ 2
√
ω and u is a classical bounded solution of (3.9) satisfying α− ≤ u ≤ α+ in R

N

and

(4.26) lim
xN→±∞

u(x1, . . . , xN) = α± uniformly in (x1, . . . , xN−1) ∈ R
N−1,

then u only depends on the variable xN and is increasing in xN .

Notice that the condition (4.25) is equivalent to f ′(s) + ω ≥ 0 for all s ∈ [α−, α+] as
soon as f is differentiable in the interval [α−, α+].

Remark 4.2. It is immediate to see that if f(α±) = 0, f 6≡ 0 in [α−, α+] and ω satis-
fies (4.25), then

2
√
ω ≥ βf ,

where βf > 0 is defined in (3.14). Therefore, the parameters β considered in Theorem 4.1
are always larger than or equal to βf .

Theorem 4.3. Let f : R → R be a locally Lipschitz-continuous function satisfying (3.13)
and such that f is decreasing in [α−, α−+ δ] and in [α+− δ, α+] for some δ > 0. Let ω > 0
satisfy (4.25). If β ≥ 2

√
ω and u is a classical bounded solution of (3.9) satisfying

(4.27)





lim
xN→±∞

u(x1, . . . , xN)=α− uniformly in (x1, . . . , xN−1)∈R
N−1and sup

RN

u<α+,

or

lim
xN→±∞

u(x1, . . . , xN)=α+ uniformly in (x1, . . . , xN−1)∈R
N−1and inf

RN

u>α−,

and if there is a one-dimensional solution φ : R → [α−, α+] of (3.9) such that φ(±∞) =
α±, then u is constant.
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The condition on the existence of a one-dimensional front φ connecting α± is reasonable,
in the sense that it has a natural counterpart for second order equations. Indeed, for the
equation −∆u = f(u) with a Lipschitz-continuous function f : [α−, α+] → R satisfying

(4.28) f(α±) = 0, f ′(α±) < 0, f < 0 on (α−, θ) and f > 0 on (θ, α+)

for some θ ∈ (α−, α+), then the existence of a one-dimensional front φ connecting α± is
a necessary and sufficient condition for the conclusion of Theorem 4.3 to hold and it is
equivalent to

∫ α+

α−

f(s)ds = 0, see e.g. [2, 28]. Otherwise, there are non-constant pulse like

solutions u satisfying (4.27). For the fourth order equation (3.9), a necessary condition
for the existence of a one-dimensional front φ : R → [α−, α+] such that φ(±∞) = α± is
that

∫ α+

α−

f(s)ds = 0, after integrating the equation of φ over R against φ′ and using the

fact that the derivatives of φ (at least up to the fourth order) converge to 0 at ±∞ by the
interior elliptic estimates [6, 19].

Remark 4.4. In Theorem 4.3, the assumption (4.27) and Corollary 3.4 imply that the
solution u ranges automatically in the interval [α−, α+]. In other words, Theorem 4.3 could
have been stated as Theorem 4.1, with a function f defined in [α−, α+] and a solution u
ranging a priori in the interval [α−, α+].

Before doing the proof of Theorems 4.1 and 4.3, let us state some immediate corollaries by
combining them with Remarks 4.2 and 4.4 and the results of Section 3 (namely, Lemma 3.3
and Corollaries 3.4, 3.5, 3.7).

Corollary 4.5. Let f : R → R be a locally Lipschitz-continuous function satisfying (3.13)
and being decreasing in [α−, α− + δ] and in [α+ − δ, α+] for some δ > 0. Let ω > 0
satisfy (4.25).

(1) If β ≥ 2
√
ω and u is a classical bounded solution of (3.9) satisfying (4.26) and such

that either u ≤ α+ in R
N or u ≥ α− in R

N , then u only depends on the variable xN

and is increasing in xN .

(2) Let m(β) and M(β) be as in Lemma 3.3. If β ≥ 2
√
ω and u is a classical bounded

solution of (3.9) satisfying m(β) < infRN u ≤ supRN u < M(β) and (4.26), then u
only depends on the variable xN and is increasing in xN .

(3) Let A ≥ 0 be given. There is βf,A ≥ 2
√
ω such that, if β ≥ βf,A and u is a classical

bounded solution of (3.9) satisfying ‖u‖L∞(RN ) ≤ A and (4.26), then u only depends

on the variable xN and is increasing in xN .

(4) If |f(s)| = O(|s|) as s → ±∞, then there is βf,∞ ≥ 2
√
ω such that, if β ≥ βf,∞ and

u is a classical bounded solution of (3.9) satisfying (4.26), then u only depends on

the variable xN and is increasing in xN .

(5) If β ≥ 2
√
ω, if u is a classical bounded solution of (3.9) satisfying (4.27) and if there

is a one-dimensional solution φ : R → [α−, α+] of (3.9) such that φ(±∞) = α±,

then u is constant.

