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The dislocation in Dirac semimetal carries an emergent magnetic flux parallel to the dislocation
axis. We show that due to the emergent magnetic field the dislocation accommodates a single fermion
massless mode of the corresponding low-energy one-particle Hamiltonian. The mode is propagating
along the dislocation with its spin directed parallel to the dislocation axis. In agreement with the
chiral anomaly observed in Dirac semimetals, an external electric field results in the spectral flow
of the one-particle Hamiltonian, in pumping of the fermionic quasiparticles out from vacuum, and
in creating a nonzero axial (chiral) charge in the vicinity of the dislocation.

PACS numbers: 75.47.-m,03.65.Vf,73.43.-f

I. INTRODUCTION AND MOTIVATION

The Dirac semimetals are novel materials that have
been discovered recently (Na3Bi and Cd3As2 [1–3]). A
possible appearance of Dirac semimetals in the other sys-
tems (for example, ZrTe5 [4, 5], and Bi2Se3 [6]) was also
discussed. In Dirac semimetals the fermionic quasipar-
ticles propagate according to the low energy action that
has an emergent relativistic symmetry. Both in Na3Bi

and Cd3As2 there exist two Fermi points ±K(0). At
each Fermi point the pair of left-handed and right-handed
fermions appears. The Dirac semimetals represent an
arena for the observation of various effects specific for
the high energy physics. In particular, the effects of chi-
ral anomaly play an important role in physics of these
materials [3, 7–11].

In the Weyl semimetals, which were also discov-
ered recently (in particular, TaAs [12]) one of the
two Fermi points hosts a right-handed Weyl fermion
while another Fermi point hosts a left-handed Weyl
fermion. Various relativistic effects were discussed in
Weyl and Dirac semimetals already before their exper-
imental discovery[13–25].

In [4] the experimental observation of the chiral
anomaly in ZrTe5 was reported as measured through
their contributions to the conductance of the sample. It
has been shown, that in the presence of parallel exter-
nal magnetic field and external electric field the chiral
anomaly leads to the appearance of nonzero chiral den-
sity and, correspondingly, a nonzero chiral chemical po-
tential. This work was followed be a number of papers,
where the experimental detection of chiral anomaly was
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reported in different Dirac and Weyl semimetals (see [27]
and references therein).

Similarly to graphene [28–35] the fermionic quasipar-
ticles in Dirac and Weyl semimetals experience emergent
gauge field and emergent gravity in the presence of elas-
tic deformations of the atomic lattices (see, for example,
[36–39] and references therein). In this paper we will
concentrate on dislocations in the crystalline order of the
atomic lattice, which are particularly interesting cases of
the elastic deformations of the ion crystal lattice [40, 41].
The dislocation is a line-like defect characterized by the
Burgers vector b which determines the physical displace-
ment of the atomic lattices along the dislocation. The
vector b is a global characteristic of the dislocation be-
cause it is a constant quantity over the entire length of
the dislocation. In rough terms, one may imagine the dis-
location as a vortex which possesses a fixed “vorticity”
given by the Burgers vector b. The extreme examples
of the dislocations are the screw dislocation (shown in
Fig. 1) and the edge dislocation (illustrated in Fig. 2)
for which the corresponding Burgers vectors are parallel
and, respectively, perpendicular to dislocations’ axes n.
There are other types of the dislocations lying in between
these two extreme cases.

In [39] the effect of the dislocation on the geometry ex-
perienced by fermionic quasiparticles in Dirac semimetals
was considered for the first time. Aharonov-Bohm effect
and Stodolsky effect (the latter effect describes a correc-
tion to the Aharonov-Bohm effect due to torsion) were
investigated for the scattering of the quasiparticles on dis-
locations. Besides, basing on an obvious analogy with the
results of [4] it was proposed, that the dislocation (that
carries an emergent magnetic flux) becomes the source
of chiral anomaly and chiral magnetic effect. This occurs
because the dislocation carries emergent magnetic field.
Therefore, it was argued, that the chiral anomaly and chi-
ral magnetic effect occur without any external magnetic
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FIG. 1. Illustration of the screw dislocation of the atomic
lattice with the Burgers vector b parallel to the axis n of the
dislocation (the green line). The semitransparent plane points
out to the region where the atomic planes experience a shift.

FIG. 2. Illustration of the edge dislocation with the Burgers
vector b perpendicular to the dislocation axis n (the blue
line). The semitransparent plane shows the extra half-plane
of ions introduced in the crystal.

field. According to [39] the contribution of topology to

magnetic flux Φ is equal to the scalar product K(0)b,
where b is the Burgers vector. There may also appear
the contribution to the flux Φ proportional to the tensor
of elastic deformations caused by the dislocation with the
coefficients of proportionality that are analogous to the
Gruneisen parameter of graphene. The emergent mag-
netic flux is associated with emergent magnetic field.

Hi(x) = Φ

∫
dyiδ(3)(x− y), (1)

where the integral is taken along the dislocation. The
appearance of the delta-function in Eq. (1) in the low-
temperature theory corresponds to the fact that the
emergent magnetic flux is localized within the disloca-

tion core of radius ξ ∼ |b|, where b is the Burgers vector
of the dislocation. In [39] the simple model of the dislo-
cation was used, in which it is represented as a tube of
size ξ with the emergent magnetic field inside it.

The further examination of the mentioned above prob-
lem has led us to the conclusion, that the naive appli-
cation of the pattern of chiral anomaly discussed in [4]
to the case, when the magnetic field is emergent and is
caused by dislocations, has certain restrictions. Strictly
speaking, the mentioned above model of the fermionic ex-
citations and chiral anomaly within the dislocation may
be applied to the investigation of real materials only if
the emergent magnetic flux of the low energy field the-
ory is distributed within the area of size ξ essentially
larger, than the interatomic distance a while the emer-
gent magnetic flux of the dislocation is essentially larger,
than 2π. In this situation we are formally able to use the
low energy field theory for the description of fermionic
excitations inside the dislocation core. This occurs for
the strong dislocations with sufficiently large values of
the Burgers vector b, when the crystal lattice is distorted
considerably (or in the case, when many parallel disloca-
tions with small values of the Burgers vectors are located
close to each other). In this case the dislocation core size
ξ ∼ |b| � a is much larger than the interatomic dis-
tance a.

In the present paper we consider the opposite situ-
ation, when in Dirac semimetals the values of Burgers
vector are relatively small, so that the magnetic flux at
the dislocation is smaller than 2π or around 2π. In this
situation the crystal structure is not violated strongly, so
that the dislocation core size is, presumably, of the order
of the interatomic distance ξ ∼ a. The low energy the-
ory is developed for the states with the typical values of
momenta much smaller, that 1/a. Therefore, in this case
the states localized within the dislocation core cannot be
described by the field theory. In order to describe such
states the microscopic theory is to be applied.

It appears, that the anomaly in the right- and left-
handed quasiparticle currents is given by

〈∂µjµR,L〉 = ± 1

4π2
EB or 〈∂µjµ5 〉 =

1

2π2
EB , (2)

where the upper and lower signs in the first equation cor-
respond to the right-handed and the left-handed quasi-
particles, respectively. The important feature of Eq. (2)
is that the effective magnetic field B – contributing to
the anomaly (2) differs from the emergent magnetic field
at the dislocation H as given in Eq. (1).

The basic reason for the difference between the emer-
gent magnetic field H and the effective magnetic field
B is that the emergent magnetic field H of the disloca-
tion has a small (of the order of unity or even smaller)
magnetic flux Φ. In this case the contribution to both
mentioned effects is given by the single fermionic mode
(related to the zero mode of the one-particle Hamilto-
nian) propagating along the dislocation rather than by a
large ensemble of the lowest Landau modes with a huge
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degeneracy factor. To be more precise, the effective mag-
netic field B is expressed through the probability density
corresponding to the zero mode of the one-particle Hamil-
tonian in the background of the emergent magnetic field
H due to the dislocation. The appearance of the propa-
gating (zero) mode at the dislocation is a natural effect,
which is known to exist in topological insulators with
lattice dislocations [46].

