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EXISTENCE AND SYMMETRY OF LEAST ENERGY NODAL

SOLUTIONS FOR HAMILTONIAN ELLIPTIC SYSTEMS

DENIS BONHEURE, EDERSON MOREIRA DOS SANTOS, MIGUEL RAMOS,
AND HUGO TAVARES

Abstract. In this paper we prove existence of least energy nodal solutions
for the Hamiltonian elliptic system with Hénon–type weights

−∆u = |x|β |v|q−1v, −∆v = |x|α|u|p−1u in Ω, u = v = 0 on ∂Ω,

where Ω is a bounded smooth domain in RN , N ≥ 1, α, β ≥ 0 and the
nonlinearities are superlinear and subcritical, namely

1 >
1

p+ 1
+

1

q + 1
>
N − 2

N
.

When Ω is either a ball or an annulus centered at the origin and N ≥ 2, we
show that these solutions display the so-called foliated Schwarz symmetry.

It is natural to conjecture that these solutions are not radially symmetric.

We provide such a symmetry breaking in a range of parameters where the
solutions of the system behave like the solutions of a single equation. Our

results on the above system are new even in the case of the Lane-Emden

system (i.e. without weights). As far as we know, this is the first paper that
contains results about least energy nodal solutions for strongly coupled elliptic

systems and their symmetry properties.

1. Introduction

We consider the Hamiltonian elliptic system with Hénon-type weights

−∆u = |x|β |v|q−1v, −∆v = |x|α|u|p−1u in Ω, u = v = 0 on ∂Ω, (1.1)

where Ω is a bounded domain in RN , N > 1, and α, β > 0. We consider superlinear
and subcritical nonlinearities, namely

1 >
1

p+ 1
+

1

q + 1
>
N − 2

N
. (H)

Observe that the first condition is also equivalent to pq > 1.
The system (1.1) is strongly coupled in the sense that u ≡ 0 if and only if v ≡ 0.

Moreover, u changes sign if and only if v changes sign.
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We recall that a strong solution to this problem corresponds to a pair (u, v)
with

u ∈W 2,(q+1)/q(Ω) ∩W 1,(q+1)/q
0 (Ω), v ∈W 2,(p+1)/p(Ω) ∩W 1,(p+1)/p

0 (Ω)

satisfying the system in (1.1) for a.e. x ∈ Ω. By using a bootstrap method (see
[37, Theorem 1(a)]), it can be shown that strong solutions are actually classical
solutions.

Consider the energy functional

E(u, v) =

∫
Ω

∇u · ∇v dx− 1

p+ 1

∫
Ω

|x|α|u|p+1 dx− 1

q + 1

∫
Ω

|x|β |v|q+1 dx, (1.2)

which is well defined for strong solutions thanks to assumption (H).
One can use various variational settings to deal with the system (1.1), see for

instance the surveys [10, 21, 34]. Once the existence of at least one critical point is
proved, a natural question is that of the existence of a least energy one, by which
we mean a critical point at the level

c = inf{E(u, v) : (u, v) is a nonzero strong solution of (1.1)}.

The solutions at this energy are usually referred to as ground state solutions and
in many problems, they are of special interest. In our setting the existence of
such solutions is clear and rely on a simple compactness argument. On the other
hand, it is useful to get a variational characterisation of these solutions to derive
qualitative properties, see for example [8, 9, 10]. In our setting, any solution
at level c is positive (or negative). This can be established using a Nehari type
characterization of the level c. We emphasize that the adequate associated Nehari
manifold is then of infinite codimension. We refer to [10] for more details.

Existence of sign-changing solutions has been obtained in [32, Theorem 4], under
the extra assumption p > 1 and q > 1, where it is proved that there exists an
unbounded sequence of solutions (uk, vk) such that both (uk + vk)+ 6= 0 and
(uk +vk)− 6= 0 for every k. In fact, for a pair of solutions (u, v), u+v changes sign
if and only if u and v change sign. Our results therefore present some improvement
of the result given in [32, Theorem 4] since, by imposing the mere super linearity
condition pq > 1, we are able to prove the existence of a (least energy) nodal
solution to (1.1).

Define then the least energy nodal level as

cnod = inf{E(u, v) : (u, v) is a nonzero strong solution of (1.1) and u±, v± 6≡ 0}.

It is not obvious that this level is achieved since this no more follows from a simple
minimisation argument. Indeed, even if we have enough compactness to extract a
converging subsequence, the limit could be a critical point (u, v) such that both
u and v are positive (or negative). The existence of a least energy nodal solution
for the scalar Lane-Emden equation [14, 3, 4] follows from the minimisation of the
functional over a nodal Nehari set. It is not clear at all how such a nodal Nehari
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set associated to the energy functional E could be defined. Anyhow, our first main
result shows cnod is achieved.

Theorem 1.1. Let N ≥ 1, α ≥ 0, β ≥ 0 and suppose that (H) is satisfied. Then
the level cnod is achieved, that is, there exists a strong solution (u, v) of (1.1) such
that u±, v± 6≡ 0 and E(u, v) = cnod.

Our proof relies on a dual method as in Clément and van der Vorst [15] or Alves
and Soares [2]1 who deal with the singularly perturbed system

−ε2∆u+ V (x)u = |v|q−1v, −ε2∆v + V (x)v = |u|p−1u in RN

assuming the extra assumptions p > 1 and q > 1. With respect to [2], the hypoth-
esis (H) includes more general powers, namely pq > 1 is enough. This means in
particular that we cover the biharmonic operator with Hénon weight, that is q = 1
and β = 0, with Navier boundary conditions. In this context, the problem (1.1)
reads as

∆2u = |x|α|u|p−1u in Ω, u = ∆u = 0 on ∂Ω, (1.3)

with α ≥ 0, 1
2 >

1
p+1 >

N−4
2N and Theorem 1.1 applies.

Next we investigate the symmetry of these solutions in case the domain is radial.
Let Ω be either a ball or an annulus centred at the origin. Recall that a function
u : Ω → R is called foliated Schwarz symmetric with respect to some unit vector
p ∈ RN if, for a.e. r > 0 such that ∂Br(0) ⊂ Ω and for every c ∈ R, the restricted
superlevel set {x ∈ ∂Br(0) : u(x) ≥ c} is either equal to ∂Br(0) or to a geodesic
ball in ∂Br(0) centred at rp. In other words, u is foliated Schwarz symmetric if u
is axially symmetric with respect to the axis Rp and non increasing in the polar
angle θ = arccos(x · p) ∈ [0, π].

In the past thirty years the study on the symmetry properties of positive or least
energy solutions of strongly coupled elliptic systems has been an active research
field, see for instance [42, 35, 20, 22, 45, 13, 31, 8, 9, 10, 17, 18, 19]. The basic tools
used to derive the symmetry of the solutions are the method of moving planes [25],
symmetrization or polarization and Morse index arguments. All these techniques
were originally developed for second order elliptic equations and their use in the
context of strongly coupled elliptic system requires more involved arguments.

Our second main result is the following.

Theorem 1.2. Let Ω ⊂ RN , N ≥ 2, be either a ball or an annulus centred at
the origin. Let (u, v) be a least energy nodal solution of (1.1). Then there exists
p ∈ ∂B1(0) such that both u and v are foliated Schwarz symmetric with respect to
p.

As mentioned above, our results cover the biharmonic operator complementing
therefore some of the results in [43].

1In order to apply the dual variational method, the two potentials on the left hand sides of
[2, eq. (1.3)] must be equal as follows from [2, line 5 p. 114].
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Corollary 1.3. Let Ω ⊂ RN , N ≥ 1 and assume that 1
2 > 1

p+1 > N−4
2N . Then

the fourth order problem (1.3) admits a least energy nodal solution. Moreover, if
Ω is either a ball or an annulus centred at the origin, N ≥ 2, then any least energy
nodal solution of (1.3) is such that u and −∆u are foliated Schwarz symmetric
with respect to the the same unit vector p ∈ RN .

For the scalar Lane-Emden equation (i.e. without weights), it is known that
any least energy nodal solution has Morse index 2. Combined with the analysis
of the Morse index of the sign changing radial solutions when Ω is either a ball
or an annulus, this leads to the conclusion that whereas least energy solutions are
radially symmetric, least energy nodal solutions are not. The foliated Schwarz
symmetry is thus somehow optimal.

For the Hénon-Lane-Emden system (1.1), it is not clear how to compute (or
even define) the Morse index of the solutions. Although we conjecture that for any
p, q satisfying (H) and α, β ≥ 0 every least energy nodal solutions of (1.1) are non
radial, we are not able to prove it. Symmetry breaking occurs at least for p ∼ q,
α ∼ 0 and β ∼ 0.

Theorem 1.4. Assume N ≥ 2 and Ω ⊂ RN is either a ball or an annulus centred
at the origin. Let q0 satisfy

q0 > 1 and q0 + 1 < 2N/(N − 2) if N ≥ 3.

Then there exists δ0 > 0 such that, if p, q ∈ [q0 − δ0, q0 + δ0], α, β ∈ [0, δ0], then
any least energy nodal solution (u, v) of (1.1) is such that both u and v are non
radially symmetric.

At this point, we emphasize that when Ω ⊂ RN is either a ball or an annulus,
we can work in a functional framework of radially symmetric functions yielding at
least one radial sign-changing solution having least energy among all radial nodal
solutions. The previous theorem gives therefore a range of coexistence of both
radially symmetric and non radially symmetric sign-changing solutions. When
p > 1 and q > 1, the existence of infinitely many radial sign-changing solutions
follows also from applying the method of [32, Theorem 4] in a functional framework
of radially symmetric functions. Although these solutions can a priori coincide
with the solutions obtained in [32, Theorem 4], we clearly do not expect that to
happen. A difficult question seems to be that of providing a precise information on
the number of nodes of radial nodal solutions. Both the gluing approach [6] and
an optimal partition method [16], reminiscent of the original approach of Nehari,
seem out of reach for the Lane-Emden system (without weight). Therefore, the
existence of radially symmetric solutions with a prescribed number of nodes is a
challenging open question.

Finally, we show that all of our results apply to the Hénon equation

−∆u = |x|α|u|p−1u in Ω, u = 0 on ∂Ω. (1.4)

For this purpose we prove a kind of symmetry theorem for the components, which
guarantees that when p = q, α = β, then any solution (u, v) of (1.1) is such that
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u = v and whence u solves (1.4). For related classifications results we mention [31,
Theorem 1.2] and [24].

Theorem 1.5. Assume that u, v ∈ H1
0 (Ω) solves the system (1.1)

−∆u = |x|β |v|q−1v, −∆v = |x|β |u|q−1u in Ω, u = v = 0 on ∂Ω,

where Ω is a bounded domain in RN , N > 1, q > 1 and q + 1 ≤ 2N/(N − 2) if
N ≥ 3. Then u = v.

Combining Theorems 1.1, 1.2, 1.4 and 1.5, we get the following results about
least energy nodal solutions of the Hénon equation (1.4).

