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Abstract

This work covers the current state of the art with regard to approaches to seg-

ment subcortical brain structures. A huge range of diverse methods have been

presented in the literature during the last decade to segment not only one or a

constrained number of structures, but also a complete set of these subcortical

regions. Special attention has been paid to atlas based segmentation methods,

statistical models and deformable models for this purpose. More recently, the

introduction of machine learning techniques, such as artificial neural networks

or support vector machines, has helped the researchers to optimize the classifi-

cation problem. These methods are presented in this work, and their advantages

and drawbacks are further discussed. Although these methods have proved to

perform well, their use is often limited to those situations where either there are

no lesions in the brain or the presence of lesions does not highly vary the brain

anatomy. Consequently, the development of segmentation algorithms that can

deal with such lesions in the brain and still provide a good performance when

segmenting subcortical structures is highly required in practice by some clinical

applications, such as radiotherapy or radio-surgery.

Keywords: Medical image segmentation, brain subcortical structures, machine

learning, support vector machines, radiotherapy, radiosurgery

1. Introduction

During the last decades, medical imaging, which was initially used for basic

visualization and inspection of anatomical structures, has evolved to become an
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essential tool for diagnosis, treatment and follow-up of patient diseases. Par-

ticularly, in oncology, advanced medical imaging techniques are used for tumor5

resection surgery (i.e. pre-operative planning, intra-operative, post-operative),

and for subsequent radiotherapy treatment planning (RTP). Today, brain tu-

mors are the second most common cause of cancer death in men ages 20 to 39

and the fifth most common cause of cancer among women age 20 to 39[1]. Med-

ical imaging plays a key role in the diagnosis, treatment and follow-up of brain10

tumors. In daily clinical practice, computed tomography (CT) and magnetic

resonance (MRI) imaging techniques are typically used. Both modalities are

complementary: while CT imaging provides bone details MR imaging provides

additional information on soft-tissue.

During RTP, the tumor to irradiate, i.e. clinical target volume (CTV), as15

well as healthy structures to be spared, i.e. the organs at risk (OARs), must be

delineated precisely. Because of the high doses used to irradiate the CTV, the

risk of severe toxicity of the OARs must be constrained. For the involved OARs

some of the tolerance limits are presented in table 1. Therefore, these segmen-

tations are crucial inputs for the RTP, in order to compute the parameters for20

the accelerators, and to verify the dose constraints. Nowadays in clinical prac-

tice, OARs delineation on medical images is performed manually by experts, or

with very few machine assistance[2]. Manual delineation has two major draw-

backs: it is time consuming, and achieves poor reproducibility. Typically, the

mean time spent to analyze and delineate OAR on a brain MRI dataset has25

been evaluated to 86 min[3], engaging valuable human resources. Furthermore,

the OARs must be interpreted cautiously in light of the observed topologic

differences, because delineation of structures of interest -CTV and high risked

organs- varies considerably from one physician to another[4], showing a poor

reproducibility. To overcome these major issues, various computer-aided sys-30

tems to (semi-)automatically segment anatomical structures in medical images

have been developed and published in recent years. However, brain structures

( semi- ) automatic segmentation still remains challenging, with no general and

unique solution.
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Dose level limit(Dmax)

OAR Radiotherapy Radio-surgery

Hippocampus 16Gy (IMRT - fractionation 10x3Gy)[5] -

Brainstem
45Gy(IMRT - fractionation 20x1.8Gy

+ 10x(1.8Gy+1.6Gy))[6]

volume 1 cc / Dose limit = 10Gy[7]

volume 1 cc / Dose limit=12Gy[8]

Eyes(Retina) 40Gy (IMRT - fractionation 30x2Gy)[9] 5Gy[10]

Eyes(Lens) As low as possible[9] 3Gy[10]

Cochlea 45Gy (conventionally fractionated RT)[11]
12Gy[7]

10Gy[12]

Chiasma 54Gy (IMRT - fractionation 30x2Gy)[9] volume 0.2CC / Dose limit = 8Gy[7]

Optic Nerve 54Gy (IMRT - fractionation 30x2Gy)[9] volume 0.2CC / Dose limit = 8Gy[7, 13–15]

Table 1 Dose limits for the OARs in both radiotherapy and radio-surgery.