The contribution of the individual zero mode to the
chiral anomaly (2) can be described with the help of
the effective magnetic field B, which carries a unit ele-
mentary magnetic flux contrary to the original emergent
magnetic field H, which may have an arbitrary (but still
small) value of the total flux Φ. The effective field B is
localized in the wide area of linear size ξ0, where 1/ξ0
is the infrared cutoff of the considered field theoretical
low energy approximation (below we argue that ξ0 may
be identified with the mean free path of the quasipar-
ticles. For example, in Cd3As2 the mean free path is
ξ0 ∼ 200µm [8]).

In this paper we demonstrate that for the straight
screw dislocation directed, for example, along the sym-
metry axis of the crystal the emergent magnetic flux as-
sociated with the emergent field H is given by

Φ =
(
K(0) · b

)
+

β

2a
(n · b) , (3)

where the first term is of the topological origin [39] while
the second term is not topological (here β is an ana-
logue of the Gruneisen parameter of graphene [33]). The
magnetic field associated with the flux (3) is localized
within the dislocation core of a typical size ξ ∼ a, where
a ∼ 1nm is a typical interatomic distance. In Eq. (3)

the vector K(0) encodes positions of the Fermi points

k = ±K(0) in momentum space, and n is the direction
of the dislocation axis. For the straight screw disloca-

tion vectors K(0), b and n in Eq. (3) are parallel to each
other.

We will discuss effects, which appear due to the in-
terplay between quantum anomaly and dislocations in
the crystal structure of Dirac semimetals. A fermion
excitation is affected by the dislocation, in particular,
via the mentioned above intrinsic magnetic field, which
is localised in a spacial vicinity of the dislocation and
is directed along the axis of the dislocation. In princi-
ple, the emergent magnetic fields corresponding to differ-
ent Weyl fermions (that belong to different Fermi points
and/or have different chiralities) differ from each other.
However, there exists an approximation, in which those
emergent fields H have the same absolute values, but

opposite directions for the two Fermi points ±K(0). If
this approximation is not violated strongly (which is the
general case) the signs of the emergent magnetic fluxes
experienced by the quasiparticles living near to the Fermi

points ±K(0) are opposite. In the Dirac semimetal both
right- and left-handed fermion excitations are present in
each (of the two) Dirac cone, therefore in this case we
have a standard effective magnetic field B(x) acting on

the right- and left-handed fermions at one Dirac cone
and the magnetic field −B(x) acting on the right- and
left-handed fermions at another cone. These fields enter
expression for the anomaly Eq. (2).

If now one applies an external static electric field E
along the axis of the dislocation, then the quantum
anomaly will generate the chiral charge at a rate pro-
portional to the scalar product EB. The generated chi-
ral charge will dissipate, both due to the chiral-changing
processes inside the region of size ξ0 around the disloca-
tion and due to the spatial diffusion of the chiral charge.
Next we notice that the equilibrium distribution of the
chiral charge – which can effectively be described by a
spatially nonconstant but otherwise static chiral chemi-
cal potential µ5 – is subjected to the intrinsic magnetic
field of the dislocation itself. The chemical potential µ5

is distributed around the dislocation with the character-
istic length LV (for example, in Cd3As2 this length is
of the order of LV ∼ 2µm.) The chirally imbalanced
matter in the presence of magnetic field generates dis-
sipationless electric current directed along the disloca-
tion and concentrated in the spatial vicinity around it.
Therefore, the intrinsic magnetic field of the dislocation
would lead to a spatially-dependent (negative) magne-
toresistance around the dislocation. Similar arguments
were used in Ref. [4] to experimentally investigate effects
of the chiral anomaly in ZrTe5 in the presence of external
magnetic field.

The paper is organized as follows. In Sect. II we re-
call briefly general theory of quasi-relativistic fermions in
Dirac semimetals in the presence of elastic deformations
which leads both to the emergent gauge field and to the
emergent gravity (the latter is described by an emergent
vielbein [42]). In Section III we discuss these effects fo-
cusing on dislocations, partially following Ref. [39]. In
Sect. IV we consider the zero modes of the one-particle
Hamiltonian and demonstrate, that there always exists
a single mode with the definite spin directed along the
emergent magnetic flux, which is localized in a wide area
around the dislocation. In Sect. V we show that the spec-
tral flow along the branch of spectrum (that crosses zero
at the mentioned zero mode) gives rise to the anomalies
in quasiparticle currents: in a Dirac semimetal the chiral
anomaly appears. For the sake of simplicity, these results
are discussed first for the strait dislocation, is directed
along the symmetry axis z of the crystal that coincides

with the direction of the Fermi point K(0) in momentum
space. We extend our results to the case of strait dis-
locations with arbitrary direction in Sect. VI. Then in
Sect. VII we discuss the generation of the chiral charge
via the chiral anomaly (2) due to the interplay between
an external electric field and the internal magnetic field of
the dislocation. The last section is devoted to discussions
and to our conclusions.
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II. RELATIVISTIC FERMIONS IN DIRAC
SEMIMETAL

The Dirac semimetal possesses two cones, each of
which hosts one right-handed and one left-handed Weyl
fermion. In the presence of elastic deformations caused
by the dislocation the action for a right-handed and left-
handed Weyl fermions near a given Fermi point are, re-
spectively, as follows [39]:

SR=
1

2

∫
d4x|e|

[
Ψ̄ieµb (x)σbDµΨ− [DµΨ̄]ieµb (x)σbΨ

]
, (4)

SL=
1

2

∫
d4x|e|

[
Ψ̄ieµb (x)σ̄bDµΨ− [DµΨ̄]ieµb (x)σ̄bΨ

]
, (5)

where

iDµ = i∇µ +Aµ(x) (6)

is the covariant derivative corresponding to the emergent
U(1) gauge field Aµ, σ0 = σ̄0 = 1, and σ̄a = −σa with
a = 1, 2, 3 are the Pauli matrices. The currents of the
right- and left-handed quasiparticles are, respectively, as
follows:

JµR = Ψ̄ieµb (x)σbΨ , (7)

JµL = Ψ̄ieµb (x)σ̄bΨ . (8)

Throughout this paper the internal SO(3, 1) indices are
denoted by Latin letters a, b, c, ... from the beginning of
the alphabet while the space-time indices are denoted by
Greek letters or by Latin letters i, j, k, ... from the middle
of the alphabet.

The vierbein field eµa = eµa(x) is a 4 × 4 matrix which
carries all essential information about anisotropy and the
elastic deformations (caused, for example, by a disloca-
tion) of the ion lattice of the Dirac crystal. It is con-
venient to introduce the inverse of the inverse vierbein
field, eaµ = eaµ(x), defined, naturally, as follows:

eµa(x)eaν(x) = δµν . (9)

In our paper we always assume that the deformations are
small so that the determinant of the vierbein field

|e| ≡ det(eaµ) , (10)

never vanishes.
In the absence of elastic deformations the fields enter-

ing the actions (4) and (5) are simplified. In this case the
emergent gauge field Aµ vanishes.

In the absence of elastic deformations the vierbein can
be chosen in a diagonal form,

e(0),µ
a =


v−1
F 0 0 0
0 ν−1/3 0 0
0 0 ν−1/3 0
0 0 0 ν2/3

 , (11)

where the parameter ν 6= 1 reflects the fact that the
experimentally studied Dirac semimetals are anisotropic

materials [1–3]. It is also convenient to introduce the
spatial component of the undeformed vierbein (11):

e(0),i
a ≡ f̂ ia =

 ν−1/3 0 0
0 ν−1/3 0
0 0 ν2/3

 , (12)

with i, a = 1, 2, 3. The quantity viF ≡ vF f̂ ii with fixed i =
1, 2, 3 has a meaning of the anisotropic Fermi velocity in
i-th direction. The determinant (10) in the undeformed
case is |e(0)| = vF .

The low-energy effective field theory (4), (5) has the

natural ultraviolet cutoff ΛUV ∼ |K(0)| associated with
the positions of the Dirac cones in the momentum space.
In order to determine a natural infrared cutoff we no-
tice that in our field-theoretical approximation the mass-
less quasiparticles do not interact with each other since
the effective actions (4) and (5) contain only bilinear
fermionic terms while the gauge field Aµ is a classical
non-propagating field. Therefore, the natural infrared
cutoff for our approach is ΛIR = 1/ξ0, where the length
ξ0 may be identified with the mean free path of the mass-
less quasiparticles. Indeed at the distances of the order
of the mean free path ξ0 we cannot neglect interactions
between the quasiparticles and their scattering on the de-
fects of the atomic lattice which, in general, cannot be
captured by Eqs. (4) and (5).

