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A dislocation in a Dirac semimetal carries an emergent magnetic flux parallel to the dislocation
axis. We show that due to the emergent magnetic field the dislocation accommodates a single fermion
massless mode of a corresponding low-energy one-particle Hamiltonian. The mode is propagating
along the dislocation with its spin directed parallel to the dislocation axis. In agreement with the
chiral anomaly observed in Dirac semimetals, an external electric field to the spectral flow of the
one-particle Hamiltonian by pumping the fermionic quasiparticles out from vacuum and creating
a nonzero axial (chiral) charge in the vicinity of the dislocation. In the presence of the chirality
imbalance, the intrinsic magnetic field of the dislocation generates an electric current along the
dislocation axis. We point out that this effect – which is an “intrinsic” analogue of the chiral magnetic
effect – may experimentally reveal itself through transport measurements in Dirac semimetals via
enhanced conductivity when the external electric field is parallel to the dislocation axis.

I. INTRODUCTION AND MOTIVATION

The Dirac semimetals are novel materials that have
been discovered recently (Na3Bi and Cd3As2 [1–3]). A
possible appearance of Dirac semimetals in the other sys-
tems (for example, ZrTe5 [4], and Bi2Se3 [5]) was also
discussed. In Dirac semimetals the fermionic quasipar-
ticles propagate according to the low energy action that
has emergent relativistic symmetry. Both in Na3Bi and

Cd3As2 there exist two Fermi points ±K(0). At each
Fermi point the pair of left-handed and right-handed
fermions appears. The Dirac semimetals represent an
arena for the observation of various effects specific for
the high energy physics. In particular, the effects of chi-
ral anomaly play an important role in physics of these
materials [3, 6–10].

In the Weyl semimetals, which were also discovered
recently (in particular, TaAs [11]) one of the two Fermi
points hosts a right-handed Weyl fermion while another
Fermi point hosts a left-handed Weyl fermion. Vari-
ous relativistic effects were discussed in Weyl and Dirac
semimetals already before their experimental discovery
[12–24].

In [4] the experimental observation of chiral anomaly
and chiral magnetic effect in ZrTe5 was reported as mea-
sured through their contributions to the conductance of
the sample. It has been shown, that in the presence of
parallel external magnetic field and external electric field
the chiral anomaly leads to the appearance of nonzero
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chiral density and nonzero chiral chemical potential. The
latter drives ordinary chiral magnetic effect [25], which
generates dissipationless electric current directed along
the magnetic field. This work was followed be a num-
ber of papers, where the experimental detection of chi-
ral anomaly was reported in different Dirac and Weyl
semimetals (see [26] and references therein).

Similar to graphene [27–34] in the presence of elastic
deformations the fermionic quasiparticles in Dirac and
Weyl semimetals experience emergent gauge field and
emergent gravity (see, for example, [35–38] and references
therein). In this paper we will concentrate on dislocations
in the crystalline order of the atomic lattice, which are
particularly interesting cases of the elastic deformations
of the ion crystal lattice [39]. The dislocation is a line-like
defect characterized by the Burgers vector b which de-
termines the physical displacement of the atomic lattices
along the dislocation. The vector b is a global character-
istic of the dislocation because it is a constant quantity
over the entire length of the dislocation. In rough terms,
one may imagine the dislocation as a vortex which pos-
sesses a fixed “vorticity” given by the Burgers vector b.
The extreme examples of the dislocations are the screw
dislocation (shown in Fig. 1) and the edge dislocation
(illustrated in Fig. 2) for which the corresponding Burg-
ers vectors are parallel and, respectively, perpendicular
to dislocations’ axes n. There are other types of the dis-
locations lying in between these two extreme cases.

In [38] the effect of the dislocation on the geometry ex-
perienced by fermionic quasiparticles in Dirac semimetals
was considered for the first time. Aharonov-Bohm effect
and Stodolsky effect (the latter effect describes a correc-
tion to the Aharonov-Bohm effect due to torsion) were
investigated for the scattering of the quasiparticles on dis-
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FIG. 1. Illustration of the screw dislocation of the atomic
lattice with the Burgers vector b parallel to the axis n of the
dislocation (the green line). The semitransparent plane points
out to the region where the atomic planes experience a shift.

FIG. 2. Illustration of the edge dislocation with the Burgers
vector b perpendicular to the dislocation axis n (the blue
line). The semitransparent plane shows the extra half-plane
of ions introduced in the crystal.

locations. Besides, basing on an obvious analogy with the
results of [4] it was proposed, that the dislocation (that
carries an emergent magnetic flux) becomes the source
of chiral anomaly and chiral magnetic effect. This occurs
because the dislocation carries emergent magnetic field.
Therefore, it was argued, that the chiral anomaly and
chiral magnetic effect occur without any external mag-
netic field. According to [38] the contribution of topol-
ogy to magnetic flux Φ is equal to the scalar product

K(0)b, where b is the Burgers vector. There may also
appear the contribution to the flux Φ proportional to the
tensor of elastic deformations caused by the dislocation
with the coefficients of proportionality that are analogous
to the Gruneisen parameter of graphene. The emergent
magnetic flux is associated with emergent magnetic field
The emergent magnetic flux is associated with emergent

magnetic field

Hi(x) = Φ

∫
dyiδ(3)(x− y), (1)

where the integral is taken along the dislocation. The
appearance of the delta-function in Eq. (1) in the low-
temperature theory corresponds to the fact that the
emergent magnetic flux localized within the dislocation
core of the radius ξ ∼ a which is of the order of the
interatomic distance a.

Next, in [38] the simple model of the dislocation was
used, in which it is represented as a tube of size ξ with
the emergent magnetic field inside it. In the presence of
external electric field directed along the dislocation the
naive expression for the chiral anomaly reads as follows1:

〈∂µjµ5 〉 =
1

2π2
EH , (2)

where jµ5 = jµR − jµL is the chiral current given by the
difference of the currents of the right-handed and left-
handed quasiparticles.

The corresponding naive expression for the chiral mag-
netic effect [25] has the form

j =
µ5

2π2
H , (3)

where jµ = jµR + jµL is the electric current given by the
sum of the currents of the right-handed and left-handed
quasiparticles. The chiral chemical potential µ5 is the dif-
ference between the chemical potentials associated with
the fermions of right-handed and left-handed chiralities:

µ5 =
1

2
(µR − µL) . (4)

The chiral magnetic effects generates a dissipationless
electric current j the direction of magnetic field H in the
presence of the chiral imbalance encoded into the chiral
chemical potential µ5.

The further examination of the mentioned above prob-
lem has led us to the conclusion, that the naive appli-
cation of the pattern of chiral anomaly discussed in [4]
to the case, when the magnetic field is emergent and is
caused by dislocations, has certain restrictions. Strictly
speaking, the mentioned above model of the fermionic ex-
citations and chiral anomaly within the dislocation may
be applied to the investigation of real materials only if
the emergent magnetic flux of the low energy field the-
ory is distributed within the area of size ξ essentially
larger, than the interatomic distance a while the emer-
gent magnetic flux of the dislocation is essentially larger,
than 2π. In this situation we are formally able to use the

1 Hereafter we adopt the relativistic system of units c = ~ = 1,
so that all dimensional quantities are expressed in units of eV .
For simplicity, we also absorb the elementary charge e into the
definition of electromagnetic field.
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low energy field theory for the description of fermionic ex-
citations inside the dislocation core, and apply Eqs. (2)
and (3). This opportunity requires an additional inves-
tigation, which is out of the scope of the present paper.
Presumably, it may occur only for the strong dislocations
with sufficiently large values of Burgers vector b, when
the crystal lattice is distorted considerably (or for the
case, when many parallel dislocations with small values
of the Burgers vectors are located close to each other).

In the present paper we consider the opposite situ-
ation, when in Dirac semimetals the values of Burgers
vector are relatively small, so that the magnetic flux at
the dislocation is smaller than 2π or around 2π. In this
situation the crystal structure is not violated strongly, so
that the dislocation core size is, presumably, of the order
of the interatomic distance ξ ∼ a. The low energy the-
ory is developed for the states with the typical values of
momenta much smaller, that 1/a. Therefore, in this case
the states localized within the dislocation core cannot be
described by the field theory. In order to describe such
states the microscopic theory is to be applied.

It appears, that in the microscopic case the expressions
for the anomaly in the quasiparticle currents and for the
chiral magnetic effect caused by the emergent magnetic
field of the dislocation, differ from the mentioned above
naive expressions (2) and (3), respectively. In particular,
the anomaly in the right- and left-handed quasiparticle
currents is given by

〈∂µjµR,L〉 = ± 1

4π2
EB or 〈∂µjµ5 〉 =

1

2π2
EB , (5)

where the upper and lower signs in the first equation cor-
respond to the right-handed and left-handed quasiparti-
cles, respectively. The formula for the chiral magnetic
effect

jCME =
1

2π2
µ5B , (6)

is also modified compared to Eq. (3). The important dif-
ference between Eqs. (2), (3) and (5), (6) is that the effec-
tive magnetic field B – contributing to the anomaly (5)
and to the chiral magnetic effect (6) – differs from the
emergent magnetic field at the dislocation H as given in
Eq. (1).