Corollary 1.6. Let N ≥ 1, α ≥ 0, p > 1 and p+1 < 2N/(N−2) if N ≥ 3. Then:

i) There exist least energy nodal solutions of (1.4).
ii) Let Ω ⊂ RN , N ≥ 2, be either a ball or an annulus centred at the origin. Let

u be a least energy nodal solution of (1.4). Then there exists p ∈ ∂B1(0) such
that u is foliated Schwarz symmetric with respect to p.

iii) Assume that Ω ⊂ RN , N ≥ 2, is either a ball or an annulus centred at the
origin. Then there exists δ0 > 0 such that, if α ∈ [0, δ0], then any least energy
nodal solution u of (1.4) is such that u is non radially symmetric.

Items i) and ii) are known cf. [5, 14, 30]. To our knowledge, Corollary 1.6 iii)
is new, though expected from a perturbation analysis for small α. However, we
stress that the approach of [1] to symmetric breaking of any least energy nodal
solution of the autonomous equation

−∆u = f(u) in Ω, u = 0 on ∂Ω,

where Ω ⊂ RN , N ≥ 2, that stands either for a ball or an annulus centred at the
origin, cannot be extended to the non autonomous case. In particular it cannot
be extended to the Hénon equation (1.4). We expect however that least energy
nodal solutions of (1.4) are non radial. We provide a proof for α small whereas
this should follow from an asymptotic analysis as in [39] for α large. The general
case seems more delicate.

The structure of the paper is the following. In Section 2, we introduce the vari-
ational setting corresponding to the dual method and prove Theorem 1.1, showing
the existence of a least energy nodal solution, providing as well alternative charac-
terizations of the level cnod. In Section 3 we prove the Schwarz foliated symmetry of
these solutions when Ω is a radial bounded domain, namely Theorem 1.2. Finally
in Section 4 we provide some examples of symmetry breaking, proving Theorems
1.4 and 1.5.

2. Existence of a least energy nodal level

Let us now introduce in a precise way the variational setting corresponding to
the dual method. Given r ≥ 1 and γ ≥ 0, we denote

Lr(Ω, |x|−γ) := {u : Ω→ R measurable :

∫
Ω

|u|r|x|−γ dx <∞},
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which is a Banach space equipped with the norm

‖u‖r,γ :=

(∫
Ω

|u|r|x|−γ dx
)1/r

.

Observe that, since Ω is bounded and γ ≥ 0, we have the inclusions Lr(Ω, |x|−γ) ⊂
Lr(Ω), where the last is the usual Lr(Ω) - space. In fact, it is easy to check that
there exists a constant C(Ω) such that

‖u‖r ≤ C(Ω)
γ
r ‖u‖r,γ ∀u ∈ Lr(Ω, |x|−γ), r > 1, γ ≥ 0. (2.1)

In an informal basis, the method consists in taking the inverse of the Laplace
operator, rewriting the system as

(−∆)−1(|x|β |v|q−1v) = u, (−∆)−1(|x|α|u|p−1u) = v.

and defining w1 = |x|α|u|p−1u, w2 = |x|β |v|q−1v, which leads to

(−∆)−1w2 = |x|−
α
p |w1|

1
p−1w1, (−∆)−1w1 = |x|−

β
q |ω2|

1
q−1w2. (2.2)

We will work in the product space

X := L
p+1
p (Ω, |x|−

α
p )× L

q+1
q (Ω, |x|−

β
q ),

‖(w1, w2)‖ := ‖w1‖ p+1
p ,αp

+ ‖w2‖ q+1
q , βq

∀w = (w1, w2) ∈ X

and will use the map T : X → L1(Ω) given by

Tw = w1Kw2 + w2Kw1 w = (w1, w2) ∈ X

where, with some abuse of notations, K denotes the inverse of the minus Laplace
operator with zero Dirichlet boundary condition. We observe that we use the

same letter K to denote both the operators K(p+1)/p : L
p+1
p (Ω) → W 2, p+1

p (Ω) ∩

W
1, p+1

p

0 (Ω) and K(q+1)/q : L
q+1
q (Ω) → W 2, q+1

q (Ω) ∩W 1, q+1
q

0 (Ω). Later on, we will
use the fact that

u ∈ Lt(Ω) ∩ Ls(Ω)⇒ Ktu = Ksu (t, s > 1),

which is a consequence of the uniqueness of the Dirichlet problem. Thanks to the
subcriticality, namely the second inequality at (H), we have compact embeddings

W 2, q+1
q (Ω) ⊂ Lp+1(Ω), W 2, p+1

p (Ω) ⊂ Lq+1(Ω).

This, together with standard elliptic estimates, yields∫
Ω

|w1Kw2| dx ≤ ‖w1‖ p+1
p
‖Kw2‖p+1 ≤ C1‖w1‖ p+1

p
‖Kw2‖

W
2,
q+1
q

≤ C2‖w1‖ p+1
p
‖w2‖ q+1

q
≤ C3‖w1‖ p+1

p ,αp
‖w2‖ q+1

q , βq
,

and an analogous estimate holds for w2Kw1. Thus∫
Ω

|Tw| dx ≤ c‖w1‖ p+1
p ,αp
‖w2‖ q+1

q , βq
∀w = (w1, w2) ∈ X. (2.3)



EXISTENCE AND SYMMETRY OF LEAST ENERGY NODAL SOLUTIONS 7

Also, using integration by parts,∫
Ω

w1Kw2 dx =

∫
Ω

w2Kw1 dx ∀w = (w1, w2) ∈ X. (2.4)

Now, let I : X → R be the functional defined by

I(w1, w2) =
p

p+ 1

∫
Ω

|w1|
p+1
p |x|−

α
p dx+

q

q + 1

∫
Ω

|w2|
q+1
q |x|−

β
q dx

− 1

2

∫
Ω

Tw dx. (2.5)

It is easy to see that I is a C1 functional and, thanks to (2.4), that its derivative
is given by

I ′(w)(ϕ,ψ) =

∫
Ω

|w1|
1
p−1w1ϕ|x|−

α
p dx+

∫
Ω

|w2|
1
q−1w2ψ|x|−

β
q dx

−
∫

Ω

(ϕKw2 + ψKw1) dx,

for every (w1, w2), (φ, ϕ) ∈ X. In particular, (w1, w2) is a critical point of I if and

only if (2.2) holds, and so (u, v) := (|x|−
α
p |w1|

1
p−1w1, |x|−

β
q |w2|

1
q−1w2) is a strong

solution of the original system (1.1). In this case we have that

I(w1, w2) = E(u1, u2) =
pq − 1

(p+ 1)(q + 1)

∫
Ω

|u|p+1|x|α dx > 0.

Working in this framework, we can rewrite the least energy nodal level as

cnod = inf{I(w1, w2) : w±1 , w
±
2 6≡ 0, I ′(w1, w2) = 0}.

In the following, we will adapt some of the ideas of [2, 15] into our situation. A
first novelty in our arguments consists in introducing the following constants λ and
µ (in view of evening the different powers of w1 and w2 in the functional I), as
well as the introduction of the map θ, in view of obtaining Proposition 2.4 ahead.
Let

λ :=
2p(q + 1)

p+ q + 2pq
, µ =

2q(p+ 1)

p+ q + 2pq
,

so that

γ := λ
p+ 1

p
= µ

q + 1

q
=

2(p+ 1)(q + 1)

p+ q + 2pq
∈ (1, 2) and λ+ µ = 2.

We start by introducing the Nehari type set:

Nnod = {(w1, w2) ∈ X : w±1 6≡ 0, w±2 6≡ 0 and

I ′(w)(λw+
1 , µw

+
2 ) = I ′(w)(λw−1 , µw

−
2 ) = 0}

and the level

c̃nod = inf
w∈Nnod

I(w),
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which, we will check later on that, coincides with cnod and that I is positive on
Nnod; cf. Theorem 2.6 and (2.18) respectively. The study of this problem will be
done by means of a fiber-type map: given (w1, w2) ∈ X such that w±1 6≡ 0 and
w±2 6≡ 0, define θ = θw : [0,∞)× [0,∞)→ R by

θ(t, s) = I(tλw+
1 − sλw

−
1 , t

µw+
2 − sµw

−
2 ).

Observe that if t, s > 0, then

∇θ(t, s) = (0, 0) if and only if (tλw+
1 − sλw

−
1 , t

µw+
2 − sµw

−
2 ) ∈ Nnod. (2.6)

In what follows it will be important to prove that θw admits a critical point.
However, this seems not to hold for every w ∈ X. Indeed, for some w it turns out
that θw has no critical points and its supremum is plus infinity. For that reason,
we introduce the following auxiliary set

N0 =

{
w ∈ X :

λ
∫

Ω
w+

1 Kw2 dx+ µ
∫

Ω
w1Kw

+
2 dx > 0

λ
∫

Ω
w−1 Kw2 dx+ µ

∫
Ω
w1Kw

−
2 dx < 0

}
=
{
w ∈ X : λC1 + µC2 < 2B+, µC1 + λC2 < 2B−

}
,

where we have used the fact that λ+ µ = 2, and the notations

B+ =

∫
Ω

w+
1 Kw

+
2 dx > 0, B− =

∫
Ω

w−1 Kw
−
2 dx > 0, (2.7)

and

C1 =

∫
Ω

w+
1 Kw

−
2 dx > 0, C2 =

∫
Ω

w−1 Kw
+
2 dx > 0.

We point out that, by the strong maximum principle, if w ∈ N0 then w±1 6≡ 0,
w±2 6≡ 0.

Lemma 2.1. The set N0 is nonempty and Nnod ⊆ N0.

Proof. Claim 1 – N0 6= ∅. Let ϕ2 be the second eigenfunction of −∆ with zero
Dirichlet boundary condition, and denote its eigenvalue by λ2. Then (ϕ2, ϕ2) ∈ N0,
as

λ

∫
Ω

ϕ+
2 Kϕ2 dx+ µ

∫
Ω

ϕ2Kϕ
+
2 dx =

2

λ2

∫
Ω

(ϕ+
2 )2 > 0

and

λ

∫
Ω

ϕ−2 Kϕ2 dx+ µ

∫
Ω

ϕ2Kϕ
−
2 dx = − 2

λ2

∫
Ω

(ϕ−2 )2 < 0.

Claim 2 – Nnod ⊆ N0. This is an immediate consequence of the equalities that
define Nnod. Indeed, since w 6= 0,

λ

∫
Ω

w+
1 Kw2 dx+ µ

∫
Ω

w1Kw
+
2 dx

= λ

∫
Ω

|w+
1 |

p+1
p |x|−

α
p dx+ µ

∫
Ω

|w+
2 |

q+1
q |x|−

β
q dx > 0
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and

λ

∫
Ω

w−1 Kw2 dx+ µ

∫
Ω

w1Kw
−
2 dx

= −λ
∫

Ω

|w−1 |
p+1
p |x|−

α
p dx+ µ

∫
Ω

|w−2 |
q+1
q |x|−

β
q dx < 0. �

Let us now study in detail the map θ, following a standard procedure. We recall
that θ = θw for w = (w1, w2) ∈ X such that w±1 6= 0 and w±2 6= 0. After a few
computations, we can rewrite it as

θ(t, s) = A+tγ +A−sγ −B+t2 −B−s2 + C1t
λsµ + C2t

µsλ,

with

A± =
p

p+ 1

∫
Ω

|w±1 |
p+1
p |x|−

α
p dx+

q

q + 1

∫
Ω

|w±2 |
q+1
q |x|−

β
q dx > 0. (2.8)

Our goal is to prove that θw, for w ∈ N0, admits a unique critical point, which
is a global maximum, attained at a pair with positive components. We divide the
proof of this fact in several lemmas.