In the particular case of the fourth order Allen-Cahn equation (1.3) with f(s) = s− s3,
one has α± = ±1 and the smallest ω > 0 satisfying (4.25) is equal to ω = 2. Furthermore,
the existence of one-dimensional kinks φ : R → [−1, 1] solving (1.3) with φ(±∞) = ±1 is
guaranteed when β ≥

√
8, see e.g. [45, 50]. Therefore, the following corollary holds, from

which Theorems 1.4 and 1.5 follow.
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Corollary 4.6. (1) If β ≥
√
8 and u is a classical bounded solution of (1.3) satisfying

‖u‖L∞(RN ) <
√
1 + β2/2 and (1.5), then u only depends on the variable xN and is

increasing in xN . The same conclusion holds if, instead of ‖u‖L∞(RN ) <
√

1 + β2/2,

u is assumed to satisfy either u ≤ 1 in R
N or u ≥ −1 in R

N . Furthermore, for

any A ≥ 0, there is β̃A ≥
√
8 such that, if β ≥ β̃A and u is a classical bounded

solution of (1.3) satisfying ‖u‖L∞(RN ) ≤ A and (1.5), then u only depends on the

variable xN and is increasing in xN .

(2) If β ≥
√
8 and u is a classical bounded solution of (1.3) satisfying (1.6), then u is

constant.

It now only remains to prove Theorems 4.1 and 4.3. A key-point is the following result,
which can be viewed as a weak maximum principle in half-spaces for problem (3.9) when β
is large enough. We denote R

N
+ = R

N−1 × [0,+∞).

Lemma 4.7. Let f : [α−, α+] → R be a Lipschitz-continuous function such that f(α+) = 0
and f is decreasing in [α+−δ, α+] for some δ > 0. Assume ω > 0 satisfies (4.25), β ≥ 2

√
ω

and λ > 0 is any of the roots of the equation λ2−βλ+ω = 0. If z1 and z2 are two classical

bounded solutions of (3.9) such that α− ≤ z1, z2 ≤ α+ in R
N and

(4.29)





z2 ≥ α+ − δ in R
N
+ ,

lim
xN→+∞

z1(x1, . . . , xN ) = lim
xN→+∞

z2(x1, . . . , xN ) = α+

uniformly in (x1, . . . , xN−1) ∈ R
N−1,

z1 ≤ z2 and ∆z1 − λ z1 ≥ ∆z2 − λ z2 on ∂RN
+ = R

N−1 × {0},
then z1 ≤ z2 and ∆z1 − λ z1 ≥ ∆z2 − λ z2 in R

N
+ .

Proof. By writing
v = z2 − z1 and w = ∆v − λ v,

the desired conclusion can be reformulated as infRN

+
v ≥ 0 and sup

RN

+
w ≤ 0. Assume for

the sake of contradiction that

(4.30) m := inf
RN
+

v < 0 or M := sup
RN

+

w > 0.

Let (xn)n∈N = (x′
n, xN,n)n∈N and (yn)n∈N = (y′n, yN,n)n∈N be some sequences in R

N
+ such

that
v(xn) → m and w(yn) → M as n → +∞.

By standard interior elliptic estimates [6, 19], as recalled at the beginning of Section 3,
the functions z1 and z2 have bounded Hölder continuous derivatives up to the fourth
order. In particular, both functions v and w are uniformly continuous. Furthermore,
since limxN→+∞ z1(x

′, xN ) = limxN→+∞ z2(x
′, xN) = α+ uniformly in x′ ∈ R

N−1, one infers
that limxN→+∞∆z1(x

′, xN) = limxN→+∞∆z2(x
′, xN) = 0 uniformly in x′ ∈ R

N−1. Hence,

lim
xN→+∞

v(x′, xN ) = 0 and lim
xN→+∞

w(x′, xN) = 0 uniformly in x′ ∈ R
N−1.

Claim 1: m < 0 implies M > 0. Assume m < 0. Since v ≥ 0 on ∂RN
+ , it follows from

the previous observations that there exists a real number xN,∞ ∈ (0,+∞) such that, up to
extraction of a subsequence, xN,n → xN,∞ as n → +∞. Denote

Z1,n(x) = z1(x
′ + x′

n, xN) and Z2,n(x) = z2(x
′ + x′

n, xN)
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for all n ∈ N and x = (x′, xN) ∈ R
N . Up to extraction of a subsequence, the functions Z1,n

and Z2,n converge in C4
loc(R

N) to two classical bounded solutions Z1 and Z2 of (3.9) such
that α− ≤ Z1, Z2 ≤ α+ in R

N , Z2 ≥ α+−δ in R
N
+ , V := Z2−Z1 ≥ m in R

N
+ , V (0, xN,∞) = m

and W := ∆V − λ V ≤ M in R
N
+ . In particular, since (0, xN,∞) is an interior minimum

point of V in R
N
+ , one infers that

(4.31) M ≥ W (0, xN,∞) = ∆V (0, xN,∞)− λ V (0, xN,∞) ≥ −λ V (0, xN,∞) = −λm > 0

since λ > 0, and m < 0 by assumption. Therefore, m < 0 implies M > 0 as claimed.