The basic reason for the difference between the emer-
gent magnetic field H and the effective magnetic field B
is that the emergent magnetic field H of the dislocation
has a very low (of the order of unity or even smaller)
magnetic flux Φ. In this case the contribution to both
mentioned effects is given by a single fermionic mode (we
call it “zero mode”) propagating along the dislocation
rather then by a large ensemble of the lowest Landau
modes with a huge degeneracy factor. To be more pre-
cise, the effective magnetic field B is expressed through
the probability density corresponding to the zero mode
of the one-particle Hamiltonian in the background of the
emergent magnetic field H due to the dislocation. The
appearance of the propagating (zero) mode at the dis-

location is a natural effect, which is known to exist in
topological insulators with lattice dislocations [44].

The contribution of the individual zero mode to both
chiral anomaly (5) and the chiral magnetic effect (6) can
be described with the help of the effective magnetic field
B, which carries exactly a unit of the elementary mag-
netic flux contrary to the original emergent magnetic field
H which may have an arbitrary (but still small) value of
the total flux Φ, in general. The effective field B is lo-
calized in the wide area of linear size ξ0, where 1/ξ0 is
the infrared cutoff of the considered field theoretical low
energy approximation (below we argue that ξ0 may be
identified with the mean free path of the quasiparticles
which is, for example, ξ0 ∼∼ 200µm for Cd3As2 [7]).

In this paper we demonstrate that for a straight screw
dislocation directed, for example, along the symmetry
axis of the crystal the emergent magnetic flux associated
with the emergent field H is given by

Φ =
(
K(0) · b

)
+

β

2a
(n · b) , (7)

where the first term is of the topological origin [38] while
the second term is not topological (here β is an ana-
logue of the Gruneisen parameter of graphene [32]). The
magnetic field associated with the flux (7) is localized
within the dislocation core of a typical size ξ ∼ a, where
a ∼ 1nm is a typical interatomic distance. In Eq. (7)

the vector K(0) encodes positions of the Fermi points

k = ±K(0) in the momentum space and n is the direc-
tion of the dislocation axis. For a straight screw disloca-

tion the vectors K(0), b and n in Eq. (7) are parallel to
each other.

We will discuss effects which appear due to the inter-
play between quantum anomaly and dislocations in the
crystal structure of Dirac semimetals. A fermion exci-
tation is affected by the dislocation, in particular, via
the mentioned above intrinsic magnetic field which is lo-
calised in a spacial vicinity of the dislocation and di-
rected along the axis of the dislocation. In principle, the
emergent magnetic fields corresponding to different Weyl
fermions (that belong to different Fermi points and/or
have different chiralities) differ from each other. How-
ever, there exists an approximation, in which those emer-
gent fields H have the same absolute values, but oppo-

site directions for the two Fermi points ±K(0). If this
approximation is not violated strongly (which is the gen-
eral case) the signs of the emergent magnetic fluxes ex-
perienced by the quasiparticles living near to the Fermi

points ±K(0) are opposite. In the Dirac semimetal both
right- and left-handed fermion excitations are present in
each (of the two) Dirac cone, therefore in this case we
have a standard effective magnetic field B(x) acting on
the right- and left-handed fermions at one Dirac cone
and the magnetic field −B(x) acting on the right- and
left-handed fermions at another cone. These fields enter
expression for the anomaly Eq. (5).

If now one applies an external static electric field E
along the axis of the dislocation, then the quantum
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anomaly will generate the chiral charge at a rate propor-
tional to the scalar product EB. The generated chiral
charge will dissipate, both due to chiral-changing pro-
cesses inside the core of the dislocation and due to a spa-
tial diffusion of the chiral charge around the core. Next
we notice that the equilibrium distribution of the chiral
charge – which can effectively be described by a spatially
nonconstant but otherwise static chiral chemical poten-
tial µ5 – is subjected to the intrinsic magnetic field of
the dislocation itself. The chemical potential µ5 is dis-
tributed around the dislocation with the characteristic
length LV (for example, in Cd3As2 this length is of the
order of LV ∼ 2µm.) The chirally imbalanced matter
in the presence of magnetic field generates dissipation-
less electric current directed along the dislocation and
concentrated in the spatial vicinity around it. There-
fore, the intrinsic magnetic field of the dislocation would
lead to a spatially-dependent (negative) magnetoresis-
tance around the dislocation. Similar arguments were
used in Ref. [4] to experimentally investigate the chiral
magnetic effect in ZrTe5 in the presence of external mag-
netic field.

The paper is organized as follows. In Sect. II we re-
call briefly general theory of quasi-relativistic fermions
in Dirac semimetals in the presence of elastic deforma-
tions which lead to both emergent gauge field and emer-
gent gravity (the latter is described by an emergent viel-
bein [40]). In Sections III and IV we discuss these effects
focusing on dislocations, partially following Ref. [38]. In
Sect. V we consider zero modes of the one-particle Hamil-
tonian and demonstrate, that there always exists a sin-
gle mode with definite spin directed along the emergent
magnetic flux, which is localized in a wide area around
the dislocation. In Sect. VI we show that the spectral
flow along the branch of spectrum (that crosses zero at
the mentioned zero mode) gives rise to the anomalies in
quasiparticle currents: in a Dirac semimetal the chiral
anomaly appears. For the sake of simplicity, these re-
sults are discussed first for a strait dislocation which is
directed along the symmetry axis z of the crystal which

coincides with the direction of the Fermi point K(0) in
the momentum space. We extend our results to the case
of strait dislocations with arbitrary direction in Sect. VII.
Then in Sect. VIII we discuss the generation of the chi-
ral charge via the chiral anomaly (5) due to interplay
between an external electric field and internal magnetic
field of the dislocation. We show in Sect. IX that the chi-
ral background at the dislocation leads to a contribution
to the electric conductivity of a Dirac semimetal via the
chiral magnetic effect (6). In Sect. X we estimate the
numerical value of the contribution to the conductance
of Dirac semimetals in the presence of a dislocation. The
last section is devoted to discussion and our conclusions.

II. RELATIVISTIC FERMIONS IN DIRAC
SEMIMETAL

The Dirac semimetal possesses two cones, each of
which hosts one right-handed and one left-handed Weyl
fermion. In the presence of elastic deformations caused
by the dislocation the action for a right-handed and left-
handed Weyl fermions near a given Fermi point are, re-
spectively, as follows [38]:

SR=
1

2

∫
d4x|e|

[
Ψ̄ieµb (x)σbDµΨ− [DµΨ̄]ieµb (x)σbΨ

]
, (8)

SL=
1

2

∫
d4x|e|

[
Ψ̄ieµb (x)σ̄bDµΨ− [DµΨ̄]ieµb (x)σ̄bΨ

]
, (9)

where

iDµ = i∇µ +Aµ(x) (10)

is the covariant derivative corresponding to the emergent
U(1) gauge field Aµ, σ0 = σ̄0 = 1, and σ̄a = −σa with
a = 1, 2, 3 are the Pauli matrices. The currents of the
right- and left-handed quasiparticles are, respectively, as
follows:

JµR = Ψ̄ieµb (x)σbΨ , (11)

JµL = Ψ̄ieµb (x)σ̄bΨ . (12)

Throughout this paper the internal SO(3, 1) indices are
denoted by Latin letters a, b, c, ... from the beginning of
the alphabet while the space-time indices are denoted by
Greek letters or by Latin letters i, j, k, ... from the middle
of the alphabet.

The vierbein field eµa = eµa(x) is a 4 × 4 matrix which
carries all essential information about anisotropy and the
elastic deformations (caused, for example, by a disloca-
tion) of the ion lattice of the Dirac crystal. It is con-
venient to introduce the inverse of the inverse vierbein
field, eaµ = eaµ(x), defined, naturally, as follows:

eµa(x)eaν(x) = δµν . (13)

In our paper we always assume that the deformations are
small so that the determinant of the vierbein field

|e| ≡ det(eaµ) , (14)

never vanishes.
In the absence of elastic deformations the fields enter-

ing the actions (8) and (9) are simplified. In this case
the emergent gauge field Aµ is the same for both left-
and right-handed fermions, it does not depend on coor-
dinates, and its spatial components Ai are determined by

the position of the unperturbed Dirac point K(0) while
the time component vanishes, A0 = 0.

In the absence of elastic deformations the vierbein can
be chosen in a diagonal form,

e(0),µ
a =


v−1
F 0 0 0
0 ν−1/3 0 0
0 0 ν−1/3 0
0 0 0 ν2/3

 , (15)
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where the parameter ν 6= 1 reflects the fact that the
experimentally studied Dirac semimetals are anisotropic
materials [1–3]. It is also convenient to introduce the
spatial component of the undeformed vierbein (15):

e(0),i
a ≡ f̂ ia =

 ν−1/3 0 0
0 ν−1/3 0
0 0 ν2/3

 , (16)

with i, a = 1, 2, 3. The quantity viF ≡ vF f̂ ii with fixed i =
1, 2, 3 has a meaning of the anisotropic Fermi velocity in
i-th direction. The determinant (14) in the undeformed
case is |e(0)| = vF .

The low-energy effective field theory (8), (9) has the

natural ultraviolet cutoff ΛUV ∼ |K(0)| associated with
the positions of the Dirac cones in the momentum space.
In order to determine a natural infrared cutoff we no-
tice that in our field-theoretical approximation the mass-
less quasiparticles do not interact with each other since
the effective actions (8) and (9) contain only bilinear
fermionic terms while the gauge field Aµ is a classical
non-propagating field. Therefore, the natural infrared
cutoff for our approach is ΛIR = 1/ξ0, where the length
ξ0 may be identified with the mean free path of the mass-
less quasiparticles. Indeed at the distances of the order of
the mean free path ξ0 we cannot neglect interactions be-
tween the quasiparticles and their scattering off defects of
the atomic lattice which, in general, cannot be captured
by Eqs. (8) and (9).

