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This work covers the current state of the art with regard to approaches to segment subcortical brain structures. A huge range of diverse methods have been presented in the literature during the last decade to segment not only one or a constrained number of structures, but also a complete set of these subcortical regions. Special attention has been paid to atlas based segmentation methods, statistical models and deformable models for this purpose. More recently, the introduction of machine learning techniques, such as artificial neural networks or support vector machines, has helped the researchers to optimize the classification problem. These methods are presented in this work, and their advantages and drawbacks are further discussed. Although these methods have proved to perform well, their use is often limited to those situations where either there are no lesions in the brain or the presence of lesions does not highly vary the brain anatomy. Consequently, the development of segmentation algorithms that can deal with such lesions in the brain and still provide a good performance when segmenting subcortical structures is highly required in practice by some clinical applications, such as radiotherapy or radio-surgery.

Introduction

During the last decades, medical imaging, which was initially used for basic visualization and inspection of anatomical structures, has evolved to become an essential tool for diagnosis, treatment and follow-up of patient diseases. Particularly, in oncology, advanced medical imaging techniques are used for tumor resection surgery (i.e. pre-operative planning, intra-operative, post-operative), and for subsequent radiotherapy treatment planning (RTP). Today, brain tumors are the second most common cause of cancer death in men ages 20 to 39 and the fifth most common cause of cancer among women age 20 to 39 [START_REF] Siegel | Cancer statistics[END_REF]. Medical imaging plays a key role in the diagnosis, treatment and follow-up of brain tumors. In daily clinical practice, computed tomography (CT) and magnetic resonance (MRI) imaging techniques are typically used. Both modalities are complementary: while CT imaging provides bone details MR imaging provides additional information on soft-tissue.

During RTP, the tumor to irradiate, i.e. clinical target volume (CTV), as well as healthy structures to be spared, i.e. the organs at risk (OARs), must be delineated precisely. Because of the high doses used to irradiate the CTV, the risk of severe toxicity of the OARs must be constrained. For the involved OARs some of the tolerance limits are presented in table 1. Therefore, these segmentations are crucial inputs for the RTP, in order to compute the parameters for the accelerators, and to verify the dose constraints. Nowadays in clinical practice, OARs delineation on medical images is performed manually by experts, or with very few machine assistance [START_REF] Whitfield | Automated delineation of radiotherapy volumes: are we going in the right direction?[END_REF]. Manual delineation has two major drawbacks: it is time consuming, and achieves poor reproducibility. Typically, the mean time spent to analyze and delineate OAR on a brain MRI dataset has been evaluated to 86 min [START_REF] Bondiau | Atlas-based automatic segmentation of mr images: validation study on the brainstem in radiotherapy context[END_REF], engaging valuable human resources. Furthermore, the OARs must be interpreted cautiously in light of the observed topologic differences, because delineation of structures of interest -CTV and high risked organs-varies considerably from one physician to another [START_REF] Yamamoto | Differences in target outline delineation from ct scans of brain tumours using different methods and different observers[END_REF], showing a poor reproducibility. To overcome these major issues, various computer-aided systems to (semi-)automatically segment anatomical structures in medical images have been developed and published in recent years. However, brain structures ( semi-) automatic segmentation still remains challenging, with no general and unique solution. + 10x(1.8Gy+1.6Gy)) [START_REF] Hunt | Treatment planning and delivery of intensity-modulated radiation therapy for primary nasopharynx cancer[END_REF] volume 1 cc / Dose limit = 10Gy [START_REF] Timmerman | An overview of hypofractionation and introduction to this issue of¡ i¿ seminars in radiation oncology¡/i¿[END_REF] volume 1 cc / Dose limit=12Gy [START_REF] Sharma | Radiation tolerance limits of the brainstem[END_REF] Eyes(Retina) 40Gy (IMRT -fractionation 30x2Gy) [START_REF] Narayana | Intensity-modulated radiotherapy in high-grade gliomas: clinical and dosimetric results[END_REF] 5Gy [START_REF] Mould | Robotic radiosurgery[END_REF] Eyes(Lens) As low as possible [START_REF] Narayana | Intensity-modulated radiotherapy in high-grade gliomas: clinical and dosimetric results[END_REF] 3Gy [START_REF] Mould | Robotic radiosurgery[END_REF] Cochlea 45Gy (conventionally fractionated RT) [START_REF] Bhandare | Radiation therapy and hearing loss[END_REF] 12Gy [START_REF] Timmerman | An overview of hypofractionation and introduction to this issue of¡ i¿ seminars in radiation oncology¡/i¿[END_REF] 10Gy [START_REF] Massager | Irradiation of cochlear structures during vestibular schwannoma radiosurgery and associated hearing outcome[END_REF] Chiasma 54Gy (IMRT -fractionation 30x2Gy) [START_REF] Narayana | Intensity-modulated radiotherapy in high-grade gliomas: clinical and dosimetric results[END_REF] volume 0.2CC / Dose limit = 8Gy [START_REF] Timmerman | An overview of hypofractionation and introduction to this issue of¡ i¿ seminars in radiation oncology¡/i¿[END_REF] Optic Nerve 54Gy (IMRT -fractionation 30x2Gy) [START_REF] Narayana | Intensity-modulated radiotherapy in high-grade gliomas: clinical and dosimetric results[END_REF] volume 0.2CC / Dose limit = 8Gy [START_REF] Timmerman | An overview of hypofractionation and introduction to this issue of¡ i¿ seminars in radiation oncology¡/i¿[END_REF][START_REF] Romanelli | Radiosurgery for hypothalamic hamartomas[END_REF][START_REF] Lee | Radiation therapy and cyberknife radiosurgery in the management of craniopharyngiomas[END_REF][START_REF] Stafford | A study on the radiation tolerance of the optic nerves and chiasm after stereotactic radiosurgery[END_REF] Table 1 Dose limits for the OARs in both radiotherapy and radio-surgery.

Initial approaches of brain segmentation on MRI focused on the classification 35 of the brain into three main classes: white matter(WM), grey matter(GM) and cerebrospinal fluid(CSF) [START_REF] Xuan | Segmentation of magnetic resonance brain image: integrating region growing and edge detection[END_REF]. During the last two decades, the segmentation of the whole brain into the primary cerebrum tissues (i.e. CSF, GM, and WM) has been one of the core challenges of the neuroimaging community, leading to many publications; nevertheless, it is still an active area of research [START_REF] Senthilkumaran | Brain image segmentation[END_REF]. More recent methods include tumors and adjacent regions, such as necrotic areas [START_REF] Lee | Segmenting brain tumors with conditional random fields and support vector machines[END_REF].

Those methods are only based on signal intensity. However, segmentation of subcortical structures (i.e. OARs) can hardly be achieved based solely on signal intensity, due to the weak visible boundaries and similar intensity values between different subcortical structures. Consequently, additional information, such as prior shape, appearance and expected location, is therefore required to perform the segmentation.

Due to the crucial role of the hippocampus (HC) in learning and memory processes [START_REF] Norman | How hippocampus and cortex contribute to recognition memory: revisiting the complementary learning systems model[END_REF] and its role as biomarker for the diagnosis of neural diseases, such as Parkinson, dementia or Alzheimer [START_REF] Laakso | Hippocampal volumes in alzheimer's disease, parkinson's disease with and without dementia, and in vascular dementia an mri study[END_REF], many methods have been published