Claim 2: M > 0 implies m < 0. Assume now that M > 0. Since w ≤ 0 on ∂RN
+

and limxN→+∞w(x′, xN ) = 0 uniformly in x′ ∈ R
N−1, it follows that there exists a real

number yN,∞ ∈ (0,+∞) such that, up to extraction of a subsequence, yN,n → yN,∞ as n →
+∞. Denote

Z̃1,n(x) = z1(x
′ + y′n, xN) and Z̃2,n(x) = z2(x

′ + y′n, xN)

for all n ∈ N and x = (x′, xN) ∈ R
N . Up to extraction of a subsequence, the functions Z̃1,n

and Z̃2,n converge in C4
loc(R

N) to two classical bounded solutions Z̃1 and Z̃2 of (3.9) such

that α− ≤ Z̃1, Z̃2 ≤ α+ in R
N , Z̃2 ≥ α+ − δ in R

N
+ , Ṽ := Z̃2 − Z̃1 ≥ m in R

N
+ , W̃ :=

∆Ṽ − λṼ ≤ M in R
N
+ and W̃ (0, yN,∞) = M . Let λ̃ > 0 be the other root of the equation

λ̃2 − βλ̃+ ω = 0,

that is, λ̃ = ω/λ = β − λ. The function W̃ = ∆Ṽ − λ Ṽ is of class C2(RN) and it satisfies

∆W̃ − λ̃ W̃ = ∆2Ṽ − β∆Ṽ + ω Ṽ = f(Z̃2)− f(Z̃1) + ω (Z̃2 − Z̃1) in R
N .

The point (0, yN,∞) is an interior maximum point of the function W̃ in R
N
+ , whence

∆W̃ (0, yN,∞) ≤ 0, while λ̃ > 0 and W̃ (0, yN,∞) = M > 0. Therefore,

(4.32)

0 > −λ̃M ≥ ∆W̃ (0, yN,∞)− λ̃ W̃ (0, yN,∞)

= f(Z̃2(0, yN,∞))− f(Z̃1(0, yN,∞)) + ω (Z̃2(0, yN,∞)− Z̃1(0, yN,∞))

= (σ + ω) Ṽ (0, yN,∞),

where

σ =
f(Z̃2(0, yN,∞))− f(Z̃1(0, yN,∞))

Z̃2(0, yN,∞)− Z̃1(0, yN,∞)
if Ṽ (0, yN,∞) = Z̃2(0, yN,∞)− Z̃1(0, yN,∞) 6= 0

and, say, σ = 0 if Ṽ (0, yN,∞) = Z̃2(0, yN,∞) − Z̃1(0, yN,∞) = 0. Since α− ≤
Z̃1(0, yN,∞), Z̃2(0, yN,∞) ≤ α+ and ω > 0 satisfies (4.25), one has σ + ω ≥ 0. The
case σ + ω = 0 is impossible due to the strict sign in (4.32), whence σ + ω > 0.

As a consequence, Ṽ (0, yN,∞) < 0, that is, Z̃2(0, yN,∞) < Z̃1(0, yN,∞). In particu-

lar,m ≤ Ṽ (0, yN,∞) < 0. Therefore our claim follows. Since σ+ω > 0, observe furthermore
that (4.32) implies

(4.33) − λ̃M ≥ (σ + ω)m.

Conclusion. The previous claims show that the property m < 0 is equivalent to M > 0.
Therefore, if we assume (4.30), the calculations in the proofs of the two claims hold. Now,
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by multiplying (4.31) by λ̃ > 0 and adding it to (4.33), one gets that

0 ≥ −λ λ̃m+ (σ + ω)m = σm

since λ λ̃ = ω. As m < 0, this yields σ ≥ 0, whence

(4.34) f(Z̃2(0, yN,∞)) ≤ f(Z̃1(0, yN,∞))

(remember that Z̃2(0, yN,∞) < Z̃1(0, yN,∞)). On the other hand, Z̃2(0, yN,∞) ≥ α+ − δ

(since z2, Z̃2 ≥ α+ − δ in R
N
+ ) and Z̃1(0, yN,∞) ≤ α+, whence

α+ − δ ≤ Z̃2(0, yN,∞) < Z̃1(0, yN,∞) ≤ α+.

Since f is assumed to be decreasing in the interval [α+ − δ, α+], one gets that

f(Z̃2(0, yN,∞)) > f(Z̃1(0, yN,∞)), contradicting (4.34). Henceforth, we conclude that (4.30)
cannot hold, that is, infRN v = m ≥ 0, supRN w = M ≤ 0 and the proof is thereby com-
plete. �

Remark 4.8. It follows from the proof that the functions z1 and z2 satisfy the following
two-component system of second order elliptic equations:

{
−∆v + λ v = −w,

−∆w + λ̃ w = −f(z2) + f(z1)− ω (z2 − z1) = −b(x) v

in R
N
+ , with v = z2−z1, b(x) ≥ 0 (by (4.25)) in R

N
+ , v ≥ 0 on ∂RN

+ and w ≤ 0 on ∂RN
+ . This

system is competitive and some maximum principles are known to hold for competitive
systems in bounded domains. However, the comparison result proved in Lemma 4.7 is
new. Here, not only the domain R

N
+ is unbounded and one also has to use in the proof the

fact that, in R
N
+ , z2 takes values in the interval [α+ − δ, α+], in which f is decreasing.