As an example, we mention that for the Dirac material
Cd3As2 the mean free path ξ0 was estimated in Ref. [7] to
be of the order of 200µm. In the above formulation of the
low-energy theory, the Dirac point corresponds to zero
energy. In real situation the crystals of semimetal may
have nonzero Fermi energy at the level crossing points.
In particular, in [41] the values of Fermi energy of the
order of 10 meV were reported for Na3Bi. In the following
applications we assume, that in the real systems the value
of Fermi energy may be neglected, or that the sample is
doped in such a way, that the doping-induced chemical
potential shifts the level crossing to the vanishing energy.

In the upcoming sections for simplicity we restrict our-
selves to the case, when the dislocation is an infinite
straight line directed along the symmetry axis z of the
crystal, which coincides with the direction of the Dirac

point K(0) in the momentum space. We will return to a
more general case of an arbitrarily aligned straight dislo-
cation in Sect. VII.

Now let us consider the case when the atomic lattice
of a Dirac semimetal is elastically deformed. The defor-
mation is described by the displacement vector ui which
gives the displacements of the ions with respect to their
positions with respect to the unperturbed semimetal. In
the approximation of isotropic elasticity for a straight
dislocation directed around the z ≡ x3 axis the displace-
ment vector ua is given by:

ua = −θ b
a

2π
+ uacont, (17)

where θ is the polar angle in the plane orthogonal to the
dislocation and ba is the Burgers vector. The first term
in the right hand side of Eq. (17) is discontinuous vector
function as it has a jump by ba at θ = 0. The second,
continuous part of displacement is given by [43]

ukcont(x⊥)=− bl

4π

1− 2σ

1− σ

[
ε3kllog

|x⊥|eγ

2R
+
ε3ilx̂i⊥x̂

k
⊥

1− 2σ

]
(18)

where x⊥ = (x1, x2) are the transverse coordinates in
the laboratory reference frame, x̂i⊥ are respective unit
angles in the transverse plane and σ is the Poisson ratio
which is defined as the negative ratio of transverse to
axial strain of the atomic crystal. Throughout this paper
we shall work in the laboratory reference frame in which
the positions of ions are their real 3d coordinates.

Notice, that for the screw dislocation when the Burgers
vector directed along the dislocation axis, b = (0, 0, bz),
the continuous part of the displacement vector vanishes,
ukcont = 0. It is worth mentioning, that while the values of
ukcont may be large, its derivatives are small for sufficiently
small b because after the differentiation the expression in
Eq. (18) tends to zero at |x⊥| → ∞.

In the presence of elastic deformations, in principle,
the emergent vielbeins (as well as the emergent gauge
fields) may differ for the left-handed and the right-handed
fermions incident at the given Dirac point.

Let us introduce tensor of elastic deformations [39]

uij = ∂iuj + ∂jui , (19)

where we have neglected a part quadratic in ui by assum-
ing that the deformations are small. In general, the emer-
gent vielbein around the dislocation may be expressed up
to the terms linear in displacement vector as follows (see
Ref. [38] for the details of the derivation):

eia = f̂ ia(1 +
1

3
γkknju

nj) + f̂ka ∂ku
i − f̂na γinjkujk

ei0 = − 1

vF
γi0jku

jk, e0
a = 0

e0
0 =

1

vF
(1 +

1

3
γkkiju

ij)

|e| = vF (1− ∂iui −
1

3
γkkiju

ij)

a, i, j, k, n = 1, 2, 3 (20)

The emergent gauge field is given by

Ai ≈ −∇i(u ·K(0))) +
1

a
βijku

jk, (21)

A0 =
1

a
β0jku

jk, i, j, k = 1, 2, 3

The tensors β and γ, which are the analogues to the
Gruneisen parameters in graphene, may, in principle
be different for the right-handed and the left-handed
fermions. The analogy to graphene prompts that their
values could be of the order of unity. Notice, that in
graphene the emergent electric potential A0 does not
arise outside of the dislocation core [32]. In the same
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way we assume, that in the semimetal the parameters
β0jk may be neglected. The reason for this is that the

combination K(0)+A appears as the value of momentum
P , at which the one-particle Hamiltonian H(x, P̂ ) van-

ishes (one substitutes K(0)+A instead of the momentum

operator P̂ ):

H
(
x,K(0) + A(x)

)
= 0 (22)

As a result we expand the Hamiltonian near the floating

Fermi point K(0) + A(x):

H(x, P̂ ) = |e(x)| eka(x)σa ◦
[
P̂k −

(
K

(0)
k +Ak(x)

)]
+A0(x) , (23)

where by the symbol ◦ we denote the symmetric product

A ◦B =
1

2
(AB +BA). (24)

The only possible source of A0(x) is the noncommutativ-

ity of momentum P̂ and coordinates. This means, that
unlike Ak with k = 1, 2, 3 the emergent electric poten-
tial A0 is proportional to the derivatives of the param-
eters entering H(x, P̂ ). The field Ak with k = 1, 2, 3
is proportional to 1/a times the combination of the di-
mensionless parameters while A0 is proportional to their
derivatives but it does not contain the factor 1/a. For
slow varying elastic deformations this means that A0 may
be neglected. This consideration does not work, how-
ever, within the dislocation core, where physics is much
more complicated. The influence of this unknown physics
on the quasiparticles with small values of momenta (de-
scribed by the action of the form of Eqs. (8), (9)) may
be taken into account through the same emergent fields
Aµ, µ = 0, 1, 2, 3 and eka, which become strong within
the dislocation core. The component of A0 of emergent
electromagnetic field is not forbidden by any symmetry.
Therefore, it appears and gives rise to emergent electric
potential (either attractive or repulsive) within the dis-
location core.

Notice, that the simple model of Weyl semimetal with
cubic symmetry has been considered in [35], where the
following expression for the emergent gauge field was dis-
cussed (i = 1, 2, 3):

Ai ≈ −∇i(u ·K(0))) +
1

a

(
βu3i + β′δi3u

33
)
,

A0 = 0 . (25)

A Dirac semimetal (with cubic symmetry) may, in prin-
ciple, be described by the two copies of the model of [35].

III. EMERGENT MAGNETIC FLUX CARRIED
BY THE DISLOCATION

In order to calculate the emergent magnetic field we
should use integral equation

1

2
εijk

∫
S
Hidxj ∧ dxk ≡

∫
∂S
Akdx

k , (26)

where the integration goes over a surface in the transverse
plane which includes the position of the dislocation. For
the considered solution of elasticity equations (21) we
represent the right hand side of this expression as follows∫

∂S
Akdx

k = biK
(0)
i +

1

a
βijk

∫
∂S
ujkdxi (27)

The first term in this expression gives the following sin-
gular contribution to magnetic field:

Hk
sing(x) ≈ biK(0)

i

∫
l0
dyk(s)δ(3)(x− y(s)), (28)

where the integration over y goes along the dislocation
axis l0. One can check that the solutions of elasticity
equations give ujk ∼ 1/r at r → ∞. Therefore, the
integral along the circle Cr ≡ ∂S at r → ∞ (with the
dislocation at its center) in the second term of Eq. (27)
gives finite contribution to the normalized total flux of
the singular gauge field Hsing:

Φ̂(r) =
Φ(r)

Φ0
=

1

2π

∫
Cr
AkdX

k , (29)

where

Φ0 = 2π (30)

is the elementary flux (in out units the electric charge is

unity e = 1). At the same time the function Φ̂(∞)−Φ̂(r)
takes its maximum at r = 0 and decreases fast out of the
core of the dislocation.

In the considered crystals there exist several excep-
tional vectors Gi (i = 0, 1, 2, ...), which generate the
symmetry of Brillouin zone, i.e. momenta k and k + Gi

are equivalent. The unperturbed Fermi point is directed
along G0 and is also defined up to the transformations

K(0) → K(0) + Gi. This corresponds to the change of
the magnetic flux by

∆Φ̂ = b ·Gi = 2πN , N ∈ Z . (31)

Such a change of the magnetic flux is unobservable for
Weyl fermions and Eq. (31) is thus posing certain restric-
tions on the choice of the Burgers vectors. For example,
for the layered hexagonal structure of Na and Bi atoms
in the compound Na3Bi we have

G1 =
4π

3a
x̂, G2 =

4π

3a
(
1

2
x̂ +

√
3

2
ŷ),

G3 =
4π

3a
(
1

2
x̂−

√
3

2
ŷ), G0 = ζ

4π

3a
ẑ. (32)

Here a is the interatom distance within each layer in the

plane orthogonal to G0 ‖ K(0) and the material param-
eter ζ determines the interlayer distance. Due to the
hexagonal (honeycomb) structure of the Na3Bi layers in
xy plane, we may construct the Burgers vectors similarly
to the case of graphene [34] which has also the hexagonal
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structure. Condition (31) gives us the following general
expression for the Burgers vectors:

b =
∑
i

Nimi (33)

where Ni ∈ Z. The vectors mi

m0 =
3a

2ζ
ẑ ,

m1 = −l1 + l2 ≡
3a

2
x̂ +

√
3a

2
ŷ ,

m2 = l3 − l2 ≡ −
√

3aŷ , (34)

m3 = l1 − l3 ≡ −
3a

2
x̂ +

√
3a

2
ŷ ,

are constructed from the nearest-neighbor vectors of
the NaBi honeycomb lattice in the transverse planes of
Na3Bi:

l1 = −a x̂,

l2 = a
(1

2
x̂ +

√
3

2
ŷ
)
, (35)

l3 = a
(1

2
x̂−

√
3

2
ŷ
)
.