Lemma 2.2. Let w ∈ N0 and take θ = θw. Then θ has a global maximum at
some (t0, s0) with t0, s0 > 0. Moreover, every local maximum must have positive
components.

Proof. Young’s inequality yields

tλsµ ≤ λt2

2
+
µs2

2
and tµsλ ≤ µt2

2
+
λs2

2
∀ t, s ≥ 0,

and thus

θ(t, s) ≤ A+tγ +A−sγ +

(
1

2
(λC1 + µC2)−B+

)
t2 +

(
1

2
(µC1 + λC2)−B−

)
s2.

As w ∈ N0, the coefficients of the quadratic terms are negative, hence θ(t, s)→ −∞
as |s| + |t| → +∞, and θ admits a global maximum (t0, s0) with nonnegative
components.

To conclude, let us prove that it cannot happen that either t0 = 0 or s0 = 0.
This is an immediate consequence of the fact that

θ(t, s) = A+tγ −B+t2 + sγ(A− −B−s2−γ) + C1t
λsµ + C2t

µsλ > θ(t, 0)

for s > 0 sufficiently small. Analogously, θ(t, s) > θ(0, s) for t > 0 sufficiently
small. �

Lemma 2.3. If (t, s) is a critical point of θ with t, s > 0, then (t, s) is a non
degenerate local maximum.

Proof. If (t, s) is a critical point of θ, then

2B+ = γA+tγ−2 + λC1t
λ−2sµ + µC2t

µ−2sλ,
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and

2B− = γA−sγ−2 + µC1t
λsµ−2 + λC2t

µsλ−2.

Thus

θtt(t, s) = γ(γ − 1)A+tγ−2 − 2B+ + λ(λ− 1)C1t
λ−2sµ + µ(µ− 1)C2t

µ−2sλ

= γ(γ − 2)A+tγ−2 + λ(λ− 2)C1t
λ−2sµ + µ(µ− 2)C2t

µ−2sλ < 0,

θss(t, s) = γ(γ − 1)A−sγ−2 − 2B− + µ(µ− 1)C1t
λsµ−2 + λ(λ− 1)C2t

µsλ−2

= γ(γ − 2)A−sγ−2 + µ(µ− 2)C1t
λsµ−2 + λ(λ− 2)C2t

µsλ−2 < 0,

and

θts(t, s) = λµC1t
λ−1sµ−1 + λµC2t

µ−1sλ−1.

The proof is complete as soon as we prove that θ2
ts < θttθss, which is equivalent to

λ2µ2C2
1 t

2(λ−1)s2(µ−1) + λ2µ2C2
2 t

2(µ−1)s2(λ−1) + 2λ2µ2C1C2

<λ(λ− 2)µ(µ− 2)C2
1 t

2(λ−1)s2(µ−1) + λ(λ− 2)µ(µ− 2)C2
2 t

2(µ−1)s2(λ−1)

+ [λ2(λ− 2)2 + µ2(µ− 2)2]C1C2 + γ2(γ − 2)2A+A−tγ−2sγ−2

+ γ(γ − 2)µ(µ− 2)A+C1t
λ+γ−2sµ−2 + γ(γ − 2)λ(λ− 2)A−C1t

λ−2sµ+γ−2

+ γ(γ − 2)λ(λ− 2)A+C2t
µ+γ−2sλ−2 + µ(µ− 2)γ(γ − 2)C2A

−sλ+γ−2tµ−2.(2.9)

Now λ+µ = 2 is equivalent to λ2µ2 = λ(λ−2)µ(µ−2), which in turn implies that

2λ2µ2 ≤ λ2(λ− 2)2 + µ2(µ− 2)2.

Since the last five terms in (2.9) are positive, combining all of these we prove that
the desired inequality holds true. �

Proposition 2.4. Let w ∈ N0. The map θw admits a unique critical point (t0, s0)
with t0, s0 > 0, which corresponds to its unique global maximum. Moreover, the
pair (t0, s0) can be characterized as being the (unique) solution to the system:{

2B+ = γA+tγ−2 + λC1(s/t)µ + µC2(s/t)λ,

2B− = γA−sγ−2 + µC1(t/s)λ + λC2(t/s)µ.
(2.10)

Proof. The only think left to prove is the uniqueness statement. One could argue
as in [40, Proposition 3.2], but here instead we present a shorter argument, which
makes use of the Poincaré-Hopf Theorem [28]. Recall that this result states that
given M a smooth manifold with boundary, and X a vector field having only
isolated zeros xi (i ∈ I) and such that it points outward on ∂M , then

χ(M) =
∑
iI

index(X,xi),

where χ(·) is the Euler characteristic. Let (t0, s0) be a global maximum as in
Lemma 2.2. Take M to be a bounded regular set containg (t0, s0), which coincides
with the square [ε, L] × [ε, L] expect at the corners, where it is smooth. Then
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χ(M) = 1, and X = −∇θ points outward on ∂M for sufficiently small ε and L
large enough. Lemma 2.3 on the other hand implies that index(−∇θ, (s, t)) = 1
at each critical point (s, t), and thus we prove that (t0, s0) is indeed the unique
critical point of θw. �

Lemma 2.5. Let w ∈ Nnod be such that I(w) = c̃nod. Then I ′(w) = 0.

Proof. We will argue as in [23]; see also [5, 16].
Step 1 – Assume by contradiction that I ′(w) 6= 0. Then there exists v ∈ X such

that I ′(w)v = −2. By continuity, there exists a small ε > 0 such that

I ′((tλw+
1 − sλw

−
1 , t

µw+
2 − sµw

−
2 ) + rv)v < −1 ∀ 0 ≤ r ≤ ε, |t− 1|, |s− 1| ≤ ε.

Set D := [1− ε, 1 + ε]× [1− ε, 1 + ε]. We fix a smooth function η : D → [0, ε] such
that η(1, 1) = ε and η = 0 on ∂D, and denote

h(t, s) = (h1(t, s), h2(ts)) := (tλw+
1 − sλw

−
1 , t

µw+
2 − sµw

−
2 ) + η(t, s)v,

H(t, s) =
(
I ′(h(t, s))(λh+

1 (t, s), µh+
2 (t, s)), I ′(h(t, s))(λh−1 (t, s), µh−2 (t, s))

)
.

By possibly taking a smaller ε, we can insure by continuity that

h(t, s) ∈ N0 ∀ (t, s) ∈ D.

Step 2 – We claim that there exists (t0, s0) ∈ D such that H(t0, s0) = (0, 0). To
prove this, we use the classical Miranda’s Theorem [29]. We will need to compute
H on ∂D, where as η = 0,

H(t, s)=

(
I ′(tλw+

1 − sλw
−
1 , t

µw+
2 − sµw

−
2 )(λtλw+

1 , µt
µw+

2 )
I ′(tλw+

1 − sλw
−
1 , t

µw+
2 − sµw

−
2 )(λsλw−1 , µs

µw−2 )

)
=

(
t θt(t, s)
−s θs(t, s)

)
.

We have ∇θ(1, 1) = (0, 0), which tells us that

γA+ − 2B+ + λC1 + µC2 = 0, γA− − 2B− + µC1 + λC2 = 0.

For s ∈ [1− ε, 1 + ε] we have that, if t = 1 + ε, then

θt = γA+(1 + ε)γ−1 − 2B+(1 + ε) + λC1(1 + ε)λ−1sµ + µC2(1 + ε)µ−1sλ

≤ γA+(1 + ε)[(1 + ε)γ−2 − 1] < 0;

while if t = 1− ε
θt ≥ γA+(1− ε)((1− ε)γ−2 − 1) > 0.

Analogously, for t ∈ [1− ε, 1 + ε], we have

θs < 0 for s = 1 + ε, θs > 0 for s = 1− ε

and the claim follows.
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Conclusion – By the previous point, which shows that h(t0, s0) ∈ Nnod, it follows
that

c̃nod ≤I(h(t0, s0))

=I(tλ0w
+
1 − sλ0w

−
1 , t

µ
0w

+
2 − s

µ
0w
−
2 )

+

∫ η(t0,s0)

0

I ′((tλ0w
+
1 − sλ0w

−
1 , t

µ
0w

+
2 − s

µ
0w
−
2 ) + rv)v dr

≤θw(t0, s0)− η(t0, s0) ≤ θw(1, 1)− η(t0, s0) = c̃nod − η(t0, s0),

and so η(t0, s0) = 0 and, in particular, θw(t0, s0) = θw(1, 1). By the uniqueness
of maximum provided by Proposition 2.4 we must have (t0, s0) = (1, 1) while, by
construction, η(1, 1) = ε > 0, a contradiction. �

Our purpose in the remainder of this section is to prove the following result.

Theorem 2.6. The number c̃nod is attained by a function w ∈ Nnod. Moreover,

cnod = c̃nod = inf
w∈N0

sup
t,s>0

I(tλw+
1 − sλw

−
1 , t

µw+
2 − sµw

−
2 ) > 0. (2.11)

Observe that this implies our first main result, namely Theorem 1.1. From (2.6),
Lemma 2.1 and Proposition 2.4, we have

c̃nod = inf
w∈N0

sup
t,s>0

I(tλw+
1 − sλw

−
1 , t

µw+
2 − sµw

−
2 ). (2.12)

So the only thing left to prove is that c̃nod is achieved. To this aim, we rely on
an indirect argument. The difficulty of a direct approach is that the weak limit of
a minimizing sequence of c̃nod does not belong necessarily to N0, and we cannot
project it in Nnod. Indeed, even if we can bound from below the norms of the
positive and negative parts of a minimizing sequence, the weak convergence in
X does not imply the weak convergence of the positive and negative part of the
sequence. Observe also that the lack of regularity of the nodal Nehari set makes
rather tricky the use of Ekeland’s principle to build a Palais-Smale sequence from
a minimizing sequence.

To overpass this difficulty, we regularize the problem by introducing the auxil-

iary functional Iε : X̃ → R defined by

Iε(w1, w2) =
p

p+ 1

(
ε

∫
Ω

|∇w1|
p+1
p dx+

∫
Ω

|w1|
p+1
p |x|−

α
p dx

)
+

q

q + 1

(
ε

∫
Ω

|∇w2|
q+1
q dx+

∫
Ω

|w2|
q+1
q |x|−

β
q dx

)
− 1

2

∫
Ω

Tw dx,

where ε > 0 and X̃ := (W 1, p+1
p (Ω)×W 1, q+1

q (Ω)) ∩X.
Such a regularization is a standard approach to regularize non uniformly ellip-

tic operators, such as the curvature operator, see for instance [41, 27, 7]. It is
surprisingly useful in our context to regularize a zero order term. Actually, the
main utility of this approach is that it somehow provides a regularized minimizing
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sequence which solves an approximating system. The key point is then that the
regularization does not affect the geometry of the original functional, while the
presence of the gradient terms give rise to Euler-Lagrange equations in which we

can pass to the limit. For that, we will exploit the fact that X̃ is dense in X.