Remark 4.9. The second line in (4.29) is actually not necessary. To see it, notice first that,
since the functions z1 and z2 are assumed to be bounded in R

N (they range in [α−, α+]), the
function w is bounded in R

N from the interior elliptic estimates. If we drop the second line
in (4.29), the main change is that any of the sequences (xN,n)n∈N and (yN,n)n∈N introduced
in the proof may well converge to +∞ up to extraction of a subsequence. If for instance
limn→+∞ xN,n = +∞, one would now define Zi,n(x) = zi(x+ xn) = zi(x

′ + x′
n, xN + xN,n)

for i = 1, 2 and pass to the limit up to extraction of a subsequence. The limiting functions
Z1, Z2, V and W would then satisfy the same properties as in the proof of Lemma 4.7,
but now in the whole space R

N (in particular, Z2 ≥ α+ − δ in R
N , V = Z2 − Z1 ≥ m

in R
N , V (0, 0) = m and W = ∆V − λ V ≤ M in R

N). The inequalities established in the
above proof would still be the same, with xN,∞ = 0. Similarly, if limn→+∞ yN,n = +∞, one

would define new functions Z̃i,n and new limiting functions Z̃i, Ṽ and W̃ and one would
complete the proof with yN,∞ = 0. In the statement of Lemma 4.7, we preferred to keep
the second line in (4.29) for the sake of simplicity, and since this assumption will always
be satisfied when Lemma 4.7 will be used in the proof of Theorems 4.1 and 4.3.

The following lemma is the counterpart of Lemma 4.7 in the half-space R
N
− = R

N−1 ×
(−∞, 0], when z1 is close to α−.

Lemma 4.10. Let f : [α−, α+] → R be a Lipschitz-continuous function such that f(α−) =
0 and f is decreasing in [α−, α−+δ] for some δ > 0. Let ω > 0 satisfy (4.25), let β ≥ 2

√
ω
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and let λ > 0 be any root of the equation λ2 − βλ + ω = 0. If z1 and z2 are two classical

bounded solutions of (3.9) such that α− ≤ z1, z2 ≤ α+ in R
N and





z1 ≤ α− + δ in R
N
+ ,

lim
xN→−∞

z1(x1, . . . , xN) = lim
xN→−∞

z2(x1, . . . , xN ) = α−

uniformly in (x1, . . . , xN−1) ∈ R
N−1,

z1 ≤ z2 and ∆z1 − λ z1 ≥ ∆z2 − λ z2 on ∂RN
− = R

N−1 × {0},

then z1 ≤ z2 and ∆z1 − λ z1 ≥ ∆z2 − λ z2 in R
N
− .

Proof. The conclusion of Lemma 4.10 follows immediately from Lemma 4.7 applied to the

functions f̃(s) = −f(α− + α+ − s), z̃1(x
′, xN) = α− + α+ − z2(x

′,−xN ) and z̃2(x
′, xN) =

α− + α+ − z1(x
′,−xN ). �

With Lemmas 4.7 and 4.10 at hand, we can turn to the proof of Theorems 4.1 and 4.3.
We rely on the sliding method adapted to the fourth order equation (3.9). Namely, for any
vector ξ′ ∈ R

N−1, any τ ∈ R and x = (x′, xN) ∈ R
N , we set

(4.35) uτ(x) = uτ(x
′, xN ) = u(x′ + ξ′, xN − τ).

The strategy then consists in two main steps. First we show that uτ ≤ u in R
N for τ > 0

large enough and then we decrease τ and prove that actually, uτ ≤ u in R
N for all τ ≥ 0.

Finally we show that the freedom in the choice of the vector ξ′ ∈ R
N−1 implies that u

depends only on xN .

Proof of Theorem 4.1. Let f , δ, ω, β and u be as in the statement of Theorem 4.1. Notice
that the strict monotonicity of f in [α−, α− + δ] and [α+ − δ, α+] implies that

δ <
α+ − α−

2
.

Let λ > 0 be any root of the equation λ2 − β λ+ ω = 0.
Since u(x′, xN ) converges to the constants α± as xN → ±∞ and since the function u and

its derivatives up to the fourth order are bounded and Hölder continuous in R
N from the

interior elliptic estimates [6, 19], it follows in particular that ∆u(x′, xN ) → 0 as xN → ±∞
uniformly in x′ ∈ R

N−1. From the assumption (4.26), there is a real number A > 0 such
that

(4.36)





u ≥ α+ − δ in R
N−1 × [A,+∞), u ≤ α− + δ in R

N−1 × (−∞,−A],

|∆u| ≤ λ (α+ − α− − 2δ)

2
in R

N−1 × (−∞,−A] ∪ R
N−1 × [A,+∞).

Step 1: comparisons for large τ . We show here that uτ ≤ u in R
N for all τ ≥ 2A.

