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Introduction

We consider the Hamiltonian elliptic system with Hénon-type weights

-∆u = |x| β |v| q-1 v, -∆v = |x| α |u| p-1 u in Ω, u = v = 0 on ∂Ω, (1.1) 
where Ω is a bounded domain in R N , N 1, and α, β 0. We consider superlinear and subcritical nonlinearities, namely

1 > 1 p + 1 + 1 q + 1 > N -2 N . (H)
Observe that the first condition is also equivalent to pq > 1.

The system (1.1) is strongly coupled in the sense that u ≡ 0 if and only if v ≡ 0. Moreover, u changes sign if and only if v changes sign.

We recall that a strong solution to this problem corresponds to a pair (u, v) with u ∈ W 2,(q+1)/q (Ω) ∩ W 1,(q+1)/q 0 (Ω), v ∈ W 2,(p+1)/p (Ω) ∩ W 1,(p+1)/p 0

(Ω)

satisfying the system in (1.1) for a.e. x ∈ Ω. By using a bootstrap method (see [37, Theorem 1(a)]), it can be shown that strong solutions are actually classical solutions.

Consider the energy functional

E(u, v) = Ω ∇u • ∇v dx - 1 p + 1 Ω |x| α |u| p+1 dx - 1 q + 1 Ω |x| β |v| q+1 dx, (1.2)
which is well defined for strong solutions thanks to assumption (H).

One can use various variational settings to deal with the system (1.1), see for instance the surveys [START_REF] Bonheure | Hamiltonian elliptic systems: a guide to variational methods[END_REF][START_REF] Djairo | Semilinear elliptic systems: existence, multiplicity, symmetry of solutions[END_REF][START_REF] Ruf | Superlinear elliptic equations and systems[END_REF]. Once the existence of at least one critical point is proved, a natural question is that of the existence of a least energy one, by which we mean a critical point at the level c = inf{E(u, v) : (u, v) is a nonzero strong solution of (1.1)}.

The solutions at this energy are usually referred to as ground state solutions and in many problems, they are of special interest. In our setting the existence of such solutions is clear and rely on a simple compactness argument. On the other hand, it is useful to get a variational characterisation of these solutions to derive qualitative properties, see for example [START_REF] Bonheure | Ground state and nonground state solutions of some strongly coupled elliptic systems[END_REF][START_REF] Bonheure | Symmetry and symmetry breaking for ground state solutions of some strongly coupled elliptic systems[END_REF][START_REF] Bonheure | Hamiltonian elliptic systems: a guide to variational methods[END_REF]. In our setting, any solution at level c is positive (or negative). This can be established using a Nehari type characterization of the level c. We emphasize that the adequate associated Nehari manifold is then of infinite codimension. We refer to [START_REF] Bonheure | Hamiltonian elliptic systems: a guide to variational methods[END_REF] for more details.

Existence of sign-changing solutions has been obtained in [START_REF] Ramos | A Bahri-Lions theorem revisited[END_REF]Theorem 4], under the extra assumption p > 1 and q > 1, where it is proved that there exists an unbounded sequence of solutions (u k , v k ) such that both (u k + v k ) + = 0 and (u k + v k ) -= 0 for every k. In fact, for a pair of solutions (u, v), u + v changes sign if and only if u and v change sign. Our results therefore present some improvement of the result given in [START_REF] Ramos | A Bahri-Lions theorem revisited[END_REF]Theorem 4] since, by imposing the mere super linearity condition pq > 1, we are able to prove the existence of a (least energy) nodal solution to (1.1).

Define then the least energy nodal level as c nod = inf{E(u, v) : (u, v) is a nonzero strong solution of (1.1) and u ± , v ± ≡ 0}.

It is not obvious that this level is achieved since this no more follows from a simple minimisation argument. Indeed, even if we have enough compactness to extract a converging subsequence, the limit could be a critical point (u, v) such that both u and v are positive (or negative). The existence of a least energy nodal solution for the scalar Lane-Emden equation [START_REF] Castro | A sign-changing solution for a superlinear Dirichlet problem[END_REF][START_REF] Bartsch | A note on additional properties of sign changing solutions to superlinear elliptic equations[END_REF][START_REF] Bartsch | Three nodal solutions of singularly perturbed elliptic equations on domains without topology[END_REF] follows from the minimisation of the functional over a nodal Nehari set. It is not clear at all how such a nodal Nehari set associated to the energy functional E could be defined. Anyhow, our first main result shows c nod is achieved.

Theorem 1.1. Let N ≥ 1, α ≥ 0, β ≥ 0 and suppose that (H) is satisfied. Then the level c nod is achieved, that is, there exists a strong solution (u, v) of (1.1) such that u ± , v ± ≡ 0 and E(u, v) = c nod .

Our proof relies on a dual method as in Clément and van der Vorst [START_REF] Ph | On a semilinear elliptic system[END_REF] or Alves and Soares [START_REF] Claudianor | Singularly perturbed elliptic systems[END_REF] 1 who deal with the singularly perturbed system

-ε 2 ∆u + V (x)u = |v| q-1 v, -ε 2 ∆v + V (x)v = |u| p-1 u in R N
assuming the extra assumptions p > 1 and q > 1. With respect to [START_REF] Claudianor | Singularly perturbed elliptic systems[END_REF], the hypothesis (H) includes more general powers, namely pq > 1 is enough. This means in particular that we cover the biharmonic operator with Hénon weight, that is q = 1 and β = 0, with Navier boundary conditions. In this context, the problem (1.1) reads as ∆ 2 u = |x| α |u| p-1 u in Ω, u = ∆u = 0 on ∂Ω,

with α ≥ 0, 1 2 > 1 p+1 > N -4 2N and Theorem 1.1 applies. Next we investigate the symmetry of these solutions in case the domain is radial.

Let Ω be either a ball or an annulus centred at the origin. Recall that a function u : Ω → R is called foliated Schwarz symmetric with respect to some unit vector p ∈ R N if, for a.e. r > 0 such that ∂B r (0) ⊂ Ω and for every c ∈ R, the restricted superlevel set {x ∈ ∂B r (0) : u(x) ≥ c} is either equal to ∂B r (0) or to a geodesic ball in ∂B r (0) centred at rp. In other words, u is foliated Schwarz symmetric if u is axially symmetric with respect to the axis Rp and non increasing in the polar angle θ = arccos(x • p) ∈ [0, π].

In the past thirty years the study on the symmetry properties of positive or least energy solutions of strongly coupled elliptic systems has been an active research field, see for instance [START_REF] Troy | Symmetry properties in systems of semilinear elliptic equations[END_REF][START_REF] Shaker | On symmetry in elliptic systems[END_REF][START_REF] Djairo | Monotonicity and symmetry of solutions of elliptic systems in general domains[END_REF][START_REF] Djairo | Decay, symmetry and existence of solutions of semilinear elliptic systems[END_REF][START_REF] Zou | Symmetry of ground states for a semilinear elliptic system[END_REF][START_REF] Busca | Symmetry results for semilinear elliptic systems in the whole space[END_REF][START_REF] Quittner | Symmetry of components for semilinear elliptic systems[END_REF][START_REF] Bonheure | Ground state and nonground state solutions of some strongly coupled elliptic systems[END_REF][START_REF] Bonheure | Symmetry and symmetry breaking for ground state solutions of some strongly coupled elliptic systems[END_REF][START_REF] Bonheure | Hamiltonian elliptic systems: a guide to variational methods[END_REF][START_REF] Damascelli | Symmetry results for cooperative elliptic systems via linearization[END_REF][START_REF] Damascelli | A symmetry result for semilinear cooperative elliptic systems[END_REF][START_REF] Damascelli | Symmetry results for cooperative elliptic systems in unbounded domains[END_REF]. The basic tools used to derive the symmetry of the solutions are the method of moving planes [START_REF] Gidas | Symmetry and related properties via the maximum principle[END_REF], symmetrization or polarization and Morse index arguments. All these techniques were originally developed for second order elliptic equations and their use in the context of strongly coupled elliptic system requires more involved arguments.

Our second main result is the following. Theorem 1.2. Let Ω ⊂ R N , N ≥ 2, be either a ball or an annulus centred at the origin. Let (u, v) be a least energy nodal solution of (1.1). Then there exists p ∈ ∂B 1 (0) such that both u and v are foliated Schwarz symmetric with respect to p.

As mentioned above, our results cover the biharmonic operator complementing therefore some of the results in [START_REF] Weth | Nodal solutions to superlinear biharmonic equations via decomposition in dual cones[END_REF]. 1 In order to apply the dual variational method, the two potentials on the left hand sides of [2, eq. (1.3)] must be equal as follows from [2, line 5 p. 114].

Corollary 1.3. Let Ω ⊂ R N , N ≥ 1 and assume that 1 2 > 1 p+1 > N -4 2N . Then the fourth order problem (1.3) admits a least energy nodal solution. Moreover, if Ω is either a ball or an annulus centred at the origin, N ≥ 2, then any least energy nodal solution of (1.3) is such that u and -∆u are foliated Schwarz symmetric with respect to the the same unit vector p ∈ R N .

For the scalar Lane-Emden equation (i.e. without weights), it is known that any least energy nodal solution has Morse index 2. Combined with the analysis of the Morse index of the sign changing radial solutions when Ω is either a ball or an annulus, this leads to the conclusion that whereas least energy solutions are radially symmetric, least energy nodal solutions are not. The foliated Schwarz symmetry is thus somehow optimal.

For the Hénon-Lane-Emden system (1.1), it is not clear how to compute (or even define) the Morse index of the solutions. Although we conjecture that for any p, q satisfying (H) and α, β ≥ 0 every least energy nodal solutions of (1.1) are non radial, we are not able to prove it. Symmetry breaking occurs at least for p ∼ q, α ∼ 0 and β ∼ 0.

Theorem 1.4. Assume N ≥ 2 and Ω ⊂ R N is either a ball or an annulus centred at the origin. Let q 0 satisfy q 0 > 1 and

q 0 + 1 < 2N/(N -2) if N ≥ 3.
Then there exists δ 0 > 0 such that, if p, q ∈ [q 0 -δ 0 , q 0 + δ 0 ], α, β ∈ [0, δ 0 ], then any least energy nodal solution (u, v) of (1.1) is such that both u and v are non radially symmetric.