Lemma 2.7. Let X̃ = (W 1, p+1
p (Ω)×W 1, q+1

q (Ω)) ∩X be endowed with the norm

‖(w1, w2)‖ = ‖∇w1‖ p+1
p

+ ‖∇w2‖ q+1
q

+ ‖w1‖ p+1
p ,αp

+ ‖w2‖ q+1
q , βp

.

Then X̃ is a reflexive Banach space which is continuously embedded in W 1, p+1
p (Ω)×

W 1, q+1
q (Ω). Moreover X̃ is a dense subspace of X.

Proof. The first two statements are obvious. To prove the density of X̃ in X, first
observe that

T : L
p+1
p (Ω)× L

q+1
q (Ω) −→ L

p+1
p (Ω, |x|−

α
p )× L

q+1
q (Ω, |x|−

β
q ),

defined by T (f, g) = (f |x|
α
p+1 , g|x|

β
q+1 ), is an isometric isomorphism. For each

δ > 0, fix ϕδ ∈ C∞c (RN ) such that

0 ≤ ϕδ ≤ 1, ϕδ(x) = 1 if |x| ≥ 2δ and ϕδ(x) = 0 if |x| ≤ δ.

Then observe that A = {(fϕδ, gϕδ); f, g ∈ C∞c (Ω), δ > 0} is dense in L
p+1
p (Ω)×

L
q+1
q (Ω) and that T (A) ⊂ X̃ ⊂ X. �

One can check easily that the functional Iε belongs to C1(X̃), and

I ′ε(w)(ϕ,ψ) = ε

∫
Ω

|∇w1|
1
p−1∇w1 · ∇ϕdx+

∫
Ω

|w1|
1
p−1w1ϕ|x|−

α
p dx

+ε

∫
Ω

|∇w2|
1
q−1∇w2 ·∇ψ dx+

∫
Ω

|w2|
1
q−1w2ψ|x|−

β
q dx−

∫
Ω

(ϕKw2 +ψKw1) dx,

for every (w1, w2), (φ, ϕ) ∈ X̃. In particular, (w1, w2) is a critical point of Iε if and
only if {

−εdiv(|∇w1|
1
p−1∇w1) + |w1|

1
p−1w1|x|−

α
p = Kw2

−εdiv(|∇w2|
1
q−1∇w2) + |w2|

1
q−1w2|x|−

α
p = Kw1

(2.13)

in X̃∗. Define now

Ñ0 =

{
w ∈ X̃ :

λ
∫

Ω
w+

1 Kw2 dx+ µ
∫

Ω
w1Kw

+
2 dx > 0

λ
∫

Ω
w−1 Kw2 dx+ µ

∫
Ω
w1Kw

−
2 dx < 0

}
and, for each ε > 0,

N ε
nod = {(w1, w2) ∈ X̃ : w±1 6≡ 0, w±2 6≡ 0 and

I ′ε(w)(λw+
1 , µw

+
2 ) = I ′ε(w)(λw−1 , µw

−
2 ) = 0}.

Observe that

N ε
nod ⊂ Ñ0 ⊂ N0.
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In the statement of the next lemma and its proof, we keep the definitions of A±

and B± as given in (2.8) and (2.7).

Lemma 2.8. Let w ∈ Ñ0. Then the map R+ × R+ → R defined by

(t, s) 7→ Iε(t
λw+

1 − sλw
−
1 , t

µw+
2 − sµw

−
2 )

admits a unique critical point (t0, s0), which is a global maximum. Moreover, the
pair (t0, s0) can be characterized univocally by the condition

(tλw+
1 − sλw

−
1 , t

µw+
2 − sµw

−
2 ) ∈ N ε

nod

or equivalently through the system

2B+ = γ

(
A+ + ε

p

p+ 1

∫
Ω

|∇w+
1 |

p+1
p + ε

q

q + 1

∫
Ω

|∇w+
2 |

q+1
q

)
tγ−2

+λC1(s/t)µ + µC2(s/t)λ,

2B− = γ

(
A− + ε

p

p+ 1

∫
Ω

|∇w−1 |
p+1
p + ε

q

q + 1

∫
Ω

|∇w−2 |
q+1
q

)
sγ−2

+µC1(t/s)λ + λC2(t/s)µ.

(2.14)

Proof. Since the functional Iε has exactly the same shape and geometry of I, it is
enough to repeat the proofs of Lemmas 2.1-2.3 and of Proposition 2.4, replacing

only N0 and Nnod by Ñ0 and N ε
nod respectively, and A± by

A± + ε
p

p+ 1

∫
Ω

|∇w±1 |
p+1
p + ε

q

q + 1

∫
Ω

|∇w±2 |
q+1
q . �

Define the levels

cεnod = inf{Iε(w) : w ∈ X̃, w±1 , w
±
2 6≡ 0, I ′ε(w) = 0}

and

c̃εnod = inf
N εnod

Iε.

Lemma 2.9. Given ε > 0, let w ∈ N ε
nod be such that Iε(w) = c̃εnod. Then

I ′ε(w) = 0.

Proof. The proof follows the lines of that of Lemma 2.5 with obvious changes as
in the proof of Lemma 2.8. �

Proposition 2.10. Given ε > 0, the number cεnod is attained by a function wε ∈
N ε

nod. Moreover, we have

cεnod = c̃εnod = inf
w∈Ñ0

sup
t,s>0

I(tλw+
1 − sλw

−
1 , t

µw+
2 − sµw

−
2 ) > 0. (2.15)

Proof. Step 1 – N ε
nod is not empty for every ε > 0. This clearly follows from

Lemma 2.8.
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Step 2 – boundedness and convergence of minimizing sequences. Let (wn)n ⊂
N ε

nod be a minimizing sequence for c̃εnod. Denote, by simplicity,

an =

∫
Ω

|w1,n|
p+1
p |x|−

α
p dx, a±n =

∫
Ω

|w±1,n|
p+1
p |x|−

α
p dx

and

bn =

∫
Ω

|w2,n|
q+1
q |x|−

β
q dx, b±n =

∫
Ω

|w±2,n|
q+1
q |x|−

β
q dx.

One has

λ

(
a+
n + ε

∫
Ω

|∇w+
1,n|

p+1
p dx

)
+ µ

(
b+n + ε

∫
Ω

|∇w+
2,n|

q+1
q dx

)
= λ

∫
Ω

w+
1,nKw2,n dx+ µ

∫
Ω

w+
2,nKw1,n dx, (2.16)

λ

(
a−n + ε

∫
Ω

|∇w−1,n|
p+1
p dx

)
+ µ

(
b−n + ε

∫
Ω

|∇w−2,n|
q+1
q dx

)
= −λ

∫
Ω

w−1,nKw2,n dx− µ
∫

Ω

w−2,nKw1,n dx. (2.17)

By adding (2.16) and (2.17), we obtain

λ

(
an + ε

∫
Ω

|∇w1,n|
p+1
p dx

)
+ µ

(
bn + ε

∫
Ω

|∇w2,n|
q+1
q dx

)
= 2

∫
Ω

w1,nKw2,n dx

and we deduce that

Iε(wn) =
(pq − 1)p

(p+ 1)(2pq + p+ q)

(
an + ε

∫
Ω

|∇w1,n|
p+1
p dx

)
+

(pq − 1)q

(q + 1)(2pq + p+ q)

(
bn + ε

∫
Ω

|∇w2,n|
q+1
q dx

)
> 0. (2.18)

Observe that this shows that Iε is positive on N ε
nod. Therefore (wn)n is bounded

in X̃, and up to a subsequence, we have that wn ⇀ w weakly in X̃, strongly in

L
p+1
p (Ω)×L

q+1
q (Ω). In particular, (w±1,n, w

±
2,n)→ (w±1 , w

±
2 ) in L

p+1
p (Ω)×L

q+1
q (Ω).

Step 3 – w ∈ Ñ0. We need to show that

λ

∫
Ω

w+
1 Kw2 dx+ µ

∫
Ω

w1Kw
+
2 dx > 0

and

λ

∫
Ω

w−1 Kw2 dx+ µ

∫
Ω

w1Kw
−
2 dx < 0.

From Step 2 and the continuity of K, we infer that the right-hand side in (2.16)
and (2.17) do converge. We now show that the left-hand side in (2.16) and (2.17)
are bounded away from zero. Starting from (2.16), we get

λa+
n + µb+n ≤ λ

∫
Ω

w+
1,nKw

+
2,n dx+ µ

∫
Ω

w+
2,nKw

+
1,n dx = 2

∫
Ω

w+
1,nKw

+
2,n,
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which by (2.3) yields, for any δ > 0,

λa+
n + µb+n ≤ c‖w1,n‖ p+1

p ,αp
‖w2,n‖ q+1

q , βq
≤ δa+

n +
C

δ
(b+n )

q(p+1)
q+1 .

Since q(p + 1)/(q + 1) > 1, we deduce that b+n ≥ δ̄ > 0 for some δ̄ > 0. The
inequalities

b−n ≥ δ̄ > 0, a±n ≥ δ̄ > 0

follow by arguing in a similar way.

Conclusion – By Lemma 2.8, we can take (t0, s0) such that

(tλ0w
+
1 − sλ0w

−
1 , t

µ
0w

+
2 − s

µ
0w
−
2 ) ∈ N ε

nod.

By the uniqueness assertion in the same lemma and the weak lower semicontinuity
of the norm, we infer that

c̃εnod ≤ Iε(tλ0w+
1 − sλ0w

−
1 , t

µ
0w

+
2 − s

µ
0w
−
2 )

≤ lim inf Iε(t
λ
0w

+
1,n − sλ0w

−
1,n, t

µ
0w

+
2,n − s

µ
0w
−
2,n) ≤ lim inf Iε(wn) = c̃εnod.

Hence (tλ0w
+
1 − sλ0w

−
1 , t

µ
0w

+
2 − s

µ
0w
−
2 ) ∈ N ε

nod achieves c̃εnod.

At last, the characterization (2.15) of the critical level can be proved in a
straightforward way. �

Our strategy to prove Theorem 2.6 now essentially consists in passing to the
limit in (2.13) when ε→ 0. As a first step, we prove the convergence of the critical
level, namely c̃εnod → c̃nod as ε→ 0. We start with two preliminary lemmas.

Lemma 2.11. Take (w1, w2) ∈ Ñ0 ⊂ N0 and let (t0, s0) be the unique pair such
that

t0, s0 > 0, (tλ0w
+
1 − sλ0w

−
1 , t

µ
0w

+
2 − s

µ
0w
−
2 ) ∈ Nnod

while, for each ε > 0, let (tε, sε) be the unique pair such that

tε, sε > 0, (tλεw
+
1 − sλεw

−
1 , t

µ
εw

+
2 − sµεw

−
2 ) ∈ N ε

nod.