As an example, we mention that for the Dirac material
Cd3As2 the mean free path ξ0 was estimated in Ref. [8] to
be of the order of 200µm. In the above formulation of the
low-energy theory, the Dirac point corresponds to zero
energy. In real situation the crystals of semimetal may
have nonzero Fermi energy at the level crossing points.
In particular, in [43] the values of Fermi energy of the
order of 10 meV were reported for Na3Bi. In the following
applications we assume, that in the real systems the value
of Fermi energy may be neglected, or that the sample is
doped in such a way, that the doping-induced chemical
potential shifts the level crossing to the vanishing energy.

In the upcoming sections for simplicity we restrict our-
selves to the case, when the dislocation is an infinite
straight line directed along the symmetry axis z of the
crystal, which coincides with the direction of the Dirac

point K(0) in momentum space. We will return to the
more general case of an arbitrarily aligned straight dislo-
cation in Sect. VI.

Now let us consider the case when the atomic lattice
of a Dirac semimetal is elastically deformed. The defor-
mation is described by the displacement vector ui which
gives the displacements of the ions with respect to their
positions with respect to the unperturbed semimetal. In
the approximation of isotropic elasticity for a straight
dislocation directed around the z ≡ x3 axis the displace-
ment vector ua is given by:

ua = −θ b
a

2π
+ uacont, (13)

where θ is the polar angle in the plane orthogonal to the
dislocation and ba is the Burgers vector. The first term
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in the right hand side of Eq. (13) is discontinuous vector
function as it has a jump by ba at θ = 0. The second,
continuous part of displacement is given by [45]

ukcont(x⊥)=− bl

4π

1− 2σ

1− σ

[
ε3kllog

|x⊥|eγ

2R
+
ε3ilx̂i⊥x̂

k
⊥

1− 2σ

]
(14)

where x⊥ = (x1, x2) are the transverse coordinates in
the laboratory reference frame, x̂i⊥ are respective unit
angles in the transverse plane and σ is the Poisson ratio
which is defined as the negative ratio of transverse to
axial strain of the atomic crystal. Throughout this paper
we shall work in the laboratory reference frame in which
the positions of ions are their real 3d coordinates.

Notice, that for the screw dislocation when the Burgers
vector directed along the dislocation axis, b = (0, 0, bz),
the continuous part of the displacement vector vanishes,
ukcont = 0. It is worth mentioning, that while the values of
ukcont may be large, its derivatives are small for sufficiently
small b because after the differentiation the expression in
Eq. (14) tends to zero at |x⊥| → ∞.

In the presence of elastic deformations, in principle,
the emergent vielbeins (as well as the emergent gauge
fields) may differ for the left-handed and the right-handed
fermions incident at the given Dirac point.

Let us introduce tensor of elastic deformations [40]

uij = ∂iuj + ∂jui , (15)

where we have neglected the part quadratic in ui by
assuming that the deformations are small. In general,
the emergent vielbein around the dislocation may be ex-
pressed, up to the terms linear in displacement vector, as
follows (see Ref. [39] for the details of the derivation):

eia = f̂ ia(1 +
1

3
γkknju

nj) + f̂ka ∂ku
i − f̂na γinjkujk

ei0 = − 1

vF
γi0jku

jk, e0
a = 0

e0
0 =

1

vF
(1 +

1

3
γkkiju

ij)

|e| = vF (1− ∂iui −
1

3
γkkiju

ij)

a, i, j, k, n = 1, 2, 3 (16)

The emergent gauge field is given by

Ai ≈ −∇i(u ·K(0))) +
1

a
βijku

jk, (17)

A0 =
1

a
β0jku

jk, i, j, k = 1, 2, 3

The tensors β and γ, which are the analogues to the
Gruneisen parameters in graphene, may, in principle
be different for the right-handed and the left-handed
fermions. The analogy to graphene prompts that their
values could be of the order of unity. Notice, that in
graphene the emergent electric potential A0 does not
arise outside of the dislocation core [33]. In the same
way we assume, that in the semimetal the parameters
β0jk may be neglected. The reason for this is that the

combination K(0)+A appears as the value of momentum
P , at which the one-particle Hamiltonian H(x, P̂ ) van-

ishes (one substitutes K(0)+A instead of the momentum

operator P̂ ):

H
(
x,K(0) + A(x)

)
= 0 (18)

As a result we expand the Hamiltonian near the floating

Fermi point K(0) + A(x):

H(x, P̂ ) = |e(x)| eka(x)σa ◦
[
P̂k −

(
K

(0)
k +Ak(x)

)]
+A0(x) , (19)

where by the symbol ◦ we denote the symmetric product

A ◦B =
1

2
(AB +BA). (20)

The only possible source of A0(x) is the noncommutativ-

ity of momentum P̂ and coordinates. This means, that
unlike Ak with k = 1, 2, 3 the emergent electric poten-
tial A0 is proportional to the derivatives of the param-
eters entering H(x, P̂ ). The field Ak with k = 1, 2, 3
is proportional to 1/a times the combination of the di-
mensionless parameters while A0 is proportional to their
derivatives but it does not contain the factor 1/a. For
slow varying elastic deformations this means that A0 may
be neglected. This consideration does not work, how-
ever, within the dislocation core, where physics is much
more complicated. The influence of this unknown physics
on the quasiparticles with small values of momenta (de-
scribed by the action of the form of Eqs. (4), (5)) may
be taken into account through the same emergent fields
Aµ, µ = 0, 1, 2, 3 and eka, which become strong within
the dislocation core. The component of A0 of emergent
electromagnetic field is not forbidden by any symmetry.
Therefore, it appears and gives rise to emergent electric
potential (either attractive or repulsive) within the dis-
location core.

Notice, that the simple model of Weyl semimetal with
cubic symmetry has been considered in [36]. The Dirac
semimetal (with cubic symmetry) may, in principle, be
described by the two copies of the model of [36].

III. EMERGENT MAGNETIC FLUX CARRIED
BY THE DISLOCATION

In order to calculate the emergent magnetic field we
should use integral equation

1

2
εijk

∫
S
Hidxj ∧ dxk ≡

∫
∂S
Akdx

k , (21)

where the integration goes over a surface in the transverse
plane which includes the position of the dislocation. For
the considered solution of elasticity equations (17) we
represent the right hand side of this expression as follows∫

∂S
Akdx

k = biK
(0)
i +

1

a
βijk

∫
∂S
ujkdxi (22)
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The first term in this expression gives the following sin-
gular contribution to magnetic field:

Hk
sing(x) ≈ biK(0)

i

∫
l0
dyk(s)δ(3)(x− y(s)), (23)

where the integration over y goes along the dislocation
axis l0.

One can check that the solutions of elasticity equations
give ujk ∼ 1/r at r → ∞. Therefore, the integral along
the circle Cr ≡ ∂S at r → ∞ (with the dislocation at
its center) in the second term of Eq. (22) gives finite
contribution to the normalized total flux of the singular
gauge field Hsing:

Φ̂(r) =
Φ(r)

Φ0
=

1

2π

∫
Cr
Akdx

k , (24)

where

Φ0 = 2π (25)

is the elementary flux (in out units the electric charge is

unity e = 1). At the same time the function Φ̂(∞)−Φ̂(r)
takes its maximum at r = 0 and decreases fast out of the
core of the dislocation.