Initial approaches of brain segmentation on MRI focused on the classification35

of the brain into three main classes: white matter(WM), grey matter(GM) and

cerebrospinal fluid(CSF)[16]. During the last two decades, the segmentation of

the whole brain into the primary cerebrum tissues (i.e. CSF, GM, and WM)

has been one of the core challenges of the neuroimaging community, leading to

many publications; nevertheless, it is still an active area of research[17]. More40

recent methods include tumors and adjacent regions, such as necrotic areas[18].

Those methods are only based on signal intensity. However, segmentation of

subcortical structures (i.e. OARs) can hardly be achieved based solely on signal

intensity, due to the weak visible boundaries and similar intensity values between

different subcortical structures. Consequently, additional information, such as45

prior shape, appearance and expected location, is therefore required to perform

the segmentation.

Due to the crucial role of the hippocampus (HC) in learning and memory

processes[19] and its role as biomarker for the diagnosis of neural diseases, such

as Parkinson, dementia or Alzheimer[20], many methods have been published50

to (semi-)automatically segment the HC on MRI[21–36]. Although there have

recently been some work focusing on other structures than HC, the number

of publications related to them is relatively lower. An atlas-based segmen-

tation of the brainstem was validated in radiotherapy[3], demonstrating that

the introduction of automatic segmentation methods may be useful in a clini-55
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cal context. Optical nerve and chiasm were segmented by using a multi-atlas

based approach[37]. Lee et al.[38] proposed a 2D automatic segmentation of

the brainstem and cerebellum based on active contour models. Segmentation of

the corpus callosum has been also investigated by using different methods such

as deformable models[39, 40], or machine learning[41]. Other researchers have60

focused on a set of different subcortical and cerebellar brain structures, propos-

ing several approaches: active shape and appearance models[42–47], atlas-based

methods[48–52],deformable models[53–55] or machine learning approaches[56–

59].

The objective of this article is to provide the reader with a summary of the65

current state of the art with regard to approaches to segment subcortical brain

structures. As it has been reported in the previous section, a large number of

techniques have been proposed over the years to segment specific subcortical

structures in MRI. However, we are interested in those techniques which are

typically applicable to subcortical brain structures in general. In the presented70

work, we mainly focus on minimally user-interactive methods -automatic or

semi-automatic-, which are not tailored to one or few specific structures, but

applicable in general. Thus, methods presented in this article can be divided

into four main categories: atlas-based methods, statistical models, deformable

models and machine learning methods.75

2. Atlas-based segmentation methods

The transformation of brain MRI segmentation procedures from human ex-

pert to fully automatic methods can be witnessed by exploring the atlas-based

methods. There are several methods proposed to segment the brain into dif-

ferent anatomical structures using single or multiple atlases. Segmentation by80

using atlas-based methods can be divided into the following main steps: atlas

construction, registration between the atlases and the target image, and option-

ally atlas selection and label fusion.
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2.1. Atlas build-up

First attempts at atlas construction of the human brain were based on a sin-85

gle subject. Here, a single atlas image is used to perform the segmentation[52].

This atlas, referred as topological, single-subject or deterministic atlas, is usu-

ally an image selected from a database to be representative of the dataset to

be segmented, in terms of size, shape and intensity for instance. Particularly,

for follow-up of patient’s disease where segmentation of brain structures should90

be performed on longitudinal studies (i.e. at different time point along the

treatment), the use of single-atlas based segmentation method to propagate

segmented structures obtained at one time point to another time point is gener-

ally sufficient. However, in applications where no prior image of the patient can

be used as atlas, the segmentation using single-atlas based methods of anatomi-95

cal structures presenting wide variability between humans becomes challenging,

and might lead to poor results.