For a screw dislocation perpendicular to the layers of
Na3Bi the displacement vector is given by Eq. (17). The
only nonzero components of the corresponding deforma-
tion tensor (19) are

u3a(x⊥) ≡ ua3(x⊥) =
b3ε

3abxb⊥
4πx2

⊥
, (36)

and the emergent electromagnetic field (21) is given by

Ai = −∇i(uK) +
β

a
u3i +

β′

a
ε3iju

3j , A0 = 0 , (37)

with some material-dependent constants β and β′. No-
tice that our expression (37) differs from Eq. (25) of
Ref. [35]. Equation (37) leads to the following expres-
sion for the (normalized) magnetic flux of the emergent
magnetic field H:

Φ̂(∞) =
K(0)b

2π
+

β

4πa
b3 (38)

Notice, that in the modeling case, when the emergent
U(1) field is given by Eq. (25), the magnetic flux

Φ̂(∞) is given by the same expression. For example,

in Na3Bi the value of K(0) ≈ 0.26 π
az
ẑ, where az is

the lattice spacing in z direction [1, 45]. The value of
b3 = Naz is proportional to az. Therefore, the topo-
logical contribution to magnetic flux of the dislocation

is K(0)b
2π ≈ 0.26πN

2π ≈ 0.13N . Following an analogy to
graphene, where Gruneisen parameter β ∼ 2 we may
roughly estimate the second term in Eq. (38) as ∼ 0.2N .
Then the emergent magnetic flux incident at the disloca-
tion, presumably, reaches the value of 2π at N ∼ 30.

As it was mentioned above we may neglect the zero
component of the emergent electromagnetic field A0 at
large distances r � a, where the elasticity theory works.
However, such a potential may be present within the dis-
location core because of the essential change in the micro-
physics. Thus we assume the existence of either repulsive
or attractive potential

A0(x⊥) = vF ν
−1/3φ(x⊥) , (39)

at the dislocation core and we neglect possible appear-
ance of such potential far from the dislocation.

IV. EMERGENT GRAVITY AROUND THE
DISLOCATION

Momentum of quasiparticles that are described by the
action of Eq. (8) should be much smaller than 1/a. At
the same time the emergent gauge field A within the
dislocation core may be as large as ∼ 1/a. Therefore,
the contribution of emergent gravity to Eq. (8) is always
small compared to the contribution of the emergent gauge
field. Nevertheless, for the completeness in this section
we briefly consider emergent gravity around the disloca-
tion. Let us represent the action for the right-handed
fermion in the following way:

SR =

∫
d3x dt Ψ̄(x, t)

[
|e(x)|e0

0(x)i∂t

−|e(x)|eka(x)σa ◦ (P̂k −Ak)
]
Ψ(x, t)

=

∫
d3x dt

¯̃
Ψ(x, t)

[
i∂t −H(R)

]
Ψ̃(x, t), (40)

where P̂k = −i∇k, Ψ̃ =
√
|e(x)|e0

0(x) Ψ, a = 0, 1, 2, 3
and k = 1, 2, 3. The one-particle Hamiltonian is given by

H(R) = fka (x)σa ◦ (P̂k −Ak), (41)

where

fka (x) =
eka(x)

e0
0(x)

. (42)

We used here the following chain of relations:
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∫
d3x dt

{ ¯̃
Ψ(x, t)√
|e(x)|e0

0(x)
|e(x)|eka(x)σa∂i

Ψ̃(x, t)√
|e(x)|e0

0(x)
−

[
∂i

¯̃
Ψ(x, t)√
|e(x)|e0

0(x)

]
|e(x)|eka(x)σa

Ψ̃(x, t)√
|e(x)|e0

0(x)

}

=

∫
d3x dt

{
¯̃
Ψ(x, t)

1

|e(x)|e0
0(x)

|e(x)|eka(x)σa∂iΨ̃(x, t)−
[
∂i

¯̃
Ψ(x, t)

]
|e(x)|eka(x)σa

1

|e(x)|e0
0(x)

Ψ̃(x, t)

}
(43)

=

∫
d3x dt

{
¯̃
Ψ(x, t)fka (x)σa∂iΨ̃(x, t)−

[
∂i

¯̃
Ψ(x, t)

]
σafka (x)Ψ̃(x, t)

}
≡ 2

∫
d3x dt

¯̃
Ψ(x, t)

[
fka (x)σa ◦ ∂i

]
Ψ̃(x, t).

We represent fka (x) as follows

fka (x) ≈ vF
[
f̂µa − f̂

µ
b δe

b
a(x)

]
fk0 (x) ≈ −vF f̂µb δe

b
0(x), a, b, k = 1, 2, 3 , (44)

where the expressions for the small variations of the vier-
bein field δeµa can be read off from Eq. (20).

The one-particle Hamiltonian for the right-handed
fermions in the presence of a dislocation along the z axis
is given by

H(R) = vF ν
2/3σ3p̂3 − vF ν2/3

3∑
a=0

σaδe3
ap̂3

+vF ν
−1/3H(R)

⊥ , (45)

where the transverse part of the Hamiltonian is

H(R)
⊥ ≈

∑
a=1,2

[
σa
(
p̂a −Aa(x⊥)

)
−
∑
k=1,2

σaδeka(x⊥) ◦ p̂k
]

+φ(x, y)− σ3A3(x⊥) (46)

−
∑
k=1,2

[
σ3δek3(x⊥) + δek0(x⊥)

]
◦ p̂k .

In a general form, the dislocation-induced deforma-
tions of the vielbein field δeµa in the Hamiltonian (45),
(46) can be expressed via components tensor γijkl of

Eq. (20) and the relations given in Eqs. (42) and (44).
However, in certain symmetric cases the form of the
Hamiltonian may be simplified. Consider, for example,
the case, when the screw dislocation is directed along the
z axis of the Na3Bi atomic lattice (or, equivalently, along

the vector K(0)). Then, one can write the following ex-
pression for the deformations of the veilbein:

δeka = γ1K
akju3j + γ2K̃

akju3j , a, k = 1, 2, (47)

δek3 = γ3ε3kju
3j + γ4u

3k, k = 1, 2, (48)

δe3
k = γ5u

3k + γ6ε3kju
3j + u3k, k = 1, 2, (49)

δe3
3 = 0, (50)

δek0 = 0, k = 1, 2. (51)

Here we have used the fact that the only nonzero com-
ponents of the tensor of elastic deformations (19) are
u3i = ui3 with i = 1, 2 given in Eq. (36). Moreover, we
took into account that the dislocation is directed along
the z axis which is perpendicular to layers of honeycomb
lattices formed by Na and Bi atoms in the transverse

(x, y) plane. The requirement to respect the C3 rota-
tional symmetry of the honeycomb lattice in the (x, y)
plane allows us to define two tensors from the nearest-
neighbor vectors (35):

Kijk = − 4

3a3

∑
b=1,2,3

libl
j
bl
k
b (52)

K̃ijk = − 4

3a3

∑
b=1,2,3

libl
j
bl
m
b ε3mk (53)

which enter Eq. (47) with material-dependent prefactors
γ1 and γ2, respectively. The only nonzero elements of
these tensors are:

−K111 = K122 = K212 = K221 = 1 ,

K̃112 = K̃121 = K̃211 = −K̃222 = 1 . (54)

The tensor (52) was first introduced in Refs. [28, 29].
The appearance of the second tensor structure (53) in

Eq. (47) is a nontrivial fact because the tensor K̃ijk is
not invariant under P -parity transformation of the 3d
space. The P -parity odd part is justified, however, by the
chiral property of the screw dislocation, because the left-
handed screws and right-handed screws are not equiva-
lent as they cannot be superimposed on each other with
the help of rotations only. Therefore, P -parity odd terms
may appear in the Hamiltonian.

Similar arguments lead to appearance of four other
material-dependent terms in Eqs. (48) and (50) with pa-
rameters γ3, . . . , γ6. Equation (51) originates from the
supposition that the dislocation does not break T invari-
ance so that all components of the vielbein involving one
temporal and one spatial components must be zero. No-
tice that the deformation of the e0

0 does not enter the
Hamiltonian (41) because f0

0 ≡ 1 according to Eq. (42).
One can see, that even in this relatively simple case, the

expressions in Eqs. (47)-(51) contain six phenomenolog-
ical parameters γi, and the resulting Hamiltonian H(R),
given in Eqs. (46) and (45), is rather complicated.

V. FERMION ZERO MODES PROPAGATING
ALONG THE DISLOCATION

In this section we show that the dislocations in a Dirac
semimetal hosts a massless (quasi)fermion mode which
propagates along the dislocation with the Fermi velocity.
This fermionic mode is a zero mode of the transverse
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Hamiltonian (46). The appearance of the propagating
mode localized in the vicinity of the dislocation is also
known to emerge in topological insulators with lattice
dislocations [44].