In the considered crystals there exist several excep-
tional vectors Gi (i = 0, 1, 2, ...), which generate the
symmetry of Brillouin zone, i.e. momenta k and k + Gi

are equivalent. The unperturbed Fermi point is directed
along G0 and is also defined up to the transformations

K(0) → K(0) + Gi. This corresponds to the change of
the magnetic flux by

∆Φ̂ = b ·Gi = 2πN , N ∈ Z . (26)

Such a change of the magnetic flux is unobservable for
Weyl fermions and Eq. (26) is thus posing certain restric-
tions on the choice of the Burgers vectors. For example,
for the layered hexagonal structure of Na and Bi atoms
in the compound Na3Bi we have

G1 =
4π

3a
x̂, G2 =

4π

3a

(1

2
x̂ +

√
3

2
ŷ
)
,

G3 =
4π

3a

(1

2
x̂−

√
3

2
ŷ
)
, G0 = ζ

4π

3a
ẑ. (27)

Here a is the interatom distance within each layer in the

plane orthogonal to G0 ‖K(0) and the material parame-
ter ζ determines the interlayer distance az = 3a

2ζ . Due to

the hexagonal (honeycomb) structure of the Na3Bi lay-
ers in xy plane, we may construct the Burgers vectors
similarly to the case of graphene [35] which has also the
hexagonal structure. Condition (26) gives us the follow-
ing general expression for the Burgers vectors:

b =
∑
i

Nimi (28)

where Ni ∈ Z. The vectors mi

m0 =
3a

2ζ
ẑ ,

m1 = −l1 + l2 ≡
3a

2
x̂ +

√
3a

2
ŷ ,

m2 = l3 − l2 ≡ −
√

3aŷ , (29)

m3 = l1 − l3 ≡ −
3a

2
x̂ +

√
3a

2
ŷ ,

are constructed from the unit vectors l1, l2 and l3 which
correspond to the nearest-neighbor Na-Bi bonds of the
honeycomb lattice in the transverse planes of Na3Bi:

l1 = −a x̂,

l2 = a
(1

2
x̂ +

√
3

2
ŷ
)
, (30)

l3 = a
(1

2
x̂−

√
3

2
ŷ
)
.

For a screw dislocation perpendicular to the layers of
Na3Bi the displacement vector is given by Eq. (13). The
only nonzero components of the corresponding deforma-
tion tensor (15) are

u3a(x⊥) ≡ ua3(x⊥) =
b3ε

3abxb⊥
4πx2

⊥
, (31)

and the emergent electromagnetic field (17) is given by
the following expression:

Ai = −∇i(uK) +
β

a
u3i +

β′

a
ε3iju

3j , A0 = 0 , (32)

with some material-dependent constants β and β′. No-
tice that our expression (32) differs from that of Ref. [36].
Equation (32) leads to the following expression for the
(normalized) magnetic flux (24) of the emergent mag-
netic field H:

Φ̂(∞) =
K(0)b

2π
+

β

4πa
b3 (33)

For example, in Na3Bi the value of K(0) ≈ 0.26 π
az
ẑ,

where az is the lattice spacing in z direction [1, 47]. The
value of b3 = Naz is proportional to az. Therefore, the
topological contribution to magnetic flux of the disloca-

tion is K(0)b
2π ≈ 0.26πN

2π ≈ 0.13N . Following an analogy
to graphene, where Gruneisen parameter β ∼ 2 we may
roughly estimate the second term in Eq. (33) as ∼ 0.2N .
Then the emergent magnetic flux incident at the disloca-
tion, presumably, reaches the value of 2π at N ∼ 30.

As it was mentioned above, we may neglect the zero
component of the emergent electromagnetic field A0 at
large distances r � a, where the elasticity theory works.
However, such a potential may be present within the dis-
location core because of the essential change in the mi-
crophysics at the interatomic scales. Thus we assume the
existence of either repulsive or attractive potential

A0(x⊥) = vF ν
−1/3φ(x⊥) , (34)
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localized at the dislocation core. We neglect possible ap-
pearance of such potential far away from the dislocation
axis.

IV. FERMION ZERO MODES PROPAGATING
ALONG THE DISLOCATION

Momentum of quasiparticles that are described by the
action of Eq. (4) should be much smaller than 1/a. At
the same time the emergent gauge field A within the
dislocation core may be as large as ∼ 1/a. Therefore,
the contribution of emergent gravity to Eq. (4) is always
small compared to the contribution of the emergent gauge
field. Nevertheless, for the completeness we consider this
contribution in Appendix A.

In this section we show that the dislocations in a
Dirac semimetal host a topologically protected massless
(quasi)fermion mode, which propagates along the dis-
location with the Fermi velocity. This fermionic mode
corresponds to the zero mode of the transverse Hamil-
tonian (103). The appearance of the propagating mode
localized in the vicinity of the dislocation is also known
to emerge in topological insulators with lattice disloca-
tions [46].

Let us neglect the emergent gravity due to its weakness
and concentrate first on the case of the screw dislocation,
when A3 = 0. We may apply the gauge transformation,
which brings the gauge field to the form

Ai = ε3ij∂jf(x⊥) , (35)

where f is a function of transverse coordinates. Then the
Hamiltonian (98) receives the form:

H(R) = vF ν
2/3σ3p̂3 + vF ν

−1/3H(R)
⊥ (36)

with

H(R)
⊥ ≈ φ(x⊥) +

∑
a=1,2

σa
(
p̂a +Aa(x)

)
. (37)

The zero modes of the transverse Hamiltonian (37) are
defined as the solutions of equation

H(R)
⊥ ψ = 0 . (38)

Equation (38) is well known in particle physics as it
determines zero eigenmodes of a fermion field in a back-
ground of an abelian vortex [48]. The magnetic flux
of the abelian vortex is equal to the quantized vortic-
ity number n. There are exactly |n| isolated, linearly-
independent, zero-energy bound states. These bound
states are topologically protected by index theorems. For
the sake of convenience here we repeat below the deriva-
tion of Ref. [48].

We represent ψ = e−σ
3f ψ̃ and rewrite the Hamiltonian

in the polar coordinates r, θ in the transverse plane of

x⊥ = (x1, x2) using

x1 = r cos θ, x2 = r sin θ, (39)

p̂r = −i∂r, p̂θ = − i
r
∂θ, (40)

and the radial sigma matrices:

σr =

(
0 e−iθ

eiθ 0

)
, σθ =

(
0 −ie−iθ
ieiθ 0

)
(41)

Then equation for the function ψ̃ is H̃(R)
⊥ ψ̃ = 0, where

H̃(R)
⊥ ≈ φ(r, θ) + σrp̂r + σθp̂θ , (42)

or

H̃(R)
⊥ ≈σ1

(
eiθH(R)

+ φ(r, θ)

φ(r, θ) e−iθH(R)
−

)
, H(R)

− =
[
H(R)

+

]†
(43)

with

H(R)
± ≈ p̂r ± ip̂θ (44)

In the absence of the electric potential φ(r, θ) the zero
modes (if they exist) have a definite value of the spin
projection s = ±1/2 on the z axis. At large r the corre-
sponding coordinate parts of their wave functions satisfy
the relations

(p̂r ± ip̂θ)ψ̃(m)
± = 0 . (45)

Next, we chose

f(r, θ) =

∫ r

0

Φ̂(r, θ)
dr

r
, (46)

so that the angular θ-component of the gauge poten-
tial (35) gets the following form:

Aθ =
Φ̂(r, θ)

r
. (47)

The axial symmetry of the problem implies that at large
distances r the function Φ̂(r, θ) is independent of the po-

lar angle θ. Therefore, at large r the function Φ̂(r) is the
magnetic flux within the circle Sr of radius r:

Φ̂(r) =
1

2π

∫
Sr

1

2
εijkdx

j ∧ dxkHi(x, y) , (48)

where the surface Sr belongs to the plane which is or-
thogonal to the dislocation. We come to the following
solutions of Eq. (38) for the right-handed zero modes [44]:

ψ
(m)
± (r, θ) ∼ rme±imθ∓

∫ r
0

Φ̂(r,θ) drr , (49)

where the integer m is the angular quantum number.
The solutions (49) are localized in a small vicinity of

the dislocation core provided that the angular quantum
number satisfies the following condition

m− 2sΦ̂ < −1, (50)
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where

Φ̂ ≡ Φ

Φ0
= lim
r→∞

Φ̂(r, θ) , (51)

is the total flux of the intrinsic magnetic field H normal-
ized by the elementary magnetic flux (25). If Eq. (50) is
satisfied then the corresponding probability distribution
is convergent at large r:∫ ∞

ξ

rdrdθ|ψ|2 = 1 . (52)

Notice that the ultraviolet cutoff ξ is of the order of the
lattice constant a.