to (semi-)automatically segment the HC on MRI [START_REF] Shen | Measuring size and shape of the hippocampus in mr images using a deformable shape model[END_REF][START_REF] Hult | Grey-level morphology combined with an artificial neural networks approach for multimodal segmentation of the hippocampus, in: Im-age Analysis and Processing[END_REF][START_REF] Hu | Appearance-based modeling for segmentation of hippocampus and amygdala using multi-contrast mr imaging[END_REF][START_REF] Zhao | Segmentation of hippocampus in mri images based on the improved level set[END_REF][START_REF] Kwak | Fully-automated approach to hippocampus segmentation using a graph-cuts algorithm combined with atlas-based segmentation and morphological opening[END_REF][START_REF] Zarpalas | Hippocampus segmentation through gradient based reliability maps for local blending of acm energy terms[END_REF][START_REF] Artaechevarria | Combination strategies in multi-atlas image segmentation: Application to brain mr data[END_REF][START_REF] Collins | Towards accurate, automatic segmentation of the hippocampus and amygdala from mri by augmenting animal with a template library and label fusion[END_REF][START_REF] Khan | Optimal weights for local multi-atlas fusion using supervised learning and dynamic information (superdyn): Validation on hippocampus segmentation[END_REF][START_REF] Kim | Segmenting hippocampus from 7.0 tesla mr images by combining multiple atlases and auto-context models[END_REF][START_REF] Coupé | Nonlocal patch-based label fusion for hippocampus segmentation[END_REF][START_REF] Wang | Multi-atlas segmentation with joint label fusion, Pattern Analysis and Machine Intelligence[END_REF][START_REF] Cardoso | Steps: Similarity and truth estimation for propagated segmentations and its application to hippocampal segmentation and brain parcelation[END_REF][START_REF] Ghanei | Segmentation of the hippocampus from brain mri using deformable contours[END_REF][START_REF] Morra | Automatic subcortical segmentation using a contextual model[END_REF][START_REF] Morra | Comparison of adaboost and support vector machines for detecting alzheimer's disease through automated hippocampal segmentation[END_REF]. Although there have recently been some work focusing on other structures than HC, the number of publications related to them is relatively lower. An atlas-based segmentation of the brainstem was validated in radiotherapy [START_REF] Bondiau | Atlas-based automatic segmentation of mr images: validation study on the brainstem in radiotherapy context[END_REF], demonstrating that the introduction of automatic segmentation methods may be useful in a clini-55 cal context. Optical nerve and chiasm were segmented by using a multi-atlas based approach [START_REF] Panda | Robust optic nerve segmentation on clinically acquired ct[END_REF]. Lee et al. [START_REF] Lee | A 2-d automatic segmentation scheme for brainstem and cerebellum regions in brain mr imaging[END_REF] proposed a 2D automatic segmentation of the brainstem and cerebellum based on active contour models. Segmentation of the corpus callosum has been also investigated by using different methods such as deformable models [START_REF] Mcintosh | Medial-based deformable models in nonconvex shape-spaces for medical image segmentation[END_REF][START_REF] Leventon | Statistical shape influence in geodesic active contours[END_REF], or machine learning [START_REF] Dolz | Multimodal imaging towards individualized radiotherapy treatments[END_REF]. Other researchers have focused on a set of different subcortical and cerebellar brain structures, proposing several approaches: active shape and appearance models [START_REF] Duchesne | Appearance-based segmentation of medial temporal lobe structures[END_REF][START_REF] Hu | Nonlocal regularization for active appearance model: Application to medial temporal lobe segmentation[END_REF][START_REF] Bailleul | Segmentation of anatomical structures from 3d brain mri using automatically-built statistical shape models[END_REF][START_REF] Tu | Brain anatomical structure segmentation by hybrid discriminative/generative models[END_REF][START_REF] Cootes | A unified framework for atlas matching using active appearance models[END_REF][START_REF] Babalola | 3d brain segmentation using active appearance models and local regressors[END_REF], atlas-based methods [START_REF] Heckemann | Automatic anatomical brain mri segmentation combining label propagation and decision fusion[END_REF][START_REF] Aljabar | Multi-atlas based segmentation of brain images: atlas selection and its effect on accuracy[END_REF][START_REF] Lötjönen | Fast and robust multi-atlas segmentation of brain magnetic resonance images[END_REF][START_REF] Asman | Non-local statistical label fusion for multiatlas segmentation[END_REF][START_REF] Wu | Optimum template selection for atlas-based segmentation[END_REF],deformable models [START_REF] Székely | Segmentation of 3d objects from mri volume data using constrained elastic deformations of flexible fourier surface models[END_REF][START_REF] Yang | 3d image segmentation of deformable objects with joint shape-intensity prior models using level sets[END_REF][START_REF] Tsai | Mutual information in coupled multi-shape model for medical image segmentation[END_REF] or machine learning approaches [START_REF] Magnotta | Measurement of brain structures with artificial neural networks: Two-and three-dimensional applications 1[END_REF][START_REF] Powell | Registration and machine learning-based automated segmentation of subcortical and cerebellar brain structures[END_REF][START_REF] Pierson | Manual and semiautomated measurement of cerebellar subregions on mr images[END_REF][START_REF] Golland | Detection and analysis of statistical differences in anatomical shape[END_REF].

The objective of this article is to provide the reader with a summary of the current state of the art with regard to approaches to segment subcortical brain structures. As it has been reported in the previous section, a large number of techniques have been proposed over the years to segment specific subcortical structures in MRI. However, we are interested in those techniques which are typically applicable to subcortical brain structures in general. In the presented work, we mainly focus on minimally user-interactive methods -automatic or semi-automatic-, which are not tailored to one or few specific structures, but applicable in general. Thus, methods presented in this article can be divided into four main categories: atlas-based methods, statistical models, deformable models and machine learning methods.

Atlas-based segmentation methods

The transformation of brain MRI segmentation procedures from human expert to fully automatic methods can be witnessed by exploring the atlas-based methods. There are several methods proposed to segment the brain into different anatomical structures using single or multiple atlases. Segmentation by using atlas-based methods can be divided into the following main steps: atlas construction, registration between the atlases and the target image, and optionally atlas selection and label fusion.

Atlas build-up

First attempts at atlas construction of the human brain were based on a single subject. Here, a single atlas image is used to perform the segmentation [START_REF] Wu | Optimum template selection for atlas-based segmentation[END_REF].

This atlas, referred as topological, single-subject or deterministic atlas, is usually an image selected from a database to be representative of the dataset to be segmented, in terms of size, shape and intensity for instance. Particularly, for follow-up of patient's disease where segmentation of brain structures should be performed on longitudinal studies (i.e. at different time point along the treatment), the use of single-atlas based segmentation method to propagate segmented structures obtained at one time point to another time point is generally sufficient. However, in applications where no prior image of the patient can be used as atlas, the segmentation using single-atlas based methods of anatomical structures presenting wide variability between humans becomes challenging, and might lead to poor results.

To overcome the limitations encountered with single-atlas based method, multiple atlases can be used [3, 27-32, 37, 48-51] . In this approach, multiple atlas images are selected from a database of images representative of the image to be segmented. Each atlas image is then registered to optimally fit the target image. Subsequently, using the deformation resulting from registration, the atlas labeled image is deformed. At this stage, multiple labeled images are fitted to the target image. At last, propagated labeled images are fused, providing the final segmentatio. Beside the registration method used, performance of multi-atlas segmentation methods depends on: 1) the atlas building, 2) the atlas selection (Section 2.3), and 3) the label fusion method (Section 2.4) used.

The major drawback of multi-atlas based segmentation methods remains the computation cost since it increases with the number of atlases selected.

A limitation of the multi-atlas based segmentation methods is that individual differences that occur in only a minority of the atlases could be averaged out.

Thus, the segmentation results might be biased, particularly for the abnormal MRI scans with pathologies. In order to address this issue, probabilistic atlases are used. This third category of atlases estimates a probabilistic model of the input images, either from a probabilistic atlas or a combination of topological atlases. For a more detailed explanation see the work of Cabezas et al. [START_REF] Cabezas | A review of atlas-based segmentation for magnetic resonance brain images[END_REF] 

Image Registration

Image registration is a prerequisite to perform atlas-based segmentation.

The registration process is used to spatially align an atlas A and the target image T. For our segmentation purpose, the registration process involved is necessarily based on non-rigid approaches to tackle inter-individual spatial variation. Various image registration methods exist and have been applied to many medical application domains. We refer the reader to the publications of Hill et al. [START_REF] Hill | Medical image registration[END_REF] and Zitova and Flusser [START_REF] Zitova | Image registration methods: a survey[END_REF] for an overview of the image registration methods, regardless of particular application areas. A review of image registration approaches specifically used in brain imaging is available in the publication of Toga and Thompson [START_REF] Toga | The role of image registration in brain mapping[END_REF]. The main contributions, advantages, and drawbacks of existing image registration methods are addressed.