Let us neglect the emergent gravity due to its weakness
and concentrate first on the case of screw dislocation,
when A3 = 0. We may apply the gauge transformation,
which brings the gauge field to the form

Ai = ε3ij∂jf(x⊥) , (55)

where f is a certain function of transverse coordinates.
Then the Hamiltonian (41) becomes as follows:

H(R) = vF ν
2/3σ3p̂3 + vF ν

−1/3H(R)
⊥ (56)

with

H(R)
⊥ ≈ φ(x⊥) +

∑
a=1,2

(
σap̂a +

∑
b=1,2

σaεab∂bf(x⊥)
)
. (57)

The zero modes of the transverse Hamiltonian H(R)
⊥

are defined as solution of the equation

H(R)
⊥ ψ = 0 . (58)

Next, we represent ψ = e−σ
3f ψ̃ and rewrite the Hamil-

tonian in the polar coordinates r, θ in the transverse
x⊥ = (x1, x2) using

x1 = r cos θ, x2 = r sin θ, (59)

p̂r = −i∂r, p̂θ = − i
r
∂θ, (60)

and the radial sigma matrices:

σr =

(
0 e−iθ

eiθ 0

)
, σθ =

(
0 −ie−iθ
ieiθ 0

)
(61)

Then equation for the function ψ̃ is H̃(R)
⊥ ψ̃ = 0, where

H̃(R)
⊥ ≈ φ(r, θ) + σrp̂r + σθp̂θ (62)

Next, we have

H̃(R)
⊥ = σ1

(
eiθH(R)

+ φ(r, θ)

φ(r, θ) e−iθH(R)
−

)
, H(R)

− =
[
H(R)

+

]†
(63)

with

H(R)
± ≈ p̂r ± ip̂θ (64)

In the absence of the electric potential φ(r, θ) the zero
modes (if they exist) have a definite value of the spin
projection s = ±1/2 on the z axis. At large r the corre-
sponding coordinate parts of their wave functions satisfy
the relations

(p̂r ± ip̂θ)ψ̃(m)
± = 0 . (65)

Next, we chose

f(r, θ) =

∫ r

0

Φ̂(r, θ)
dr

r
, (66)

so that the only nonzero component of the gauge poten-
tial (55) gets the following form:

Aθ =
Φ̂(r, θ)

r
. (67)

The axial symmetry of the problem implies that at large
distances r the function Φ̂(r, θ) is independent of the po-

lar angle θ. Therefore, at large r the function Φ̂(r) is the
magnetic flux within the circle Sr of radius r:

Φ̂(r) =
1

2π

∫
Sr

1

2
εijkdx

j ∧ dxkHi(x, y) , (68)

where the surface Sr belongs to the plane which is or-
thogonal to the dislocation. We come to the following
solutions of Eq. (58) for the zero modes [42]:

ψ
(m)
± (r, θ) ∼ rme±imθ∓

∫ r
0

Φ̂(r,θ) drr , (69)

where the integer m is the angular quantum number.
The solutions (69) are localized in a small vicinity of

the dislocation core provided the angular quantum num-
ber satisfy the following condition

m− 2sΦ̂ < −1, Φ̂ = lim
r→∞

Φ̂(r, θ) , (70)

and in this case the corresponding probability distribu-
tion is convergent at large r:∫ ∞

ξ

rdrdθ|ψ|2 = 1 . (71)

Notice that ξ is of the order of the lattice constant a.
In addition, there exist two solutions of Eq. (65), which

may not be normalized and which have their maxima at
the dislocation core provided

m = [2sΦ̂(∞)], (72)

where [2sΦ̂] is the integer part of 2sΦ̂, which is the max-

imal integer number that is not larger than 2sΦ̂.
The probability distributions of the considered solu-

tions are convergent at small r for m ≥ 0. Therefore,
in the absence of both the vielbein and the electric po-
tential, the zero modes that are not singular at r → 0
and are not localized on the boundaries of the system,
should satisfy 0 ≤ m ≤ 2sΦ̂(∞). Such modes exist for

sΦ̂(∞) > 0 and are enumerated by the values of orbital
momentum

m = 0, ..., [2sΦ̂], (73)

We neglected in this derivation the potential φ. How-
ever, it is localized at the dislocation. Therefore, the
zero modes in the presence of electric potential (if they



10

exist) have the form of Eq. (69) at r � a. Recall, that
Eq. (8) works for the momenta of quasiparticles much
smaller, than 1/a. Therefore, the solutions of Eq. (58)
localized at the dislocations, presumably, do not repre-
sent physical zero modes. The only solution that remains
is the one with

m = [2sΦ̂], s =
1

2
sign Φ̂ (74)

Fortunately, the field φ cannot affect the energy of this
solution because the probability density corresponding to
this solution of Eq. (65) is dominated by the distances
far from the dislocation core, so that we can neglect com-
pletely the region of the dislocation core. The vielbein
for this solution also gives small corrections compared to
the contribution of emergent magnetic field. Therefore,
the strong gravity and the potential φ at r ∼ ξ cannot
affect the main properties of this solution: it certainly
survives as the zero mode and still has the definite value
of the projection of spin to the z axis.

In the case of edge or mixed dislocation we should take
into account the appearance of a nonzero third compo-
nent of the emergent gauge field:

A3(x⊥) ≈ 1

r2

(
β1b⊥x⊥ + β2ε3ijb

i
⊥x

j
⊥

)
. (75)

Then far from the dislocation core one gets

H̃(R)
⊥ = σ1

(
eiθH(R)

+ νA3(r, θ)

−νA3(r, θ) e−iθH(R)
−

)
(76)

One can check, that the first order perturbative cor-
rection to the eigenenergy of the zero mode (69) due to
the presence of A3 vanishes completely. Next order cor-
rections may be nonzero, in principle, but for the mode
with m = [2sΦ̂(∞)] those corrections may be neglected
because all integrals are dominated by the regions with
r →∞ while A3 ∼ 1/r.

Thus we come to the conclusion, that the only zero
mode existing around the dislocation is the one with

m = [2sΦ̂(∞)] , s =
1

2
sign Φ̂(∞) . (77)

The zero mode (69), (77) of the transverse Hamiltonian

H(R)
⊥ corresponds to the zero mode of the full Hamilto-

nian H(R) provided the longitudinal momentum is zero
p3 = 0. At the same time it corresponds to a linear
branch of spectrum of the full Hamiltonian H(R) with
the corresponding dispersion law:

E(R) ≈ vF ν2/3sign(Φ̂) p3 . (78)

This branch crosses zero energy level at p3 = 0.
Similar considerations can also be applied to the left-

handed Hamiltonian H(L), where the only physical zero

mode of the corresponding transverse part H(L)
⊥ is

ψ
(m)
2s (r, θ) ∼ rmei2smθ−2s

∫ r
0

Φ̂(r) drr (79)

with the quantum numbers

m = [2sΦ̂], s =
1

2
sign Φ̂ . (80)

This mode corresponds to the branch of spectrum with
the dispersion

E(L) ≈ −vF ν2/3sign(Φ̂) p3 . (81)

The right-handed and left-handed fermionic modes
propagate along the dislocation with the velocity

vR = −vL = vF ν
2/3sign(Φ̂) , (82)

which is nothing but the corresponding component of
the anisotropic Fermi velocity. Thus, the right-handed
massless quasiparticle propagates up or down along the
dislocation depending on the sign of the flux Φ. The left-
handed mode always propagates in the opposite direction
compared to the right-handed mode.

Notice that Eqs. (78) and (81) were derived in the as-
sumption that the magnetic fluxes of the emergent mag-
netic field for the right-handed ΦR and the left-handed
ΦL quasiparticles are the same, ΦR = ΦL ≡ Φ. However,
if in a Dirac semimetal the constants βijk differ for the
left-handed and the right-handed fermions, then the cor-
responding gauge fields (21) are also different, and in this
case the magnetic flux entering Eq. (78) will be different
from the flux in Eq. (81).

VI. CHIRAL ANOMALY IN DIRAC
SEMIMETALS ALONG THE DISLOCATION

In the presence of external electric field E the states
that correspond to the described above zero modes flow
in the correspondence with the following equation:

〈ṗ3〉 = E3 . (83)

Now let us take into account, that the studied model
has the infrared cutoff 1/ξ0, where ξ0 � a. Then the zero

modes ofH(R)
⊥ andH(L)

⊥ , and the corresponding branches
of fill spectrum of propagating modes of the full Hamil-
tonians H(R) and H(L) obey the following properties:

1. The propagating fermion modes are not localized
at the dislocation core. Instead, the region of space
around the dislocation of size ξ0 dominates, where
1/ξ0 is the infrared cutoff of the theory.

2. The propagating fermion modes have the definite
value of the spin projection on the dislocation axis:
s = 1

2 sign Φ̂. The corresponding branch of spec-
trum for right- and left-handed fermions is given
by, respectively, the following dispersion relations:

vR/L(p3) = ±vF ν2/32s p3 . (84)
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3. The propagating mode appears for any dislocations
including those ones, in which the magnetic flux Φ̂
is smaller than unity.