In addition, there exist two solutions of Eq. (45), which
may not be normalized and which have their maxima at
the dislocation core provided that

m = [2sΦ̂(∞)], (53)

where [2sΦ̂] is the integer part of 2sΦ̂, which is the max-

imal integer number that is not larger than 2sΦ̂.
The probability distributions of the considered solu-

tions are convergent at small r for m ≥ 0. Therefore,
in the absence of both the nontrivial vielbein and the
electric potential, the zero modes that are not singular
at r → 0 and are not localized on the boundaries of the
system, should satisfy 0 ≤ m ≤ 2sΦ̂(∞). Such modes

exist for sΦ̂(∞) > 0 and are enumerated by the values of
orbital momentum

m = 0, ..., [2sΦ̂], (54)

We neglected in this derivation the potential φ. How-
ever, it is localized at the dislocation. Therefore, the
zero modes in the presence of electric potential (if they
exist) have the form of Eq. (49) at r � a. Recall, that
Eq. (4) works for the momenta of quasiparticles much
smaller than 1/a. Therefore, the solutions of Eq. (38)
localized at the dislocations, presumably, do not repre-
sent physical zero modes. The only solution that remains
is the one with

m = [2sΦ̂], s =
1

2
sign Φ̂ (55)

Fortunately, the field φ cannot affect the energy of this
solution because the probability density corresponding to
this solution of Eq. (45) is dominated by the distances
far from the dislocation core, so that we can neglect com-
pletely the region of the dislocation core. The vielbein
for this solution also gives small corrections compared to
the contribution of emergent magnetic field. Therefore,
the strong gravity and the potential φ at r ∼ ξ cannot
affect the main properties of this solution: it certainly
survives as the zero mode and still has the definite value
of the projection of spin to the z axis.

In the case of edge or mixed dislocation we should take
into account the appearance of a nonzero third compo-
nent of the emergent gauge field:

A3(x⊥) ≈ 1

r2

(
β1b⊥x⊥ + β2ε3ijb

i
⊥x

j
⊥

)
. (56)

Then far from the dislocation core one gets

H̃(R)
⊥ = σ1

(
eiθH(R)

+ νA3(r, θ)

−νA3(r, θ) e−iθH(R)
−

)
(57)

Perturbative corrections to the eigenenergy due to the
presence of A3 may be nonzero, in principle, but for the
mode with m = [2sΦ̂(∞)] those corrections may be ne-
glected because all integrals are dominated by the regions
with r →∞ while A3 ∼ 1/r at large distances.

Thus we come to the conclusion, that the only zero
mode existing around the dislocation is the one with

m = [2sΦ̂(∞)] , s =
1

2
sign Φ̂(∞) . (58)

The zero mode (49), (58) of the transverse Hamiltonian

H(R)
⊥ corresponds to the zero mode of the full Hamilto-

nian H(R) provided the longitudinal momentum is zero
p3 = 0. At the same time it corresponds to a linear
branch of spectrum of the full Hamiltonian H(R) with
the corresponding dispersion law:

E(R) ≈ vF ν2/3sign(Φ̂) p3 . (59)

This branch crosses zero energy level at p3 = 0.
Similar considerations can also be applied to the left-

handed Hamiltonian H(L), where the only physical zero

mode of the corresponding transverse part H(L)
⊥ is

ψ
(m)
2s (r, θ) ∼ rmei2smθ−2s

∫ r
0

Φ̂(r) drr , (60)

with the quantum numbers

m = [2sΦ̂], s =
1

2
sign Φ̂ . (61)

This mode corresponds to the branch of spectrum with
the dispersion

E(L) ≈ −vF ν2/3sign(Φ̂) p3 . (62)

The right-handed and left-handed fermionic modes
propagate along the dislocation with the velocity

vR = −vL = vF ν
2/3sign(Φ̂) , (63)

which is nothing but the corresponding component of
the anisotropic Fermi velocity. Thus, the right-handed
massless quasiparticle propagates up or down along the
dislocation depending on the sign of the flux Φ. The left-
handed mode always propagates in the opposite direction
compared to the right-handed mode.

Notice that Eqs. (59) and (62) were derived in the as-
sumption that the magnetic fluxes of the emergent mag-
netic field for the right-handed ΦR and the left-handed
ΦL quasiparticles are the same, ΦR = ΦL ≡ Φ. However,
if in a Dirac semimetal the constants βijk differ for the
left-handed and the right-handed fermions, then the cor-
responding gauge fields (17) are also different, and in this
case the magnetic flux entering Eq. (59) will be different
from the flux in Eq. (62).
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V. CHIRAL ANOMALY IN DIRAC
SEMIMETALS ALONG THE DISLOCATION

In the presence of external electric field E the states
that correspond to the described above zero modes flow
in the correspondence with the following equation:

〈ṗ3〉 = E3 . (64)

Now let us take into account, that the studied model
has the infrared cutoff 1/ξ0, where ξ0 � a. Then the zero

modes ofH(R)
⊥ andH(L)

⊥ , and the corresponding branches
of spectrum of the propagating modes of the full Hamil-
tonians H(R) and H(L) obey the following properties:

1. The propagating fermion modes are not localized
at the dislocation core. Instead, the region of space
around the dislocation of size ξ0 dominates, where
1/ξ0 is the infrared cutoff of the theory.

2. The propagating fermion modes have the definite
value of the spin projection on the dislocation axis:
s = 1

2 sign Φ̂. The corresponding branch of spec-
trum for the right- and the left-handed fermions is
given, respectively, by the following dispersion re-
lations:

ER/L(p3) = ±2svF ν
2/3p3 . (65)

3. The propagating mode appears for any dislocations
including those ones, in which the magnetic flux Φ̂
is smaller than unity.

The total production of the right-handed quasiparticles
per unit length of the dislocation is given by:

q̇R =
En

2π
sign Φ̂, (66)

where the unit vector n is directed along the disloca-
tion. In the following we assume for simplicity, that
the signs of the emergent fluxes Φ̂ experienced by the
right-handed and the left-handed fermions coincide in
the Dirac semimetal. Therefore, the production of the
left-handed quasiparticles in Dirac semimetal is given by

q̇L = −q̇R . (67)

The production of the quasiparticles may be written
as the anomaly in their currents

jµL = |e(x)|JµL(x) , jµR = |e(x)|JµR(x) , (68)

j = jR + jL , j5 = jR − jL , (69)

where the covariant currents are defined according to
Eqs. (7) and (8). In a local form the anomaly may be
expressed as follows:

〈∂µjµ5 (x)〉 =
En

π
f0(x⊥) sign Φ̂ , (70)

where the function f0 can be read from Eqs. (49), (60):

f0(x⊥) =
exp (−|x⊥|/ξ0)

(
x⊥
ξ0

)−2(|Φ̂|−[|Φ̂|])

2πξ2
0Γ(−2|Φ̂|+ 2[|Φ̂|] + 2)

. (71)

This function is normalized in such a way, that

2π

∫ ∞
0

rdrf0(r) = 1 . (72)

The quantity 1/ξ0 has the meaning of the infrared cutoff
of the theory and the factor exp (−|x⊥|/ξ0) appears as
the infrared regulator. We imply that the size of the
semimetal sample is much larger than the infrared cutoff
ξ0, while ξ0 is much larger than the size of the dislocation
core ξ ∼ a, ξ0 � ξ. Thus the chiral anomaly due to the
zero mode with m = [|Φ̂|] is localized within the tube of
size ξ0 centered at the dislocation.

It is worth mentioning, that for a single dislocation, if
for some reasons the contributions to the emergent mag-
netic flux of the dislocation due to βijk in Eq. (17) may
be neglected, the typical values of the Burgers vector are
such that |Φ̂| < 1. Therefore, according to Eqs. (58) and
(61), for a single dislocation the zero mode corresponds
to the angular momentum m = 0.

We may rewrite the expression for a chiral anomaly
caused by a single dislocation in a Dirac semimetal as
follows

〈∂µjµ5 (x)〉 =
EB

2π2
, (73)

where the effective magnetic field B responsible for the
chiral anomaly is given by

B(x⊥) = 2πn f0(x⊥) sign Φ̂ , (74)

where the function f0 is given by Eq. (71).
It is worth mentioning, that the above consideration

refers only to those branches of spectrum, which are de-
scribed by the low energy effective field theory. In the
presence of electric field the pumping of the quasipar-
ticles from vacuum may also occur at another branches
of spectrum. Ideally, this pumping process should be
treated with the help of a microscopic theory and is out
of the scope of the present paper.

VI. THE CASE OF DISLOCATION DIRECTED
ARBITRARILY

In this section we consider the dislocation directed ar-
bitrarily. Without loss of generality we consider the dis-
location directed along an axis, which belongs to the (yz)
plane. The angle between the dislocation and the z axis
is denoted by ϕ. Let us rotate the reference frame in such
a way, that the z axis is directed along the dislocation.