Let τ ∈ [2A,+∞) be given. For any x′ ∈ R
N−1, one has

(4.37) uτ(x
′, A) = u(x′ + ξ′, A− τ) ≤ α− + δ ≤ α+ − δ ≤ u(x′, A)
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and

(4.38)

∆uτ (x
′, A)− λ uτ(x

′, A) = ∆u(x′ + ξ′, A− τ)− λ u(x′ + ξ′, A− τ)

≥ −λ (α+ − α− − 2δ)

2
− λ (α− + δ)

=
λ (α+ − α− − 2δ)

2
− λ (α+ − δ)

≥ ∆u(x′, A)− λ u(x′, A).

Define z1, z2 : R
N → [α−, α+] by z1 := uτ(·, ·+A) and z2 := u(·, ·+A). Since z2 ≥ α+−δ

in R
N
+ and both z1 and z2 are classical solutions of (3.9) converging to α+ as xN → +∞

uniformly in x′ ∈ R
N−1, we deduce from (4.37)-(4.38) and Lemma 4.7 that z1 ≤ z2 and

∆z1 − λ z1 ≥ ∆z2 − λ z2 in R
N
+ , that is,

uτ ≤ u and ∆uτ − λ uτ ≥ ∆u− λ u in R
N−1 × [A,+∞).

Similarly, since z1 = uτ (·, · + A) = u(· + ξ′, · + A − τ) ≤ α− + δ in R
N
− (because

A − τ ≤ −A) and both z1 and z2 converge to α− as xN → −∞ uniformly in x′ ∈ R
N−1,

it follows from (4.37)-(4.38) and Lemma 4.10 that z1 ≤ z2 and ∆z1 − λ z1 ≥ ∆z2 − λ z2
in R

N
− , that is,

uτ ≤ u and ∆uτ − λ uτ ≥ ∆u− λ u in R
N−1 × (−∞, A].

Therefore, for all τ ≥ 2A, uτ ≤ u and ∆uτ − λ uτ ≥ ∆u− λ u in R
N .

Step 2: decreasing τ . Let us now set

(4.39) τ ∗ = inf
{
τ > 0, uτ ′ ≤ u and ∆uτ ′ − λ uτ ′ ≥ ∆u− λ u in R

N for all τ ′ ≥ τ
}
.

It follows from Step 1 that τ ∗ is a nonnegative real number such that τ ∗ ≤ 2A. Furthermore,
by continuity,

(4.40) uτ∗ ≤ u and ∆uτ∗ − λ uτ∗ ≥ ∆u− λ u in R
N .

Our final aim is to show that τ ∗ = 0. Assume by contradiction that τ ∗ > 0.
We first claim that

(4.41) inf
RN−1×[−A,A]

(u− uτ∗) > 0.

Assume by contradiction that this is not the case. Then, we have

inf
RN−1×[−A,A]

(u− uτ∗) = 0

and there exists a sequence (xn)n∈N = (x′
n, xN,n)n∈N of points in R

N−1 × [−A,A] such
that u(xn)−uτ∗(xn) → 0 as n → +∞. Up to extraction of a subsequence, one can assume
that xN,n → xN,∞ ∈ [−A,A] as n → +∞. Define

Un(x) = Un(x
′, xN) = u(x′ + x′

n, xN )

in R
N . The functions Un are bounded in C4,α(RN) for any α ∈ [0, 1) from the interior

elliptic estimates [6, 19]. Up to extraction of a subsequence, they converge in C4
loc(R

N) to
a classical solution U : RN → [α−, α+] of (3.9) such that

V := U − Uτ∗ = U − U(·+ ξ′, · − τ ∗) ≥ 0 in R
N ,
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V (0, xN,∞) = 0 and W := ∆V − λ V ≤ 0 in R
N . The strong maximum principle applied

to V yields V = 0 in R
N , that is, U(x′, xN) = U(x′+ ξ′, xN − τ ∗) for all x = (x′, xN) ∈ R

N .
However, U still satisfies (4.26) by the uniformity with respect to x′ = (x1, . . . , xN−1) ∈
R

N−1 in (4.26). Thus, the positivity of τ ∗ leads to a contradiction. As a consequence, (4.41)
holds.

We next claim that

(4.42) sup
RN−1×[−A,A]

(
∆(u− uτ∗)− λ (u− uτ∗)

)
< 0.

Assume again by contradiction that this is not the case. Then, we deduce from (4.40) that

sup
RN−1×[−A,A]

(
∆(u− uτ∗)− λ (u− uτ∗)

)
= 0

and there exists a sequence (yn)n∈N = (y′n, yN,n)n∈N of points in R
N−1 × [−A,A] such that

∆(u− uτ∗)(yn)− λ (u(yn)− uτ∗(yn)) → 0 as n → +∞.

