N

N

OpenMusic — Visual Programming Environment for
Music Composition, Analysis and Research

Jean Bresson, Carlos Agon, Gérard Assayag

» To cite this version:

Jean Bresson, Carlos Agon, Gérard Assayag. OpenMusic — Visual Programming Environment for
Music Composition, Analysis and Research. ACM MultiMedia (MM’11), 2011, Scottsdale, United
States. 10.1145/2072298.2072434 . hal-01182394

HAL Id: hal-01182394
https://hal.science/hal-01182394
Submitted on 31 Jul 2015

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://hal.science/hal-01182394
https://hal.archives-ouvertes.fr

OpenMusic — Visual Programming Environment for Music
Composition, Analysis and Research

Jean Bresson, Carlos Agon, Gérard Assayag
STMS: IRCAM-CNRS-UPMC
1, place I. Stravinsky
75004 Paris, France

ACM (2011). This is the author version of the work. It is posted by permission of ACM for personal use (not
for redistribution). The definitive version was published in the Proceedings of the 19th ACM international con-
Jference on Multimedia (MM’11), pp. 743-746 (2011) —http://doi.acm.org/10.1145/2072298.2072434

Abstract

OpenMusic is an open source environment dedicated to music composition. The core of this environment is a full-
featured visual programming language based on Common Lisp and CLOS (Common Lisp Object System) allowing
to design processes for the generation or manipulation of musical material. This language can also be used for general
purpose visual programming and other (possibly extra-musical) applications.

1 Computer-Aided Composition

OpenMusic (OM) is an environment designed for music composition in the tradition of what is conventionally called
computer-aided composition in the contemporary music and computer music research communities [9]. The original
purpose of computer-aided composition research was to provide composers with means to develop musical ideas and
models using the computer: In this context, creating compositional tools in the form of standard applications, as is
the case with most commercial music software, turned out to be too restrictive from a creative point of view. In order
to better integrate the artistic thought and give musicians full access to the expressive and computational power of
computer tools and formalisms, computer-aided composition environments needed to be more “programmable” and
would actually better be programming languages than simple programs.

A number of computer music systems have therefore been developed during the past 20 years, with more or less
explicit programming language features [22, 21, 29]. Some of them are open source and quite widely used software
[27, 30].

While most “musical programming languages” principally deal with signal processing and sound synthesis, an
original approach adopted by the IRCAM Music Representation team in the late 80s had the particularity to focus on
symbolic musical structures and processes, that is, on compositional aspects traditionally ignored or carried out outside
computer environments [11]. In this context and as far as they relate to formalisation and/or calculus, the design of
compositional processes using programming languages and environments allows to better understand, explore and
develop these processes than with other traditional or more specific media and applications. Fewer of such “symbolic”
programming/computer-aided composition environments exist. Most of them are based on Common Lisp or other
Lisp dialects (see for instance [33]).

OpenMusic [12] is one of the few visual programming environments existing to date for symbolic music processing
(see also [26]). Initiated in 1997, this open source project derived from the PatchWork environment [25] and constitutes
a complete visual language including powerful programming features, mostly inherited and adapted from Common
Lisp, its underlying implementation language, and CLOS (Common Lisp Object System [24]).

2 Basic Description

Visual programs in OpenMusic are created in patch editors, and are
mainly compound of boxes and connections (see Figure 1). Each box

Apatch

represents a functional element in the program: generally, a function BN o
(e.g. om-random, repeat-n, bpf-sample... in Figure 1) or a class fac- durations
tory (boxes generating instances of a given class—e.g. the curve at —
the top or the score object at the bottom of Figure 1). The contents =
of the factory boxes can be edited thanks to specific graphical editors Dm,;?:nm =T
like score editors, sound editors, break-points function or 2D/3D ed- T_r-lu_—"
itors etc., which leaves a significant freedom to the user regarding I~ b"f'j’“"'e
the algorithmic vs. manual/intuitive parts of his/her work. et “'“r

The boxes in OpenMusic visual programs have inputs and out- e >
puts (represented by small round inlets and outlets respectively at the ,Epgt,n =
top and at the bottom of the box icons) which allow to connect them i XT
together: at evaluation, a box performs a call to its internal func- e e o ¢ e ¢ e o
tional reference using the result of the boxes connected to its inputs] N E—
as parameters (or arguments). A recursive “bottom-up” function call Lo * =
therefore occurs in the visual program graph, which corresponds to [
the execution of a program in a very similar way as would be inter- J 1
preted and evaluated a Lisp expression.! tempout pitches

The boxes can actually refer either to in-built OpenMusic func- v

tions or classes, or to programming elements (functions, programs,
classes) designed by the user graphically or in Lisp. A close and
transparent relation exists between the visual and underlying text-
based programming environments, which makes it possible to use
together any kind of element in visual or Lisp programs.