In the new reference frame the tensor f̂ has the form:

f̂ =

 ν−1/3 0 0
0 ν−1/3 cosϕ ν−1/3 sinϕ
0 −ν2/3 sinϕ ν2/3 cosϕ

 (75)
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Let us apply the transformation of spinors ψ → ei
α
2 σ

3

with tgα = ν tgϕ. In the transformed frame the tensor
f̂ is modified:

f̂ =


ν−1/3 0 0

0 ν1/3
√
ν−4/3 cos2 ϕ+ ν2/3 sin2 ϕ (1−ν2) sin 2ϕ

2ν
√
ν−4/3 cos2 ϕ+ν2/3 sin2 ϕ

0 0 1√
ν−4/3 cos2 ϕ+ν2/3 sin2 ϕ

 (76)

The one-particle Hamiltonian for the right-handed
fermions becomes as follows

H(R) = vF f̂
3
3σ

3p̂3 + vF f̂
2
3σ

2p̂3 + vF f̂
1
1H

(R)
⊥ (77)

with

H(R)
⊥ ≈ σ1(p̂1 −A1) +

f̂2
2

f̂1
1

σ2(p̂2 −A2)

− f̂
3
3

f̂1
1

σ3A3(x⊥) + φ(x⊥) (78)

Now we perform the coordinate transformation

y → f̂2
2

f̂1
1

y , Ay →
f̂1

1

f̂2
2

Ay , (79)

and notice that the equation for the zero mode of the
Hamiltonian H⊥ becomes the same as the one discussed
in Section IV. Thus we arrive at the expression for the
anomaly in quasiparticle current of Eq. (66). The re-
sulting expression for the chiral anomaly in the Dirac
semimetal is again given by Eq. (73).

VII. CHIRAL DENSITY AND CHIRAL
CHEMICAL POTENTIAL AROUND THE
DISLOCATION IN THE PRESENCE OF

ELECTRIC FIELD

The Dirac semimetal possesses two cones, each of
which hosts one right-handed and one left-handed Weyl
fermion. Since the processes operating in these two cones
are equivalent, we concentrate on one cone hereafter tak-
ing into account the fact of the double degeneracy later.

The evolution of the local chiral density around the
dislocation is governed by (i) the generation of the local
chiral charge due to quantum anomaly at the dislocation
given by Eqs. (73) and (74), (ii) the spatial diffusion of
the chiral charge and (iii) the dissipation of the chiral
charge density (85). In the other words, in the presence
of the external electric field, the zero modes, distributed
around the dislocation and propagating along the dislo-
cation, accumulate the chiral charge. The accumulated
chiral charge diffuses (due to, basically, thermal diffusion
and scattering) and also dissipates (due to the chirality-
changing processes) around the dislocation. We estimate
these effects below.

At the distances larger than the size of the disloca-
tion core r � ξ ∼ a we may neglect the presence of the
emergent magnetic field H of the dislocation. Therefore,
in order to relate the chiral chemical potential µ5 with
the chiral density ρ5 at finite temperature T we use an
approximation, in which the relevant modes of the quasi-
particles are the plane waves of the continuous spectrum.
Thus, we neglect gauge field completely and calculate the
thermodynamical potential:

Ω = T
∑
s=±1

∑
c=±1

∫
d3p

(2π)3
log
(

1 + e−
ωp,s+cµ5

T

)
, (80)

where the quantity c = ±1 labels right- and left-handed
chiralities, s= ±1 is the projection of spin (multiplied

by two) to the auxiliary vector ka(p) = f̂ iapi, while pi
is momentum of the quasiparticle. The chiral chemical
potential µ5 is the difference between the chemical po-
tentials associated with the fermions of right-handed and
left-handed chiralities:

µ5 =
1

2
(µR − µL) . (81)

In Eq. (80) the dispersion of the quasiparticles in terms
of the vectors p and k is as follows:

ωp,s = c s vF

√
f̂ iaf̂

j
apipj = c s vF |k (p)| , (82)

where vF is the Fermi velocity (63) which enters the dis-
persion relation for the chiral fermions (65). The matrix

f̂ is given in Eq. (12). For the momentum parallel to
the z axis, p = (0, 0, p3), Eq. (82) leads to the disper-
sion (65). In our calculation we work (following, e.g.,
Ref. [4]) in the adiabatic approximation assuming that
the chiral chemical potential is a slowly varying function
of space and time.

Since the determinant of the matrix f̂ is equal to unity,
we get for the thermodynamical potential (80):

Ω = T
∑
s=±1

∑
c=±1

∫
d3k

(2π)3
log
(

1 + e−
c s vF |k|+cµ5

T

)
. (83)

The chiral density is given by the derivative of the ther-
modynamical potential Ω with respect to chiral chemical
potential µ5:

ρ5 =
∂Ω

∂µ5
= − 1

2π2

∑
s=±1

∑
c=±1

∫
c k2dk

1 + e
c s vF k+cµ5

T

(84)
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Obviously, for µ5 = 0 the chiral density vanishes. For
|µ5| � T we may evaluate the term in ρ5 linear in µ5

differentiating the last expression with respect to µ5:

ρ5 ≈
µ5

2π2 T

∑
s=±1,c=±1

∫
e
c s vF k

T k2dk(
1 + e

c s vF k

T

)2

=
2µ5

π2 T

∫
k2dk

cosh2
(
vF k
2T

) =
µ5 T

2

3 v3
F

. (85)

Equation (85) is valid provided that certain conditions
are satisfied. First, the size of the dislocation core ξ ∼ a
(where the low-energy physics, and, consequently, the
thermodynamic relation (85) both become inapplicable),
should be small compared to the wavelength of the typ-
ical thermal momentum λT ∼ 1/pT ∼ vF /T that con-
tributes to relation (85). According to our estimates (see
below, Section VIII) this condition is satisfied even for
the room temperature T ∼ 300 K (with corresponding
λT ∼ 4 × 10−8 m) because ξ ∼ 10−9 m � λT according
to Eq. (114). Second, the magnetic field of the dislocation
should not affect considerably the plane waves contribut-
ing to Eq. (85). To this end one can consider a wavefunc-
tion of a particle that circumferences the dislocation, and
compare the contributions to its phase coming from the
magnetic field and from the usual kinetic factor eipx. The
former reaches its maximum at r = ξ0, being equal to the
total flux δφΦ = Φ ∼ 2π while the later can be estimated
as δφT = 2πpT ξ0. Thus, the second condition requires
δφΦ � δφT or λT � ξ0 which is also satisfied according
to Eq. (113).

The nonconservation of the axial charge can conve-
niently be written in the following form:

dρ5

dt
+ ∇j5 = − ρ5

τV
+

1

2π2
BE , (86)

where the first term in the right hand side corresponds
to the dissipation of the chiral charge with the rate given
by the chirality-changing scattering time τV while the
second term describes the generation of the chiral charge
due to the quantum anomaly around the dislocation. The
chiral current,

j5 = −D5∇ρ5 , (87)

is given by the diffusion of the chiral charge ρ5 with the
corresponding diffusion constant D5. We assume that
the Dirac semimetal has zero usual chemical potential
for the Dirac quasiparticles, µ = 0. Moreover, we con-
sider a linear approximation so that the transport effects,
which are discussed here, do not generate a nonzero µ.
Substituting Eq. (87) into Eq. (86) one gets the following
equation for the chiral charge density:

dρ5

dt
= − ρ5

τV
+D5∆ρ5 +

1

2π2
BE . (88)

In the constant electric field, dE/dt = 0, the chiral
charge ρ5 relaxes towards equilibrium dρ5/dt = 0 at late

times t � τV . The equilibrium chiral charge density is
given by a solution of Eq. (88) with vanishing left hand
side:

ρ5(x) =
1

2π2D5

∫
d3y G(3)(x− y;λ)

(
B(y) ·E(y)

)
, (89)

where (
−∆ + L−2

V

)
G(3)(x− y;λ) = δ(x− y) , (90)

is the three-dimensional Green’s function and

LV =
√
D5τV , (91)

is a characteristic length which controls spatial diffusion
of the chiral charge.