At this point, we emphasize that when Ω ⊂ R N is either a ball or an annulus, we can work in a functional framework of radially symmetric functions yielding at least one radial sign-changing solution having least energy among all radial nodal solutions. The previous theorem gives therefore a range of coexistence of both radially symmetric and non radially symmetric sign-changing solutions. When p > 1 and q > 1, the existence of infinitely many radial sign-changing solutions follows also from applying the method of [START_REF] Ramos | A Bahri-Lions theorem revisited[END_REF]Theorem 4] in a functional framework of radially symmetric functions. Although these solutions can a priori coincide with the solutions obtained in [START_REF] Ramos | A Bahri-Lions theorem revisited[END_REF]Theorem 4], we clearly do not expect that to happen. A difficult question seems to be that of providing a precise information on the number of nodes of radial nodal solutions. Both the gluing approach [START_REF] Bartsch | Infinitely many radial solutions of a semilinear elliptic problem on R N[END_REF] and an optimal partition method [START_REF] Conti | Nehari's problem and competing species systems[END_REF], reminiscent of the original approach of Nehari, seem out of reach for the Lane-Emden system (without weight). Therefore, the existence of radially symmetric solutions with a prescribed number of nodes is a challenging open question.

Finally, we show that all of our results apply to the Hénon equation

-∆u = |x| α |u| p-1 u in Ω, u = 0 on ∂Ω. (1.4)
For this purpose we prove a kind of symmetry theorem for the components, which guarantees that when p = q, α = β, then any solution (u, v) of (1.1) is such that u = v and whence u solves (1.4). For related classifications results we mention [31, Theorem 1.2] and [START_REF] Farina | Symmetry of components, liouville-type theorems and classification results for some nonlinear elliptic systems[END_REF].

Theorem 1.5. Assume that u, v ∈ H 1 0 (Ω) solves the system (1.1)

-∆u = |x| β |v| q-1 v, -∆v = |x| β |u| q-1 u in Ω, u = v = 0 on ∂Ω,
where Ω is a bounded domain in R N , N 1, q > 1 and q

+ 1 ≤ 2N/(N -2) if N ≥ 3. Then u = v.
Combining Theorems 1.1, 1.2, 1.4 and 1.5, we get the following results about least energy nodal solutions of the Hénon equation (1.4).

Corollary 1.6. Let N ≥ 1, α ≥ 0, p > 1 and p + 1 < 2N/(N -2) if N ≥ 3. Then:
i) There exist least energy nodal solutions of (1.4).

ii) Let Ω ⊂ R N , N ≥ 2, be either a ball or an annulus centred at the origin. Let u be a least energy nodal solution of (1.4). Then there exists p ∈ ∂B 1 (0) such that u is foliated Schwarz symmetric with respect to p. iii) Assume that Ω ⊂ R N , N ≥ 2, is either a ball or an annulus centred at the origin. Then there exists δ 0 > 0 such that, if α ∈ [0, δ 0 ], then any least energy nodal solution u of (1.4) is such that u is non radially symmetric.

Items i) and ii) are known cf. [START_REF] Bartsch | Partial symmetry of least energy nodal solutions to some variational problems[END_REF][START_REF] Castro | A sign-changing solution for a superlinear Dirichlet problem[END_REF][START_REF] Pacella | Symmetry of solutions to semilinear elliptic equations via Morse index[END_REF]. To our knowledge, Corollary 1.6 iii) is new, though expected from a perturbation analysis for small α. However, we stress that the approach of [START_REF] Aftalion | Qualitative properties of nodal solutions of semilinear elliptic equations in radially symmetric domains[END_REF] to symmetric breaking of any least energy nodal solution of the autonomous equation

-∆u = f (u) in Ω, u = 0 on ∂Ω,
where Ω ⊂ R N , N ≥ 2, that stands either for a ball or an annulus centred at the origin, cannot be extended to the non autonomous case. In particular it cannot be extended to the Hénon equation (1.4). We expect however that least energy nodal solutions of (1.4) are non radial. We provide a proof for α small whereas this should follow from an asymptotic analysis as in [START_REF] Smets | Non-radial ground states for the Hénon equation[END_REF] for α large. The general case seems more delicate. The structure of the paper is the following. In Section 2, we introduce the variational setting corresponding to the dual method and prove Theorem 1.1, showing the existence of a least energy nodal solution, providing as well alternative characterizations of the level c nod . In Section 3 we prove the Schwarz foliated symmetry of these solutions when Ω is a radial bounded domain, namely Theorem 1.2. Finally in Section 4 we provide some examples of symmetry breaking, proving Theorems 1.4 and 1.5.

Existence of a least energy nodal level

Let us now introduce in a precise way the variational setting corresponding to the dual method. Given r ≥ 1 and γ ≥ 0, we denote

L r (Ω, |x| -γ ) := {u : Ω → R measurable : Ω |u| r |x| -γ dx < ∞},
which is a Banach space equipped with the norm u r,γ :=

Ω |u| r |x| -γ dx 1/r .
Observe that, since Ω is bounded and γ ≥ 0, we have the inclusions L r (Ω, |x| -γ ) ⊂ L r (Ω), where the last is the usual L r (Ω) -space. In fact, it is easy to check that there exists a constant C(Ω) such that

u r ≤ C(Ω) γ r u r,γ ∀u ∈ L r (Ω, |x| -γ ), r > 1, γ ≥ 0. (2.1)
In an informal basis, the method consists in taking the inverse of the Laplace operator, rewriting the system as

(-∆) -1 (|x| β |v| q-1 v) = u, (-∆) -1 (|x| α |u| p-1 u) = v.
and defining

w 1 = |x| α |u| p-1 u, w 2 = |x| β |v| q-1 v, which leads to (-∆) -1 w 2 = |x| -α p |w 1 | 1 p -1 w 1 , (-∆) -1 w 1 = |x| -β q |ω 2 | 1 q -1 w 2 . (2.2)
We will work in the product space

X := L p+1 p (Ω, |x| -α p ) × L q+1 q (Ω, |x| -β q ), (w 1 , w 2 ) := w 1 p+1 p , α p + w 2 q+1 q , β q ∀ w = (w 1 , w 2 ) ∈ X
and will use the map T : X → L 1 (Ω) given by

T w = w 1 Kw 2 + w 2 Kw 1 w = (w 1 , w 2 ) ∈ X
where, with some abuse of notations, K denotes the inverse of the minus Laplace operator with zero Dirichlet boundary condition. We observe that we use the same letter K to denote both the operators K (p+1)/p :

L p+1 p (Ω) → W 2, p+1 p (Ω) ∩ W 1, p+1 p 0
(Ω) and K (q+1)/q : L q+1 q (Ω) → W 2, q+1 q (Ω) ∩ W 1, q+1 q 0

(Ω). Later on, we will use the fact that

u ∈ L t (Ω) ∩ L s (Ω) ⇒ K t u = K s u (t, s > 1),
which is a consequence of the uniqueness of the Dirichlet problem. Thanks to the subcriticality, namely the second inequality at (H), we have compact embeddings

W 2, q+1 q (Ω) ⊂ L p+1 (Ω), W 2, p+1 p (Ω) ⊂ L q+1 (Ω).
This, together with standard elliptic estimates, yields

Ω |w 1 Kw 2 | dx ≤ w 1 p+1 p Kw 2 p+1 ≤ C 1 w 1 p+1 p Kw 2 W 2, q+1 q ≤ C 2 w 1 p+1 p w 2 q+1 q ≤ C 3 w 1 p+1 p , α p w 2 q+1 q , β q ,
and an analogous estimate holds for w 2 Kw 1 . Thus

Ω |T w| dx ≤ c w 1 p+1 p , α p w 2 q+1 q , β q ∀ w = (w 1 , w 2 ) ∈ X. (2.3)
Also, using integration by parts,

Ω w 1 Kw 2 dx = Ω w 2 Kw 1 dx ∀ w = (w 1 , w 2 ) ∈ X. (2.4) 
Now, let I : X → R be the functional defined by

I(w 1 , w 2 ) = p p + 1 Ω |w 1 | p+1 p |x| -α p dx + q q + 1 Ω |w 2 | q+1 q |x| -β q dx - 1 2 Ω T w dx. (2.5)
It is easy to see that I is a C 1 functional and, thanks to (2.4), that its derivative is given by

I (w)(ϕ, ψ) = Ω |w 1 | 1 p -1 w 1 ϕ|x| -α p dx + Ω |w 2 | 1 q -1 w 2 ψ|x| -β q dx - Ω (ϕKw 2 + ψKw 1 ) dx,
for every (w 1 , w 2 ), (φ, ϕ) ∈ X. In particular, (w 1 , w 2 ) is a critical point of I if and only if (2.2) holds, and so (u, v) := (|x|

-α p |w 1 | 1 p -1 w 1 , |x| -β q |w 2 | 1 q -1 w 2
) is a strong solution of the original system (1.1). In this case we have that

I(w 1 , w 2 ) = E(u 1 , u 2 ) = pq -1 (p + 1)(q + 1) Ω |u| p+1 |x| α dx > 0.
Working in this framework, we can rewrite the least energy nodal level as

c nod = inf{I(w 1 , w 2 ) : w ± 1 , w ± 2 ≡ 0, I (w 1 , w 2 ) = 0}.
In the following, we will adapt some of the ideas of [START_REF] Claudianor | Singularly perturbed elliptic systems[END_REF][START_REF] Ph | On a semilinear elliptic system[END_REF] into our situation. A first novelty in our arguments consists in introducing the following constants λ and µ (in view of evening the different powers of w 1 and w 2 in the functional I), as well as the introduction of the map θ, in view of obtaining Proposition 2.4 ahead. Let

λ := 2p(q + 1) p + q + 2pq , µ = 2q(p + 1) p + q + 2pq , so that γ := λ p + 1 p = µ q + 1 q = 2(p + 1)(q + 1) p + q + 2pq ∈ (1, 2) and λ + µ = 2.
We start by introducing the Nehari type set:

N nod = {(w 1 , w 2 ) ∈ X : w ± 1 ≡ 0, w ± 2 ≡ 0 and I (w)(λw + 1 , µw + 2 ) = I (w)(λw - 1 , µw - 2 ) = 0} and the level cnod = inf w∈N nod I(w),
which, we will check later on that, coincides with c nod and that I is positive on N nod ; cf. Theorem 2.6 and (2.18) respectively. The study of this problem will be done by means of a fiber-type map: given (w 1 , w 2 ) ∈ X such that w ± 1 ≡ 0 and

w ± 2 ≡ 0, define θ = θ w : [0, ∞) × [0, ∞) → R by θ(t, s) = I(t λ w + 1 -s λ w - 1 , t µ w + 2 -s µ w - 2 ).
Observe that if t, s > 0, then

∇θ(t, s) = (0, 0) if and only if (t λ w + 1 -s λ w - 1 , t µ w + 2 -s µ w - 2 ) ∈ N nod . (2.6)
In what follows it will be important to prove that θ w admits a critical point. However, this seems not to hold for every w ∈ X. Indeed, for some w it turns out that θ w has no critical points and its supremum is plus infinity. For that reason, we introduce the following auxiliary set

N 0 = w ∈ X : λ Ω w + 1 Kw 2 dx + µ Ω w 1 Kw + 2 dx > 0 λ Ω w - 1 Kw 2 dx + µ Ω w 1 Kw - 2 dx < 0 = w ∈ X : λC 1 + µC 2 < 2B + , µC 1 + λC 2 < 2B -,
where we have used the fact that λ + µ = 2, and the notations

B + = Ω w + 1 Kw + 2 dx > 0, B -= Ω w - 1 Kw - 2 dx > 0, (2.7) 
and

C 1 = Ω w + 1 Kw - 2 dx > 0, C 2 = Ω w - 1 Kw + 2 dx > 0.
We point out that, by the strong maximum principle, if w ∈ N 0 then w ± 1 ≡ 0, w ± 2 ≡ 0. Lemma 2.1. The set N 0 is nonempty and N nod ⊆ N 0 .

Proof. Claim 1 -N 0 = ∅. Let ϕ 2 be the second eigenfunction of -∆ with zero Dirichlet boundary condition, and denote its eigenvalue by λ 2 . Then (ϕ 2 , ϕ 2 ) ∈ N 0 , as

λ Ω ϕ + 2 Kϕ 2 dx + µ Ω ϕ 2 Kϕ + 2 dx = 2 λ 2 Ω (ϕ + 2 ) 2 > 0 and λ Ω ϕ - 2 Kϕ 2 dx + µ Ω ϕ 2 Kϕ - 2 dx = - 2 λ 2 Ω (ϕ - 2 ) 2 < 0.
Claim 2 -N nod ⊆ N 0 . This is an immediate consequence of the equalities that define N nod . Indeed, since w = 0,

λ Ω w + 1 Kw 2 dx + µ Ω w 1 Kw + 2 dx = λ Ω |w + 1 | p+1 p |x| -α p dx + µ Ω |w + 2 | q+1 q |x| -β q dx > 0 and λ Ω w - 1 Kw 2 dx + µ Ω w 1 Kw - 2 dx = -λ Ω |w - 1 | p+1 p |x| -α p dx + µ Ω |w - 2 | q+1 q |x| -β q dx < 0.
Let us now study in detail the map θ, following a standard procedure. We recall that θ = θ w for w = (w 1 , w 2 ) ∈ X such that w ± 1 = 0 and w ± 2 = 0. After a few computations, we can rewrite it as

θ(t, s) = A + t γ + A -s γ -B + t 2 -B -s 2 + C 1 t λ s µ + C 2 t µ s λ , with A ± = p p + 1 Ω |w ± 1 | p+1 p |x| -α p dx + q q + 1 Ω |w ± 2 | q+1 q |x| -β q dx > 0. (2.8)
Our goal is to prove that θ w , for w ∈ N 0 , admits a unique critical point, which is a global maximum, attained at a pair with positive components. We divide the proof of this fact in several lemmas. Lemma 2.2. Let w ∈ N 0 and take θ = θ w . Then θ has a global maximum at some (t 0 , s 0 ) with t 0 , s 0 > 0. Moreover, every local maximum must have positive components.

Proof. Young's inequality yields

t λ s µ ≤ λt 2 2 + µs 2 2 and t µ s λ ≤ µt 2 2 + λs 2 2 ∀ t, s ≥ 0,
and thus

θ(t, s) ≤ A + t γ + A -s γ + 1 2 (λC 1 + µC 2 ) -B + t 2 + 1 2 (µC 1 + λC 2 ) -B -s 2 .
As w ∈ N 0 , the coefficients of the quadratic terms are negative, hence θ(t, s) → -∞ as |s| + |t| → +∞, and θ admits a global maximum (t 0 , s 0 ) with nonnegative components.

To conclude, let us prove that it cannot happen that either t 0 = 0 or s 0 = 0. This is an immediate consequence of the fact that

θ(t, s) = A + t γ -B + t 2 + s γ (A --B -s 2-γ ) + C 1 t λ s µ + C 2 t µ s λ > θ(t, 0)
for s > 0 sufficiently small. Analogously, θ(t, s) > θ(0, s) for t > 0 sufficiently small.

Lemma 2.3. If (t, s) is a critical point of θ with t, s > 0, then (t, s) is a non degenerate local maximum. Proof. If (t, s) is a critical point of θ, then 2B + = γA + t γ-2 + λC 1 t λ-2 s µ + µC 2 t µ-2 s λ , and 2B -= γA -s γ-2 + µC 1 t λ s µ-2 + λC 2 t µ s λ-2 . Thus θ tt (t, s) = γ(γ -1)A + t γ-2 -2B + + λ(λ -1)C 1 t λ-2 s µ + µ(µ -1)C 2 t µ-2 s λ = γ(γ -2)A + t γ-2 + λ(λ -2)C 1 t λ-2 s µ + µ(µ -2)C 2 t µ-2 s λ < 0, θ ss (t, s) = γ(γ -1)A -s γ-2 -2B -+ µ(µ -1)C 1 t λ s µ-2 + λ(λ -1)C 2 t µ s λ-2 = γ(γ -2)A -s γ-2 + µ(µ -2)C 1 t λ s µ-2 + λ(λ -2)C 2 t µ s λ-2 < 0,
and

θ ts (t, s) = λµC 1 t λ-1 s µ-1 + λµC 2 t µ-1 s λ-1 .
The proof is complete as soon as we prove that θ 2 ts < θ tt θ ss , which is equivalent to

λ 2 µ 2 C 2 1 t 2(λ-1) s 2(µ-1) + λ 2 µ 2 C 2 2 t 2(µ-1) s 2(λ-1) + 2λ 2 µ 2 C 1 C 2 <λ(λ -2)µ(µ -2)C 2 1 t 2(λ-1) s 2(µ-1) + λ(λ -2)µ(µ -2)C 2 2 t 2(µ-1) s 2(λ-1) + [λ 2 (λ -2) 2 + µ 2 (µ -2) 2 ]C 1 C 2 + γ 2 (γ -2) 2 A + A -t γ-2 s γ-2 + γ(γ -2)µ(µ -2)A + C 1 t λ+γ-2 s µ-2 + γ(γ -2)λ(λ -2)A -C 1 t λ-2 s µ+γ-2 + γ(γ -2)λ(λ -2)A + C 2 t µ+γ-2 s λ-2 + µ(µ -2)γ(γ -2)C 2 A -s λ+γ-2 t µ-2 .
(2.9)

Now λ + µ = 2 is equivalent to λ 2 µ 2 = λ(λ -2)µ(µ -2), which in turn implies that 2λ 2 µ 2 ≤ λ 2 (λ -2) 2 + µ 2 (µ -2) 2 .
Since the last five terms in (2.9) are positive, combining all of these we prove that the desired inequality holds true.

Proposition 2.4. Let w ∈ N 0 . The map θ w admits a unique critical point (t 0 , s 0 ) with t 0 , s 0 > 0, which corresponds to its unique global maximum. Moreover, the pair (t 0 , s 0 ) can be characterized as being the (unique) solution to the system:

2B + = γA + t γ-2 + λC 1 (s/t) µ + µC 2 (s/t) λ , 2B -= γA -s γ-2 + µC 1 (t/s) λ + λC 2 (t/s) µ . (2.10)
Proof. The only think left to prove is the uniqueness statement. One could argue as in [START_REF] Tavares | Existence and symmetry results for competing variational systems[END_REF]Proposition 3.2], but here instead we present a shorter argument, which makes use of the Poincaré-Hopf Theorem [START_REF] Milnor | Topology from the differentiable viewpoint[END_REF]. Recall that this result states that given M a smooth manifold with boundary, and X a vector field having only isolated zeros x i (i ∈ I) and such that it points outward on ∂M , then

χ(M ) = i I index(X, x i ),
where χ(•) is the Euler characteristic. Let (t 0 , s 0 ) be a global maximum as in Lemma 2.2. Take M to be a bounded regular set containg (t 0 , s 0 ), which coincides with the square [ε, L] × [ε, L] expect at the corners, where it is smooth. Then χ(M ) = 1, and X = -∇θ points outward on ∂M for sufficiently small ε and L large enough. Lemma 2.3 on the other hand implies that index(-∇θ, (s, t)) = 1 at each critical point (s, t), and thus we prove that (t 0 , s 0 ) is indeed the unique critical point of θ w .

Lemma 2.5. Let w ∈ N nod be such that I(w) = cnod . Then I (w) = 0.

Proof. We will argue as in [START_REF] De | Existence of nodal solutions for some nonlinear elliptic problems[END_REF]; see also [START_REF] Bartsch | Partial symmetry of least energy nodal solutions to some variational problems[END_REF][START_REF] Conti | Nehari's problem and competing species systems[END_REF].