The musical focus of the environment also led the authors to design advanced programming interfaces including
a temporal dimension [1]. In the maquette (a “temporal” extension of the OpenMusic patch), time is considered as a
structural dimension in both the visual program layout and execution, which allows to develop compositional processes
integrated in an overall temporal context.

FIGURE 1: A patch or basic visual program editor in
OpenMusic.

3 Visual Programming Features

OpenMusic provides a visual semantics implementing most functional and object-oriented features available in Com-
mon Lisp and CLOS. Abstraction, application, iterations and control structures are basics of most modern program-
ming languages, although not always straightforward to represent in a visual language. Recursion, higher-level pro-
gramming are examples of more advanced concepts also implemented in OpenMusic, which proved to be useful and
pertinent in compositional situations and musical problems solving. Implementation details on these programming
aspects are given in [19].

Visual object-oriented programming is another specificity of OpenMusic [1]. It is possible to define and instantiate
classes graphically, but also to benefit from other CLOS features such as multiple inheritance or generic function and
method definition, including multiple dispatch and standard method combination systems. The CLOS meta-object
protocol (MOP) is another powerful feature making the basic language elements used in the Lisp program design
(functions, methods, classes, etc.) instance of meta-object classes which can be manipulated, modified or extended at
runtime by the same programs. The OpenMusic visual MOP described in [3] is an original extension of this system to
the visual programming language.

The programming features and possibilities mentioned in this section often go far beyond the use of music com-
posers, and extend the scope of the environment to a general new approach to programming using graphical interfaces.

!'The execution model in OpenMusic is called “demand-driven”, as opposed to the “data-driven” model generally implemented in similar visual
(graph-based) programming languages.

4 A Platform for Computer Music Research

Research in varied computer music areas have been carried out in or using OpenMusic, generally in the context of
Master’s or PhD theses, or in other types of institutional projects. Music notation and editors [17], quantification and
representation of rthythmic structures [23, 5], style modeling and pattern recognition [10, 28], constraint programming
and solving systems [31, 34] or sound synthesis and representation in music [6, 14] are example of such areas and
projects. OpenMusic is also an important platform for computer-aided music analysis, allowing to carry out experi-
ments and modeling processes leading to a new conception of “computational musicology” [8, 7, 2].

The output of these projects, as well as other more specific works carried out by composers, are generally integrated
in the OpenMusic environment or made available to the user community as external, dynamically loadable libraries.

The latest developments in OpenMusic particularly aimed to extend the scope of its applications toward signal
processing, for instance with a number of new libraries and tools dedicated to sound analysis, synthesis, and to the
manipulation of audio and other low-level description data using the symbolic visual programming framework [16,
13, 18]. Spatial sound and the conception of new ways to represent and generate sound in space and/or using spatial
rendering technologies is another currently active area of research and development in the environment [32, 20].

Different works have also been carried out using
OpenMusic for extra-musical purposes. A recent exam-
ple is the Pixels project, a library for the generation and
processing of pixel arrays combined algorithmically to
create pictures and graphics (see Figure 2).”

Aprocess-pixel

L]

PIXEL IN
®

© © © ©

pix-r pix-g pix-b pix-alpha
& ©

0 0 [[
5 Applications and Users BE m H H
FF '_.‘ scala-p(lvxmap process-pixel x
. . . Yo 59— 5 .0
The references provided in the previous section aim to ®a Pl = a

gen-pixmap-xy
F 3'};,. map-pixels x-append

reverse
[

illustrate the diversity of applications of OpenMusic in
computer music research. The OM Composer’s Books
[4] can provide a relatively complete and rich overview

& .
R'=
] G =
) '
[0 PIXELOUT B'=
mapcar
[

of real musical applications of the visual programming ! 4
environment by composers.
OpenMusic is taught in composition classes in many D08 S
different institution around the world, such as the na- s —
tional conservatoires of Paris (CNSMDP) or Lyon in 0‘1—1
France, but also different Musikschulen in Germany s phimss

(Stuttgart, Berlin) and universities in North America
(Departments of Music in Columbia, Harvard, Stan-
ford universities, UC San Diego, Université de Montréal,
McGill University...) It is also used as a support in com-
puter music or visual programming classes and work-
shops given at IRCAM or in several Master’s program in
French universities.

OpenMusic was also used as underlying kernel for
the design and development of Musique Lab 2 [15], an
environment dedicated to music education now used and
distributed by the French Ministry of Education.