Then
(tε, sε)→ (t0, s0) as ε→ 0.

Proof. The pair (tε, sε) solves (2.14), so that

2B+t2−γε ≥ γA+ and 2B−sγ−2
ε ≥ γA−.

Since 2− γ > 0, we infer that tε, sε ≥ a > 0 for some constant a independent of ε.

For the sake of contradiction, assume that {(tε, sε)} is unbounded as ε→ 0.

Case 1 – there exists b > 0 such that a ≤ sε ≤ b or a ≤ tε ≤ b for ε ∈ (0, 1]. In the
first alternative, taking the limit in the first equation of (2.14), we obtain 2B+ = 0
which is a contradiction. In the second alternative, taking the limit in the second
equation of (2.14) leads to 2B− = 0 which is still a contradiction.

Case 2 – both tε, sε → +∞ as ε→ 0. We divide this case in two subcases.
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Case 2.1 – tε/sε → +∞ or tε/sε → 0. This case leads again to either 2B+ = 0 or
2B− = 0.

Case 2.2 – tε/sε → l ∈ R+. Taking the limit in (2.14) gives{
2B+ = λC1(1/l)µ + µC2(1/l)λ

2B− = µC1l
λ + λC2l

µ.

If l ≤ 1, then 2B− ≤ µC1 +λC2 whereas 2B+ < λC1 +µC2 if l > 1. In both cases,

we obtain an inequality which contradicts the fact that (w1, w2) ∈ Ñ0.

We now conclude that, up to a subsequence, tε → t̄ > 0, sε → s̄ > 0, which
satisfy (2.10). Hence, the uniqueness assertion in Proposition 2.4 implies (t̄, s̄) =
(t0, s0). �

We just proved the continuity of the projection on N ε
nod when ε → 0. We

will need also the continuity of the projection on Nnod with respect to strong
convergence in X.

Lemma 2.12. Take (w1, w2) ∈ N0 and (w1,n, w2,n) ∈ Ñ0 such that

(w1,n, w2,n)→ (w1, w2) in X, as n→∞.
Let (tn, sn) and (t0, s0) be the unique pairs of positive components such that

(tλnw
+
1,n − sλnw

−
1,n, t

µ
nw

+
2,n − sµnw

−
2,n), (tλ0w

+
1 − sλ0w

−
1 , t

µ
0w

+
2 − s

µ
0w
−
2 ) ∈ Nnod

Then
(tn, sn)→ (t0, s0) as n→∞.

Proof. We have{
2B+

n = γA+
n t
γ−2
n + λC1,n(sn/tn)µ + µC2,n(sn/tn)λ,

2B−n = γA−n s
γ−2
n + µC1,n(tn/sn)λ + λC2,n(tn/sn)µ.

From the strong convergence in X and the continuity of K, we deduce that

A±n :=
p

p+ 1

∫
Ω

|w±1,n|
p+1
p |x|−

α
p dx+

q

q + 1

∫
Ω

|w±2,n|
q+1
q |x|−

β
α dx

→ p

p+ 1

∫
Ω

|w±1 |
p+1
p |x|−

α
p dx+

q

q + 1

∫
Ω

|w±2 |
q+1
q |x|−

β
α dx =: A± > 0,

(recall that w±i 6≡ 0, i = 1, 2 whenever w ∈ N0),

B±n :=

∫
Ω

w±1,nKw
±
2,n dx→

∫
Ω

w±1,nKw
±
2,n dx =: B± > 0

and

C1,n :=

∫
Ω

w+
1,nKw

−
2,n dx→

∫
Ω

w+
1 Kw

−
2 dx =: C1 > 0,

C2,n :=

∫
Ω

w+
2,nKw

−
1,n dx→

∫
Ω

w+
2 Kw

−
1 dx =: C2 > 0.

Using Proposition 2.4 and arguing exactly as in the proof of Lemma 2.11, we can
infer that (tn, sn)n is a bounded sequence which actually converges to (t0, s0). �
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We can now turn to the convergence of the critical level which implies that the
extension of the map R+ 3 ε 7→ c̃εnod by c̃0nod = c̃nod is right-continuous at zero.

Proposition 2.13. We have c̃εnod → c̃nod, as ε→ 0.

Proof. We deal successively with the upper and lower-semicontinuity.

Step 1 – Upper semi-continuity.

Fix w ∈ N0. Since X̃ is dense in X and N0 is open, there exists (wn)n ⊂ Ñ0

such that wn → w strongly in X. Given ε > 0 and n ∈ N, according to Lemma
2.8, there exist unique tn,ε, sn,ε > 0 such that

(tλn,εw
+
1,n − sλn,εw

−
1,n, t

µ
n,εw

+
2,n − sµn,εw

−
2,n) ∈ N ε

nod.

Therefore, we have

c̃εnod ≤Iε(tλn,εw+
1,n − sλn,εw

−
1,n, t

µ
n,εw

+
2,n − sµn,εw

−
2,n) (2.20)

=I(tλn,εw
+
1,n − sλn,εw

−
1,n, t

µ
n,εw

+
2,n − sµn,εw

−
2,n)

+ εtγn,ε

(
p

p+ 1

∫
Ω

|∇w+
1,n|

p+1
p +

q

q + 1

∫
Ω

|∇w+
2,n|

q+1
q

)
+ εsγn,ε

(
p

p+ 1

∫
Ω

|∇w−1,n|
p+1
p +

q

q + 1

∫
Ω

|∇w−2,n|
q+1
q

)
.

Now observe that by Lemma 2.11, for each fixed n ∈ N, we have

(tn,ε, sn,ε)→ (tn,0, sn,0) as ε→ 0,

where tn,0, sn,0 > 0 is the unique pair of positive components such that

(tλn,0w
+
1,n − sλn,0w

−
1,n, t

µ
n,0w

+
2,n − s

µ
n,0w

−
2,n) ∈ Nnod.

Taking the limit in (2.20) as ε→ 0, we obtain

lim sup
ε→0

c̃εnod ≤ I(tλn,0w
+
1,n − sλn,0w

−
1,n, t

µ
n,0w

+
2,n − s

µ
n,0w

−
2,n).

On the other hand, by Lemma 2.12, we have

(tn,0, sn,0)→ (t0, s0) as n→∞,
where t0, s0 > 0 is the unique pair of positive components such that

(tλ0w
+
1 − sλ0w

−
1 , t

µ
0w

+
2 − s

µ
0w
−
2 ) ∈ Nnod.

Hence we deduce that

lim sup
ε→0

c̃εnod ≤ I(tλ0w
+
1 − sλ0w

−
1 , t

µ
0w

+
2 − s

µ
0w
−
2 )

= sup
t,s>0

I(tλw+
1 − sλw

−
1 , t

µw+
2 − sµw

−
2 ).

Since this holds for every w ∈ N0, (2.12) implies

lim sup
ε→0

c̃εnod ≤ inf
w∈N0

sup
t,s>0

I(tλw+
1 − sλw

−
1 , t

µw+
2 − sµw

−
2 ) = c̃nod.

Step 2 – Lower semi-continuity.
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Take wε ∈ N ε
nod such that Iε(wε) = c̃εnod and I ′ε(wε) = 0. Since N ε

nod ⊂ Ñ0 ⊂
N0, there exists unique (tε, sε) ∈ R+ × R+ such that

(tλεw
+
1,ε − sλεw

−
1,ε, t

µ
εw

+
2,ε − sµεw

−
2,ε) ∈ Nnod

Therefore, we have

c̃nod ≤ I(tλεw
+
1,ε − sλεw

−
2,ε, t

µ
εw

+
2,ε − sµεw

−
2,ε) (2.21)

≤ I(tλεw
+
1,ε − sλεw

−
2,ε, t

µ
εw

+
2,ε − sµεw

−
2,ε)

+ εtγε

(
p

p+ 1

∫
Ω

|∇w+
1,ε|

p+1
p +

q

q + 1

∫
Ω

|∇w+
2,ε|

q+1
q

)
+ εsγε

(
p

p+ 1

∫
Ω

|∇w−1,ε|
p+1
p +

q

q + 1

∫
Ω

|∇w−2,ε|
q+1
q

)
= Iε(t

λ
εw

+
1,ε − sλεw

−
2,ε, t

µ
εw

+
2,ε − sµεw

−
2,ε)

≤ sup
t,s>0

Iε(t
λw+

1,ε − sλw
−
2,ε, t

µw+
2,ε − sµw

−
2,ε) = Iε(wε) = c̃εnod. �

Consider now the family of approximating minimizers

Wε := {(wε, ε) ∈ N ε
nod × R+ | Iε(w1,ε, w2,ε) = c̃εnod}.

Our subsequent step is to prove that, given a sequence (εn)n converging to zero
and a sequence (wεn)n such that (wεn , εn) ∈Wεn , (wεn)n converges strongly in X
and achieves c̃nod.

Arguing exactly as in the proof of Proposition 2.10, we infer that

Iε(wε) =
(pq − 1)p

(p+ 1)(2pq + p+ q)

(∫
Ω

|w1,ε|
p+1
p |x|−

α
p dx+ ε

∫
Ω

|∇w1,ε|
p+1
p

)
+

(pq − 1)q

(q + 1)(2pq + p+ q)

(∫
Ω

|w2,ε|
1+1
1 |x|−

β
q dx+ ε

∫
Ω

|∇w2,ε|
q+1
q

)
.

Combining this identity with Proposition 2.13, we deduce the existence of C > 0
such that

sup
ε∈(0,1]

(∫
Ω

|w1,ε|
p+1
p |x|−

α
p dx,

∫
Ω

|w2,ε|
q+1
q |x|−

β
q

)
≤ C. (2.22)

Moreover, arguing as in Step 2 of Proposition 2.10, we deduce that

inf
ε∈(0,1]

(∫
Ω

|w±1,ε|
p+1
p |x|−

α
p dx,

∫
Ω

|w±2,ε|
q+1
q |x|−

β
q dx

)
≥ δ̄ > 0, (2.23)

together with the lower estimates

λ

∫
Ω

w+
1,εKw2,ε dx+ µ

∫
Ω

w+
2,εKw1,ε dx ≥ 2δ̄, (2.24)

−λ
∫

Ω

w−1,εKw2,ε dx− µ
∫

Ω

w−2,εKw1,ε dx ≥ 2δ̄, (2.25)

which hold for every ε ∈ (0, 1].
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Next we prove that the gradient terms disappear when taking the limit in I ′ε(wε)
as ε→ 0.

Proposition 2.14. Let (wε, ε) ∈Wε. We have

max

(
ε

∫
Ω

|∇w1,ε|
p+1
p , ε

∫
Ω

|∇w2,ε|
q+1
q

)
→ 0, as ε→ 0.