Step 1 -Assume by contradiction that I (w) = 0. Then there exists v ∈ X such that I (w)v = -2. By continuity, there exists a small ε > 0 such that

I ((t λ w + 1 -s λ w - 1 , t µ w + 2 -s µ w - 2 ) + rv)v < -1 ∀ 0 ≤ r ≤ ε, |t -1|, |s -1| ≤ ε. Set D := [1 -ε, 1 + ε] × [1 -ε, 1 + ε].
We fix a smooth function η : D → [0, ε] such that η(1, 1) = ε and η = 0 on ∂D, and denote

h(t, s) = (h 1 (t, s), h 2 (t s )) := (t λ w + 1 -s λ w - 1 , t µ w + 2 -s µ w - 2 ) + η(t, s)v, H(t, s) = I (h(t, s))(λh + 1 (t, s), µh + 2 (t, s)), I (h(t, s))(λh - 1 (t, s), µh - 2 (t, s)) .
By possibly taking a smaller ε, we can insure by continuity that

h(t, s) ∈ N 0 ∀ (t, s) ∈ D.
Step 2 -We claim that there exists (t 0 , s 0 ) ∈ D such that H(t 0 , s 0 ) = (0, 0). To prove this, we use the classical Miranda's Theorem [START_REF] Miranda | Un'osservazione su un teorema di Brouwer[END_REF]. We will need to compute H on ∂D, where as η = 0,

H(t, s) = I (t λ w + 1 -s λ w - 1 , t µ w + 2 -s µ w - 2 )(λt λ w + 1 , µt µ w + 2 ) I (t λ w + 1 -s λ w - 1 , t µ w + 2 -s µ w - 2 )(λs λ w - 1 , µs µ w - 2 ) = t θ t (t, s) -s θ s (t, s) .
We have ∇θ(1, 1) = (0, 0), which tells us that

γA + -2B + + λC 1 + µC 2 = 0, γA --2B -+ µC 1 + λC 2 = 0. For s ∈ [1 -ε, 1 + ε] we have that, if t = 1 + ε, then θ t = γA + (1 + ε) γ-1 -2B + (1 + ε) + λC 1 (1 + ε) λ-1 s µ + µC 2 (1 + ε) µ-1 s λ ≤ γA + (1 + ε)[(1 + ε) γ-2 -1] < 0; while if t = 1 -ε θ t ≥ γA + (1 -ε)((1 -ε) γ-2 -1) > 0.
Analogously, for t ∈ [1 -ε, 1 + ε], we have

θ s < 0 for s = 1 + ε, θ s > 0 for s = 1 -ε
and the claim follows.

Conclusion -By the previous point, which shows that h(t 0 , s 0 ) ∈ N nod , it follows that cnod ≤I(h(t 0 , s 0 ))

=I(t λ 0 w + 1 -s λ 0 w - 1 , t µ 0 w + 2 -s µ 0 w - 2 ) + η(t0,s0) 0 I ((t λ 0 w + 1 -s λ 0 w - 1 , t µ 0 w + 2 -s µ 0 w - 2 ) + rv)v dr ≤θ w (t 0 , s 0 ) -η(t 0 , s 0 ) ≤ θ w (1, 1) -η(t 0 , s 0 ) = cnod -η(t 0 , s 0 ),
and so η(t 0 , s 0 ) = 0 and, in particular, θ w (t 0 , s 0 ) = θ w (1, 1). By the uniqueness of maximum provided by Proposition 2.4 we must have (t 0 , s 0 ) = (1, 1) while, by construction, η(1, 1) = ε > 0, a contradiction.

Our purpose in the remainder of this section is to prove the following result.

Theorem 2.6. The number cnod is attained by a function w ∈ N nod . Moreover, 

c nod = cnod = inf w∈N0 sup t,s>0 I(t λ w + 1 -s λ w - 1 , t µ w + 2 -s µ w - 2 ) > 0. ( 2 
I(t λ w + 1 -s λ w - 1 , t µ w + 2 -s µ w - 2 ). (2.12) 
So the only thing left to prove is that cnod is achieved. To this aim, we rely on an indirect argument. The difficulty of a direct approach is that the weak limit of a minimizing sequence of cnod does not belong necessarily to N 0 , and we cannot project it in N nod . Indeed, even if we can bound from below the norms of the positive and negative parts of a minimizing sequence, the weak convergence in X does not imply the weak convergence of the positive and negative part of the sequence. Observe also that the lack of regularity of the nodal Nehari set makes rather tricky the use of Ekeland's principle to build a Palais-Smale sequence from a minimizing sequence.

To overpass this difficulty, we regularize the problem by introducing the auxiliary functional I ε : X → R defined by

I ε (w 1 , w 2 ) = p p + 1 ε Ω |∇w 1 | p+1 p dx + Ω |w 1 | p+1 p |x| -α p dx + q q + 1 ε Ω |∇w 2 | q+1 q dx + Ω |w 2 | q+1 q |x| -β q dx - 1 2 Ω T w dx,
where ε > 0 and X := (W 1, p+1 p (Ω) × W 1, q+1 q (Ω)) ∩ X. Such a regularization is a standard approach to regularize non uniformly elliptic operators, such as the curvature operator, see for instance [START_REF] Temam | Solutions généralisées de certaines équations du type hypersurfaces minima[END_REF][START_REF] Ladyzhenskaya | Local estimates for the gradients of solutions to the simplest regularization of a class of nonuniformly elliptic equations[END_REF][START_REF] Bonheure | Pierpaolo Omari Classical and nonclassical solutions of a prescribed curvature equation[END_REF]. It is surprisingly useful in our context to regularize a zero order term. Actually, the main utility of this approach is that it somehow provides a regularized minimizing sequence which solves an approximating system. The key point is then that the regularization does not affect the geometry of the original functional, while the presence of the gradient terms give rise to Euler-Lagrange equations in which we can pass to the limit. For that, we will exploit the fact that X is dense in X.

Lemma 2.7. Let X = (W 1, p+1 p (Ω) × W 1, q+1 q (Ω)) ∩ X be endowed with the norm

(w 1 , w 2 ) = ∇w 1 p+1 p + ∇w 2 q+1 q + w 1 p+1 p , α p + w 2 q+1 q , β p .
Then X is a reflexive Banach space which is continuously embedded in W 1, p+1 p (Ω)× W 1, q+1 q (Ω). Moreover X is a dense subspace of X.

Proof. The first two statements are obvious. To prove the density of X in X, first observe that

T : L p+1 p (Ω) × L q+1 q (Ω) -→ L p+1 p (Ω, |x| -α p ) × L q+1 q (Ω, |x| -β q ), defined by T (f, g) = (f |x| α p+1 , g|x| β q+1 ), is an isometric isomorphism. For each δ > 0, fix ϕ δ ∈ C ∞ c (R N ) such that 0 ≤ ϕ δ ≤ 1, ϕ δ (x) = 1 if |x| ≥ 2δ and ϕ δ (x) = 0 if |x| ≤ δ. Then observe that A = {(f ϕ δ , gϕ δ ); f, g ∈ C ∞ c (Ω), δ > 0} is dense in L p+1 p (Ω) × L q+1 q (Ω) and that T (A) ⊂ X ⊂ X.
One can check easily that the functional I ε belongs to C 1 ( X), and

I ε (w)(ϕ, ψ) = ε Ω |∇w 1 | 1 p -1 ∇w 1 • ∇ϕ dx + Ω |w 1 | 1 p -1 w 1 ϕ|x| -α p dx + ε Ω |∇w 2 | 1 q -1 ∇w 2 • ∇ψ dx + Ω |w 2 | 1 q -1 w 2 ψ|x| -β q dx - Ω (ϕKw 2 + ψKw 1 ) dx,
for every (w 1 , w 2 ), (φ, ϕ) ∈ X. In particular, (w 1 , w 2 ) is a critical point of

I ε if and only if -εdiv(|∇w 1 | 1 p -1 ∇w 1 ) + |w 1 | 1 p -1 w 1 |x| -α p = Kw 2 -εdiv(|∇w 2 | 1 q -1 ∇w 2 ) + |w 2 | 1 q -1 w 2 |x| -α p = Kw 1 (2.13) in X * . Define now N 0 = w ∈ X : λ Ω w + 1 Kw 2 dx + µ Ω w 1 Kw + 2 dx > 0 λ Ω w - 1 Kw 2 dx + µ Ω w 1 Kw - 2 dx < 0 and, for each ε > 0, N ε nod = {(w 1 , w 2 ) ∈ X : w ± 1 ≡ 0, w ± 2 ≡ 0 and I ε (w)(λw + 1 , µw + 2 ) = I ε (w)(λw - 1 , µw - 2 ) = 0}. Observe that N ε nod ⊂ N 0 ⊂ N 0 .
In the statement of the next lemma and its proof, we keep the definitions of A ± and B ± as given in (2.8) and (2.7).

Lemma 2.8. Let w ∈ N 0 . Then the map R + × R + → R defined by

(t, s) → I ε (t λ w + 1 -s λ w - 1 , t µ w + 2 -s µ w -
2 ) admits a unique critical point (t 0 , s 0 ), which is a global maximum. Moreover, the pair (t 0 , s 0 ) can be characterized univocally by the condition

(t λ w + 1 -s λ w - 1 , t µ w + 2 -s µ w - 2 ) ∈ N ε nod
or equivalently through the system

               2B + = γ A + + ε p p + 1 Ω |∇w + 1 | p+1 p + ε q q + 1 Ω |∇w + 2 | q+1 q t γ-2 +λC 1 (s/t) µ + µC 2 (s/t) λ , 2B -= γ A -+ ε p p + 1 Ω |∇w - 1 | p+1 p + ε q q + 1 Ω |∇w - 2 | q+1 q s γ-2 +µC 1 (t/s) λ + λC 2 (t/s) µ .
(2.14)

Proof. Since the functional I ε has exactly the same shape and geometry of I, it is enough to repeat the proofs of Lemmas 2.1-2.3 and of Proposition 2.4, replacing only N 0 and N nod by N 0 and N ε nod respectively, and A ± by

A ± + ε p p + 1 Ω |∇w ± 1 | p+1 p + ε q q + 1 Ω |∇w ± 2 | q+1 q .
Define the levels

c ε nod = inf{I ε (w) : w ∈ X, w ± 1 , w ± 2 ≡ 0, I ε (w) = 0} and cε nod = inf N ε nod I ε .
Lemma 2.9. Given ε > 0, let w ∈ N ε nod be such that I ε (w) = cε nod . Then I ε (w) = 0.

Proof. The proof follows the lines of that of Lemma 2.5 with obvious changes as in the proof of Lemma 2.8. Proposition 2.10. Given ε > 0, the number c ε nod is attained by a function w ε ∈ N ε nod . Moreover, we have

c ε nod = cε nod = inf w∈ N0 sup t,s>0 I(t λ w + 1 -s λ w - 1 , t µ w + 2 -s µ w - 2 ) > 0.
(2.15)

Proof.

Step 1 -N ε nod is not empty for every ε > 0. This clearly follows from Lemma 2.8.