Working in linear approximation we consider weak
electric field E, so that the chiral imbalance can always
be treated as a small quantity, µ5 � T , so that the lin-
ear approximation in Eq. (85) is justified. In the absence
of the usual chemical potential µ, one gets from Eq. (85)
the following relation between the chemical potential and
the chiral charge density (89):

µ5(x) =
3 v3

F

T 2
ρ5(x) . (92)

Thus we see, that the dislocation produces the chiral
charge which spreads around the dislocation, effectively
creating an excess of the chiral chemical potential at the
characteristic distance LV from the dislocation axis. No-
tice, that this chiral chemical potential corresponds to a
single Dirac point with a pair of Weyl fermions.

In the above derivation we neglect the gradient of tem-
perature. This may be done for sufficiently small exter-
nal electric field, when the temperature remains almost
constant at the characteristic length of the problem that
is ξ0. Very roughly, in equilibrium the heat generated
by electric field ∼ σE2 (where σ is the total conductivity
that includes Ohmic contribution) should be equal to the
divergence of the heat flow κ∇T (where κ is the thermal
conductivity). For our estimate we use the Wiedemann-
Franz law κ ∼ σT . This gives for the characteristic
length ξT (at which the temperature is changed consid-
erably):

1

ξ2
T

∼ ∆T

T
∼ E2

T 2
(93)

According to our estimates (see below Sect. VIII) at
room temperatures the condition ξT � ξ0 leads to
|E| � 1 V/cm. This condition provides, that tempera-
ture remains constant within the region of size ξ0 around
the dislocation. However, temperature may vary within
the whole semimetal sample if its size is much larger than
ξ0.

Now let is consider practically interesting case when
the dislocation is a strait line centred at the origin, x1 =
x2 = 0 and directed along the x3 axis. The dislocation
induces the intrinsic magnetic field

B(x⊥) = Bz(x⊥)n , (94)
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which is also directed along the x3 ≡ z axis (here n is
the unit vector in z direction). The intrinsic magnetic
field is a function of the transverse coordinates x⊥ =
(x1, x2) which takes nonzero values in a (small) core of
the dislocation. In our model approach we consider the
field given by Eqs. (71) and (74)

Bz(x⊥) = sign Φ
exp (−|x⊥|/ξ0)

(
x⊥
ξ0

)−2(|Φ̂|−[|Φ̂|])

ξ2
0Γ(−2|Φ̂|+ 2[|Φ̂|] + 2)

, (95)

where

α = |Φ̂| − [|Φ̂|] , (96)

is the fractional charge of the normalized flux |Φ̂|. The
effective magnetic field (95) is distributed around the dis-
location with the characteristic length ξ0 that is much
larger than the size ξ of the dislocation core (the latter
is of the order of a few lattice spacings a). In Fig. (3) we
show the field (95) for a few values of the fractional part
of the flux α.

α=0.1

α=0.5

α=0.9

α=|Φ

|-[|Φ


|]

0.0 0.5 1.0 1.5 2.0 2.5 3.0
0.0

0.5

1.0

1.5

x⊥/ξ0

ξ 0
2
B
(x

⊥
/ξ
0)

FIG. 3. The effective intrinsic magnetic field Bz(x⊥) in
Eq. (95) vs. the distance from the dislocation core x⊥ plotted
for a few values of the fractional part of the absolute value of
the normalized flux (51) α = 0.1, 0.5, 0.9.

This effective magnetic field carries the unit of the el-
ementary flux (25):

∫
d2x⊥B(x⊥) = 2π sign Φ. As we

have discussed earlier, this effective magnetic field is as-
sociated with the propagating zero modes bounded at
the dislocation. In Eq. (95) the total flux Φ of the in-
trinsic magnetic field H is of a geometrical origin. The
flux is a quantity of the order of unity (51), in terms of
the elementary magnetic flux (25). For the straight dislo-
cation (95) the axial anomaly generates the axial charge
which spreads in the semimetal in the transverse direc-
tions according to the equilibrium formula (89).

For the completeness we represent the numerical esti-
mates for the encountered above constants that charac-
terize the semimetal in Appendix B.

VIII. CONCLUSIONS

In this work we discussed certain effects of anomalies
in the Dirac semimetals Na3Bi and Cd3As2 caused by the
dislocations in their atomic lattices. This chiral anomaly
is operational without any external magnetic field unlike
the conventional chiral anomaly that was discussed for
Dirac semimetals, for example, in [4]. The dislocation
appears as a source of the emergent magnetic field as it
carries the emergent magnetic flux. The emergent flux
gives rise to the zero mode of the one-particle Hamilto-
nian for the fermionic quasiparticles. The fermionic mode
is a gapless excitation which propagates along the dislo-
cation being localized in the area of the size ξ0 around
the dislocation (here 1/ξ0 is the infrared cutoff of the
field theoretical approximation used in our approach).
The length ξ0 may also be identified with the mean free
path of the quasiparticles. For example, for Cd3As2 it
is of the order of 200µm. This propagating zero mode
corresponds to the branch of spectrum of the quasiparti-
cles with the spin directed along the magnetic flux of the
dislocation.

In the presence of an external electric field the spectral
flow along the zero-mode branch of the spectrum leads
to the pumping of the quasiparticles from the vacuum.
Since the right-handed and left-handed quasiparticles are
produced with opposite rates, the pumping process corre-
sponds to the chiral anomaly (73). The production rate
of the chiral density is controlled by a scalar product
of the usual (external) electric field E and the effective
(internal) magnetic field B carried by the dislocation.
One should stress the following subtle fact: the disloca-
tion carries also the emergent magnetic field H [given
in Eq. (33) for the example case of Na3Bi] which gives
rise to the existence of the mentioned propagating zero
mode. However, the emergent field H does not directly
contribute to the chiral anomaly (73): it is the effective
magnetic field B – that is expressed via the density of the
zero mode (71) – which enters the anomaly relation (73).

In the other words, the emergent magnetic field H with
the flux (33) leads to appearance of the right-handed (49)
and the left-handed modes (60) localized at the disloca-
tion and propagating along its axis. The external elec-
tric field E, parallel to the dislocation axis, produces
the chiral charge by pumping these modes form the vac-
uum at unequal (in fact, opposite) rates proportional to
the scalar product EB. The process can be formulated
via the chiral anomaly equation (73), in which, however,
the magnetic field B is expressed through the density of
the wave functions of the mentioned zero modes (with
B 6= H).

The chiral anomaly gives rise to a nonzero charge den-
sity localized around the dislocation axis with the char-
acteristic localization length LV ∼ 2µm for Cd3As2.
The slowly varying chiral density can be expressed via
a (space-dependent) chemical potential.

In principle, there are various ways to create a Dirac
semimetal with dislocations. In general, the growth of an
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atomic crystal may be organized in such a way, that the
dislocations appear along the chosen direction with the
chosen values of the Burgers vector. In addition, disloca-
tions may also appear as a result of plastic deformations
of the crystals [41]. This opens a possibility to observe
the effects of the dislocation-induced anomaly experimen-
tally. The chiral density that is formed around the dis-
location in the presence of external electric field should
affect transport properties of the semimetal. In order to
calculate the corresponding observable quantities, this is
necessary to use kinetic theory modified accordingly in
order to take into account the appearance of the chiral
density around the dislocations driven by chiral anomaly.
However, the solution of this problem is out of the scope
of the present paper.
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APPENDIX A. EMERGENT GRAVITY AROUND
THE DISLOCATION

In this section we briefly consider emergent gravity
around the dislocation. Let us represent the action for
the right-handed fermion in the following way:

SR =

∫
d3x dt Ψ̄(x, t)

[
|e(x)|e0

0(x)i∂t

−|e(x)|eka(x)σa ◦ (P̂k −Ak)
]
Ψ(x, t)

=

∫
d3x dt

¯̃
Ψ(x, t)

[
i∂t −H(R)

]
Ψ̃(x, t), (97)

where P̂k = −i∇k, Ψ̃ =
√
|e(x)|e0

0(x) Ψ, a = 0, 1, 2, 3
and k = 1, 2, 3. The one-particle Hamiltonian is given by

H(R) = fka (x)σa ◦ (P̂k −Ak), (98)

where

fka (x) =
eka(x)

e0
0(x)

. (99)

We used here the following chain of relations:

∫
d3x dt

{ ¯̃
Ψ(x, t)√
|e(x)|e0

0(x)
|e(x)|eka(x)σa∂i

Ψ̃(x, t)√
|e(x)|e0

0(x)
−

[
∂i

¯̃
Ψ(x, t)√
|e(x)|e0

0(x)

]
|e(x)|eka(x)σa

Ψ̃(x, t)√
|e(x)|e0

0(x)

}

=

∫
d3x dt

{
¯̃
Ψ(x, t)

1

|e(x)|e0
0(x)

|e(x)|eka(x)σa∂iΨ̃(x, t)−
[
∂i

¯̃
Ψ(x, t)

]
|e(x)|eka(x)σa

1

|e(x)|e0
0(x)

Ψ̃(x, t)

}
(100)

=

∫
d3x dt

{
¯̃
Ψ(x, t)fka (x)σa∂iΨ̃(x, t)−

[
∂i

¯̃
Ψ(x, t)

]
σafka (x)Ψ̃(x, t)

}
≡ 2

∫
d3x dt

¯̃
Ψ(x, t)

[
fka (x)σa ◦ ∂i

]
Ψ̃(x, t).