Proof. From the inequalities in (2.21), we actually deduce that

lim
ε→0

I(tλεw
+
1,ε − sλεw

−
2,ε, t

µ
εw

+
2,ε − sµεw

−
2,ε) = c̃nod,

lim
ε→0

εtγε

(
p

p+ 1

∫
Ω

|∇w+
1,ε|

p+1
p +

q

q + 1

∫
Ω

|∇w+
2,ε|

q+1
q

)
= 0,

and

lim
ε→0

εsγε

(
p

p+ 1

∫
Ω

|∇w−1,ε|
p+1
p +

q

q + 1

∫
Ω

|∇w−2,ε|
q+1
q

)
= 0.

The conclusion is an obvious consequence of the following claim.

Claim – tε, sε 6→ 0. We argue as in the proof of Lemmas 2.11 and 2.12, though
we proceed with extra care since we have no information yet about the convergence
of (wε) in X. The pair (tε, sε) satisfies

2t2−γε B+
ε ≥ γA+

ε 2s2−γ
ε B−ε ≥ γA−ε (2.26)

with

A±ε :=
p

p+ 1

∫
Ω

|w±1,ε|
p+1
p |x|−

α
p dx+

q

q + 1

∫
Ω

|w±2,ε|
q+1
q |x|−

β
α dx

and

B±ε :=

∫
Ω

w±1,εKw
±
2,ε dx.

From (2.22), we deduce the existence of w, (f+, g+), (f−, g−) ∈ X such that, up to

a subsequence, wε
X
⇀ w,

w±1,ε⇀f± ≥ 0, weakly in L
p+1
p (Ω, |x|−

α
p )

and
w±2,ε ⇀ g± ≥ 0, weakly in L

q+1
q (Ω, |x|−

β
q ).

Taking the limit as ε→ 0 in (2.24)–(2.25), we obtain

λ

∫
Ω

f+K(g+ − g−) dx+ µ

∫
Ω

g+K(f+ − f−) dx ≥ 2δ̄,

−λ
∫

Ω

f−K(g+ − g−) dx− µ
∫

Ω

g−K(f+ − f−) dx ≥ 2δ̄,

and it is clear that f±, g± 6≡ 0. Going back to (2.26), we see that the lower estimate

(2.23) yields A±ε ≥ δ̃ > 0, where δ̃ is independent of ε. Since moreover

B±ε →
∫

Ω

f±Kg± dx > 0,

we have that tε, sε 6→ 0, as claimed. �
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We are now ready to conclude this section by proving its main result.

Proof of Theorem 2.6. The key point is the next claim.

Claim – up to a subsequence, wε → w strongly in X for some w ∈ X.

We first deduce from (2.22) the existence of w ∈ X, g1 ∈ Lp+1(Ω, |x|−
α
p ),

g2 ∈ Lq+1(Ω, |x|−
β
q ) such that wε ⇀ w weakly in X,

|w1,ε|
1
p−1w1,ε ⇀ g1 weakly in Lp+1(Ω, |x|−

α
p )

and

|w2,ε|
1
q−1w2,ε ⇀ g2 weakly in Lq+1(Ω, |x|−

β
q ).

In particular, taking ε → 0 in the approximating system (2.13) and using Propo-
sition 2.14, we conclude that

g1|x|−
α
p = Kw2, g2|x|−

β
q = Kw1. (2.27)

This implies in particular that

g1|x|−
α
p ∈W 2, q+1

q (Ω) ∩W 1, q+1
q

0 (Ω) ⊂ Lp+1(Ω)

and

g2|x|−
β
q ∈W 2, p+1

q (Ω) ∩W 1, p+1
q

0 (Ω) ⊂ Lq+1(Ω).

Writing g1 = |f1|
1
p−1f1, with f1 = |g1|p−1g1, we observe that f1 ∈ L

p+1
p (Ω, |x|−

α
q )

because ∫
Ω

|f1|
p+1
p |x|−

α
p dx =

∫
Ω

|g1|p+1|x|−
α
p dx <∞.

Now take δ > 0 and fix hδ ∈W 1, p+1
p (Ω) ∩ L

p+1
p (Ω, |x|−

α
p ) such that

‖f1 − hδ‖ p+1
p ,αp

< δ. (2.28)

Using the test function w1,ε − f1 in the equation

−εdiv(|∇w1,ε|
1
p−1∇w1,ε) + (|w1,ε|

1
p−1w1,ε − |f1|

1
p−1f1)|x|−

α
p = Kw2,ε −Kw2,

we deduce that∫
Ω

(|w1,ε|
1
p−1w1,ε − |f1|

1
p−1f1)(w1,ε − hδ)|x|−

α
p dx

= −ε
∫

Ω

|∇w1,ε|
1
p−1∇w1,ε · ∇(w1,ε − hδ) dx+

∫
Ω

(Kw2,ε −Kw2)(w1,ε − hδ) dx.

Proposition 2.14, the upper bounds (2.22) and the compactness of the operator K
now imply that the right hand side of the last equation converges to 0 as ε → 0.
Consequently, we can take ε̄ > 0 such that∣∣∣∣∫

Ω

(|w1,ε|
1
p−1w1,ε − |f1|

1
p−1f1)(w1,ε − hδ)|x|−

α
p dx

∣∣∣∣ < δ, for every ε < ε̄. (2.29)
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Combining (2.22), (2.28) and (2.29), we infer that∣∣∣∣∫
Ω

(|w1,ε|
1
p−1w1,ε − |f1|

1
p−1f1)(w1,ε − f1)|x|−

α
p dx

∣∣∣∣
≤
∣∣∣∣∫

Ω

(|w1,ε|
1
p−1w1,ε − |f1|

1
p−1f1)(w1,ε − hδ)|x|−

α
p dx

∣∣∣∣
+

∣∣∣∣∫
Ω

(|w1,ε|
1
p−1w1,ε − |f1|

1
p−1f1)(hδ − f1)|x|−

α
p dx

∣∣∣∣
≤ δ + ‖hδ − f1‖ p+1

p ,αp
‖|w1,ε|

1
p−1w1,ε − |f1|

1
p−1f1‖p+1,αp

≤ δ + Cδ,

for some C > 0 (independent of ε and δ). We therefore conclude that

lim
ε→0

∫
Ω

(|w1,ε|
1
p−1w1,ε − |f1|

1
p−1f1)(w1,ε − f1)|x|−

α
p dx = 0. (2.30)

Using the classical pointwise estimate

(|ξ|
1
p−1ξ − |η|

1
p−1η) · (ξ − η) ≥ 2

p−1
p |ξ − η|

p+1
p if 0 < p < 1,

see for instance [36], we easily deduce from (2.30) that w1,ε → f1 = w1 strongly in

L
p+1
p (Ω, |x|−

α
p ) when p ≤ 1. In the complementary case p > 1, using the pointwise

estimate

(|ξ|
1
p−1ξ − |η|

1
p−1η) · (ξ − η) ≥ 1

p
|ξ − η|2(|ξ|+ |η|)

1
p−1 if p ≥ 1,

see again [36], we observe that∫
Ω

|w1,ε − f1|
p+1
p |x|−

α
p dx =

∫
Ω

|w1,ε − f1|
p+1
p

(|w1,ε|+ |f1|)
p2−1

2p2

(|w1,ε|+ |f1|)
p2−1

2p2 |x|−
α
p dx

≤

(∫
Ω

|w1,ε − f1|2

(|w1,ε + |f1|)1− 1
p

|x|−
α
p dx

) p+1
2p (∫

Ω

(|w1,ε|+ |f1|)
p+1
p |x|−

α
p dx

) p−1
2p

≤ C
(∫

Ω

(|w1,ε|
1
p−1w1,ε − |f1|

1
p−1f1)(w1,ε − f1)|x|−

α
p dx

) p+1
2p

and we reach the same conclusion as for p ≤ 1. Obviously, the convergence of the
component w2,ε follows in an analogous way.

The previous claim guarantees that wε → w with w±1 , w
±
2 6≡ 0 since (2.23) now

implies

min

(∫
Ω

|w±1 |
p+1
p |x|−

α
p dx,

∫
Ω

|w±2 |
q+1
q |x|−

β
q dx

)
≥ δ̄ > 0.

From Propositions 2.13 and 2.14 together with the strong convergence in X, we
conclude that I(w) = c̃nod. Moreover, the equations in (2.27) tells that w is
actually a critical point of I so that we have indeed proved that c̃nod is achieved
by a critical point of the functional I.
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At last, the characterization (2.11) of the critical level follows in a straightfor-
ward way as previously mentioned. �

3. Least energy nodal solutions are foliated Schwarz symmetric

Let Ω be a bounded radial domain centred at the origin, namely a ball or an
annulus. The purpose of this section is to prove Theorem 1.2 via polarization
methods, in the spirit of [5, 40]. First, we introduce some definitions and recall
some known results. Define the sets

H0 = {H ⊂ RN : H is a closed half-space in RN with 0 ∈ ∂H}
and, for p 6= 0,

H0(p) = {H ∈ H0 : p ∈ int(H)}.
For each H ∈ H0 we denote the reflection in RN with respect to the hyperplane
∂H by σH : RN → RN , and define the polarization of a function u : Ω → R with
respect to H ∈ H0 by

uH(x) =

{
max{u(x), u(σH(x))} x ∈ H ∩ Ω,
min{u(x), u(σH(x))} x ∈ Ω\H.

As far as we know the link between polarization and foliated Schwarz symmetry
appeared first in [38]; cf. [5, Theorem 2.6] for further results about the foliated
Schwarz symmetry of least energy solutions of some second order elliptic equations
with radial data. We recall from [12, Lemma 4.2], see also [44, Proposition 2.7], the
following equivalent characterization of foliated Schwarz symmetry which involves
polarization.

Proposition 3.1. Let u : Ω → R be a continuous function and take p ∈ ∂B1(0).
Then the following statements are equivalent:

i) u is foliated Schwarz symmetric with respect to p;
ii) uH(x) = u(x) ∀x ∈ Ω ∩H, whenever H ∈ H0(p).

Moreover, the next lemma collects some known properties about polarization;
cf. [44, Lemma 3.1] for the first property and [5, Lemma 2.1] for the second.

Lemma 3.2. Let u : Ω→ R be a measurable function and H ∈ H0.

i) If F : Ω × R → R is a continuous function such that F (x, t) = F (y, t) for

every x, y ∈ Ω such that |x| = |y| and t ∈ R and

∫
Ω

|F (x, u(x))| dx < +∞,

then

∫
Ω

F (x, uH) dx =

∫
Ω

F (x, u) dx.

ii) (uH)+ = (u+)H , (uH)− = −(−u−)H .

Observe that the second statement of the previous result implies that:

(au+ − bu−)H = a(uH)+ − b(uH)−, ∀ a, b > 0. (3.1)

Finally, before we head to the proof of Theorem 1.2, we recall the following key
estimate from [9, Lemma 3.7].
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Lemma 3.3. Given u ∈ L
p+1
p (Ω), v ∈ L

q+1
q (Ω) and any H ∈ H0, we have that∫

Ω

uKv 6
∫

Ω

uHK(vH).

We are now ready to prove our second main result.