- o (1 &l .. (o e
So00

X8~ ~+0jojg/Al

FiGure 2: Algorithmic generation and processing of pixel arrays
and in OpenMusic with the Pixels library (An example of extra-
musical application).

2Pixels has been developed and used for Skyline, by Shanta Rao (installation with computer-generated video, Belleville Biennale / Nuit Blanche,
Paris, 2010).

References

[1] C. Agon. OpenMusic : Un langage visuel pour la composition musicale assistée par ordinateur. PhD thesis,
Université Pierre et Marie Curie, Paris, France, 1998.

[2] C. Agon, M. Andreatta, G. Assayag, and S. Schaub. Formal Aspects of lannis Xenakis’ “Symbolic Music”: A
Computer-Aided Exploration of Compositional Processes. Journal of New Music Research, 33(2), 2004.

[3] C. Agon and G. Assayag. OM: A Graphical Extension of CLOS using the MOP. In Proceedings of ICL’03, New
York, USA, 2003.

[4] C. Agon, G. Assayag, and J. Bresson, editors. The OM Composer’s Book (2 volumes). Editions Delatour /
IRCAM, 2006-2008.

[5] C. Agon, K. Haddad, and G. Assayag. Representation and Rendering of Rhythmic Structures. In WedelMusic,
Darmstadt, Germany, 2002.

[6] C. Agon, M. Stroppa, and G. Assayag. High Level Musical Control of Sound Synthesis in OpenMusic. In
Proceedings of the International Computer Music Conference, Berlin, Germany, 2003.

[7] M. Andreatta and C. Agon. Implementing Algebraic Methods in OpenMusic. In Proceedings of the International
Computer Music Conference, Singaphore, 2003.

[8] M. Andreatta, T. Noll, C. Agon, and G. Assayag. The Geometrical Groove: Rhythmic Canons between Theory,
Implementation and Musical Experiments. In Actes des Journées d’Informatique Musicale, Bourges, France,
2001.

[9] G. Assayag. Computer Assisted Composition today. In /st symposium on music and computers, Corfu, Greece,
1998.

[10] G. Assayag, S. Dubnov, O. Lartillot, and G. Bejerano. Using Machine-Learning Methods for Musical Style
Modeling. Computer, 36(10), 2003.

[11] G. Assayag and C. Rueda. The Music Representation Project at IRCAM. In Proceedings of the International
Computer Music Conference, Tokyo, Japan, 1998.

[12] G. Assayag, C. Rueda, M. Laurson, C. Agon, and O. Delerue. Computer Assisted Composition at IRCAM: From
PatchWork to OpenMusic. Computer Music Journal, 23(3), 1999.

[13] J. Bresson. Sound Processing in OpenMusic. In Proceedings of the International Conference on Digital Audio
Effects, Montréal, QC, Canada, 2006.

[14] J. Bresson. La synthese sonore en composition musicale assistée par ordinateur : Modélisation et écriture du
son. PhD thesis, Université Pierre et Marie Curie, Paris, France, 2007.

[15] J. Bresson. ML-Maquette / Musique Lab 2. In Proceedings of the International Computer Music Conference,
New York City / Stony Brook, USA, 2010.

[16] J. Bresson and C. Agon. Musical Representation of Sound in Computer-Aided Composition : A Visual Program-
ming Framework. Journal of New Music Research, 36(4), 2007.

[17] J.Bresson and C. Agon. Scores, Programs and Time Representations: The Sheet Object in OpenMusic. Computer
Music Journal, 32(4), 2008.

[18] J. Bresson and C. Agon. Processing Sound and Music Description Data Using OpenMusic. In Proceedings of
the International Computer Music Conference, New York City / Stony Brook, USA, 2010.

[19] J. Bresson, C. Agon, and G. Assayag. Visual Lisp/CLOS Programming in OpenMusic. Higher-Order and
Symbolic Computation, 22(1), 20009.

[20] J. Bresson and M. Schumacher. Representation and Interchange of Sound Spatialization Data for Compositional
Applications. In Proceedings of the International Computer Music Conference, Huddersfield, UK, 2011.

[21] R. B. Dannenberg, P. Desain, and H. Honing. Programming Language Design for Music. In C. Roads, S. T.
Pope, A. Piccialli, and G. DePoli, editors, Musical Signal Processing. Swets and Zeitlinger, 1997.

[22] R. B. Dannenberg, P. McAvinney, and D. Rubine. Arctic : A Functional Language for Real-Time Systems.
Computer Music Journal, 10(4), 1986.