Step 2 -boundedness and convergence of minimizing sequences. Let (w n ) n ⊂ N ε nod be a minimizing sequence for cε nod . Denote, by simplicity,

a n = Ω |w 1,n | p+1 p |x| -α p dx, a ± n = Ω |w ± 1,n | p+1 p |x| -α p dx and b n = Ω |w 2,n | q+1 q |x| -β q dx, b ± n = Ω |w ± 2,n | q+1 q |x| -β q dx.
One has

λ a + n + ε Ω |∇w + 1,n | p+1 p dx + µ b + n + ε Ω |∇w + 2,n | q+1 q dx = λ Ω w + 1,n Kw 2,n dx + µ Ω w + 2,n Kw 1,n dx, (2.16) λ a - n + ε Ω |∇w - 1,n | p+1 p dx + µ b - n + ε Ω |∇w - 2,n | q+1 q dx = -λ Ω w - 1,n Kw 2,n dx -µ Ω w - 2,n Kw 1,n dx. (2.17)
By adding (2.16) and (2.17), we obtain

λ a n + ε Ω |∇w 1,n | p+1 p dx + µ b n + ε Ω |∇w 2,n | q+1 q dx = 2 Ω w 1,n Kw 2,n dx
and we deduce that

I ε (w n ) = (pq -1)p (p + 1)(2pq + p + q) a n + ε Ω |∇w 1,n | p+1 p dx + (pq -1)q (q + 1)(2pq + p + q) b n + ε Ω |∇w 2,n | q+1 q dx > 0. (2.18)
Observe that this shows that I ε is positive on N ε nod . Therefore (w n ) n is bounded in X, and up to a subsequence, we have that w n w weakly in X, strongly in L p+1 p (Ω)×L q+1 q (Ω). In particular, (w

± 1,n , w ± 2,n ) → (w ± 1 , w ± 2 ) in L p+1 p (Ω)×L q+1 q (Ω).
Step 3 -w ∈ N 0 . We need to show that

λ Ω w + 1 Kw 2 dx + µ Ω w 1 Kw + 2 dx > 0 and λ Ω w - 1 Kw 2 dx + µ Ω w 1 Kw - 2 dx < 0.
From Step 2 and the continuity of K, we infer that the right-hand side in (2. [START_REF] Conti | Nehari's problem and competing species systems[END_REF]) and (2.17) do converge. We now show that the left-hand side in (2.16) and (2.17) are bounded away from zero. Starting from (2.16), we get

λa + n + µb + n ≤ λ Ω w + 1,n Kw + 2,n dx + µ Ω w + 2,n Kw + 1,n dx = 2 Ω w + 1,n Kw + 2,n ,
which by (2.3) yields, for any δ > 0,

λa + n + µb + n ≤ c w 1,n p+1 p , α p w 2,n q+1 q , β q ≤ δa + n + C δ (b + n ) q(p+1) q+1 .
Since q(p + 1)/(q + 1) > 1, we deduce that b + n ≥ δ > 0 for some δ > 0. The inequalities b - n ≥ δ > 0, a ± n ≥ δ > 0 follow by arguing in a similar way.

Conclusion -By Lemma 2.8, we can take (t 0 , s 0 ) such that

(t λ 0 w + 1 -s λ 0 w - 1 , t µ 0 w + 2 -s µ 0 w - 2 ) ∈ N ε nod .
By the uniqueness assertion in the same lemma and the weak lower semicontinuity of the norm, we infer that

cε nod ≤ I ε (t λ 0 w + 1 -s λ 0 w - 1 , t µ 0 w + 2 -s µ 0 w - 2 ) ≤ lim inf I ε (t λ 0 w + 1,n -s λ 0 w - 1,n , t µ 0 w + 2,n -s µ 0 w - 2,n ) ≤ lim inf I ε (w n ) = cε nod . Hence (t λ 0 w + 1 -s λ 0 w - 1 , t µ 0 w + 2 -s µ 0 w - 2 ) ∈ N ε nod achieves cε nod .
At last, the characterization (2.15) of the critical level can be proved in a straightforward way.

Our strategy to prove Theorem 2.6 now essentially consists in passing to the limit in (2.13) when ε → 0. As a first step, we prove the convergence of the critical level, namely cε nod → cnod as ε → 0. We start with two preliminary lemmas. Lemma 2.11. Take (w 1 , w 2 ) ∈ N 0 ⊂ N 0 and let (t 0 , s 0 ) be the unique pair such that t 0 , s 0 > 0, (t λ 0 w + 1 -s λ 0 w - 1 , t µ 0 w + 2 -s µ 0 w - 2 ) ∈ N nod while, for each ε > 0, let (t ε , s ε ) be the unique pair such that

t ε , s ε > 0, (t λ ε w + 1 -s λ ε w - 1 , t µ ε w + 2 -s µ ε w - 2 ) ∈ N ε nod . Then (t ε , s ε ) → (t 0 , s 0 ) as ε → 0.
Proof. The pair (t ε , s ε ) solves (2.14), so that

2B + t 2-γ ε ≥ γA + and 2B -s γ-2 ε ≥ γA -.
Since 2 -γ > 0, we infer that t ε , s ε ≥ a > 0 for some constant a independent of ε.

For the sake of contradiction, assume that

{(t ε , s ε )} is unbounded as ε → 0. Case 1 -there exists b > 0 such that a ≤ s ε ≤ b or a ≤ t ε ≤ b for ε ∈ (0, 1].
In the first alternative, taking the limit in the first equation of (2.14), we obtain 2B + = 0 which is a contradiction. In the second alternative, taking the limit in the second equation of (2.14) leads to 2B -= 0 which is still a contradiction.

Case 2 -both t ε , s ε → +∞ as ε → 0. We divide this case in two subcases.

Case 2.1 -t ε /s ε → +∞ or t ε /s ε → 0. This case leads again to either 2B + = 0 or 2B -= 0.

Case 2.2 -t ε /s ε → l ∈ R + . Taking the limit in (2.14) gives

2B + = λC 1 (1/l) µ + µC 2 (1/l) λ 2B -= µC 1 l λ + λC 2 l µ . If l ≤ 1, then 2B -≤ µC 1 + λC 2 whereas 2B + < λC 1 + µC 2 if l > 1.
In both cases, we obtain an inequality which contradicts the fact that (w 1 , w 2 ) ∈ N 0 .

We now conclude that, up to a subsequence, t ε → t > 0, s ε → s > 0, which satisfy (2.10). Hence, the uniqueness assertion in Proposition 2.4 implies ( t, s) = (t 0 , s 0 ).

We just proved the continuity of the projection on N ε nod when ε → 0. We will need also the continuity of the projection on N nod with respect to strong convergence in X.

Lemma 2.12. Take (w 1 , w 2 ) ∈ N 0 and (w 1,n , w 2,n ) ∈ N 0 such that

(w 1,n , w 2,n ) → (w 1 , w 2 ) in X, as n → ∞.
Let (t n , s n ) and (t 0 , s 0 ) be the unique pairs of positive components such that

(t λ n w + 1,n -s λ n w - 1,n , t µ n w + 2,n -s µ n w - 2,n ), (t λ 0 w + 1 -s λ 0 w - 1 , t µ 0 w + 2 -s µ 0 w - 2 ) ∈ N nod Then (t n , s n ) → (t 0 , s 0 ) as n → ∞.
Proof. We have

2B + n = γA + n t γ-2 n + λC 1,n (s n /t n ) µ + µC 2,n (s n /t n ) λ , 2B - n = γA - n s γ-2 n + µC 1,n (t n /s n ) λ + λC 2,n (t n /s n ) µ .
From the strong convergence in X and the continuity of K, we deduce that

A ± n := p p + 1 Ω |w ± 1,n | p+1 p |x| -α p dx + q q + 1 Ω |w ± 2,n | q+1 q |x| -β α dx → p p + 1 Ω |w ± 1 | p+1 p |x| -α p dx + q q + 1 Ω |w ± 2 | q+1 q |x| -β α dx =: A ± > 0, (recall that w ± i ≡ 0, i = 1, 2 whenever w ∈ N 0 ), B ± n := Ω w ± 1,n Kw ± 2,n dx → Ω w ± 1,n Kw ± 2,n dx =: B ± > 0 and C 1,n := Ω w + 1,n Kw - 2,n dx → Ω w + 1 Kw - 2 dx =: C 1 > 0, C 2,n := Ω w + 2,n Kw - 1,n dx → Ω w + 2 Kw - 1 dx =: C 2 > 0.
Using Proposition 2.4 and arguing exactly as in the proof of Lemma 2.11, we can infer that (t n , s n ) n is a bounded sequence which actually converges to (t 0 , s 0 ).

We can now turn to the convergence of the critical level which implies that the extension of the map R + ε → cε nod by c0 nod = cnod is right-continuous at zero. Proposition 2.13. We have cε nod → cnod , as ε → 0. Proof. We deal successively with the upper and lower-semicontinuity.

Step 1 -Upper semi-continuity.

Fix w ∈ N 0 . Since X is dense in X and N 0 is open, there exists (w n ) n ⊂ N 0 such that w n → w strongly in X. Given ε > 0 and n ∈ N, according to Lemma 2.8, there exist unique t n,ε , s n,ε > 0 such that

(t λ n,ε w + 1,n -s λ n,ε w - 1,n , t µ n,ε w + 2,n -s µ n,ε w - 2,n ) ∈ N ε nod . Therefore, we have cε nod ≤I ε (t λ n,ε w + 1,n -s λ n,ε w - 1,n , t µ n,ε w + 2,n -s µ n,ε w - 2,n ) (2.20) =I(t λ n,ε w + 1,n -s λ n,ε w - 1,n , t µ n,ε w + 2,n -s µ n,ε w - 2,n ) + εt γ n,ε p p + 1 Ω |∇w + 1,n | p+1 p + q q + 1 Ω |∇w + 2,n | q+1 q + εs γ n,ε p p + 1 Ω |∇w - 1,n | p+1 p + q q + 1 Ω |∇w - 2,n | q+1 q
. Now observe that by Lemma 2.11, for each fixed n ∈ N, we have

(t n,ε , s n,ε ) → (t n,0 , s n,0 ) as ε → 0,
where t n,0 , s n,0 > 0 is the unique pair of positive components such that (t λ n,0 w + 1,n -s λ n,0 w - 1,n , t µ n,0 w + 2,n -s µ n,0 w - 2,n ) ∈ N nod . Taking the limit in (2.20) as ε → 0, we obtain lim sup

ε→0 cε nod ≤ I(t λ n,0 w + 1,n -s λ n,0 w - 1,n , t µ n,0 w + 2,n -s µ n,0 w - 2,n ).
On the other hand, by Lemma 2.12, we have

(t n,0 , s n,0 ) → (t 0 , s 0 ) as n → ∞,
where t 0 , s 0 > 0 is the unique pair of positive components such that

(t λ 0 w + 1 -s λ 0 w - 1 , t µ 0 w + 2 -s µ 0 w - 2 ) ∈ N nod . Hence we deduce that lim sup ε→0 cε nod ≤ I(t λ 0 w + 1 -s λ 0 w - 1 , t µ 0 w + 2 -s µ 0 w - 2 ) = sup t,s>0 I(t λ w + 1 -s λ w - 1 , t µ w + 2 -s µ w - 2 ).
Since this holds for every w ∈ N 0 , (2.12) implies lim sup

ε→0 cε nod ≤ inf w∈N0 sup t,s>0 I(t λ w + 1 -s λ w - 1 , t µ w + 2 -s µ w - 2 ) = cnod .
Step 2 -Lower semi-continuity.