Proof of Theorem 1.2. Let (u, v) be a least energy nodal solution of (1.1) and
take the corresponding pair (w1, w2) ∈ X. Fix any r > 0 such that ∂Br(0) ⊂ Ω
and take p ∈ ∂B1(0) such that w1(rp) = max∂Br(0) w1. Given H ∈ H0(p), we aim
at proving that (w1)H(x) = w1(x) and (w2)H(x) = w2(x) for x ∈ Ω ∩H. As

0 < λ

∫
Ω

w+
1 Kw2 dx+ µ

∫
Ω

w1Kw
+
2 dx

≤ λ
∫

Ω

(w+
1 )HK(w2)H dx+ µ

∫
Ω

(w1)HK(w2)+
H dx

and

0 < λ

∫
Ω

(−w−1 )Kw2 dx+ µ

∫
Ω

w1K(−w−2 ) dx

≤ λ
∫

Ω

(−w−1 )HK(w2)H dx+ µ

∫
Ω

(w1)HK(−w−2 )H dx

= −λ
∫

Ω

((w1)H)−K(w2)H dx− µ
∫

Ω

(w1)HK((w2)H)− dx

then ((w1)H , (w2)H) ∈ N0, and from Proposition 2.4 we know there exist t0, s0 >
0 such that (tλ0 (w1)+

H − sλ0 ((w1)H)−, tµ0 (w2)+
H − sµ0 ((w2)H)−) ∈ Nnod. Thus, by

putting together Lemma 3.3 with (3.1) and with the uniqueness of global maximum,

cnod ≤ I(tλ0 (w1)+
H − s

λ
0 ((w1)H)−, tµ0 (w2)+

H − s
µ
0 ((w2)H)−)

= I((tλ0w
+
1 − sλ0w

−
1 )H , (t

µ
0w

+
2 − s

µ
0w
−
2 )H)

≤ I(tλ0w
+
1 − sλ0w

−
1 , t

µ
0w

+
2 − s

µ
0w
−
2 ) = θw(t0, s0)

≤ sup
t,s>0

θw(t, s) = θw(1, 1) = I(w) = cnod.

Thus (t0, s0) = (1, 1), ((w1)H , (w2)H) ∈ Nnod and I((w1)H , (w2)H) = cnod. By
Lemma 2.5, I ′((w1)H , (w2)H) = 0. Going bak to (u, v), we have that both this
pair as well as (uH , vH) solve (1.1). Thus

−∆(uH−u) = |x|β(|vH |q−1vH−|v|q−1v), −∆(vH−v) = |x|α(|uH |p−1uH−|u|q−1u),
(3.2)

in Ω∩H, and uH − u = vH − v = 0 on ∂Ω∪ (Ω∩ ∂H). As vH ≥ v in Ω∩H, then
−∆(uH − u) ≥ 0 and by the maximum principle we have that either uH ≡ u or
uH > u. Since uH(rp) = u(rp), then uH ≡ u in Ω ∩H. Going back to (3.2), we
have −∆(vH − v) = 0, and thus also vH ≡ v. �
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4. Symmetry breaking

We start by proving Theorem 1.5.

Proof of Theorem 1.5. Multiplying the first equation of (1.1) by u, the second
of (1.1) by v and integrating both gives∫

Ω

|∇u|2 dx =

∫
Ω

|v|q−1vu|x|βdx ≤
(∫

Ω

|v|q+1|x|βdx
) q
q+1
(∫

Ω

|u|q+1|x|βdx
) 1
q+1

and∫
Ω

|∇v|2 dx =

∫
Ω

|u|q−1uv|x|βdx ≤
(∫

Ω

|u|q+1|x|βdx
) q
q+1
(∫

Ω

|v|q+1|x|βdx
) 1
q+1

.

Multiplying the first equation of (1.1) by v, the second of (1.1) by u and integrating
both gives ∫

Ω

∇u · ∇v dx =

∫
Ω

|v|q+1|x|βdx =

∫
Ω

|u|q+1|x|βdx.

Putting these estimates together, we infer that∫
Ω

|∇u|2 dx+

∫
Ω

|∇v|2 dx ≤ 2

∫
Ω

∇u · ∇v dx,

which obviously implies u = v. �

Remember that for the single equation

−∆u = |u|q−1u, in Ω, u = 0 on ∂Ω,

it is known, cf. [1, Theorem 1.3], that any least energy nodal solution is non radial
when Ω ⊂ RN , N ≥ 2, is either a ball or an annulus centred at the origin. We will
show that when (p, q) is close to some couple (q0, q0), and (α, β) is close to (0, 0),
this property is also true.

Take q0 satisfying

q0 > 1 such that q0 + 1 < 2N/(N − 2) if N ≥ 3, (4.1)

and δ0 such that

q0 − δ0 > 1 and q0 + 1 + δ0 < 2N/(N − 2) if N ≥ 3, (4.2)

that is, such that the square [q0−δ, q0 +δ0]2 is contained in the region of the points
(p, q) such that (H) holds.

The proof of Theorem 1.4 consists in doing some asymptotic estimates of the
least energy nodal solutions and levels as p, q → q0 and α, β → 0, combined
with the known fact that, at the diagonal point (q0, q0) and α = β = 0, least
energy nodal solutions are non radial. Having this in mind, let us introduce some

notations. Given (p, q) satisfying (H), α, β ≥ 0, we denote by cp,q,α,βnod the least
energy nodal level of (1.1), and by Ep,q,α,β its associated energy (1.2). We will
also use the variational framework introduced in Section 2, denoting by Ip,q,α,β
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the energy functional (2.5). Recall that Ep,q,α,β(u, v) = Ip,q,α,β(w1, w2) at critical
points, under the relation

(u, v) := (|x|−
α
p |w1|

1
p−1w1, |x|−

β
q |w2|

1
q−1w2).

Finally, recall the characterizations (cf. Theorem 2.6):

cp,q,α,βnod = inf
Np,q,α,βnod

Ip,q,α,β = inf
w∈Np,q,α,β0

sup
t,s>0

Ip,q,α,β(tλw+
1 − sλw

−
1 , t

µw+
2 − sµw

−
2 ),

where

λ = λ(p, q) :=
2p(q + 1)

p+ q + 2pq
, µ = µ(p, q) :=

2q(p+ 1)

p+ q + 2pq
,

and

N p,q,α,β
nod =

{
(w1, w2) ∈ Xp,q,α,β : w±1 6≡ 0, w±2 6≡ 0 and

I ′p,q,α,β(w)(λw+
1 , µw

+
2 ) = I ′p,q,α,β(w)(λw−1 , µw

−
2 ) = 0

}
,

N p,q,α,β
0 :=

{
w ∈ Xp,q,α,β :

λ
∫

Ω
w+

1 Kw2 dx+ µ
∫

Ω
w1Kw

+
2 dx > 0

λ
∫

Ω
w−1 Kw2 dx+ µ

∫
Ω
w1Kw

−
2 dx < 0

}
,

with Xp,q,α,β = L
p+1
p (Ω, |x|−

α
p )× L

q+1
q (Ω, |x|−

β
q ).

For simplicity, when p = q and α = β = 0 we will use the notation cpnod for

cp,p,0,0nod . First we prove an uniform lower bound for the positive and negative parts

of elements of N p,q,α,β
nod .

Lemma 4.1. Given q0 satisfying (4.1) there exists δ0 > 0 and ε > 0 such that∫
Ω

|w±1 |
p+1
p |x|−

α
p dx ≥ ε and

∫
Ω

|w±2 |
q+1
q |x|−

β
q dx ≥ ε

for every (w1, w2) ∈ N p,q,α,β
nod with p, q ∈ [q0 − δ0, q0 + δ0] and α, β ∈ [0, δ0].

Proof. We use the estimates in the proof of Theorem 2.6 - step 3, this time keeping
a better track of the constants. We split the proof in several steps.

1) There exists C1 (independent of p and q) such that

‖u‖p+1 ≤ C1‖u‖
W

2,
q+1
q

∀u ∈W 2, q+1
q (Ω), p, q ∈ [q0 − δ0, q0 + δ0].

Since Ω has finite measure and p ≤ q0 + δ0, from Hölder’s estimates we deduce
that

‖u‖p+1 ≤ |Ω|
q0+δ0−p

(p+1)(q0+δ0+1) ‖u‖q0+δ0+1 ≤ κ1|Ω|
q0+δ0−p

(p+1)(q0+δ0+1) ‖u‖
W

2,
q0+δ0+1
q0+δ0

,

where κ1 is a constant associated to the embedding W 2,
q0+δ0+1
q0+δ0 ↪→ Lq0+δ0+1; recall

that δ0 is such that (4.2) holds. Moreover, again by using Hölder estimates and
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also that (q0 + δ0 + 1)/(q0 + δ0) ≤ (q + 1)/q,

‖u‖
W

2,
q0+δ0+1
q0+δ0

=

∑
|α|≤2

∫
Ω

|Dαu|
q0+δ0+1
q0+δ0 dx


q0+δ0
q0+δ0+1

≤

|Ω| q0+δ0−q
(q+1)(q0+δ0)

∑
|α|≤2

‖Dαu‖
q0+δ0+1
q0+δ0
q+1
q


q0+δ0
q0+δ0+1

≤
(
N(N − 1)

2
+N + 1

) q0+δ0
q0+δ0+1

|Ω|
q0+δ0−q

(q+1)(q0+δ0+1) ‖u‖
W

2,
q+1
q
,

and thus ‖u‖p+1 ≤ κ(p, q)‖u‖
W

2,
q+1
q

, with

κ(p, q) = κ1

(
N(N − 1)

2
+N + 1

) q0+δ0
q0+δ0+1

|Ω|
q0+δ0−q

(q+1)(q0+δ0+1) |Ω|
q0+δ0−p

(p+1)(q0+δ0+1) ,

which is bounded from above by some C1, for every p, q ∈ [q0 − δ0, q0 + δ0].

2) There exists C2 such that, for all u ∈W 2,
q0+δ+1
q0+δ (Ω) ∩W

1,
q0+δ+1
q0+1

0 (Ω)

‖Ku‖
W

2,
q0+δ0+1
q0+δ0

≤ C2‖u‖ q0+δ0+1
q0+δ

,

cf. [26, Lemma 9.17].

3) As (w1, w2) ∈ N p,q,α,β
nod , from steps 1) and 2) above there exists C > 0 indepen-

dent of p, q, α, β such that

λ

∫
Ω

|w+
1 |

p+1
p |x|−

α
p dx+ µ

∫
Ω

|w+
2 |

q+1
q |x|−

β
q dx ≤ 2

∫
Ω

w+
1 Kw

+
2 dx

≤ 2‖w+
1 ‖ p+1

p
‖Kw+

2 ‖p+1 ≤ 2C1‖w+
1 ‖ p+1

p
‖Kw+

2 ‖
W

2,
q0+1+δ0
q0+δ0

≤ 2C1C2‖w+
1 ‖ p+1

p
‖w+

2 ‖ q0+δ0+1
q0+δ0

≤ C̃‖w+
1 ‖ p+1

p
‖w+

2 ‖ q+1
q

≤ C‖w+
1 ‖ p+1

p ,αp
‖w+

2 ‖ q+1
q , βq

,

where we have used estimate (2.1) and the fact that q ≤ q0 + δ0. By using the
Young’s inequality

Cab ≤ λ

2
a
p+1
p +

(2p)pCp+1

λp(p+ 1)p+1
bp+1 ∀a, b ≥ 0,

we have

µ

∫
Ω

|w+
2 |

q+1
q |x|−

β
q dx ≤ (2p)pCp+1

λp(p+ 1)p+1

(∫
Ω

|w+
2 |

q+1
q |x|−

β
q dx

) q(p+1)
q+1

,
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and thus ∫
Ω

|w+
2 |

q+1
q |x|−

β
q dx ≥

(
µλp(p+ 1)p+1

(2p)pCp+1

) q+1
pq−1

=: K(p, q).