Atlas selection

Normal individual variations in human brain structures present a significant challenge for atlas selection. Some studies demonstrated that, although the use of more than only one topological atlas improves the accuracy of the segmentation, it is not necessary to use all the cases in a dataset for a given query image [START_REF] Khan | Optimal weights for local multi-atlas fusion using supervised learning and dynamic information (superdyn): Validation on hippocampus segmentation[END_REF][START_REF] Wang | Multi-atlas segmentation with joint label fusion, Pattern Analysis and Machine Intelligence[END_REF][START_REF] Aljabar | Multi-atlas based segmentation of brain images: atlas selection and its effect on accuracy[END_REF][START_REF] Lötjönen | Fast and robust multi-atlas segmentation of brain magnetic resonance images[END_REF][START_REF] Wu | Optimum template selection for atlas-based segmentation[END_REF][START_REF] Rohlfing | Evaluation of atlas selection strategies for atlas-based image segmentation with application to confocal microscopy images of bee brains[END_REF][START_REF] Han | Atlas-based auto-segmentation of head and neck ct images[END_REF]. Among the existing solutions to choose the best matching cases, the use of meta-information is the simplest case. In this solution, which can be also called population specific atlases, an average atlas is built for several population groups according to similar features, like gender or age. Although they represent the simplest solution, the use of metainformation has proved to be a powerful similarity criterion when used in multiatlas segmentation [START_REF] Aljabar | Multi-atlas based segmentation of brain images: atlas selection and its effect on accuracy[END_REF]. However, this information may not be always available, requiring the use of similarity metrics to compare both atlas and target image.

Initially, the majority of published works used a single individual image randomly selected from the atlas dataset, where the selection criterion was not even mentioned. The optimal selection of a single template from the entire dataset during atlas-based segmentation and its influence in the segmentation accuracy was investigated in [START_REF] Rohlfing | Evaluation of atlas selection strategies for atlas-based image segmentation with application to confocal microscopy images of bee brains[END_REF]. Han et al. [START_REF] Han | Atlas-based auto-segmentation of head and neck ct images[END_REF] compared the selection of a single atlas against the propagation and fusion of their entire atlas database. In their work, the selection of the single atlas was based on the highest Mutual Information (MI) similarity between atlases and the target image after a global affine registration. Multi-atlas segmentation strategy significantly improved the accuracy of single-atlas based strategy, especially in those regions which represented higher dissimilarities between images. Additionally to MI, Sum of squared differences (SSD) or cross-correlation (CC) are often used as a similarity metric to select the closest atlas with respect to the target image.

Aljabar et al [START_REF] Aljabar | Multi-atlas based segmentation of brain images: atlas selection and its effect on accuracy[END_REF] proved that using multi-atlas selection when segmenting subcortical brain structures improves the overlapping than when using random sets of atlases. In their work, a dataset of 275 atlases was used. As in [START_REF] Han | Atlas-based auto-segmentation of head and neck ct images[END_REF], MI similarity was used to top-rank the atlases from the dataset. Then, the n top ranked atlases from the list were selected to be propagated to the target image by using a non-rigid registration. Mean DSC obtained by selecting the top-ranked atlases (0.854) was higher than the DSC obtained randomly selecting the atlases (0.811). This difference represents nearly 4% of improvement, demonstrating that the selection of a limited number of atlases which are more appropriate for the target image and prior to multi-atlas segmentation, would appear preferable to the fusion of an arbitrarily large number of atlases.

The inclusion in the label propagation step of atlases containing high dissimilarities with respect to the target image, may not make the segmentation more accurate, but contribute to a poorer result. Consequently, the proper selection of the atlases to include in the label propagation is a key step of the segmentation process.

Label fusion

Once the suitable atlases have been selected from the atlas dataset and labels propagated to the target image, information from transferred labels has to be combined to provide the final segmentation [27-33, 37, 48, 49, 51, 64, 66, 67].

This step is commonly referred as label fusion or classifier fusion.

Label fusion techniques known as best atlas and majority voting approach represent the simplest strategies to combine the propagated labels. In best atlas technique, after the registration step, the labels from the most similar atlas to the target image are propagated to yield the final segmentation. In majority voting method, votes for each propagated label are counted and the label receiving the most votes is chosen to produce the final segmentation [START_REF] Collins | Towards accurate, automatic segmentation of the hippocampus and amygdala from mri by augmenting animal with a template library and label fusion[END_REF][START_REF] Heckemann | Automatic anatomical brain mri segmentation combining label propagation and decision fusion[END_REF][START_REF] Aljabar | Multi-atlas based segmentation of brain images: atlas selection and its effect on accuracy[END_REF]. Since majority voting assigns equal weights to different atlases, it makes a strong assumption that different atlases produce equally accurate segmentations for the target image.

To improve label fusion performance, recent work focuses on developing segmentation quality estimations based on local appearance similarity and assigning weights to the propagated labels. Thus, final segmentation is obtained by increasing the contribution of the atlases that are more similar to the target scan [27-32, 52, 64]. Among previous weighted voting strategies, those that derive weights from local similarity between the atlas and target [START_REF] Artaechevarria | Combination strategies in multi-atlas image segmentation: Application to brain mr data[END_REF][START_REF] Khan | Optimal weights for local multi-atlas fusion using supervised learning and dynamic information (superdyn): Validation on hippocampus segmentation[END_REF][START_REF] Kim | Segmenting hippocampus from 7.0 tesla mr images by combining multiple atlases and auto-context models[END_REF][START_REF] Coupé | Nonlocal patch-based label fusion for hippocampus segmentation[END_REF], and thus allow the weights to vary spatially, have demonstrated to be a better solution in practice. Hence, each atlas contributes to the final solution according to how similar to the target they are. However, the computation of the weights is done independently for each atlas, and the fact that different atlases may produce similar label errors is not taken into account. This assumption can lead to labeling inaccuracies caused by replication or redundancy in the atlas dataset. To address this limitation, a solution for the label fusion problem was proposed [START_REF] Wang | Multi-atlas segmentation with joint label fusion, Pattern Analysis and Machine Intelligence[END_REF]. In this work the weighted voting was formulated in terms of minimizing the total expectation of labeling error and the pairwise dependency between atlases was explicitly modeled as the joint probability of two atlases making a segmentation error at a voxel. Hence, the dependencies among the atlases were taken into consideration, and the expected label error was reduced in the combined solution.

Another remarkable example of producing consensus segmentations, espe-cially in the context of medical image processing, is the algorithm named Simultaneous Truth and Performance Level Estimation (STAPLE) [START_REF] Warfield | Simultaneous truth and performance level estimation (staple): an algorithm for the validation of image segmentation[END_REF]. STAPLE approach, instead of using an image similarity metric to derive the classifier performance, estimates the classifier performance parameters by comparing each classifier to a consensus, in an iterative manner according to the Expectation Maximization (EM) algorithm. In order to model miss registrations as part of the rater performance, a reformulation of STAPLE with a spatially varying rater performance model was introduced [START_REF] Commowick | Estimating a reference standard segmentation with spatially varying performance parameters: Local map staple[END_REF]. More recently, Cardoso et al. [START_REF] Cardoso | Steps: Similarity and truth estimation for propagated segmentations and its application to hippocampal segmentation and brain parcelation[END_REF] extended the classical STAPLE approach by incorporating a spatially image similarity term into a STAPLE framework, enabling the characterization of both image similarity and human rater performance in a unified manner, which was called Similarity and Truth Estimation for Propagated Segmentations (STEPS). At last, a novel reformulation of the STAPLE framework from a non-local perspective, called Non-local Spatial STAPLE [START_REF] Asman | Non-local statistical label fusion for multiatlas segmentation[END_REF], was used as a label fusion algorithm [START_REF] Panda | Robust optic nerve segmentation on clinically acquired ct[END_REF].