The total production of the right-handed quasiparticles
per unit length of the dislocation is given by:

q̇R =
En

2π
sign Φ̂, (85)

where the unit vector n is directed along the disloca-
tion. In the following we assume for simplicity, that
the signs of the emergent fluxes Φ̂ experienced by the
right-handed and the left-handed fermions coincide in
the Dirac semimetal. Therefore, the production of the
left-handed quasiparticles in Dirac semimetal is given by

q̇L = −q̇R . (86)

Production of the quasiparticles may be written as the
anomaly in their currents

jµL = |e(x)|JµL(x) , jµR = |e(x)|JµR(x) , (87)

j = jR + jL , j5 = jR − jL , (88)

where the covariant currents are defined according to
Eqs. (11) and (12). This anomaly in local form may
be written as as follows:

〈∂µjµ5 (x)〉 =
En

π
f0(x⊥) sign Φ̂ , (89)

f0(x⊥) =
exp (−|x⊥|/ξ0)

(
x⊥
ξ0

)−2(|Φ̂|−[|Φ̂|])

2πξ2
0Γ(−2|Φ̂|+ 2[|Φ̂|] + 2)

. (90)

Here the function f0(r) is normalized in such a way, that
2π
∫
rdrf0(r) = 1 and 1/ξ0 has the meaning of infrared

cutoff of the theory. The factor exp (−|x⊥|/ξ0) appears
as the infrared regulator. We imply, that the size of the
semimetal sample is much larger than the infrared cutoff
ξ0, while ξ0 is much larger than the size of the dislocation
core ξ ∼ a, ξ0 � ξ. Thus the chiral anomaly due to the
zero mode with m = [|Φ̂|] is localized within the tube of
size ξ0 centered at the dislocation.

It is worth mentioning, that for a single dislocation,
when for some reasons the contributions to the emergent
magnetic flux of the dislocation due to βijk in Eq. (21)
may be neglected, the typical values of the Burgers vector
are such that |Φ̂| < 1. Therefore, according to Eqs. (77)
and (80), for a single dislocation the zero mode corre-
sponds to m = 0.

We may rewrite the expression for chiral anomaly
caused by single dislocation in Dirac semimetal as fol-
lows

∂µ〈jµ5 (x)〉 =
EB

2π2
, (91)

where the effective magnetic field B responsible for the
chiral anomaly is given by

B(x⊥) = 2πn f0(x⊥) sign Φ̂ . (92)
In the presence of the chiral chemical potential µ5 in

the Dirac semimetal the chiral magnetic effect appears:

jk(x) =
2

2π

∫ µ5/(vF ν
2/3)

0

dp3|e| eka
[
ψ(m)
s (x)

]+
σaψ(m)

s (x)

(93)

Here ψ
(m)
s (x) is the wave function of the mentioned above

zero mode. As we have mentioned above, for the in-
tegrals involving bi-fermionic variables the region out-
side the dislocation core dominates, so that we have for
Eq. (93):

j(x) ≈ 2µ5 n

2π
sign(Φ̂) |ψ(0)(x)|2 ≈ µ5

2π2
B(x⊥) . (94)

This current is concentrated in the wide region around
the dislocation.

It is worth mentioning, that the above consideration
refers only to the branches of spectrum, which are de-
scribed by the low energy effective field theory. At the
same time the pumping of the quasiparticles from vac-
uum may occur in the presence of electric field on another
branches of spectrum as well. Ideally, this pumping pro-
cess should be considered using microscopic theory and
is out of the scope of the present paper.

VII. THE CASE OF DISLOCATION DIRECTED
ARBITRARILY

In this section we consider the dislocation directed ar-
bitrarily. Without loss of generality we may consider the
dislocation directed along an axis, which belongs to the
(yz) plane. The angle between the dislocation and the z
axis is denoted by ϕ. Let us rotate the reference frame
in such a way, that the z axis is directed along the dis-

location. In the new reference frame tensor f̂ has the
form:

f̂ =

 ν−1/3 0 0
0 ν−1/3 cosϕ ν−1/3 sinϕ
0 −ν2/3 sinϕ ν2/3 cosϕ

 (95)

Let us apply transformation of spinors ψ → ei
α
2 σ

3

with

tgα = ν tgϕ. In the transformed frame the tensor f̂ is
modified:
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f̂ =


ν−1/3 0 0

0 ν1/3
√
ν−4/3 cos2 ϕ+ ν2/3 sin2 ϕ (1−ν2) sin 2ϕ

2ν
√
ν−4/3 cos2 ϕ+ν2/3 sin2 ϕ

0 0 1√
ν−4/3 cos2 ϕ+ν2/3 sin2 ϕ

 (96)

The one-particle Hamiltonian for the right-handed
fermions becomes as follows

H(R) = vF f̂
3
3σ

3p̂3 + vF f̂
2
3σ

2p̂3 + vF f̂
1
1H

(R)
⊥ (97)

with

H(R)
⊥ ≈ σ1(p̂1 −A1) +

f̂2
2

f̂1
1

σ2(p̂2 −A2)

− f̂
3
3

f̂1
1

σ3A3(x⊥) + φ(x⊥) (98)

Now we perform the coordinate transformation

y → f̂2
2

f̂1
1

y , Ay →
f̂1

1

f̂2
2

Ay , (99)

and notice that the equation for the zero mode of Hamil-
tonian H⊥ becomes the same as that of Section V. Thus
we arrive at the expression for the anomaly in quasipar-
ticle current of Eq. (85). The resulting expression for
the chiral anomaly in Dirac semimetal is again given by
Eq. (91).

The expression for chiral magnetic effect in Dirac
semimetal is

j(x) ≈ µ5

2π2
B(x⊥). (100)

The effective magnetic field B is still given by Eq. (92).
In principle, in this case the function f0(r, θ) may de-
pend on the polar angle θ due to anisotropy of the
atomic lattice structure of the Dirac semimetal in ques-
tion. However, in qualitative analysis we may disregard
this anisotropy and consider it in the form of Eq. (90).

VIII. CHIRAL CHEMICAL DENSITY AROUND
DISLOCATION IN PRESENCE OF ELECTRIC

FIELD

The Dirac semimetal possesses two cones, each of
which hosts one right-handed and one left-handed Weyl
fermion. Since the processes operating in these two cones
are equivalent, we concentrate on the cone hereafter (tak-
ing into account the fact of the degeneracy later).

In the following we work in the adiabatic approxima-
tion by assuming that the chiral chemical potential is
slowly varying function of space and time. The chiral
charge density is:

ρ5 ≡ j0
5 =

µ3
5

3π2v3
F

+
µ5

3v3
F

(
T 2 +

µ2

π2

)
, (101)

where T is the temperature of the system and vF is the
Fermi velocity which enters the dispersion relation for
the chiral fermions.

The evolution of the local chiral density (101) is gov-
erned by (i) the dissipation of the chiral charge density,
(ii) the spatial diffusion of the chiral charge and (iii) the
quantum anomaly which generates the local chiral charge
due to quantum effects. The nonconservation of the axial
charge can conveniently be written in the following form:

dρ5

dt
+ ∇j5 = − ρ5

τV
+

1

2π2
BE , (102)

where the first term in the right hand side corresponds
to the dissipation of the chiral charge with the rate given
by the chirality-changing scattering time τV while the
second term describes the generation of the chiral charge
due to the quantum anomaly. The chiral current,

j5 = −D5∇ρ5 , (103)

is given by the diffusion of the chiral charge ρ5 with the
corresponding diffusion constant D5. We assume that the
Dirac semimetal has zero usual chemical potential for the
Dirac quasiparticles, µ = 0. Moreover, we consider a lin-
ear approximation so that the transport effects, which
are discussed here, do not generate a nonzero µ. Sub-
stituting Eq. (103) into Eq. (102) one gets the following
equation for the chiral charge density:

dρ5

dt
= − ρ5

τV
+D5∆ρ5 +

1

2π2
BE . (104)

In the stationary electric field, dE/dt = 0, the chiral
charge ρ5 relaxes towards equilibrium dρ5/dt = 0 at late
times t � τV . The equilibrium chiral charge density is
given by a solution of Eq. (104) with the vanishing left
hand side. The corresponding density is:

ρ5(x) =
1

2π2D5

∫
d3y G(3)(x− y;λ)

(
B(y) ·E(y)

)
,(105)

where (
−∆ + L−2

V

)
G(3)(x− y;λ) = δ(x− y) , (106)

is the three-dimensional Green’s function and

LV =
√
D5τV , (107)

is a characteristic length which controls spatial diffusion
of the chiral charge.

Working in a linear approximation we consider a weak
electric field E, so that the chiral imbalance can always
be treated as a small quantity, µ5 � T . In the ab-
sence of the usual chemical potential µ, one gets from
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Eq. (101) the following relation between the chemical po-
tential with the chiral charge density:

µ5(x) =
3v3
F

T 2
ρ5(x) . (108)

Thus we see, that there is the nontrivial distribution of
chiral chemical potential around the dislocation with the
characteristic length LV .

Notice, that this chiral chemical potential refers to the
single Dirac point with a pair of Weyl fermions.

IX. OBSERVATION OF CHIRAL MAGNETIC
EFFECT THROUGH THE CONTRIBUTION TO

CONDUCTIVITY

The chiral magnetic effect is described by (6) in
which the chiral chemical potential is related to the chi-
ral charge density by Eq. (108). Using the equilibrium
expression for the chiral charge density (105), we come
to the conclusion that the external electric field generates
along the dislocation the following electric current

jCME(x) = nD
3v3
F

4π4T 2D5
B(x) (109)

·
∫
d3y G(3)(x− y;LV ) (B(y) ·E(y)) .