Up to extraction of a subsequence, one can assume that yN,n → yN,∞ ∈ [−A,A] as n →
+∞. Define

Ũn(x) = Ũn(x
′, xN) = u(x′ + y′n, xN )

in R
N . As above, up to extraction of a subsequence, the functions Ũn converge in C4

loc(R
N)

to a classical solution Ũ : RN → [α−, α+] of (3.9) such that

Ṽ := Ũ − Ũτ∗ = Ũ − Ũ(·+ ξ′, · − τ ∗) ≥ 0 in R
N ,

W̃ := ∆Ṽ − λṼ ≤ 0 in R
N and W̃ (0, yN,∞) = 0. Let λ̃ = ω/λ = β − λ > 0 be the other

root of λ̃2 − βλ + ω = 0. As in the proof of Lemma 4.7, the function W̃ is a C2(RN)
solution of

∆W̃ − λ̃ W̃ = f(Ũ(x))− f(Ũτ∗(x)) + ω Ṽ (x) = (ς(x) + ω) Ṽ (x),

where

ς(x) =
f(Ũ(x))− f(Ũτ∗(x))

Ũ(x)− Ũτ∗(x)
if Ṽ (x) = Ũ(x)− Ũτ∗(x) 6= 0

and, say, ς(x) = 0 if Ṽ (x) = Ũ(x) − Ũτ∗(x) = 0. Since both functions Ũ and Ũτ∗ range
in [α−, α+] and since ω > 0 satisfies (4.25), one has ς(x) +ω ≥ 0 for all x ∈ R

N . Recalling

that Ṽ ≥ 0 in R
N , one infers that ∆W̃ − λ̃ W̃ ≥ 0 in R

N . Since W̃ is nonpositive in R
N

and vanishes at the point (0, yN,∞), the strong maximum principle implies that W̃ = 0

in R
N . In other words, ∆Ṽ − λṼ = 0 in R

N . But the function Ṽ is nonnegative and

bounded. By passing to the limit along a sequence (zn)n∈N such that Ṽ (zn) → sup
RN Ṽ

as n → +∞, it follows immediately that supRN Ṽ ≤ 0. Hence Ṽ = 0 in R
N , that is,

Ũ(x′, xN ) = Ũ(x′ + ξ′, xN − τ ∗) for all x = (x′, xN) ∈ R
N . The positivity of τ ∗ and the

limits (4.26) lead to a contradiction. Finally, (4.42) holds.
Now, since both properties (4.41) and (4.42) hold and since by interior elliptic estimates

both functions u an ∆u are uniformly continuous in R
N , there is a real number τ∗ ∈ (0, τ ∗)

such that

uτ ≤ u and ∆uτ − λ uτ ≥ ∆u− λ u in R
N−1 × [−A,A] for all τ ∈ [τ∗, τ

∗].
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For any τ ∈ [τ∗, τ
∗], since u ≥ α+ − δ in R

N−1 × [A,+∞) by (4.36), it then follows from
Lemma 4.7 applied to z1 := uτ (·, ·+ A) and z2 = u(·, ·+ A) that

uτ ≤ u and ∆uτ − λ uτ ≥ ∆u− λ u in R
N−1 × [A,+∞).

Similarly, for any τ ∈ [τ∗, τ
∗], since uτ = u(· + ξ′, · − τ) ≤ α− + δ in R

N−1 × (−∞,−A]
by (4.36) and τ ≥ τ∗ ≥ 0, it then follows from Lemma 4.10 applied to z1 := uτ(·, · − A)
and z2 = u(·, · − A) that

uτ ≤ u and ∆uτ − λ uτ ≥ ∆u− λ u in R
N−1 × (−∞,−A].

Putting together the previous results implies that uτ ≤ u and ∆uτ − λ uτ ≥ ∆u − λ u
in R

N for all τ ∈ [τ∗, τ
∗]. Since τ∗ ∈ (0, τ ∗), this contradicts the minimality of τ ∗ in (4.39)

and, as a consequence, τ ∗ = 0.

Step 3: conclusion. Since τ ∗ = 0, it follows from (4.39) that

uτ ≤ u and ∆uτ − λ uτ ≥ ∆u− λ u in R
N

for all τ ≥ 0. Furthermore, the arguments based on the strong second order elliptic
maximum principle imply, as in Step 2, that, for all τ > 0,

uτ < u and ∆uτ − λ uτ > ∆u− λ u in R
N .

Choosing now ξ′ = 0 shows that u is increasing in the variable xN . Moreover, by choosing
an arbitrary vector ξ′ ∈ R

N−1 and its opposite vector −ξ′, it follows that, for all x =
(x′, xN) ∈ R

N , u(x′ + ξ′, xN − τ) < u(x′, xN ) and u(x′ − ξ′, xN − τ) < u(x′, xN ) for
all τ > 0, whence u(x′ + ξ′, xN ) ≤ u(x′, xN) and u(x′ − ξ′, xN) ≤ u(x′, xN) by passing to
the limit as τ → 0+. Since x = (x′, xN ) ∈ R

N and ξ′ ∈ R
N−1 are arbitrary, this means

that u(x′ + ξ′, xN ) = u(x′, xN) for all ξ′ ∈ R
N−1 and (x′, xN ) ∈ R

N . In other words, u
depends only on the variable xN . The proof of Theorem 4.1 is thereby complete. �

We now prove Theorem 4.3. As for Theorem 4.1, we again rely on the sliding method,
but this time we will slide the one-dimensional kink φ with respect to u.