Statistical models

Statistical models (SM) have become widely used in the field of computer vision and medical image segmentation over the past decade [START_REF] Hu | Appearance-based modeling for segmentation of hippocampus and amygdala using multi-contrast mr imaging[END_REF][START_REF] Duchesne | Appearance-based segmentation of medial temporal lobe structures[END_REF][START_REF] Hu | Nonlocal regularization for active appearance model: Application to medial temporal lobe segmentation[END_REF][START_REF] Bailleul | Segmentation of anatomical structures from 3d brain mri using automatically-built statistical shape models[END_REF][START_REF] Tu | Brain anatomical structure segmentation by hybrid discriminative/generative models[END_REF][START_REF] Cootes | A unified framework for atlas matching using active appearance models[END_REF][START_REF] Babalola | 3d brain segmentation using active appearance models and local regressors[END_REF][START_REF] Heimann | Statistical shape models for 3d medical image segmentation: A review[END_REF][START_REF] Cootes | Training models of shape from sets of examples[END_REF][START_REF] Cootes | Active shape modelstheir training and application[END_REF][START_REF] Cootes | Active appearance models[END_REF][START_REF] Van Ginneken | Interactive shape models[END_REF][START_REF] Brejl | Object localization and border detection criteria design in edge-based image segmentation: automated learning from examples[END_REF][START_REF] Pitiot | Expert knowledgeguided segmentation system for brain mri[END_REF][START_REF] Zhao | A novel 3d partitioned active shape model for segmentation of brain mr images[END_REF][START_REF] Rao | Hierarchical statistical shape analysis and prediction of sub-cortical brain structures[END_REF][START_REF] Bernard | Improvements on the feasibility of active shape model-based subthalamic nucleus segmentation[END_REF][START_REF] Olveres | Midbrain volume segmentation using active shape models and lbps[END_REF][START_REF] Adiva | Comparison of active contour and active shape approaches for corpus callosum segmentation[END_REF][START_REF] Koikkalainen | Methods of artificial enlargement of the training set for sta-tistical shape models[END_REF][START_REF] Babalola | Using parts and geometry models to initialise active appearance models for automated segmentation of 3d medical images[END_REF][START_REF] Patenaude | A bayesian model of shape and appearance for subcortical brain segmentation[END_REF][START_REF] Bagci | Hierarchical scale-based multiobject recognition of 3-d anatomical structures[END_REF] . Basically, SMs use a priori shape information to learn the variation from a Landmarks based method is a generic technique coined as Point Distribution Models (PDMs) by Cootes et al. [START_REF] Cootes | Training models of shape from sets of examples[END_REF], which has been extensively used in SSMs for surface representation. This method regularly distributes a set of points across the surface, which usually relies on high curvatures of boundaries. However, they do not need to be placed at salient feature points as per the common definition of anatomical landmark, which is the reason of why they have also been referred as semi-landmarks. Among other shape representation models that have been recently used in medical image segmentation [START_REF] Heimann | Statistical shape models for 3d medical image segmentation: A review[END_REF] we can identify medial models or skeletons, meshes, vibration modes of spherical meshes or the use of wavelets, for example.

Alignment of the training shape samples in a common coordinate frame is the first step to create the shape model. Once the samples are co-registered, a reduced number of modes of variation that best describes the variation observed are extracted, which is usually done by applying Principal Components Analysis (PCA) to the set of vectors describing the shapes [START_REF] Cootes | Active shape modelstheir training and application[END_REF]. PCA picks out the main axes of the cloud, and models only the first few, which account for the majority of the variation. Thus, any new instance of the shape can be modeled by the mean shape of the object and a combination of its modes of variations [START_REF] Cootes | Training models of shape from sets of examples[END_REF].

Modelling the appearance

As an extension of the statistical models of shape, the texture variability observed in the training set was included in the model, leading to appearance models(AMs) [START_REF] Cootes | Active appearance models[END_REF]. In this approach, in addition to the shape, the intensity variation seen in the training set is also modeled. As in the SSM, the variability observed in the training set is parameterized in terms of its mean and eigenvectors. Once the shape has been modeled (See section 3.1.1), the statistical model of the gray level appearance has to be built. For this purpose, sample images are warped based on the mean shape. Then, the intensity information from the shape-normalized image is sampled over the region covered by the mean shape.

Different techniques to sample the intensity in the warped image can be found in the literature [START_REF] Heimann | Statistical shape models for 3d medical image segmentation: A review[END_REF].

Segmentation Phase. Search algorithm

Once the SM has been created, it is important to define the strategy to search new instances of the model in the input images. This step consists essentially in finding the most accurate parameters of the statistical model that best define a new object. Active shape models(ASM) and active appearance models(AAM) are the most frequently employed constrained search approaches and are described below.

Active Shape Model

Originally introduced by Cootes et al. [START_REF] Cootes | Training models of shape from sets of examples[END_REF][START_REF] Cootes | Active shape modelstheir training and application[END_REF], ASM is a successful technique to find shapes with known prior variability in input images. ASM has been widely used for segmentation in medical imaging [START_REF] Heimann | Statistical shape models for 3d medical image segmentation: A review[END_REF], including segmentation of subcortical structures on brain [START_REF] Bailleul | Segmentation of anatomical structures from 3d brain mri using automatically-built statistical shape models[END_REF][START_REF] Tu | Brain anatomical structure segmentation by hybrid discriminative/generative models[END_REF][START_REF] Van Ginneken | Interactive shape models[END_REF][START_REF] Brejl | Object localization and border detection criteria design in edge-based image segmentation: automated learning from examples[END_REF][START_REF] Pitiot | Expert knowledgeguided segmentation system for brain mri[END_REF][START_REF] Zhao | A novel 3d partitioned active shape model for segmentation of brain mr images[END_REF][START_REF] Rao | Hierarchical statistical shape analysis and prediction of sub-cortical brain structures[END_REF][START_REF] Bernard | Improvements on the feasibility of active shape model-based subthalamic nucleus segmentation[END_REF][START_REF] Olveres | Midbrain volume segmentation using active shape models and lbps[END_REF][START_REF] Adiva | Comparison of active contour and active shape approaches for corpus callosum segmentation[END_REF]. It is based on a statistical shape Original ASM method [START_REF] Cootes | Active shape modelstheir training and application[END_REF] was improved in [START_REF] Van Ginneken | Interactive shape models[END_REF] by using an adaptive graylevel AM based on local image features around the border of the object. Thus, landmarks points could be moved to better locations during the optimization process. To allow some relaxation in the shape instances fitted by the model, ASM can be combined with other methods, as in [START_REF] Pitiot | Expert knowledgeguided segmentation system for brain mri[END_REF]. They employed a framework involving deformable templates constrained by statistical models and other expert prior knowledge. This approach was used to segment four brain struc- 

Active Appearance Model

The active appearance model(AAM) is an extension of the ASM that, apart from the shape, models both the appearance and the relationship between shape and appearance of the object [START_REF] Cootes | Active appearance models[END_REF]. Since the purpose of this review is to give a view about the use of these methods in medical image segmentation (especially of the subcortical structures on MRI), and not to enter into detail in the mathematical foundations of each methods, we encourage the readers to review a detailed description of the algorithm in [START_REF] Cootes | Active appearance models[END_REF].

Initially, Cootes et al. [START_REF] Cootes | A unified framework for atlas matching using active appearance models[END_REF] demonstrated the application of 2D AAMs on finding structures in brain MR images. Nevertheless, they are not suitable for 3D images in their primary form because of the underlying shape representation (i.e. PDM) that becomes impractical in 3D. Some approaches extended them to higher dimension by using non-linear registration algorithms for the automatic creation of a 3D-AAM. Duchesne et al. [START_REF] Duchesne | Appearance-based segmentation of medial temporal lobe structures[END_REF] segmented medial temporal lobe structures by including nonlinear registration vector fields into a 3D warp distribution model.

(REVIEW)However, a number of considerations have to be taken into account in adapting a generic AAM approach to a specific task. Babalola et al. [START_REF] Babalola | Using parts and geometry models to initialise active appearance models for automated segmentation of 3d medical images[END_REF] built AAMs of some subcortical structures using groupwise registration to establish correspondences, i.e. to initialize the composite model within the new image. To build the AAMs, the intensities along vectors normal to the surface of the structures were sampled, which is known as profile AAM. In [START_REF] Babalola | 3d brain segmentation using active appearance models and local regressors[END_REF],

the proposed approach used a global AAM to find an approximate position of all the structures in the brain. Once the coarse localization was found, shape and location of each structure were refined by using a set of AAMs individually trained for each of the structures. Although the probability of object occupancy could be derived from the training set, they demonstrated that the use of simple regressors at each voxel based on the pattern of grey level intensities nearby provided better results.