Take

w ε ∈ N ε nod such that I ε (w ε ) = cε nod and I ε (w ε ) = 0. Since N ε nod ⊂ N 0 ⊂ N 0 , there exists unique (t ε , s ε ) ∈ R + × R + such that (t λ ε w + 1,ε -s λ ε w - 1,ε , t µ ε w + 2,ε -s µ ε w - 2,ε ) ∈ N nod Therefore, we have cnod ≤ I(t λ ε w + 1,ε -s λ ε w - 2,ε , t µ ε w + 2,ε -s µ ε w - 2,ε ) (2.21) ≤ I(t λ ε w + 1,ε -s λ ε w - 2,ε , t µ ε w + 2,ε -s µ ε w - 2,ε ) + εt γ ε p p + 1 Ω |∇w + 1,ε | p+1 p + q q + 1 Ω |∇w + 2,ε | q+1 q + εs γ ε p p + 1 Ω |∇w - 1,ε | p+1 p + q q + 1 Ω |∇w - 2,ε | q+1 q = I ε (t λ ε w + 1,ε -s λ ε w - 2,ε , t µ ε w + 2,ε -s µ ε w - 2,ε ) ≤ sup t,s>0 I ε (t λ w + 1,ε -s λ w - 2,ε , t µ w + 2,ε -s µ w - 2,ε ) = I ε (w ε ) = cε nod .
Consider now the family of approximating minimizers

W ε := {(w ε , ε) ∈ N ε nod × R + | I ε (w 1,ε , w 2,ε ) = cε nod }.
Our subsequent step is to prove that, given a sequence (ε n ) n converging to zero and a sequence (w εn ) n such that (w εn , ε n ) ∈ W εn , (w εn ) n converges strongly in X and achieves cnod .

Arguing exactly as in the proof of Proposition 2.10, we infer that

I ε (w ε ) = (pq -1)p (p + 1)(2pq + p + q) Ω |w 1,ε | p+1 p |x| -α p dx + ε Ω |∇w 1,ε | p+1 p + (pq -1)q (q + 1)(2pq + p + q) Ω |w 2,ε | 1+1 1 |x| -β q dx + ε Ω |∇w 2,ε | q+1 q
.

Combining this identity with Proposition 2.13, we deduce the existence of C > 0 such that sup

ε∈(0,1] Ω |w 1,ε | p+1 p |x| -α p dx, Ω |w 2,ε | q+1 q |x| -β q ≤ C. (2.22) 
Moreover, arguing as in Step 2 of Proposition 2.10, we deduce that inf

ε∈(0,1] Ω |w ± 1,ε | p+1 p |x| -α p dx, Ω |w ± 2,ε | q+1 q |x| -β q dx ≥ δ > 0, (2.23) 
together with the lower estimates

λ Ω w + 1,ε Kw 2,ε dx + µ Ω w + 2,ε Kw 1,ε dx ≥ 2 δ, (2.24) 
-λ Ω w - 1,ε Kw 2,ε dx -µ Ω w - 2,ε Kw 1,ε dx ≥ 2 δ, (2.25) 
which hold for every ε ∈ (0, 1].

Next we prove that the gradient terms disappear when taking the limit in

I ε (w ε ) as ε → 0. Proposition 2.14. Let (w ε , ε) ∈ W ε . We have max ε Ω |∇w 1,ε | p+1 p , ε Ω |∇w 2,ε | q+1 q → 0, as ε → 0.
Proof. From the inequalities in (2.21), we actually deduce that lim ε→0

I(t λ ε w + 1,ε -s λ ε w - 2,ε , t µ ε w + 2,ε -s µ ε w - 2,ε ) = cnod , lim ε→0 εt γ ε p p + 1 Ω |∇w + 1,ε | p+1 p + q q + 1 Ω |∇w + 2,ε | q+1 q = 0,
and

lim ε→0 εs γ ε p p + 1 Ω |∇w - 1,ε | p+1 p + q q + 1 Ω |∇w - 2,ε | q+1 q = 0.
The conclusion is an obvious consequence of the following claim.

Claim -t ε , s ε → 0. We argue as in the proof of Lemmas 2.11 and 2.12, though we proceed with extra care since we have no information yet about the convergence of (w ε ) in X. The pair (t ε , s ε ) satisfies

2t 2-γ ε B + ε ≥ γA + ε 2s 2-γ ε B - ε ≥ γA - ε (2.26) with A ± ε := p p + 1 Ω |w ± 1,ε | p+1 p |x| -α p dx + q q + 1 Ω |w ± 2,ε | q+1 q |x| -β α dx and B ± ε := Ω w ± 1,ε Kw ± 2,ε dx.
From (2.22), we deduce the existence of w, (f + , g + ), (f -, g -) ∈ X such that, up to a subsequence, w ε X w,

w ± 1,ε f ± ≥ 0, weakly in L p+1 p (Ω, |x| -α p ) and w ± 2,ε g ± ≥ 0, weakly in L q+1 q
(Ω, |x| -β q ). Taking the limit as ε → 0 in (2.24)-(2.25), we obtain

λ Ω f + K(g + -g -) dx + µ Ω g + K(f + -f -) dx ≥ 2 δ, -λ Ω f -K(g + -g -) dx -µ Ω g -K(f + -f -) dx ≥ 2 δ,
and it is clear that f ± , g ± ≡ 0. Going back to (2.26), we see that the lower estimate (2.23) yields A ± ε ≥ δ > 0, where δ is independent of ε. Since moreover

B ± ε → Ω f ± Kg ± dx > 0,
we have that t ε , s ε → 0, as claimed.

We are now ready to conclude this section by proving its main result.

Proof of Theorem 2.6. The key point is the next claim.

Claim -up to a subsequence, w ε → w strongly in X for some w ∈ X.

We first deduce from (2.22) the existence of w ∈ X, g 1 ∈ L p+1 (Ω, |x| -α p ), g 2 ∈ L q+1 (Ω, |x| -β q ) such that w ε w weakly in X,

|w 1,ε | 1 p -1 w 1,ε g 1 weakly in L p+1 (Ω, |x| -α p ) and |w 2,ε | 1 q -1 w 2,ε g 2 weakly in L q+1 (Ω, |x| -β q
). In particular, taking ε → 0 in the approximating system (2.13) and using Proposition 2.14, we conclude that

g 1 |x| -α p = Kw 2 , g 2 |x| -β q = Kw 1 . (2.27)
This implies in particular that

g 1 |x| -α p ∈ W 2, q+1 q (Ω) ∩ W 1, q+1 q 0 (Ω) ⊂ L p+1 (Ω)
and

g 2 |x| -β q ∈ W 2, p+1 q (Ω) ∩ W 1, p+1 q 0 (Ω) ⊂ L q+1 (Ω).
Writing

g 1 = |f 1 | 1 p -1 f 1 , with f 1 = |g 1 | p-1 g 1 , we observe that f 1 ∈ L p+1 p (Ω, |x| -α q ) because Ω |f 1 | p+1 p |x| -α p dx = Ω |g 1 | p+1 |x| -α p dx < ∞.
Now take δ > 0 and fix

h δ ∈ W 1, p+1 p (Ω) ∩ L p+1 p (Ω, |x| -α p ) such that f 1 -h δ p+1 p , α p < δ.
(2.28)

Using the test function w 1,ε -f 1 in the equation

-εdiv(|∇w 1,ε | 1 p -1 ∇w 1,ε ) + (|w 1,ε | 1 p -1 w 1,ε -|f 1 | 1 p -1 f 1 )|x| -α p = Kw 2,ε -Kw 2 ,
we deduce that

Ω (|w 1,ε | 1 p -1 w 1,ε -|f 1 | 1 p -1 f 1 )(w 1,ε -h δ )|x| -α p dx = -ε Ω |∇w 1,ε | 1 p -1 ∇w 1,ε • ∇(w 1,ε -h δ ) dx + Ω (Kw 2,ε -Kw 2 )(w 1,ε -h δ ) dx.
Proposition 2.14, the upper bounds (2.22) and the compactness of the operator K now imply that the right hand side of the last equation converges to 0 as ε → 0. Consequently, we can take ε > 0 such that 

Ω (|w 1,ε | 1 p -1 w 1,ε -|f 1 | 1 p -1 f 1 )(w 1,ε -h δ )|x| -α p dx < δ,
Ω (|w 1,ε | 1 p -1 w 1,ε -|f 1 | 1 p -1 f 1 )(w 1,ε -f 1 )|x| -α p dx ≤ Ω (|w 1,ε | 1 p -1 w 1,ε -|f 1 | 1 p -1 f 1 )(w 1,ε -h δ )|x| -α p dx + Ω (|w 1,ε | 1 p -1 w 1,ε -|f 1 | 1 p -1 f 1 )(h δ -f 1 )|x| -α p dx ≤ δ + h δ -f 1 p+1 p , α p |w 1,ε | 1 p -1 w 1,ε -|f 1 | 1 p -1 f 1 p+1, α p ≤ δ +
Cδ, for some C > 0 (independent of ε and δ). We therefore conclude that

lim ε→0 Ω (|w 1,ε | 1 p -1 w 1,ε -|f 1 | 1 p -1 f 1 )(w 1,ε -f 1 )|x| -α p dx = 0. (2.30)
Using the classical pointwise estimate (|ξ|