We represent fka (x) as follows

fka (x) ≈ vF
[
f̂ka − f̂kb δeba(x)

]
fk0 (x) ≈ −vF f̂kb δeb0(x), a, b, k = 1, 2, 3 , (101)

where the expressions for the small variations of the vier-
bein field δeµa can be read off from Eq. (16).

The one-particle Hamiltonian for the right-handed
fermions in the presence of a dislocation along the z axis
is given by

H(R) = vF ν
2/3σ3p̂3 − vF ν2/3

3∑
a=0

σaδe3
ap̂3

+vF ν
−1/3H(R)

⊥ , (102)

where the transverse part of the Hamiltonian is

H(R)
⊥ ≈

∑
a=1,2

[
σa
(
p̂a −Aa(x⊥)

)
−
∑
k=1,2

σaδeka(x⊥) ◦ p̂k
]

+φ(x, y)− νσ3A3(x⊥) (103)

−
∑
k=1,2

[
σ3δek3(x⊥) + δek0(x⊥)

]
◦ p̂k .

In a general form, the dislocation-induced deforma-
tions of the vielbein field δeµa in the Hamiltonian (102),
(103) can be expressed via components tensor γijkl of

Eq. (16) and the relations given in Eqs. (99) and (101).
However, in certain symmetric cases the form of the
Hamiltonian may be simplified. Consider, for example,
the case, when the screw dislocation is directed along the
z axis of the Na3Bi atomic lattice (or, equivalently, along

the vector K(0)). Then, one can write the following ex-
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pression for the deformations of the veilbein:

δeka = γ1K
akju3j + γ2K̃

akju3j , a, k = 1, 2, (104)

δek3 = γ3ε3kju
3j + γ4u

3k, k = 1, 2, (105)

δe3
k = γ5u

3k + γ6ε3kju
3j + u3k, k = 1, 2, (106)

δe3
3 = 0, (107)

δek0 = 0, k = 1, 2. (108)

Here we have used the fact that the only nonzero com-
ponents of the tensor of elastic deformations (15) are
u3i = ui3 with i = 1, 2 given in Eq. (31). Moreover, we
took into account that the dislocation is directed along
the z axis which is perpendicular to layers of honeycomb
lattices formed by Na and Bi atoms in the transverse
(x, y) plane. The requirement to respect the C3 rota-
tional symmetry of the honeycomb lattice in the (x, y)
plane allows us to define two tensors from the nearest-
neighbor vectors (30):

Kijk = − 4

3a3

∑
b=1,2,3

libl
j
bl
k
b (109)

K̃ijk = − 4

3a3

∑
b=1,2,3

libl
j
bl
m
b ε3mk (110)

which enter Eq. (104) with the material-dependent pref-
actors γ1 and γ2, respectively. The only nonzero elements
of these tensors are:

−K111 = K122 = K212 = K221 = 1 ,

K̃112 = K̃121 = K̃211 = −K̃222 = 1 . (111)

The tensor (109) was first introduced in Refs. [29, 30].
The appearance of the second tensor structure (110) in

Eq. (104) is a nontrivial fact because the tensor K̃ijk

is not invariant under P -parity transformation of the 3d
space. The P -parity odd part is justified, however, by the
chiral property of the screw dislocation, because the left-
handed screws and right-handed screws are not equiva-
lent as they cannot be superimposed on each other with
the help of rotations only. Therefore, P -parity odd terms
may appear in the Hamiltonian.

Similar arguments lead to the appearance of the other
four material-dependent terms in Eqs. (105) and (106)
with parameters γ3, . . . , γ6. Equation (108) originates
from the supposition that the dislocation does not break
T invariance so that all components of the vielbein in-
volving one temporal and one spatial components must
be zero. Notice that the deformation of the e0

0 does not
enter the Hamiltonian (98) because f0

0 ≡ 1 according to
Eq. (99).

One can see, that even in this relatively simple case,
the expressions in Eqs. (104)-(108) contain six phe-
nomenological parameters γi, and the resulting Hamil-
tonian H(R), given in Eqs. (103) and (102), is rather
complicated.

APPENDIX B. CERTAIN NUMERICAL
ESTIMATES

We take for a reference the Dirac semimetal Cd3As2.
The diffusion length of the axial charge for this semimetal
was experimentally estimated in Ref. [7] as LV ≈
2 × 10−6m. This quantity turns out to be almost
temperature-independent in a wide range of tempera-
tures T = (50 ∼ 300) K. A rough estimate of Ref. [8]
gives for the relaxation time τV ∼ τtr ≈ 2 × 10−10 s.
Then from Eq. (91) one finds

D5 = L2
V /τV ≈ 2× 10−2m2/s . (112)

Correspondingly the inverse infrared cutoff ξ0 may be
estimated as follows:

ξ0 ∼ vF τV ∼
1

200
300 · 106 m

s
· 2× 10−10s = 3 · 10−4 m.

(113)
In this estimate we use the value of vF for Cd3As2 that
is around 1/200 speed of light.

The value of ξ0 should be compared to the size of the
dislocation core

ξ ∼ 10−9 m , (114)

and to the value of the diffusion length

LV ∼ 2 · 10−6 m . (115)

Thus we see that in practice the suggested limiting case
is indeed realized:

LV � ξ0 (116)

and the typical value of parameter x = ξ0/LV is x ∼ 100.
Notice, that we used in the present paper the relativis-

tic system of units, in which the only dimensional unit
is the electron-volt (eV). For example, our distances are
measured in eV−1. We give the estimate in relativistic
units, where it is expressed through eV or 1/m, where the
unit of distance (m) is related to eV−1 according to the
standard relation [200 MeV]−1 ≈ 1 fm = 10−15 m. Then
the quantities under consideration may be expressed in
the SI system using the definition of its unit of electric
current (A) as Coulomb/s. The SI current equal to one
Ampere corresponds to the relativistic current equal to
1/(ec) in the units of 1/m, where e is the charge of elec-
tron (in Coulombs) while c is the speed of light (in m/s).

Let us notice, that the room temperature corresponds
to T ∼ 300 K ≈ 0.025 eV. At the same time D5/c ≈
6.7 · 10−11m = 6.7 · 104 fm ≈ 3 · 10−4eV−1. One should
also take into account that the typical value of vF in Dirac
semimetals is of the order of ∼ 1/200 of the speed of light.
We denote by ν the degree of anisotropy of the FErmi

velocity. In practise in Cd3As2 [2] vF f̂1 ∼ vF f̂2 ∼ c/200

while f̂3 ∼ 0.1f̂1. In Na3Bi [1] vF f̂1 ≈ 4.17 × 105m/s,

vF f̂2 ≈ 3.63 × 105m/s ∼ c/800, while vF f̂3 ≈ 1.1 ×
105m/s. Thus here f̂3 ≈ 0.27f̂1.
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Notice, that for small values of the Burgers vector the
value of Φ̂ may be much smaller than unity. Say, in Na3Bi
the minimal topological contribution to Φ̂ is of the order
of 0.1 (see Section III). However, for larger values of the

component b3 of the Burgers vector, the value of Φ̂ may

always be made close to unity. Besides, the contribution
of the second term to the magnetic flux in Eq. (33) also

increases the total value of Φ̂. The chiral density should
also be enhanced in a “forest” of dislocations, which are
parallel to each other.
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