Initialization

Most of the methods that aim to locate a SSM in a new input image use a local search optimization process. So, they need to be initialized near the structure of interest, so that the model boundaries fall in the close vicinity of object boundaries in the image. Straightforward solution for the initialization problem is human-interaction. In some cases, it is sufficient to roughly align the mean shape with the input data, whereas in other cases, it is preferred to use a small number of points to guide the segmentation process [START_REF] Van Ginneken | Interactive shape models[END_REF]. Alternatively, more robust techniques can be used to initialize the model in the image [START_REF] Babalola | Using parts and geometry models to initialise active appearance models for automated segmentation of 3d medical images[END_REF][START_REF] Patenaude | A bayesian model of shape and appearance for subcortical brain segmentation[END_REF][START_REF] Bagci | Hierarchical scale-based multiobject recognition of 3-d anatomical structures[END_REF].

Deformable models

The term deformable model (DM) was pioneered by Terzopoulos et al. [START_REF] Terzopoulos | Deformable models[END_REF] to refer to curves or surfaces, defined in the image domain, and which are deformed under the influence of internal and external forces. Internal forces are related with the curve features and try to keep the model smooth during the deformation process. In the other hand, external forces are the responsible of attracting the model toward features of the structure of interest, and are related with the image features of the adjacent regions to the curve. Hence, DM tackles the segmentation problem by considering an object boundary as a single, connected structure, and exploiting a priori knowledge of object shape and inherent smoothness [START_REF] Terzopoulos | Deformable models[END_REF]. Although DM were originally developed to provide solutions for computer vision applications to natural scenes and computer graphics problems, their applicability in medical image segmentation has already been proven [START_REF] He | A comparative study of deformable contour methods on medical image segmentation[END_REF].

According to the type of shape representation used to define the model, DM methods can be categorized in: parametric or explicit deformable models [START_REF] Lee | A 2-d automatic segmentation scheme for brainstem and cerebellum regions in brain mr imaging[END_REF][START_REF] Mcintosh | Medial-based deformable models in nonconvex shape-spaces for medical image segmentation[END_REF][START_REF] Székely | Segmentation of 3d objects from mri volume data using constrained elastic deformations of flexible fourier surface models[END_REF][START_REF] Kass | Snakes: Active contour models[END_REF][START_REF] Mcinerney | T-snakes: Topology adaptive snakes[END_REF] and geometric or implicit deformable models [START_REF] Zhao | Segmentation of hippocampus in mri images based on the improved level set[END_REF][START_REF] Ghanei | Segmentation of the hippocampus from brain mri using deformable contours[END_REF][START_REF] Leventon | Statistical shape influence in geodesic active contours[END_REF][START_REF] Yang | 3d image segmentation of deformable objects with joint shape-intensity prior models using level sets[END_REF][START_REF] Tsai | Mutual information in coupled multi-shape model for medical image segmentation[END_REF][START_REF] Osher | Fronts propagating with curvature-dependent speed: algorithms based on hamilton-jacobi formulations[END_REF][START_REF] Wang | Boundary finding with correspondence using statistical shape models[END_REF][START_REF] Duncan | Geometric strategies for neuroanatomic analysis from mri[END_REF][START_REF] Bekes | Geometrical modelbased segmentation of the organs of sight on ct images[END_REF][START_REF] Lee | Segmentation of interest region in medical volume images using geometric deformable model[END_REF].

Parametric deformable models

The first parametric model used in image segmentation found in the literature was originally introduced by Kass et al. [START_REF] Kass | Snakes: Active contour models[END_REF], coined with the name of snakes.

It was proposed as an interactive method where, because of its limitations, initial contours must be placed within the vicinity of object boundaries. First, the energy of the contour depends on its spatial positioning and changes along the shape. Sensitivity to initial location obliges the contour to be placed close to the object boundary, leading to failure in case of improper initialization. Second, the presence of noise may cause the contour to be attracted by a local minimum and get stuck in a location that might not correspond with the ground truth .

To overcome these limitations different approaches have been proposed [START_REF] He | A comparative study of deformable contour methods on medical image segmentation[END_REF][START_REF] Mcinerney | T-snakes: Topology adaptive snakes[END_REF].

The method presented in [START_REF] Mcinerney | T-snakes: Topology adaptive snakes[END_REF] provides different mechanisms to enable the contour topology to change during the deformation process. In [START_REF] He | A comparative study of deformable contour methods on medical image segmentation[END_REF], an extensive study of DM and different types of external forces was presented.

Regarding the segmentation of subcortical structures, parametric DM have been recently employed to perform the segmentation, in combination with other approaches [START_REF] Lee | A 2-d automatic segmentation scheme for brainstem and cerebellum regions in brain mr imaging[END_REF][START_REF] Mcintosh | Medial-based deformable models in nonconvex shape-spaces for medical image segmentation[END_REF][START_REF] Székely | Segmentation of 3d objects from mri volume data using constrained elastic deformations of flexible fourier surface models[END_REF]. Ada-boosted algorithm was used in [START_REF] Lee | A 2-d automatic segmentation scheme for brainstem and cerebellum regions in brain mr imaging[END_REF] to detect brainstem and cerebellum candidate areas, followed by an active contour model to provide the final boundaries. An extension of natural snakes was proposed in [START_REF] Székely | Segmentation of 3d objects from mri volume data using constrained elastic deformations of flexible fourier surface models[END_REF], where desired properties of physical models were combined with Fourier parameterizations of shapes representations and their shape variability to segment the corpus callosum. In [START_REF] Mcintosh | Medial-based deformable models in nonconvex shape-spaces for medical image segmentation[END_REF], the application of genetic algorithms to DM was explored in the task of corpus callosum segmentation. In this approach, genetic algorithms were propose to reduce typical deformable model weaknesses pertaining to model initialization, pose estimation and local minima, through the simultaneous evolution of a large number of models.

Geometric deformable models

One of the main drawbacks of parametric DM is the difficulty of naturally handling topological changes for the splitting and merging of contours, restricting severely the degree of topological adaptability of the model. To introduce topological flexibility, geometric DM have been implicitly implemented by using the level set algorithm developed by Osher and Sethian [START_REF] Osher | Fronts propagating with curvature-dependent speed: algorithms based on hamilton-jacobi formulations[END_REF]. These models are formulated as evolving contours or surfaces, usually called fronts, which define the level set of some higher-dimensional surface over the image domain.

Generally, image gray level based methods face difficult challenges such as poor image contrast, noise, and diffuse or even missing boundaries, especially for certain subcortical structures. In most of these situations, the use of prior model based algorithms can solve these issues. The method proposed in [START_REF] Wang | Boundary finding with correspondence using statistical shape models[END_REF] used a systematic approach to determine a boundary of an object as well as the correspondence of boundary points to a model by constructing a statistical model of shape variation. Ghanei et al. [START_REF] Ghanei | Segmentation of the hippocampus from brain mri using deformable contours[END_REF] used a deformable contour technique to customize a balloon model to the subjects' hippocampus. In order to avoid local minima due to mismatches between model edge and multiple edges in the image, their technique incorporates statistical information about the possible range of allowable shapes for a given structure. Geodesic active contours were extended in [START_REF] Leventon | Statistical shape influence in geodesic active contours[END_REF] by incorporating shape information into the evolution process.

PCA and level set functions of the object boundaries were employed to form a statistical shape model from a training set. The segmenting curves evolved according to image gradients and a maximum a posteriori (MAP) estimated the shape and pose.

Additionally, the use of level set methods to formulate the segmentation problem has been reported to increase the capture range of DM and constrain the deformation through the incorporation of some prior shape information.

Because of these advantages geometric DMs have been extensively used to carry out the segmentation task of brain subcortical structures [START_REF] Ghanei | Segmentation of the hippocampus from brain mri using deformable contours[END_REF][START_REF] Leventon | Statistical shape influence in geodesic active contours[END_REF][START_REF] Yang | 3d image segmentation of deformable objects with joint shape-intensity prior models using level sets[END_REF][START_REF] Tsai | Mutual information in coupled multi-shape model for medical image segmentation[END_REF][START_REF] Wang | Boundary finding with correspondence using statistical shape models[END_REF][START_REF] Duncan | Geometric strategies for neuroanatomic analysis from mri[END_REF][START_REF] Bekes | Geometrical modelbased segmentation of the organs of sight on ct images[END_REF][START_REF] Lee | Segmentation of interest region in medical volume images using geometric deformable model[END_REF].