Here nD = 2 is the number of Dirac points. Now let is
consider practically interesting case when the dislocation
is a strait line centred at the origin, x1 = x2 = 0 and
directed along the x3 axis. The dislocation induces the
intrinsic magnetic field

B(x⊥) = Bz(x⊥)n , (110)

which is directed along the x3 ≡ z axis (here n is the
unit vector in z direction). The intrinsic magnetic field
is a function of the transverse coordinates x⊥ = (x1, x2)
which takes nonzero values in a (small) core of the dis-
location. In our model approach we consider the field
distributed around the dislocation,

Bz(x⊥) = sign Φ
exp (−|x⊥|/ξ0)

(
x⊥
ξ0

)−2(|Φ̂|−[|Φ̂|])

ξ2
0Γ(−2|Φ̂|+ 2[|Φ̂|] + 2)

,(111)

with the characteristic length ξ0 that is much larger than
the size ξ of the dislocation core (the latter is of the order
of a few lattice spacings a).

This magnetic field obeys
∫
d2x⊥B(x⊥) = 2π sign Φ.

The total flux Φ of the intrinsic magnetic field is of a
geometrical origin and it is a quantity of the order of
unity

Φ̂ =
Φ

Φ0
, (112)

in terms of the elementary magnetic flux (30). For the
straight dislocation (111) the axial anomaly generates
the axial charge which spreads in the semimetal in the

α=0.1

α=0.5

α=0.9

α=|Φ

|-[|Φ


|]

0.0 0.5 1.0 1.5 2.0 2.5 3.0
0.0

0.5

1.0

1.5

x⊥/ξ0

ξ 0
2
B
(x

⊥
/ξ
0)

FIG. 3. The effective intrinsic magnetic field Bz(x⊥) in
Eq. (111) vs. the distance from the dislocation core x⊥ plot-
ted for a few values of the fractional part of the absolute value
of the normalized flux (112) α = 0.1, 0.5, 0.9.

transverse directions according to the equilibrium for-
mula (105).

The distribution of the axial charge around the disloca-
tion is controlled by the the diffusion-related parameter
LV which is typically much larger than the width of the
dislocation core and is much smaller, than the length ξ0
entering Eq. (111). The generated electric current (109)
can be written in terms of a local Ohm law:

jCME
i (x⊥) = σij(x⊥)Ej , (113)

where the space-dependent conductivity tensor has the
only nonvanishing component

σzz(x⊥) = nD
3v3
F

4π4T 2D5
Bz(x⊥) (114)

·
∫
d2y⊥G

(2)(x⊥ − y⊥;LV )Bz(y⊥) ,

while all other components vanish identically. The two-
dimensional Green function,

G(2)(x⊥) =
1

4π
K0 (x⊥/LV ) , (115)

is a transverse Green function satisfying a 2d analogue of
Eq. (106):(
−∆⊥ + L−2

V

)
G(2)(x⊥ − y⊥;LV ) = δ(x⊥ − y⊥).(116)

In real Dirac semimetals the value of ξ0
LV

is around
100. Nevertheless, for the completeness, let us consider
the tho limiting cases:

1. Let us first consider the case LV � ξ0, when
the characteristic length of diffusion is much larger
than the inverse infrared cutoff of the low energy
theory. In this case we have

G(2)(x⊥) ≈ 1

4π
log
(
2LV e

−γ/x⊥
)
, (117)
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where γ is the Euler constant. In the integral in
Eq. (114) the values of |x⊥| ∼ ξ0 dominate, and
therefore we may take x⊥ ≈ ξ0 for our estimation:

σzz(x⊥) = nD
3v3
F |Bz(x⊥)|
4π4T 2D5

log (2LV e
−γ/ξ0)

2
(118)

Therefore, the dependence of conductivity on the
distance r to the dislocation is given by

σzz(x⊥) ≈ nD
3v3
F

4π4T 2D5

log (2LV e
−γ/ξ0)

2ξ2
0Γ(2− 2α)

·e−(x⊥/ξ0)

(
x⊥
ξ0

)−2α

. (119)

2. Now let us consider the opposite case, LV � ξ0.
Then

G(2)(x⊥) ≈ L2
V δ

(2)(x⊥) (120)

and

σzz(x⊥) = nD
3L2

V v
3
F

4π4T 2D5
B2
z (x⊥) (121)

Therefore, in this case the dependence of conduc-
tivity on the distance x⊥ to the dislocation axis is
stronger:

σzz(x⊥) ≈ nD
3v3
F

4π4T 2D5

L2
V

ξ4
0 [Γ(2− 2α)]2

e−2(x⊥/ξ0)

(
x⊥
ξ0

)−4α

. (122)

The total (integrated over the xy slice) current due to
the CME has the following form:

JCME
i = σtot

ij E
j . (123)

Equation (109) implies that the conductance tensor σtot
ij

has only one nonzero component,

σtot
zz ≡

∫
d2x⊥ σzz(x⊥) = nD

3v3
F

4π4T 2D5
(124)

·
∫
d2x⊥d

2y⊥Bz(x⊥)G(2)(x⊥ − y⊥)Bz(y⊥)

= nD
3v3
F

4π4T 2D5

∫
d2k

(2π)2

B̃2
z (k)

k2 + 1/L2
V

(125)

Here

B̃(k) =

∫
d2x⊥e

−ikx⊥B(x⊥) (126)

Using the distribution for the magnetic flux around the
dislocation (111) we arrive at the following expression for
the conductance (124):

σtot
zz = nD

3v3
F

4π4T 2D5
F

(
|Φ̂| − [|Φ̂|], ξ

LV

)
, (127)

where

F (α, x) =

∫
d2k

(2π)2

B̂2
α(k)

k2 + x2
, (128)

with

B̂α(k) =
1

Γ(2− 2α)

∞∫
0

dz

2π∫
0

dφ z1−2α e−ikzcosφ−z

= 2π 2F1

(
1− α, 3

2
− α, 1;−y2

)
, (129)

Here 2F1 is the hypergeometric function. The function
F (α, x) is well defined for α ≤ 1, which is always the

case since α = |Φ̂| − [|Φ̂|] in Eq. (127). The dependence
of the function F (α, x) on α is represented in Fig. 4 for
x = 0.1, 1, 10, 100.

x=0.1

x=1

x=10

x=100

0.0 0.2 0.4 0.6 0.8 1.0
10-4
0.001

0.010

0.100

1

10

100

α

F
(α
,x
)

FIG. 4. Function F (α, x) in Eq. (128), where α = |Φ̂| − [|Φ̂|]
is the fractional part of the absolute value of the normalized
flux (112) and x = ξ0/LV for x = 0.1, 1, 10, 100.

In the two considered above limiting cases the total
conductance is given by:

1. For LV � ξ0 we have

σtot
zz = nD

3v3
F

4π3T 2D5
log
(
2LV e

−γ/ξ0
)

(130)

2. In the opposite case LV � ξ0:

σtot
zz = nD

3v3
F

4π4T 2D5

L2
V

ξ2
0

√
πΓ(3/2− 2α)

(1− 2α)Γ(2− 2α)
, α < 1/2(131)

with α = |Φ̂| − [|Φ̂|]. For α ≥ 1/2 and even for the
value of α smaller than 1/2 but close to 1/2 the
above expression does not work, and we should use
the exact expression Eq. (127). In practical calcu-
lations with ξ0 ∼ 100LV the above asymptotic ex-
pression gives reasonable results that approximate
well the exact expression of Eq. (127) (see Fig. 4)
for α < 0.4.
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X. NUMERICAL ESTIMATES

Now let us estimate a scale of the magnitude of the
anomalous contribution to the total conductance of a
Dirac semimetal which comes from the chiral anomaly
and the (intrinsic) chiral magnetic effect.

We take for a reference the Dirac semimetal
Cd3As2.The diffusion length of the axial charge for this
semimetal was experimentally estimated in Ref. [6] as
LV ≈ 2 × 10−6m. This quantity turns out to be al-
most temperature-independent in a wide range of tem-
peratures T = (50 ∼ 300) K. A rough estimate of Ref. [7]
gives for the relaxation time τV ∼ τtr ≈ 2×10−10 s. Then
from Eq. (107) one finds

D5 = L2
V /τV ≈ 2× 10−2m2/s . (132)

Correspondingly the inverse infrared cutoff ξ0 may be
estimated as

ξ0 ∼ vF τV ∼
1

200
300 · 106 m

s
· 2× 10−10s = 3 · 10−4 m

(133)
In this estimate we use the value of vF for Cd3As2 that
is around 1/200 speed of light. The value of ξ0 should be
compared to the size of the dislocation core

ξ ∼ 10−9 m , (134)

and to the value of LV

LV ∼ 2 · 10−6 m . (135)

Thus we see that in practice the suggested limiting case
is indeed realized:

LV � ξ0 (136)

and the typical value of x = ξ0
LV

is x ∼ 100. At this value

of the ratio x the total conductance (127), expressed
through the function (128), is very sensitive to (the frac-

tional part α = |Φ̂| − [|Φ̂|] of) the (normalized) emergent

magnetic flux Φ̂ of the dislocation, as shown in Fig. 4 by
the dot-dashed line. From Fig. 4 it is readily seen that
while the value of the emergent flux |Φ̂| is changing from
zero to unity, the total conductance may vary by 6 orders
of magnitude! The function F for x = 100 takes a unit
value F = 1 for |Φ̂| ≈ 0.85. Notice that the conductivity

diverges at |Φ̂| → 1.
Notice, that we used in the present paper the relativis-

tic system of units, in which the only dimensional unit is
the electron-volt (eV). Distances are measured in eV−1.
Below we estimate the value of conductance induced by
the dislocation. Firstly, we give the estimate in relativis-
tic units, where it is expressed through eV or 1/m, where
the unit of distance (m) is related to eV−1 according to
the standard relation [200 MeV]−1 ≈ 1 fm = 10−15 m.
Next, we express the conductance in SI system using the
definition of its unit of electric current (A) as Coulomb/s.

