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Laser-generated plasmas in air have potential utility in diverse application areas ranging from the 

guidance of electrical discharges to remote sensing. Ionization of air and other gases by powerful laser 
pulses has been intensely investigated in the femtosecond [1,2] and nanosecond [3] regimes. However, 
plasma channels produced through fs excitation are dilute and short-lived, while plasmas generated 
through nanosecond optical breakdown are ty pically fragmented into disconnected plasma bubbles. 
Both shortcomings severely limit practical applicat ions. Attempts to combine femtosecond and 
nanosecond laser excitations in the so-called igniter-heater scheme [4] do result in the production of 
extended and dense plasma channels, but, like in the case of pure nanosecond excitation, the generated 
plasma channels are fragmented into discrete bubbles, as shown in Figure 1. The fragmentation effect 
is attributed to the periodic focusing of the nanosecond heater pulse by the rotational revivals 
impulsively initiated by the femtosecond igniter pulse.   

 
 

 
 

Figure 1: Photograph of a plasma channel produced in air through the combined 
femtosecond-nanosecond laser excitation (igniter-heater scheme). The channel is dense 
but fragmented into individual plasma bubbles.  

 
In this contribution, we explore, both experimentally and n umerically, an under-investigated 

regime of air ionization by intense near-infrared laser pulses with duration in the picosecond range. 
Earlier experiments have shown that in this regime the generated plasma channels can be both dense 
and continuous [5]. Here we use weakly focused laser pulses at 1,053 nm wavelength, with pulse 
durations variable from 0.5 to 10 picoseconds, and with the laser-pulse energies of up to 10 Joules. 
Plasma channels generated in air by such pulses are approximately uniform, both longitudinally and 
transversely, as shown on the single-shot photograph of plasma luminescence in Figure 2.  

By examining burn patterns produced on a glas s surface by the intense laser beam in the 
filamentation zone we show that the phenomenon of int ensity clamping that has been originally 
demonstrated for the case of femt osecond laser filaments [6], holds in the picosecond regime. The 
value of the fluence steadily grows as the pulse duration increases, as shown in Fig. 3(B).  

 
 



  

 
 

Figure 2: Photograph of a plasma channel produced in air through filamentation of a 10 
Joule picosecond laser pulse at 1053 nm wavelength. The channel is both dense and 
continuous.  

 
 

 
Figure 3 A: Optical fluence inside the filament produced by a 10 picosecond-long laser 
pulse, vs. input pulse energy. The fluence is ~100 J/cm2 for all pulse energies,  a direct  
consequence of intensity clamping inside the filament. B: Fluence vs. pulse duration. The 
inset shows the far-field fluence di stribution. The shadow pattern is consistent with the 
screening of the laser beam by thick and dense plasma channel in the middle of the beam 
surrounded by several smaller plasma filaments. 

	 	
Numerical simulations reveal t hat an intense, clamped spike develops on propagation, on the 

leading temporal edge of the pulse. Full ionization of both oxygen and nitrogen is reached, thus 
plasma densities attainable with energetic picosecond excitation are significantly higher than those in 
femtosecond laser filaments, which is a direct consequence of the longer pulse durations. Our results 
suggest that picosecond laser filamentation in air may have the advantages of both femtosecond and 
nanosecond plasma excitations, without the drawbacks associated with either of the two regimes. 
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Figure 4: Simulation of the on-axis temporal evolution of a 2  ps-long laser pulse 
propagating through the filamentation zone, showing the development of an intense, 
clamped spike (~80 TW/cm2) on the leading edge of the pulse.   
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