In some situations, texture information is also required to constrain the deformation on the contours. As a consequence, statistical models of both shape and texture are used in addition to only shape prior based segmentation methods [START_REF] Cootes | A unified framework for atlas matching using active appearance models[END_REF][START_REF] Cootes | Active appearance models[END_REF]. The modeled structure can be located by finding the parameters, which minimize the difference between the synthesized model image and the target image in conjunction with the statistical model of the shape based on landmark points and texture.

Machine learning methods

Machine Learning(ML) techniques have been extensively used in the MRI analysis domain almost since its creation. Artificial Neural Networks (ANN),

or Support Vector Machines (SVM), are among the most popular methods used not only for segmentation of brain anatomical structures [START_REF] Hult | Grey-level morphology combined with an artificial neural networks approach for multimodal segmentation of the hippocampus, in: Im-age Analysis and Processing[END_REF][START_REF] Morra | Automatic subcortical segmentation using a contextual model[END_REF][START_REF] Morra | Comparison of adaboost and support vector machines for detecting alzheimer's disease through automated hippocampal segmentation[END_REF][START_REF] Dolz | Multimodal imaging towards individualized radiotherapy treatments[END_REF][START_REF] Magnotta | Measurement of brain structures with artificial neural networks: Two-and three-dimensional applications 1[END_REF][START_REF] Powell | Registration and machine learning-based automated segmentation of subcortical and cerebellar brain structures[END_REF][START_REF] Pierson | Manual and semiautomated measurement of cerebellar subregions on mr images[END_REF][START_REF] Golland | Detection and analysis of statistical differences in anatomical shape[END_REF][START_REF] Spinks | Manual and automated measurement of the whole thalamus and mediodorsal nucleus using magnetic resonance imaging[END_REF][START_REF] Moghaddam | Automatic segmentation of brain structures using geometric moment invariants and artificial neural networks[END_REF][START_REF] Akselrod-Ballin | Atlas guided identification of brain structures by combining 3d segmentation and svm classification[END_REF] ,but also for tumors classification [START_REF] Zhou | Extraction of brain tumor from mr images using one-class support vector machine[END_REF][START_REF] Bauer | Fully automatic segmentation of brain tumor images using support vector machine classification in combination with hierarchical conditional random field regularization[END_REF][START_REF] Gasmi | Automated segmentation of brain tumor using optimal texture features and support vector machine classifier[END_REF] or automatic diagnosis [START_REF] Glotsos | Automated diagnosis of brain tumours astrocytomas using probabilistic neural network clustering and support vector machines[END_REF]. Because of their efficacy in solving optimization problems, ANN have been integrated in segmentation algorithms to define subcortical structures [22, 56-58, 93, 94]. In the method proposed in [START_REF] Hult | Grey-level morphology combined with an artificial neural networks approach for multimodal segmentation of the hippocampus, in: Im-age Analysis and Processing[END_REF], grey-level dilated and eroded versions of the MR T1 and T2-weighted images were used to minimize leaking from the HC to surrounding tissue combined with possible foreground tissue. An ANN was applied to a manually selected bounding box, which result was used as an initial segmentation and then used as input of the grey-level morphology-based algorithm. Magnotta et al. [START_REF] Magnotta | Measurement of brain structures with artificial neural networks: Two-and three-dimensional applications 1[END_REF] used a three-layer ANN to segment caudate, putamen and whole brain. The ANN was trained using a standard back-propagation algorithm and a piecewise linear registration was used to define an atlas space to generate a probability map which was used as input feature of the ANN. This approach was later employed by [START_REF] Spinks | Manual and automated measurement of the whole thalamus and mediodorsal nucleus using magnetic resonance imaging[END_REF] and extended by [START_REF] Pierson | Manual and semiautomated measurement of cerebellar subregions on mr images[END_REF] through the incorporation of a landmark registration to segment the cerebellar regions. Based on the success of applying ANN approaches to segment cerebellar regions by incorporating a higher dimensional transformation, Powel et al. [START_REF] Powell | Registration and machine learning-based automated segmentation of subcortical and cerebellar brain structures[END_REF] extended the initial algorithm of [START_REF] Magnotta | Measurement of brain structures with artificial neural networks: Two-and three-dimensional applications 1[END_REF] to use a high dimensional intensity-based transform. Further, they compared the use of ANN with SVM, as well as with more classical approaches such as single-atlas segmentation and probability based segmentation. In [START_REF] Moghaddam | Automatic segmentation of brain structures using geometric moment invariants and artificial neural networks[END_REF], a two-stage method to segment brain structures was presented, where geometric moment invariants (GMI) were used to improve the differentiation between the brain regions. In the first stage, GMI were used along voxel intensity values as an input feature and a signed distance function of a desired structure as an output of the network. To represent the brain structures, the GMI were employed in 8 different scales, using one ANN for each of the scales. In the second stage, the network was employed as a classifier and not as a function approximator. Some limitations must be taken into account when ANN are employed. Their performance strongly depends on the training set, achieving good results only in those structures for which a suitable training can be developed. This may limit their value with inherently difficult structures that human beings have difficulty delineating reliably, such as the thalamus [START_REF] Magnotta | Measurement of brain structures with artificial neural networks: Two-and three-dimensional applications 1[END_REF]. As a consequence, ANN must be well designed, and different types of ANN may require specific training data set development, depending on the structure-identification task.

Artificial neural networks

Support vector machine

Support vector machine represent one of the latest and most successful statistical pattern classifiers. It has received a lot of attention from the machine learning and pattern recognition community. Although SVM approaches have been mainly employed for brain tumor recognition [START_REF] Zhou | Extraction of brain tumor from mr images using one-class support vector machine[END_REF][START_REF] Bauer | Fully automatic segmentation of brain tumor images using support vector machine classification in combination with hierarchical conditional random field regularization[END_REF][START_REF] Gasmi | Automated segmentation of brain tumor using optimal texture features and support vector machine classifier[END_REF] in the field of medical image classification, recent works have also used them for tissue classification [START_REF] Akselrod-Ballin | Atlas guided identification of brain structures by combining 3d segmentation and svm classification[END_REF] and segmentation of anatomical human brain structures [START_REF] Morra | Automatic subcortical segmentation using a contextual model[END_REF][START_REF] Morra | Comparison of adaboost and support vector machines for detecting alzheimer's disease through automated hippocampal segmentation[END_REF][START_REF] Dolz | Multimodal imaging towards individualized radiotherapy treatments[END_REF][START_REF] Powell | Registration and machine learning-based automated segmentation of subcortical and cerebellar brain structures[END_REF][START_REF] Golland | Detection and analysis of statistical differences in anatomical shape[END_REF]].

The main idea behind SVM is to find the largest margin hyperplane that separates two classes. The minimal distance from the separating hyperplane to the closest training example is called margin. Thus, the optimal hyperplane is the one showing the maximal margin, which represents the largest separation between the classes. The training samples that lie on the margin are referred as support vectors, and conceptually are the most difficult data points to classify.

Therefore, support vectors define the location of the separating hyperplane, being located at the boundary of their respective classes.

The growing interest on SVM for classification problems lies in its good generalization ability and its capability to successfully classify non-linearly separable data. First, SVM attempts to maximize the separation margin i.e., hyperplane-between classes, so the generalization performance does not drop significantly even when the training data are limited. Second, by employing kernel transformations to map the objects from their original space into a higher dimensional feature space [START_REF] Burges | A tutorial on support vector machines for pattern recognition[END_REF], SVM can separate objects which are not linearly separable. Moreover, they can accurately combine many features to find the optimal hyperplane. Hence, as can be seen, SVM globally and explicitly maximize the margin while minimizing the number of wrongly classified examples, using any desired linear or non-linear hypersurface.

Powell et al. [START_REF] Powell | Registration and machine learning-based automated segmentation of subcortical and cerebellar brain structures[END_REF] compared the performance of ANN and SVM when segmenting subcortical (caudate, putamen, thalamus and hippocampus) and cerebellar brain structures. In their study the same input vector was used in both machine learning approaches, which was composed by the following features: probability information, spherical coordinates, area iris values, and signal intensity along the image gradient. Although results obtained where very similar, ANN based segmentation approach slightly outperformed SVM. However, their employed a reduced number of brains to test (only 5 brains), and 25 manually selected features, which means that generalization to other datasets was not guarantee.