As K(q0, q0) > 0, then from sufficiently small δ0 we have K(p, q) ≥ ε > 0 for every
p, q ∈ [q0 − δ0, q0 + δ0].

The lower bounds for the remaining integrals follow in an analogous way. �

Lemma 4.2. We have

lim sup cp,q,α,βnod ≤ cq0nod as p, q → q0, α, β → 0.

In particular, there exists δ0 and κ > 0 such that

0 < cp,q,α,βnod ≤ κ, ∀ p, q ∈ [q0 − δ0, q0 + δ0], α, β ∈ [0, δ0].

Proof. Take pn, qn → q0, αn, βn → 0.

1) We adapt some ideas from [11, Lemma 3], where a different problem is consid-
ered. Let (w1, w2) be such that w±1 6≡ 0, w±2 6≡ 0,

Iq0(w1, w2) = cq0nod, I ′q0(w1, w2) = 0,

where Iq0 = Iq0,q0,0,0. Denote λn := λ(pn, qn) and µn := µ(pn, qn). Since λn, µn →
1 as n→∞ and∫

Ω

w+
1 Kw2 dx+

∫
Ω

w1Kw
+
2 dx > 0,

∫
Ω

w−1 Kw2 dx+

∫
ω

w1Kw
−
2 dx < 0,

then (w1, w2) ∈ N pn,qn,αn,βn
0 for large n, and

cpn,qn,αn,βnnod ≤ sup
t,s>0

Ipn,qn,αn,βn(tλnw+
1 − sλnw

−
1 , t

µnw+
2 − sµnw

−
2 ).

Assume that the supremum at the right hand side is achieved at (t, s) = (tn, sn).

2) We claim that tn, sn → 1.

2a) First observe that tn, sn are bounded. In fact, repeating the computations of
Lemma 2.2, we have this time that

Ipn,qn,αn,βn(tλnn w+
1 − sλnn w−1 , t

µn
n w+

2 − sµnn w−2 ) ≤ A+
n t
γn
n +A−n s

γn
n +

+

(
1

2
(λnC1 + µnC2)−B+

)
t2n +

(
1

2
(µnC1 + λnC2)−B−

)
s2
n,

with

A±n =
pn

pn + 1

∫
Ω

|w±1 |
pn+1
pn |x|−

αn
pn dx+

qn
qn + 1

∫
Ω

|w±2 |
qn+1
qn |x|−

βn
qn dx,

(positive and bounded in n), B± and Ci are as in Lemma 2.2, and

γn = λn
pn + 1

pn
= µn

qn + 1

qn
→ q0 + 1

q0
∈ (1, 2).
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Since moreover

1

2
(λnC1 + µnC2)−B+ → 1

2
(C1 + C2)−B+ < 0,

1

2
(µnC1 + λnC2)−B− → 1

2
(C1 + C2)−B− < 0,

then if |sn|+ |tn| → ∞ we would have

0 < cpn,qn,αn,βnnod ≤ Ipn,qn,αn,βn(tλnn w+
1 − sλnn w−1 , t

µn
n w+

2 − sµnn w−2 )→ −∞,

a contradiction.

2b) We have tn, sn 6→ 0. In fact,

(tλnn w+
1 − sλnn w−1 , t

µn
n w+

2 − sµnn w−2 ) ∈ N pn,qn,αn,βn
nod ,

hence by Lemma 4.1∫
Ω

|tλnn w+
1 |

pn+1
pn |x|−

αn
pn dx,

∫
Ω

|sλnn w−1 |
pn+1
pn |x|−

αn
pn dx ≥ ε > 0,

which proves the statement.

2c) The claim of 2) now follows. We have tn → t̄ 6= 0, sn → s̄ 6= 0. Since

Ipn,qn,αn,bn(w1, w2) ≤ sup
t,s>0

Ipn,qn,αn,bn(tλnw+
1 − sλnw

−
1 , t

µnw+
2 − sµnw

−
2 )

= Ipn,qn,αn,βn(tλnn w+
1 − sλnn w−1 , t

µn
n w+

2 − sµnn w−2 ).

by passing to the limit,

sup
t,s>0

Iq0(tw+
1 − sw

−
1 , tw

+
2 − sw

−
2 ) = Iq0(w1, w2) ≤ Iq0(t̄w+

1 − s̄w
−
1 , t̄w

+
2 − s̄w

−
2 ).

By the uniqueness provided by Proposition 2.4, we have t̄ = s̄ = 1.

3) Finally, by making n→∞ in the inequality

cpn,qn,αn,βnnod ≤ Ipn,qn,αn,βn(tλnn w+
1 − sλnn w−1 , t

µn
n w+

2 − sµnn w−2 ),

we obtain

lim sup cpn,qn,αn,βnnod ≤ Iq0(w1, w2) = cq0nod.

�

As a consequence, we have the following a priori bound.

Lemma 4.3. Given q0 satisfying (4.1) there exists δ0 > 0 and κ > 0 such that

‖(u, v)‖∞ ≤ κ

for every (u, v) least energy nodal solution of (1.1) with p, q ∈ [q0 − δ0, q0 + δ0],
α, β ∈ [0, δ0].
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Proof. Having the uniform upper bound of the energy levels coming from the
previous lemma, and since the nonlinearities in (1.1) satisfy

||x|α|s|pns| ,
∣∣|x|β |s|qns∣∣ ≤ C(1 + |s|q0+1+δ) ∀s ∈ R,

for p, q ∈ [q0 − δ0, q0 + δ0], δ ∈ [0, δ0], C independent of p, q, α, β, then one can
reason exactly as in the proof of [33, Lemma 5.4] (see also [10, Theorem 5.18]) to
obtain uniform L∞ bounds. �

Lemma 4.4. Take q0 satisfying (4.1). Then

cp,q,α,βnod → cq0nod as p, q → q0, α, β → 0.

Moreover, the corresponding least energy nodal solutions converge: if
(up,q,α,β , vp,q,α,β) is a sign changing solution of (1.1) with

Ep,q,α,β(up,q,α,β , vp,q,α,β) = cp,q,α,βnod ,

then

up,q,α,β → u, vp,q,α,β → v in C1,γ(Ω) for every 0 < γ < 1,

where (u, v) solves (1.1) for p = q = q0, α = β = 0, and Eq0(u, v) = cq0nod.

Proof. Take pn, qn → q0, αn, βn → 0, and let (un, vn) be the corresponding
least energy nodal solution of (1.1) with (p, q, α, β) = (pn, qn, αn, βn). Then
‖(un, vn)‖∞ ≤ κ and, by elliptic estimates, the sequence (un, vn) is uniformly
bounded in W 2,s × W 2,t for every s, t > 1. Thus there exists u, v such that
un → u, vn → v in C1,γ(Ω), and (u, v) solves

−∆u = |v|q0−1v, −∆v = |u|q0−1u in Ω, u = v = 0 on ∂Ω. (4.3)

Defining

w1n = |x|αn |un|pn−1un, w2n = |x|βn |vn|qn−1v,

we deduce from Lemma 4.1 that∫
Ω

|u±n |pn+1|x|αn dx =

∫
Ω

|w±1n|
pn+1
pn |x|−

αn
pn dx ≥ ε,∫

Ω

|v±n |qn+1|x|βn dx =

∫
Ω

|w±2n|
qn+1
qn |x|−

βn
qn dx ≥ ε,

for some ε > 0 independent of n. Thus (u, v) is a sign changing solution of (4.3),
and

cq0nod ≤ Eq0(u, v) = lim
n
Epn,qn,αn,βn(un, vn) = lim

n
cpn,qn,αn,βnnod .

Combining this information with Lemma 4.2 yields the desired result. �

Proof of Theorem 1.4. This is now an easy consequence of Lemma 1.5 and
Lemma 4.4. Arguing by contradiction, we would get a radial least energy nodal
solution of

−∆u = |u|q−1u, in Ω, u = 0 on ∂Ω,

contradicting [1, Theorem 1.3]. �
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Remark 4.5. Reasoning as in this section, we can prove that the map (p, q, α, β) 7→
cp,q,α,βnod is continuous for (p, q) satisfying (H), α, β ≥ 0, and that the corresponding
least energy nodal solutions converge.
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[13] Jérôme Busca and Boyan Sirakov. Symmetry results for semilinear elliptic systems in the

whole space. J. Differential Equations, 163(1):41–56, 2000.

[14] Alfonso Castro, Jorge Cossio, and John M. Neuberger. A sign-changing solution for a super-
linear Dirichlet problem. Rocky Mountain J. Math., 27(4):1041–1053, 1997.

[15] Ph. Clément and R. C. A. M. Van der Vorst. On a semilinear elliptic system. Differential

Integral Equations, 8(6):1317–1329, 1995.
[16] M. Conti, S. Terracini, and G. Verzini. Nehari’s problem and competing species systems.

Ann. Inst. H. Poincaré Anal. Non Linéaire, 19(6):871–888, 2002.

[17] Lucio Damascelli and Filomena Pacella. Symmetry results for cooperative elliptic systems
via linearization. SIAM J. Math. Anal., 45(3):1003–1026, 2013.

[18] Lucio Damascelli, Francesca Gladiali, and Filomena Pacella. A symmetry result for semilin-
ear cooperative elliptic systems. In Recent trends in nonlinear partial differential equations.

II. Stationary problems, volume 595 of Contemp. Math., pages 187–204. Amer. Math. Soc.,

Providence, RI, 2013.
[19] Lucio Damascelli, Filomena Pacella, and Francesca Gladiali. Symmetry results for coopera-

tive elliptic systems in unbounded domains. Indiana Univ. Math. J., 63(3):615–649, 2014.

[20] Djairo G. de Figueiredo. Monotonicity and symmetry of solutions of elliptic systems in
general domains. NoDEA Nonlinear Differential Equations Appl., 1(2):119–123, 1994.

[21] Djairo G. de Figueiredo. Semilinear elliptic systems: existence, multiplicity, symmetry of

solutions. In Handbook of differential equations: stationary partial differential equations.
Vol. V, Handb. Differ. Equ., pages 1–48. Elsevier/North-Holland, Amsterdam, 2008.

[22] Djairo G. De Figueiredo and Jianfu Yang. Decay, symmetry and existence of solutions of

semilinear elliptic systems. Nonlinear Anal., 33(3):211–234, 1998.
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