Proof of Theorem 4.3. Let f , δ ∈ (0, (α+ − α−)/2), ω > 0, β ≥ 2
√
ω, u and φ be as in the

statement of Theorem 4.3. Without loss of generality, let us assume that u(x′, xN ) → α+

as xN → ±∞ uniformly in x′ ∈ R
N−1 and that infRN u > α−. Remember from Corollary 3.4

and Remark 4.4 that this yields automatically

α− ≤ u ≤ u+ in R
N .

Even if it means decreasing δ > 0, one can then assume that α− + δ < infRN u. Let λ > 0
be any root of the equation λ2 − βλ+ ω = 0. Our goal is to show that u = α+ in R

N .
Let ξ be any given real number. As in the proof of Theorem 4.3, there is a real num-

ber A > 0 such that

(4.43)





u ≥ α+ − δ in R
N−1 × [A,+∞), φ(ξ + ·) ≤ α− + δ in (−∞,−A],

|∆u| ≤ λ (α+ − α− − 2δ)

2
in R

N−1 × (−∞,−A] ∪ R
N−1 × [A,+∞),

|φ′′(ξ + ·)| ≤ λ (α+ − α− − 2δ)

2
in (−∞,−A] ∪ [A,+∞).

For any τ ∈ R, we define φτ = φ(·+ ξ − τ).



FOURTH-ORDER ALLEN-CAHN EQUATION IN R
N 21

Claim 1: for all τ ≥ 2A, φτ ≤ u and φ′′
τ − λφτ ≥ ∆u − λ u in R

N . Let τ ≥ 2A. As
in (4.37) and (4.38), one has, for any x′ ∈ R

N−1,

φτ (A) = φ(ξ + A− τ) ≤ α− + δ ≤ α+ − δ ≤ u(x′, A)

and

φ′′
τ (A)− λφτ(A) = φ′′(ξ + A− τ)− λφ(ξ + A− τ) ≥ −λ (α+ − α− − 2δ)

2
− λ (α− + δ)

=
λ (α+ − α− − 2δ)

2
− λ (α+ − δ)

≥ ∆u(x′, A)− λ u(x′, A).

Define z1, z2 : R → [α−, α+] by z1 := φτ (· + A) = φ(· + ξ + A − τ) and z2 := u(·, · + A).
Since z2 ≥ α+ − δ in R

N
+ and both z1 and z2 are classical solutions of (3.9) converging

to α+ as xN → +∞ uniformly in x′ ∈ R
N−1, it follows from the previous estimates and

Lemma 4.7 that

z1 ≤ z2 and ∆z1 − λ z1 ≥ ∆z2 − λ z2 in R
N
+ ,

that is

φτ ≤ u and φ′′
τ − λφτ ≥ ∆u− λ u in R

N−1 × [A,+∞).

Similarly, since z1 = φτ (·+A) = φ(·+ ξ +A− τ) ≤ α− + δ in (−∞, 0] and both z1 and z2
converge to α− as xN → −∞ uniformly in x′ ∈ R

N−1, it then follows from Lemma 4.10
that z1 ≤ z2 and ∆z1 − λ z1 ≥ ∆z2 − λ z2 in R

N
− , that is,

φτ ≤ u and φ′′
τ − λφτ ≥ ∆u− λ u in R

N−1 × (−∞, A].

Therefore the claim is proved.

Define now

(4.44) τ ∗ = inf
{
τ > 0, φτ ′ ≤ u and φ′′

τ ′ − λφτ ′ ≥ ∆u− λ u in R
N for all τ ′ ≥ τ

}
.

It follows from Claim 1 that τ ∗ is a nonnegative real number such that τ ∗ ≤ 2A. Further-
more, by continuity, we infer that

(4.45) φτ∗ ≤ u and φ′′
τ∗ − λφτ∗ ≥ ∆u− λ u in R

N .

Claim 2: τ ∗ = 0. Assuming by contradiction that τ ∗ > 0, we first aim to show that

(4.46) inf
RN−1×[−A,A]

(u− φτ∗) > 0.

Assume this inequality does not hold. Then infRN−1×[−A,A](u − φτ∗) = 0 and

there exists a sequence (xn)n∈N = (x′
n, xN,n)n∈N of points in R

N−1 × [−A,A] such
that u(xn)− φτ∗(xN,n) → 0 as n → +∞. Up to extraction of a subsequence, one can as-
sume that xN,n → xN,∞ ∈ [−A,A] as n → +∞. Define Un(x) = Un(x

′, xN) = u(x′+x′
n, xN)

in R
N . As in the proof of Theorem 4.1, up to extraction of a subsequence, the func-

tions Un converge in C4
loc(R

N) to a classical solution U : RN → [α−, α+] of (3.9) such
that V := U −φτ∗ ≥ 0 in R

N , V (0, xN,∞) = 0 and W := ∆V −λ V ≤ 0 in R
N . The strong

maximum principle applied to V yields V = 0 in R
N , that is, U(x′, xN) = φ(ξ+xN−τ ∗) for

all x = (x′, xN) ∈ R
N . However, U still satisfies (4.27) (here U(x′, xN) → α+ as xN → ±∞

uniformly in x′ ∈ R
N−1), while φ(−∞) = α− < α+. One has then reached a contradiction,

whence (4.46) holds.
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Similarly, we next show that

(4.47) sup
RN−1×[−A,A]

(
∆u− φ′′

τ∗ − λ (u− φτ∗)
)
< 0.