PCA was used in [START_REF] Golland | Detection and analysis of statistical differences in anatomical shape[END_REF] to reduce the size of the input training pool, followed by a SVM classification to identify statistical differences in the hippocampus. In addition, Dolz et al. [START_REF] Dolz | Multimodal imaging towards individualized radiotherapy treatments[END_REF] explored the use of SVM to segment the corpus callosum.

In this work, in addition to the input features used in [START_REF] Powell | Registration and machine learning-based automated segmentation of subcortical and cerebellar brain structures[END_REF], geodesic image transform map was added as input vector of the SVM. However, selection of proper discriminative features is not a trivial task, which has already been explored in the SVM domain. To overcome this problem, AdaBoost algorithm was combined with a SVM formulation [START_REF] Morra | Comparison of adaboost and support vector machines for detecting alzheimer's disease through automated hippocampal segmentation[END_REF]. AdaBoost was used in a first stage to select the features that most accurately span the classification problem. Then, SVM fused the selected features together to create the final classificatory. Furthermore, they compared four automated methods for hippocampal segmentation using different machine learning algorithms: hierarchical AdaBoost, SVM with manual feature selection, hierarchical SVM with automated feature selection (Ada-SVM), and a publicly available brain segmentation package (FreeSurfer).

In their proposed study, they evaluated the benefits of combining AdaBoost and SVM approaches sequentially.

Discussion

Generally, none of the presented methods can singly handle brain subcortical structures segmentation with the presence of brain lesions. Typically, methods discussed in this survey rely on the existent information in a training set. How-ever, subjects presenting brain lesions are not usually representative for a large set of patients, because of lesions may strongly differ and produce random deformations on the subcortical structures. As a consequence, they are not included in the training stage and the deformations on the structures caused by the lesion cannot be therefore modeled.

Model based approaches, such as atlas or statistical models trend to perform reasonably well when there is no high anatomical deviation between the training set and the input case to analyze. Nevertheless, these approaches might completely fail if shape variability is not properly modeled, which often occurs in the presence of brain lesions. Additionally to the shape variability, registration plays an important role in atlas-based approaches. Registrations with large initial dissimilarity in shape between the atlases and the target might not be handled properly. This can lead to inappropriately weights when there are initially large shapes differences resulting in incorrect image correspondences established by the atlas registration. In the other hand, in statistical model approaches, which are only capable of generating a plausible range of shapes, the presence of a tumor might deform a determined structure to an unpredictable shape. This will cause the failure of SM approaches, because of their incapability to generate new unknown shapes which considerably differs from the shapes in the training set.

In the context of SMs, PCA was originally used in a framework called Active Shape Model(ASM) [START_REF] Cootes | Active shape modelstheir training and application[END_REF] and has become a standard technique used for shape analysis in segmentation tasks, and the preferred methodology when trying to fit a model into new image data. Compared to ASM, AAM makes an excessive usage of the memory when it creates the 3D texture model, and the implementation of ASM is relatively easier than the AAM implementation. While ASMs search around the current location and along profiles, AAMs only examine the image under its current area of interest, allowing the ASMs to generally have a larger capture range. However, the use of information solely around the model points makes that ASMs may be less reliable, since they do not profit from all texture information available across a structure, unlike AAM. Another interest advantage of the AAMs reported by [START_REF] Cootes | A unified framework for atlas matching using active appearance models[END_REF] Zarpalas [START_REF] Zarpalas | Hippocampus segmentation through gradient based reliability maps for local blending of acm energy terms[END_REF] Hippocampus MR T1

Artaechevarria [START_REF] Artaechevarria | Combination strategies in multi-atlas image segmentation: Application to brain mr data[END_REF] Multi-structure MR Collins [START_REF] Collins | Towards accurate, automatic segmentation of the hippocampus and amygdala from mri by augmenting animal with a template library and label fusion[END_REF] Hippocampus,amygdala MR T1

Khan [START_REF] Khan | Optimal weights for local multi-atlas fusion using supervised learning and dynamic information (superdyn): Validation on hippocampus segmentation[END_REF] Hippocampus MR T1

Kim [START_REF] Kim | Segmenting hippocampus from 7.0 tesla mr images by combining multiple atlases and auto-context models[END_REF] Hippocampus MR 7T

Coupé [START_REF] Coupé | Nonlocal patch-based label fusion for hippocampus segmentation[END_REF] Multi-structure MR T1

Wang [START_REF] Wang | Multi-atlas segmentation with joint label fusion, Pattern Analysis and Machine Intelligence[END_REF] Hippocampus MR Cardoso [START_REF] Cardoso | Steps: Similarity and truth estimation for propagated segmentations and its application to hippocampal segmentation and brain parcelation[END_REF] Hippocampus MR T1

Panda [START_REF] Panda | Robust optic nerve segmentation on clinically acquired ct[END_REF] Optic nerve, eye globe CT Heckemann [START_REF] Heckemann | Automatic anatomical brain mri segmentation combining label propagation and decision fusion[END_REF] Multi-structure MR T1

Aljabar [START_REF] Aljabar | Multi-atlas based segmentation of brain images: atlas selection and its effect on accuracy[END_REF] Multi-structure MR T1

Lötjönen [ -May not converge to good solution -Relatively fast.

-Easy implementation.

-Larger capture range than AAM.

-Rboust against noise.

Hu [START_REF] Hu | Appearance-based modeling for segmentation of hippocampus and amygdala using multi-contrast mr imaging[END_REF] Hippocampus,amygdala MR T1,T2

Duchesne [START_REF] Duchesne | Appearance-based segmentation of medial temporal lobe structures[END_REF] Medial temporal lobe MR T1

Hu [START_REF] Hu | Nonlocal regularization for active appearance model: Application to medial temporal lobe segmentation[END_REF] Medial temporal lobe MR T1

Cootes [START_REF] Cootes | A unified framework for atlas matching using active appearance models[END_REF] Multi-structure MR Brejl [START_REF] Brejl | Object localization and border detection criteria design in edge-based image segmentation: automated learning from examples[END_REF] Corpus callosum,cerebellum MR Active appearance models Babalola [START_REF] Babalola | 3d brain segmentation using active appearance models and local regressors[END_REF][START_REF] Babalola | Using parts and geometry models to initialise active appearance models for automated segmentation of 3d medical images[END_REF] Multi-structure MR T1

-Excessive usage of memory.

-Cannot generalize well to unsampled population -Hard to implement.

-More powerful than ASM in detecting the global minima.

-Better match to image texture than ASM.

-Robust against noise.

Lee [START_REF] Lee | A 2-d automatic segmentation scheme for brainstem and cerebellum regions in brain mr imaging[END_REF] Brainstem,cerebellum MR

McIntosh [START_REF] Mcintosh | Medial-based deformable models in nonconvex shape-spaces for medical image segmentation[END_REF] Corpus callosum MR Szekely [START_REF] Székely | Segmentation of 3d objects from mri volume data using constrained elastic deformations of flexible fourier surface models[END_REF] Multi-structure MR Parametric deformable models.

Mcinerney [START_REF] Mcinerney | T-snakes: Topology adaptive snakes[END_REF] Corpus callosum,cerebellum MR -Sensitive to initialization.

-Susceptible to noise and artifacts.

-No training.

-Provide flexibility.

Shen [START_REF] Shen | Measuring size and shape of the hippocampus in mr images using a deformable shape model[END_REF] Hippocampus MR T1

Zhao [START_REF] Zhao | Segmentation of hippocampus in mri images based on the improved level set[END_REF] Hippocampus MR Ghanei [START_REF] Ghanei | Segmentation of the hippocampus from brain mri using deformable contours[END_REF] Hippocampus MR -No training.

-Provide flexibility.

-Ability to handle topological changes.

-Easily deform to highly complex structures.

Hult [START_REF] Hult | Grey-level morphology combined with an artificial neural networks approach for multimodal segmentation of the hippocampus, in: Im-age Analysis and Processing[END_REF] Hippocampus MR T1,T2 -Hard to understand.

-Large training dataset.

-Training longer than SVM.

-Usually outperform other methods.

-Able to solve complex classification problems.

-Search faster than SVM.

-Faster than classical segmentation methods.

-Flexibility of input features.

-Easy to integrate with other methods.