1 p -1 ξ -|η| 1 p -1 η) • (ξ -η) ≥ 2 p-1 p |ξ -η| p+1 p if 0 < p < 1,
see for instance [START_REF] Simon | Régularité de la solution d'une équation non linéaire dans R N[END_REF], we easily deduce from (2.30) that w 1,ε → f 1 = w 1 strongly in L p+1 p (Ω, |x| -α p ) when p ≤ 1. In the complementary case p > 1, using the pointwise estimate (|ξ|

1 p -1 ξ -|η| 1 p -1 η) • (ξ -η) ≥ 1 p |ξ -η| 2 (|ξ| + |η|) 1 p -1 if p ≥ 1,
see again [START_REF] Simon | Régularité de la solution d'une équation non linéaire dans R N[END_REF], we observe that

Ω |w 1,ε -f 1 | p+1 p |x| -α p dx = Ω |w 1,ε -f 1 | p+1 p (|w 1,ε | + |f 1 |) p 2 -1 2p 2 (|w 1,ε | + |f 1 |) p 2 -1 2p 2 |x| -α p dx ≤ Ω |w 1,ε -f 1 | 2 (|w 1,ε + |f 1 |) 1-1 p |x| -α p dx p+1 2p Ω (|w 1,ε | + |f 1 |) p+1 p |x| -α p dx p-1 2p ≤ C Ω (|w 1,ε | 1 p -1 w 1,ε -|f 1 | 1 p -1 f 1 )(w 1,ε -f 1 )|x| -α p dx p+1 2p
and we reach the same conclusion as for p ≤ 1. Obviously, the convergence of the component w 2,ε follows in an analogous way.

The previous claim guarantees that w ε → w with w ± 1 , w ± 2 ≡ 0 since (2.23) now implies min

Ω |w ± 1 | p+1 p |x| -α p dx, Ω |w ± 2 | q+1 q |x| -β q dx ≥ δ > 0.
From Propositions 2.13 and 2.14 together with the strong convergence in X, we conclude that I(w) = cnod . Moreover, the equations in (2.27) tells that w is actually a critical point of I so that we have indeed proved that cnod is achieved by a critical point of the functional I.

At last, the characterization (2.11) of the critical level follows in a straightforward way as previously mentioned.

Least energy nodal solutions are foliated Schwarz symmetric

Let Ω be a bounded radial domain centred at the origin, namely a ball or an annulus. The purpose of this section is to prove Theorem 1.2 via polarization methods, in the spirit of [START_REF] Bartsch | Partial symmetry of least energy nodal solutions to some variational problems[END_REF][START_REF] Tavares | Existence and symmetry results for competing variational systems[END_REF]. First, we introduce some definitions and recall some known results. Define the sets

H 0 = {H ⊂ R N : H is a closed half-space in R N with 0 ∈ ∂H} and, for p = 0, H 0 (p) = {H ∈ H 0 : p ∈ int(H)}.
For each H ∈ H 0 we denote the reflection in R N with respect to the hyperplane ∂H by σ H : R N → R N , and define the polarization of a function u : Ω → R with respect to H ∈ H 0 by

u H (x) = max{u(x), u(σ H (x))} x ∈ H ∩ Ω, min{u(x), u(σ H (x))} x ∈ Ω\H.
As far as we know the link between polarization and foliated Schwarz symmetry appeared first in [START_REF] Smets | Partial symmetry and asymptotic behavior for some elliptic variational problems[END_REF]; cf. [START_REF] Bartsch | Partial symmetry of least energy nodal solutions to some variational problems[END_REF]Theorem 2.6] for further results about the foliated Schwarz symmetry of least energy solutions of some second order elliptic equations with radial data. We recall from [START_REF] Brock | Symmetry and monotonicity of solutions to some variational problems in cylinders and annuli[END_REF]Lemma 4.2], see also [START_REF] Weth | Symmetry of solutions to variational problems for nonlinear elliptic equations via reflection methods[END_REF]Proposition 2.7], the following equivalent characterization of foliated Schwarz symmetry which involves polarization.

Proposition 3.1. Let u : Ω → R be a continuous function and take p ∈ ∂B 1 (0). Then the following statements are equivalent: i) u is foliated Schwarz symmetric with respect to p; ii) u H (x) = u(x) ∀ x ∈ Ω ∩ H, whenever H ∈ H 0 (p).

Moreover, the next lemma collects some known properties about polarization; cf. [START_REF] Weth | Symmetry of solutions to variational problems for nonlinear elliptic equations via reflection methods[END_REF]Lemma 3.1] for the first property and [5, Lemma 2.1] for the second. Lemma 3.2. Let u : Ω → R be a measurable function and

H ∈ H 0 . i) If F : Ω × R → R is a continuous function such that F (x, t) = F (y, t) for every x, y ∈ Ω such that |x| = |y| and t ∈ R and Ω |F (x, u(x))| dx < +∞, then Ω F (x, u H ) dx = Ω F (x, u) dx. ii) (u H ) + = (u + ) H , (u H ) -= -(-u -) H .
Observe that the second statement of the previous result implies that:

(au + -bu -) H = a(u H ) + -b(u H ) -, ∀ a, b > 0. (3.1)
Finally, before we head to the proof of Theorem 1.2, we recall the following key estimate from [9, Lemma 3.7]. Lemma 3.3. Given u ∈ L p+1 p (Ω), v ∈ L q+1 q (Ω) and any H ∈ H 0 , we have that

Ω uKv Ω u H K(v H ).
We are now ready to prove our second main result.

Proof of Theorem 1.2. Let (u, v) be a least energy nodal solution of (1.1) and take the corresponding pair (w 1 , w 2 ) ∈ X. Fix any r > 0 such that ∂B r (0) ⊂ Ω and take p ∈ ∂B 1 (0) such that w 1 (rp) = max ∂Br(0) w 1 . Given H ∈ H 0 (p), we aim at proving that (w 1 ) H (x) = w 1 (x) and (w 2 )

H (x) = w 2 (x) for x ∈ Ω ∩ H. As 0 < λ Ω w + 1 Kw 2 dx + µ Ω w 1 Kw + 2 dx ≤ λ Ω (w + 1 ) H K(w 2 ) H dx + µ Ω (w 1 ) H K(w 2 ) + H dx and 0 < λ Ω (-w - 1 )Kw 2 dx + µ Ω w 1 K(-w - 2 ) dx ≤ λ Ω (-w - 1 ) H K(w 2 ) H dx + µ Ω (w 1 ) H K(-w - 2 ) H dx = -λ Ω ((w 1 ) H ) -K(w 2 ) H dx -µ Ω (w 1 ) H K((w 2 ) H ) -dx
then ((w 1 ) H , (w 2 ) H ) ∈ N 0 , and from Proposition 2.4 we know there exist t 0 , s 0 > 0 such that (t λ 0 (w 1 ) + H -s λ 0 ((w 1 ) H ) -, t µ 0 (w 2 ) + H -s µ 0 ((w 2 ) H ) -) ∈ N nod . Thus, by putting together Lemma 3.3 with (3.1) and with the uniqueness of global maximum,

c nod ≤ I(t λ 0 (w 1 ) + H -s λ 0 ((w 1 ) H ) -, t µ 0 (w 2 ) + H -s µ 0 ((w 2 ) H ) -) = I((t λ 0 w + 1 -s λ 0 w - 1 ) H , (t µ 0 w + 2 -s µ 0 w - 2 ) H ) ≤ I(t λ 0 w + 1 -s λ 0 w - 1 , t µ 0 w + 2 -s µ 0 w - 2 ) = θ w (t 0 , s 0 ) ≤ sup t,s>0 θ w (t, s) = θ w (1, 1) = I(w) = c nod .
Thus (t 0 , s 0 ) = (1, 1), ((w 1 ) H , (w 2 ) H ) ∈ N nod and I((w 1 ) H , (w 2 ) H ) = c nod . By Lemma 2.5, I ((w 1 ) H , (w 2 ) H ) = 0. Going bak to (u, v), we have that both this pair as well as (u H , v H ) solve (1.1). Thus

-∆(u H -u) = |x| β (|v H | q-1 v H -|v| q-1 v), -∆(v H -v) = |x| α (|u H | p-1 u H -|u| q-1 u), (3.2) in Ω ∩ H, and u H -u = v H -v = 0 on ∂Ω ∪ (Ω ∩ ∂H). As v H ≥ v in Ω ∩ H, then -∆(u H -u) ≥ 0
and by the maximum principle we have that either u H ≡ u or u H > u. Since u H (rp) = u(rp), then u H ≡ u in Ω ∩ H. Going back to (3.2), we have -∆(v H -v) = 0, and thus also v H ≡ v.

Symmetry breaking

We start by proving Theorem 1.5.

Proof of Theorem 1.5. Multiplying the first equation of (1.1) by u, the second of (1.1) by v and integrating both gives

Ω |∇u| 2 dx = Ω |v| q-1 vu|x| β dx ≤ Ω |v| q+1 |x| β dx q q+1 Ω |u| q+1 |x| β dx 1 q+1
and

Ω |∇v| 2 dx = Ω |u| q-1 uv|x| β dx ≤ Ω |u| q+1 |x| β dx q q+1 Ω |v| q+1 |x| β dx 1 q+1
.