[23] O.Delerue, G. Assayag, and C. Agon. Etude et réalisation d’ opérateurs rythmiques dans OpenMusic, un environ-
nement de programmation appliqué a la composition musicale. In Actes des Journées d’Informatique Musicale,
La Londe les Maures, France, 1998.

[24] R. P. Gabriel, J. L. White, and D. G. Bobrow. CLOS: Integration Object-oriented and Functional Programming.
Communications of the ACM, 34(9), 1991.

[25] M. Laurson and J. Duthen. Patchwork, a Graphic Language in PreForm. In Proceedings of the International
Computer Music Conference, Ohio State University, USA, 1989.

[26] M. Laurson and M. Kuuskankare. PWGL: A Novel Visual Language Based on Common Lisp, CLOS, and
OpenGL. In Proceedings of the International Computer Music Conference, Gothenburg, Sweden, 2002.

[27] J. McCartney. Rethinking the Computer Music Language: SuperCollider. Computer Music Journal, 26(4), 1996.

[28] B. Meudic. Détermination automatique de la pulsation de la métrique et des motifs musicaux dans des in-
terprétations a tempo variable d eceuvres polyphoniques. PhD thesis, Université Pierre et Marie Curie, Paris,
France, 2004.

[29] M. Puckette. Combining Event and Signal Processing in the MAX Graphical Programming Environment. Com-
puter Music Journal, 15(3), 1991.

[30] M. Puckette. Pure Data: Another Integrated Computer Music Environment. In Proceedings of the Second
Intercollege Computer Music Concerts, Tachikawa, Japan, 1996.

[31] C. Rueda, M. Laurson, G. Bloch, and G. Assayag. Integrating Constraint Programming in Visual Musical Com-
position Languages. In Proceedings of the European Conference on Artificial Intelligence, Brighton, UK, 1998.

[32] M. Schumacher and J. Bresson. Spatial Sound Synthesis in Computer-Aided Composition. Organised Sound,
15(3), 2010.

[33] H. Taube. Common Music: A Music Composition Language in Common Lisp and CLOS. Computer Music
Journal, 15(2), 1991.

[34] C.Truchet, G. Assayag, and P. Codognet. Visual and Adaptive Constraint Programming in Music. In Proceedings
of the International Computer Music Conference, La Habana, Cuba, 2001.

APPENDIX

A. Build and Compilation

OpenMusic is a Lisp-based system which requires an underlying runtime Lisp environment. It currently uses the
LispWorks® Common Lisp implementation, which provides good graphical and GUI toolkits on which most of the
low-level graphical aspects of the visual language rely.

The OpenMusic package therefore contains a pre-built executable running on MacOS X or Windows operating
systems, and the Lisp sources of the software. These sources can easily be loaded in LispWorks (a free—limited—
personal edition is available on the LispWorks website). All instructions are detailed in the OpenMusic webpage.*

This is generally not necessary, though, since OpenMusic itself embeds a Lisp interpreter and interface, so that is
is possible to edit, (re)load and evaluate the sources or additional Lisp code and commands from within the running
environment.

The limitations of using the OpenMusic in-built Lisp rather than LispWorks are the impossibility to generate and
pack a new executable image, to compile Lisp files (they are only evaluated, hence the code is generally less efficient)
and the absence of the LispWorks IDE tools. The OpenMusic executable, on the other hand, is easier to launch and to
use for standard (non-programmer) users.

B. Licence and Distribution

OpenMusic is an open source project which sources are distributed under the GNU Public License (GPL). They can be
downloaded from the OpenMusic website and are also distributed with the software itself. Making the sources avail-
able was for us an opportunity to raise collaborations and contributions, principally for the realization of specialized
packages or libraries. As mentioned in this paper, OpenMusic modules are linked to the distributed sources so that it
is possible to track and edit them and therefore to dynamically modify or extend the environment.

IRCAM owns professional LispWorks licenses, which allows us to build and distribute a compiled and packed
application to the OpenMusic users. Since the beginning of this year, this released application is available for free and
can also be downloaded from the website,”> which we hope will consolidate and develop our user community.

IRCAM also commercially distributes a set of specialized external libraries for OpenMusic.

C. Documentation

A set of documentation resources for OpenMusic is maintained and published online. This documentation features
a user manual, a quick-start tutorial including a series of videos, tutorials and a number of additional resources. All
pages and documents of interest are accessible from the OpenMusic website.°

A developer documentation also allows programmers to get into the OpenMusic architecture and provides the
basics of programming in the environment.

3http://www.lispworks.com
4http://repmus.ircam.fr/openmusic/sources
5http://repmusAircam.fr/openmusic/download
Shttp://repmus.ircam.fr/openmusic/documents