Morra [START_REF] Morra | Automatic subcortical segmentation using a contextual model[END_REF][START_REF] Morra | Comparison of adaboost and support vector machines for detecting alzheimer's disease through automated hippocampal segmentation[END_REF] Hippocampus MR T1 Dolz [START_REF] Dolz | Multimodal imaging towards individualized radiotherapy treatments[END_REF] Corpus callosum MR T1

Powell [START_REF] Powell | Registration and machine learning-based automated segmentation of subcortical and cerebellar brain structures[END_REF] Multi-structure MR T1,T2,PD -Large training dataset.

-Usually outperform other methods.

-Able to solve non-linear classification problems by using kernels.

-Faster than classical segmentation methods.

-Flexibility of input features.

-Easy to integrate with other methods. 

Conclusion

Four approaches applicable to the (semi-)automatic segmentation of subcortical brain structures in general have been presented in this work. In spite of the availability of a large variety of state-of-art methods for subcortical brain structures segmentation on MRI, we may conclude that there is a gap missing in such state-of-the-art, as no subcortical structures segmentation methods with presence of tumors seem to have been fully explored yet.

The development of segmentation algorithms that can deal with such lesions in the brain and still provide a good performance when segmenting subcortical structures is highly required in practice by some clinical applications, such as radiotherapy or radio-surgery.

  suitably annotated training set, and constrain the search space to only plausible instances defined by the trained model. The basic procedure of SM of shape and/or texture-is as follows: 1) the vertices (control points) of a structure are modeled as a multivariate Gaussian distribution; 2) shape and texture are then parameterized in terms of the mean and eigenvectors of both the vertex coordinates and texture appearance; 3) new instances are constrained to a subspace of allowable shapes and textures, which are defined by the eigenvectors and their modes of variation. Consequentially, if the dimensionality of the shape representation exceeds the size of the training data, the only permissible shapes and textures are linear combinations of the original training data. 3.1. Training Phase. Construction of the statistical model 3.1.1. Modelling the shape Statistical shape model (SSM) construction basically consists in extracting the mean shape and a number of modes of variation from a collection of training samples to represent the possible shapes that the model is able to generate.

  model (SSM) to constrain the detected organ boundary to plausible shapes (i.e. shapes similar to those in the training data set). Given a coarse object initialization, an instance of the model can be fit to the input image by selecting a set of shape parameters defined in the training phase (see Section 3.1.1).

  tures: corpus callosum, ventricles, hippocampus and caudate nuclei. Most of the ASMs used in the literature are based on the assumption that the organs to segment are usually located on strong edges, which may lead to a final shape far from the actual shape model. Instead,[START_REF] Olveres | Midbrain volume segmentation using active shape models and lbps[END_REF] presented a novel method which was based on the combined use of ASM and Local Binary Patterns(LBP) as features for local appearance representations to segment the midbrain. In this way, segmentation performance was improved with respect to the ASM algorithm.A major limitation of ASM is the size of the training set (especially in 3D), due to lack of representative data and time needed for model construction process. Hence, 3D ASMs tend to be restrictive in regard to the range of allowable shapes, over-constraining the deformation. Zhao et al.[START_REF] Zhao | A novel 3d partitioned active shape model for segmentation of brain mr images[END_REF] overcame this limitation by using a partitioned representation of the ASM where, given a PDM, the mean mesh was partitioned into a group of small tiles, which were used to create the statistical model by applying the PCA over them. Other techniques focus on artificially enlarging the size of the training set. Koikkalainen et al.[START_REF] Koikkalainen | Methods of artificial enlargement of the training set for sta-tistical shape models[END_REF] concluded that the two best enlargement techniques were the non-rigid movement technique and the technique that combines PCA and a finite element model.

  An artificial neural network (ANN) represents an information processing system containing a large number of interconnected individual processing components, i.e. neurons. Motivated by the way the human brain processes input information, neurons work together in a distributed manner inside each network to learn from the input knowledge, process such information and generate a meaningful response. Each neuron n inside the network processes the input through the use of its own weight w n , a bias value b n , and a transfer function which takes the sum of w n and b n . Depending on the transfer function selected and the way the neurons are connected, distinct neural networks can be constructed.

Golland[ 59

 59 

  Contrary to statistical models, DM provide flexibility and do not require explicit training, though they are sensitive to initialization and noise. SMs may lead to greater robustness, however they are more rigid than DM and may be over-constrained, not generalizing well to the unsampled population, particularly for small amounts of training data relative to the dimensionality. This situation can appear on new input examples with pathologies, lesions or presenting high variance, different from the training set. Models having local priors similar to DM formulation do not have this problem. They will easily deform to highly complex shapes found in the unseen image. Hence, many methods attempt to find a balance between the flexibility of the DM and the strict shape constraints of the SM by fusing learnt shape constraints with the deformable model. Notwithstanding, some main limitations have to be taken into account when working with generic parametric DM. First, if the stopping criterion is not defined properly, or boundaries of the structures are noisy, DM may get stuck in a local minimum which does not correspond to the desired boundary. Second, in situations where the initial model and the desired object boundary differ greatly in size and shape, the model must be reparameterized dynamically to faithfully recover the object boundary. Methods for reparameterization in 2D are usually straightforward and require moderate computational overhead. However, reparameterization in 3D requires complicated and computationally expensive methods. Further, it has difficulties when dealing with topological adaptation, caused by the fact that a new parameterization must be constructed whenever the topology change occurs, which may require sophisticated schemes. This issue can be overcome by using Level sets. Moreover, as DM represent a local search, they must be initialized near the structure of interest.By introducing machine learning methods, algorithms developed for medical image processing often become more intelligent than conventional techniques.Improvements in the resulting relative overlaps came from the application of the machine learning methods including ANN and SVM[START_REF] Powell | Registration and machine learning-based automated segmentation of subcortical and cerebellar brain structures[END_REF]. A comparison done in this work between four methods (template based, probabilistic atlas, ANN and SVM) showed that machine learning algorithms outperformed the template and probabilistic-based methods when comparing the relative overlap.There was also little disparity between the ANN and SVM based segmentation algorithms. ANN training took significantly longer than SVM training but can be applied more quickly to segment the regions of interest. It was reported that it took a day to train an ANN for the classification of only one structure from the others even though a random sampled data was used instead of the whole dataset. While machine learning methods are undoubtedly powerful tools for classification and pattern recognition, there are potential disadvantages when applying them to a given problem. Machine learning approaches, in general, are notoriously hard to interpret and analyze, and in situations where it is desirable to simply and concisely define the process transforming inputs to output values it can be difficult to justify their use.However, despite the large number of presented techniques to perform automatic segmentation of brain subcortical structures, it still remains challenging, especially when lesions, such as tumors, are present. The presence of lesions in the brain might compress some of the subcortical areas, making these deformations hard to model by some of the presented methods. Thus, the main challenge lies in the segmentation of subcortical structures with anatomical deviation caused by the presence of tumor with different shape, size, location and intensities. The tumor not only changes the part of the brain where tumor exists, but also sometimes influences shape and intensities of other structures of the brain. Thus the existence of such anatomical deviation makes use of prior information about intensity and spatial distribution challenging.

  is related with the number of landmarks required to build a statistical model. Compared to the ASMs, AAMs can build a convincing model with a relatively small number of landmarks, since any extra shape variation may be encoded by additional modes of the texture model. Consequently, although the ASM is faster and achieves more accurate feature point location than the AAM, the AAM gives a better match to the image texture, due to it explicitly minimizes texture errors. Furthermore, ASM is less powerful in detecting the global minima and may converge to a local minimum due to multiple nearby edges in the image. These situations make AAM usually more robust than ASM. Although the main advantage of using PCA in SMs is to constraint the segmentation task to the space spanned by the eigenvectors and their modes of variation, it has two major limitations. First, the deformable shapes that can be modeled are often very restricted. Secondly, finer local variations of the shape model are not usually encoded in these eigenvectors. Consequently, new instances containing these small variations will not be properly fitted in the model instance.

	Method	Ref.	Structures	Image	Drawbacks	Advantages
				Modalities		
		Kwak[25]	Hippocampus	MR T1		-Fast
	Single				-Lower accuracy if significant	
		Wu[52]	Multi-structure	MR T1		-Sufficient for intrapatient
	Atlas-based				anatomical variation	
						segmentation
		Bonciau[3]	Brainstem	MR T1,T2		

Table 2

 2 Summary of all methods presented to segment OARs in brain cancer.