SI current equal to one Ampere corresponds to the rela-
tivistic current equal to 1/(ec) in the units of 1/m, where
e is the charge of electron (in Coulombs) while c is the
speed of light (in m/s).

For the beginning, let us consider the room tempera-
ture T ∼ 300 K ≈ 0.025 eV. At the same time D5/c ≈
6.7 · 10−11m = 6.7 · 104fm ≈ 3 · 10−4eVeV −1. We also
take into account that the typical value of vF in Dirac
semimetals is of the order of ∼ 1/200 of the speed of light.
In our estimates let us consider the normalized emergent

magnetic flux Φ̂
2π close to the mentioned value 0.85 (so

that F = 1). Then the typical value of total conductance
at the dislocation (127) is

σtot
zz ∼ 2 · 3v3

F

4π4T 2D5
∼ 1 · 10−2eV−1 . (137)

For example, the value of the electric field expressed in
the SI system of units, E = 1 V/cm corresponds to E ∼
2 · 10−5 [eV]2 if expressed in the relativistic units (in our
units the electric field strength definition includes the
factor e). It produces electric current that is equal (in
relativistic units) to 2·10−7eV ≈ 1m−1. In SI this current
corresponds to about 0.5 · 10−10A = 0.05nA.

Thus we come to the estimate of the order of magni-
tude of conductance expressed in the usual units

σtot
zz ∼ 0.05

nA · cm

V
at T ∼ 300K. (138)

for the chose value of the flux, Φ = 0.85 Φ0. In other
words, a dislocation carrying the emerging magnetic flux
which is about 15% smaller than the elementary flux Φ ≈
Φ0 = 2π, should carry the total electric current Jz ≈
0.05 nA due to the electric field of strength Ez = 1 V/cm
directed along the dislocation axis. If the flux is very
close to the critical value, say Φ = 0.99Φ0, then the factor
F is two order of magnitude larger (F ≈ 134), and the
conductance (138) increases by two orders of magnitude.

Due to strong temperature dependence of the total
conductance (127), at small temperature the conduc-
tance should increase drastically. For example,

σtot
zz ∼ 30 nA cm/V, at T ∼ 10K, (139)

(for reference, here we quote the result for Φ = 0.85Φ0

at which F ≈ 1).
Finally, let us represent the expression for conductance

restoring ~, e and kB :

σtot
zz = nD

3e2~v3
F cos ΘEn

4π4(kBT )2D5
F

(
|Φ̂| − [|Φ̂|], ξ

LV

)
, (140)

where we have restored the dependence on the conduc-
tance on the angle ΘEn between the direction of the
external electric field and the dislocation axis [this de-
pendence following directly from the expressions for the
chiral anomaly (85) and (86)].

In Eq. (140) the function F (α, x), given by Eq. (128),
is represented in Fig. 4. Notice, that the value of σtot

zz
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depends strongly on Φ̂. For small values of the Burgers
vector the value of Φ̂ may be much smaller than unity.
Say, in Na3Bi the minimal topological contribution to
Φ̂ is of the order of 0.1 (see Section III). If the con-
tribution of the material-dependent second term to the
emergent magnetic flux (38) is neglected, then in this
case the value of σtot is suppressed by a small value of
the factor F (α, x). However, choosing larger values of

the component b3 of Burgers vector the value of Φ̂ may
always be made close to unity, which increases the nu-
merical value of the total conductance by many orders of
magnitude. The contribution of the second term to the
magnetic flux in Eq. (38) also increases the total value of

Φ̂. The conductance should also be increased in a “for-
est” of dislocations, which are parallel to each other.

Notice that the anomalous contribution to the total
conductance originating from the chiral anomaly and the
(intrinsic) chiral magnetic effect (140) comes along with
the ordinary Ohmic contribution to conductance. The
anomalous conductance should depend on the orienta-
tion of the electric field with respect to the axis of the
dislocation via the angle ΘEn in Eq. (140), and in the
case when the dislocation and the electric field are per-
pendicular to each other, the axial anomaly is no more
effective and the anomalous conductance vanishes.

XI. CONCLUSIONS

In this work we discussed intrinsic chiral magnetic ef-
fect in Dirac semimetals Na3Bi and Cd3As2 caused by
the dislocations. This effect exists without any external
magnetic field unlike the conventional chiral magnetic ef-
fect that was discussed for Dirac semimetals, for example,
in [4]. The dislocation appears as a source of the emer-
gent magnetic field: it carries the emergent magnetic flux.
This flux gives rise to the zero mode of the one - particle
Hamiltonian localized in the area of size ξ0 around the
dislocation (where 1/ξ0 is the infrared cutoff of the field
theoretical approximation used in our approach). Length
ξ0 may also be identified with the mean free path of the
quasiparticles. For example, for Cd3As2 it is of the order
of 200µm. This zero mode corresponds to the branch
of spectrum of the quasiparticles with the spin directed

along the magnetic flux of the dislocation.
In the presence of external electric field the spectral

flow along this branch of spectrum results in the pumping
of the quasiparticles from vacuum. Therefore, the chiral
anomaly appears given by Eq. (91). Effective magnetic
field entering Eq. (91) differs from the emergent magnetic
field of the low energy effective field theory. Instead this
field is given by Eq. (92) and is expressed through the
wave function of the mentioned zero mode.

This chiral anomaly gives rise to the chiral chemical
potential distributed around the dislocation. The char-
acteristic length LV of this distribution is of the order of
2µm for Cd3As2. The presence of this chiral chemical
potential, in turn, drives the chiral magnetic effect: elec-
tric current appears along the dislocation proportional
to the field B of Eq. (91). We estimate the correspond-
ing contribution to total conductance. It appears, that
this contribution depends strongly on the emergent mag-
netic flux incident at the dislocation according to Eq.
(140). For the values of magnetic flux close to 2π the
estimated value of the contribution to conductance is of
the order of 0.05 nA cm/V for T ≈ 300K and of the
order of 30 nA cm/V for T ≈ 10K. Notice, that mul-
tiple dislocations multiply the CME contribution to the
total conductance of Dirac semimetal. Several disloca-
tions with Burgers vectors bi and distances between them
mush smaller, than LV , work effectively as a single dis-
location with the Burgers vector

∑
i bi. In principle, the

crystal growth may be organised in such a way, that the
dislocations appear along the chosen direction with the
chosen values of the Burgers vector. Also the dislocations
appear as a result of plastic deformations of the crystals.
This opens the possibility to observe chiral magnetic ef-
fect experimentally.
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A. H. Vozmediano, “Hall viscosity from elastic gauge
fields in Dirac crystals”, arXiv:1506.05136.

[36] G.E. Volovik, “The Universe in a Helium Droplet”,
Clarendon Press, Oxford (2003)

[37] Onkar Parrikar, Taylor L. Hughes, and Robert G.
Leigh, “Torsion, parity-odd response, and anomalies in
topological states”, Phys. Rev. D 90, 105004 (2014)
[arXiv:1407.7043].

[38] M.A.Zubkov, “Emergent gravity and chiral anomaly in
Dirac semimetals in the presence of dislocations”, Annals
of Phys., 360, 655 (2015), [arXiv:1501.04998]

[39] L.D. Landau, E.M. Lifshitz, “Theory of Elasticity, Third
Edition: Volume 7 (Course of Theoretical Physics)”,
Butterworth-Heinemann, Oxford (1986).

[40] G. E. Volovik, M. A. Zubkov, “Emergent Weyl spinors in
multi-fermion systems”, Nucl. Phys. B 881, 514 (2014)



18

[arXiv:1402.5700].
[41] Satya K. Kushwaha et al., “Bulk crystal growth

and electronic characterization of the 3D Dirac
Semimetal Na3Bi”, APL Mater. 3, 041504 (2015)
[arXiv:1502.03547].

[42] M.M. Ansourian, “Index theory and the axial current
anomaly in two dimensions”, Phys. Lett. B 70, 301
(1977).

[43] Problems to Section 27 of Ref. [39]; see also a derivation
in Ref. [38].

[44] Ying Ran, Yi Zhang and Ashvin Vishwanath, “One-
dimensional topologically protected modes in topological
insulators with lattice dislocations”, Nature Phys. 5, 298
(2009).

[45] Zhijun Wang, Yan Sun, Xingqiu Chen, Cesare Fran-
chini, Gang Xu, Hongming Weng, Xi Dai, Zhong Fang,
“Dirac semimetal and topological phase transitions in
A3Bi (A=Na, K, Rb)”, Phys. Rev. B 85, 195320 (2012)
[arXiv:1202.5636].