Multiplying the first equation of (1.1) by v, the second of (1.1) by u and integrating both gives

Ω ∇u • ∇v dx = Ω |v| q+1 |x| β dx = Ω |u| q+1 |x| β dx.
Putting these estimates together, we infer that

Ω |∇u| 2 dx + Ω |∇v| 2 dx ≤ 2 Ω ∇u • ∇v dx, which obviously implies u = v.
Remember that for the single equation

-∆u = |u| q-1 u, in Ω, u = 0 on ∂Ω,
it is known, cf. [1, Theorem 1.3], that any least energy nodal solution is non radial when Ω ⊂ R N , N ≥ 2, is either a ball or an annulus centred at the origin. We will show that when (p, q) is close to some couple (q 0 , q 0 ), and (α, β) is close to (0, 0), this property is also true. Take q 0 satisfying q 0 > 1 such that q

0 + 1 < 2N/(N -2) if N ≥ 3, (4.1) 
and δ 0 such that q 0 -δ 0 > 1 and

q 0 + 1 + δ 0 < 2N/(N -2) if N ≥ 3, (4.2) 
that is, such that the square [q 0 -δ, q 0 +δ 0 ] 2 is contained in the region of the points (p, q) such that (H) holds. The proof of Theorem 1.4 consists in doing some asymptotic estimates of the least energy nodal solutions and levels as p, q → q 0 and α, β → 0, combined with the known fact that, at the diagonal point (q 0 , q 0 ) and α = β = 0, least energy nodal solutions are non radial. Having this in mind, let us introduce some notations. Given (p, q) satisfying (H), α, β ≥ 0, we denote by c p,q,α,β nod the least energy nodal level of (1.1), and by E p,q,α,β its associated energy (1.2). We will also use the variational framework introduced in Section 2, denoting by I p,q,α,β the energy functional (2.5). Recall that E p,q,α,β (u, v) = I p,q,α,β (w 1 , w 2 ) at critical points, under the relation

(u, v) := (|x| -α p |w 1 | 1 p -1 w 1 , |x| -β q |w 2 | 1 q -1 w 2 ).
Finally, recall the characterizations (cf. Theorem 2.6): c p,q,α,β nod = inf N p,q,α,β nod I p,q,α,β = inf w∈N p,q,α,β 0 sup t,s>0

I p,q,α,β (t λ w + 1 -s λ w - 1 , t µ w + 2 -s µ w - 2 ), where λ = λ(p, q) := 2p(q + 1) p + q + 2pq , µ = µ(p, q) := 2q(p + 1) p + q + 2pq , and N p,q,α,β nod = (w 1 , w 2 ) ∈ X p,q,α,β : w ± 1 ≡ 0, w ± 2 ≡ 0 and I p,q,α,β (w)(λw + 1 , µw + 2 ) = I p,q,α,β (w)(λw - 1 , µw - 2 ) = 0 , N p,q,α,β 0 := w ∈ X p,q,α,β :

λ Ω w + 1 Kw 2 dx + µ Ω w 1 Kw + 2 dx > 0 λ Ω w - 1 Kw 2 dx + µ Ω w 1 Kw - 2 dx < 0
, with X p,q,α,β = L p+1 p (Ω, |x| -α p ) × L q+1 q (Ω, |x| -β q ). For simplicity, when p = q and α = β = 0 we will use the notation c p nod for c p,p,0,0 nod . First we prove an uniform lower bound for the positive and negative parts of elements of N p,q,α,β nod . Lemma 4.1. Given q 0 satisfying (4.1) there exists δ 0 > 0 and ε > 0 such that q+1 q |x| -β q dx ≥ ε for every (w 1 , w 2 ) ∈ N p,q,α,β nod with p, q ∈ [q 0 -δ 0 , q 0 + δ 0 ] and α, β ∈ [0, δ 0 ].

Proof. We use the estimates in the proof of Theorem 2.6 -step 3, this time keeping a better track of the constants. We split the proof in several steps.

1) There exists C 1 (independent of p and q) such that

u p+1 ≤ C 1 u W 2, q+1 q
∀u ∈ W 2, q+1 q (Ω), p, q ∈ [q 0 -δ 0 , q 0 + δ 0 ].

Since Ω has finite measure and p ≤ q 0 + δ 0 , from Hölder's estimates we deduce that u p+1 ≤ |Ω| q 0 +δ 0 -p (p+1)(q 0 +δ 0 +1) u q0+δ0+1 ≤ κ 1 |Ω| q 0 +δ 0 -p (p+1)(q 0 +δ 0 +1) u W 2, q 0 +δ 0 +1 q 0 +δ 0 , where κ 1 is a constant associated to the embedding W 2, q 0 +δ 0 +1 q 0 +δ 0 → L q0+δ0+1 ; recall that δ 0 is such that (4.2) holds. Moreover, again by using Hölder estimates and also that (q 0 + δ 0 + 1)/(q 0 + δ 0 ) ≤ (q + 1)/q, u W 2, q 0 +δ 0 +1 q 0 +δ 0

=   |α|≤2 Ω
|D α u| q 0 +δ 0 +1 q 0 +δ 0 dx   q 0 +δ 0 q 0 +δ 0 +1 ≤   |Ω| q 0 +δ 0 -q (q+1)(q 0 +δ 0 ) |α|≤2 D α u q 0 +δ 0 +1 q 0 +δ 0 q+1 q   q 0 +δ 0 q 0 +δ 0 +1 ≤ N (N -1) 2 + N + 1 q 0 +δ 0 q 0 +δ 0 +1 |Ω| q 0 +δ 0 -q (q+1)(q 0 +δ 0 +1) u W 2, q+1 q

, and thus u p+1 ≤ κ(p, q) u W 2, q+1 q

, with κ(p, q) = κ 1 N (N -1) 2 + N + 1 q 0 +δ 0 q 0 +δ 0 +1 |Ω| q 0 +δ 0 -q (q+1)(q 0 +δ 0 +1) |Ω| q 0 +δ 0 -p (p+1)(q 0 +δ 0 +1) , which is bounded from above by some C 1 , for every p, q ∈ [q 0 -δ 0 , q 0 + δ 0 ].

2) There exists C 2 such that, for all u ∈ W 2, q 0 +δ+1 q 0 +δ (Ω) ∩ W 1, q 0 +δ+1 q 0 +1 0 (Ω) Ku W 2, q 0 +δ 0 +1 q 0 +δ 0 ≤ C 2 u q 0 +δ 0 +1 q 0 +δ , cf. [26, Lemma 9.17].

3) As (w 1 , w 2 ) ∈ N p,q,α,β nod , from steps 1) and 2) above there exists C > 0 independent of p, q, α, β such that

λ Ω |w + 1 | p+1 p |x| -α p dx + µ Ω |w + 2 | q+1 q |x| -β q dx ≤ 2 Ω w + 1 Kw + 2 dx ≤ 2 w + 1 p+1 p Kw + 2 p+1 ≤ 2C 1 w + 1 p+1 p Kw + 2 W
2, q 0 +1+δ 0 q 0 +δ 0 ≤ 2C 1 C 2 w + 1 p+1 p w + 2 q 0 +δ 0 +1 q 0 +δ 0

≤ C w + 1 p+1 p w + 2 q+1 q ≤ C w + 1 p+1 p , α p w + 2 q+1 q , β q ,
where we have used estimate (2.1) and the fact that q ≤ q 0 + δ 0 . By using the Young's inequality q(p+1) q+1 , Remark 4.5. Reasoning as in this section, we can prove that the map (p, q, α, β) → c p,q,α,β nod is continuous for (p, q) satisfying (H), α, β ≥ 0, and that the corresponding least energy nodal solutions converge.

  p C p+1 λ p (p + 1) p+1 b p+1∀a, b ≥ 0
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and thus

As K(q 0 , q 0 ) > 0, then from sufficiently small δ 0 we have K(p, q) ≥ ε > 0 for every p, q ∈ [q 0 -δ 0 , q 0 + δ 0 ]. The lower bounds for the remaining integrals follow in an analogous way.

Lemma 4.2. We have lim sup c p,q,α,β nod ≤ c q0 nod as p, q → q 0 , α, β → 0.

In particular, there exists δ 0 and κ > 0 such that

Proof. Take p n , q n → q 0 , α n , β n → 0.

1) We adapt some ideas from [START_REF] Bonheure | Bound state solutions for a class of nonlinear Schrödinger equations[END_REF]Lemma 3], where a different problem is considered. Let (w 1 , w 2 ) be such that w

where Assume that the supremum at the right hand side is achieved at (t, s) = (t n , s n ).

2) We claim that t n , s n → 1. 2a) First observe that t n , s n are bounded. In fact, repeating the computations of Lemma 2.2, we have this time that

(positive and bounded in n), B ± and C i are as in Lemma 2.2, and 

By the uniqueness provided by Proposition 2.4, we have t = s = 1.

3) Finally, by making n → ∞ in the inequality c pn,qn,αn,βn nod ≤ I pn,qn,αn,βn (t λn n w + 1 -s λn n w - 1 , t µn n w + 2 -s µn n w - 2 ), we obtain lim sup c pn,qn,αn,βn nod

As a consequence, we have the following a priori bound.

Lemma 4.3. Given q 0 satisfying (4.1) there exists δ 0 > 0 and κ > 0 such that

for every (u, v) least energy nodal solution of (1.1) with p, q ∈ [q 0 -δ 0 , q 0 + δ 0 ], α, β ∈ [0, δ 0 ].

Proof. Having the uniform upper bound of the energy levels coming from the previous lemma, and since the nonlinearities in (1.1) satisfy

for p, q ∈ [q 0 -δ 0 , q 0 + δ 0 ], δ ∈ [0, δ 0 ], C independent of p, q, α, β, then one can reason exactly as in the proof of [START_REF] Ramos | Solutions with multiple spike patterns for an elliptic system[END_REF]Lemma 5.4] (see also [START_REF] Bonheure | Hamiltonian elliptic systems: a guide to variational methods[END_REF]Theorem 5.18]) to obtain uniform L ∞ bounds.

Lemma 4.4. Take q 0 satisfying (4.1). Then c p,q,α,β nod → c q0 nod as p, q → q 0 , α, β → 0.

Moreover, the corresponding least energy nodal solutions converge: if (u p,q,α,β , v p,q,α,β ) is a sign changing solution of (1.1) with E p,q,α,β (u p,q,α,β , v p,q,α,β ) = c p,q,α,β nod , then u p,q,α,β → u, v p,q,α,β → v in C 1,γ (Ω) for every 0 < γ < 1,

where (u, v) solves (1.1) for p = q = q 0 , α = β = 0, and E q0 (u, v) = c q0 nod . Proof. Take p n , q n → q 0 , α n , β n → 0, and let (u n , v n ) be the corresponding least energy nodal solution of (1.1) with (p, q, α, β) = (p n , q n , α n , β n ). Then (u n , v n ) ∞ ≤ κ and, by elliptic estimates, the sequence (u n , v n ) is uniformly bounded in W 2,s × W 2,t for every s, t > 1. Thus there exists u, v such that 

for some ε > 0 independent of n. Thus (u, v) is a sign changing solution of (4.