Assume again by contradiction that this inequality does not hold. Then, by (4.45),
there is a sequence (yn)n∈N = (y′n, yN,n)n∈N of points in R

N−1 × [−A,A] such that

∆u(yn)− φ′′
τ∗(yN,n)− λ (u(yn)− φτ∗(yN,n)) → 0 as n → +∞. Define Ũn(x) = Ũn(x

′, xN ) =
u(x′ + y′n, xN ) in R

N . Up to extraction of a subsequence, one can assume that yN,n →
yN,∞ ∈ [−A,A] as n → +∞ and that the functions Ũn converge in C4

loc(R
N) to a classical

solution Ũ : RN → [α−, α+] of (3.9) such that Ṽ := Ũ−φτ∗ ≥ 0 in R
N , W̃ := ∆Ṽ −λṼ ≤ 0

in R
N and W̃ (0, yN,∞) = 0. Let λ̃ = ω/λ = β−λ > 0 be the other root of λ̃2−βλ̃+ω = 0.

As in the proof of Lemma 4.7, the function W̃ is a C2(RN) solution of

∆W̃ − λ̃ W̃ = (ς(x) + ω)Ṽ ,

where

ς(x) =
f(Ũ(x))− f(φτ∗(xN))

Ũ(x)− φτ∗(xN )
if Ṽ (x) = Ũ(x)− φτ∗(xN ) 6= 0

and, say, ς(x) = 0 if Ṽ (x) = Ũ(x) − φτ∗(xN ) = 0. Since both functions Ũ and φτ∗ range
in [α−, α+] and since ω > 0 satisfies (4.25), one has ς(x) +ω ≥ 0 for all x ∈ R

N . Recalling

that Ṽ ≥ 0 in R
N , one infers that ∆W̃−λ̃ W̃ ≥ 0 in R

N . Since W̃ is nonpositive in R
N and

vanishes at the point (0, yN,∞), the strong maximum principle implies that W̃ = 0 in R
N .

In other words, ∆Ṽ − λṼ = 0 in R
N . But the function Ṽ is nonnegative and bounded. It

then follows that Ṽ = 0 in R
N , that is, Ũ(x′, xN) = φ(ξ+xN−τ ∗) for all x = (x′, xN) ∈ R

N .
The limits (4.27) lead again to a contradiction, whence (4.47) holds.

We can now conclude Claim 2. From (4.46), (4.47) and the uniform continuity of u, ∆u,
φ and φ′′, there is τ∗ ∈ (0, τ ∗) such that

φτ ≤ u and φ′′
τ − λφτ ≥ ∆u− λ u in R

N−1 × [−A,A] for all τ ∈ [τ∗, τ
∗].

For any τ ∈ [τ∗, τ
∗], since u ≥ α+ − δ in R

N−1 × [A,+∞) by (4.43), it then follows from
Lemma 4.7 applied to z1 = φτ (·+ A) = φ(·+ ξ + A− τ) and z2 = u(·, ·+ A) that

φτ ≤ u and φ′′
τ − λφτ ≥ ∆u− λ u in R

N−1 × [A,+∞).

Similarly, for any τ ∈ [τ∗, τ
∗], since φτ = φ(·+ ξ − τ) ≤ α− + δ in (−∞,−A] by (4.43) and

τ ≥ τ∗ ≥ 0, it then follows from Lemma 4.10 applied to z1 := φτ (·−A) and z2 = u(·, ·−A)
that

φτ ≤ u and φ′′
τ − λφτ ≥ ∆u− λ u in R

N−1 × (−∞,−A].

Putting together the previous results implies that φτ ≤ u and φ′′
τ − λφτ ≥ ∆u−λ u in R

N

for all τ ∈ [τ∗, τ
∗]. Since τ∗ ∈ (0, τ ∗), this contradicts the minimality of τ ∗ in (4.44) and

thus implies τ ∗ = 0.

Conclusion. We have shown that φ0 ≤ u in R
N , that is, φ(ξ + xN) ≤ u(x′, xN) for

all (x′, xN ) ∈ R
N . Since ξ was an arbitrary real number, it follows by passing to the

limit ξ → +∞ that α+ ≤ u(x′, xN ) for all (x′, xN) ∈ R
N . But u was assumed to range

in [α−, α+]. In other words, u = α+ in R
N and the proof of Theorem 4.3 is thereby

complete. �
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[8] D. Bonheure, Heteroclinic solutions for a class of fourth order ordinary differential equations, Acad.

Roy. Belg. Cl. Sci. Mém. Collect. 8o (3) 23 (2006), 188 pp.
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