To overcome the limitations encountered with single-atlas based method,

multiple atlases can be used [3, 27–32, 37, 48–51] . In this approach, multiple

atlas images are selected from a database of images representative of the image100

to be segmented. Each atlas image is then registered to optimally fit the target

image. Subsequently, using the deformation resulting from registration, the atlas

labeled image is deformed. At this stage, multiple labeled images are fitted

to the target image. At last, propagated labeled images are fused, providing

the final segmentatio. Beside the registration method used, performance of105

multi-atlas segmentation methods depends on: 1) the atlas building, 2) the

atlas selection (Section 2.3), and 3) the label fusion method (Section 2.4) used.

The major drawback of multi-atlas based segmentation methods remains the

computation cost since it increases with the number of atlases selected.

A limitation of the multi-atlas based segmentation methods is that individual110

differences that occur in only a minority of the atlases could be averaged out.

Thus, the segmentation results might be biased, particularly for the abnormal

MRI scans with pathologies. In order to address this issue, probabilistic atlases

are used. This third category of atlases estimates a probabilistic model of the
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input images, either from a probabilistic atlas or a combination of topological115

atlases. For a more detailed explanation see the work of Cabezas et al.[60]

2.2. Image Registration

Image registration is a prerequisite to perform atlas-based segmentation.

The registration process is used to spatially align an atlas A and the target

image T. For our segmentation purpose, the registration process involved is120

necessarily based on non-rigid approaches to tackle inter-individual spatial vari-

ation. Various image registration methods exist and have been applied to many

medical application domains. We refer the reader to the publications of Hill et

al.[61] and Zitova and Flusser[62] for an overview of the image registration meth-

ods, regardless of particular application areas. A review of image registration125

approaches specifically used in brain imaging is available in the publication of

Toga and Thompson[63]. The main contributions, advantages, and drawbacks

of existing image registration methods are addressed.

2.3. Atlas selection

Normal individual variations in human brain structures present a signifi-130

cant challenge for atlas selection. Some studies demonstrated that, although

the use of more than only one topological atlas improves the accuracy of the

segmentation, it is not necessary to use all the cases in a dataset for a given

query image[29, 32, 49, 50, 52, 64, 65]. Among the existing solutions to choose

the best matching cases, the use of meta-information is the simplest case. In135

this solution, which can be also called population specific atlases, an average

atlas is built for several population groups according to similar features, like

gender or age. Although they represent the simplest solution, the use of meta-

information has proved to be a powerful similarity criterion when used in multi-

atlas segmentation[49]. However, this information may not be always available,140

requiring the use of similarity metrics to compare both atlas and target image.

Initially, the majority of published works used a single individual image ran-

domly selected from the atlas dataset, where the selection criterion was not even
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mentioned. The optimal selection of a single template from the entire dataset

during atlas-based segmentation and its influence in the segmentation accuracy145

was investigated in [64]. Han et al.[65] compared the selection of a single at-

las against the propagation and fusion of their entire atlas database. In their

work, the selection of the single atlas was based on the highest Mutual Informa-

tion (MI) similarity between atlases and the target image after a global affine

registration. Multi-atlas segmentation strategy significantly improved the accu-150

racy of single-atlas based strategy, especially in those regions which represented

higher dissimilarities between images. Additionally to MI, Sum of squared dif-

ferences (SSD) or cross-correlation (CC) are often used as a similarity metric to

select the closest atlas with respect to the target image.

Aljabar et al[49] proved that using multi-atlas selection when segmenting155

subcortical brain structures improves the overlapping than when using random

sets of atlases. In their work, a dataset of 275 atlases was used. As in [65], MI

similarity was used to top-rank the atlases from the dataset. Then, the n top

ranked atlases from the list were selected to be propagated to the target image by

using a non-rigid registration. Mean DSC obtained by selecting the top-ranked160

atlases (0.854) was higher than the DSC obtained randomly selecting the atlases

(0.811). This difference represents nearly 4% of improvement, demonstrating

that the selection of a limited number of atlases which are more appropriate for

the target image and prior to multi-atlas segmentation, would appear preferable

to the fusion of an arbitrarily large number of atlases.165

The inclusion in the label propagation step of atlases containing high dis-

similarities with respect to the target image, may not make the segmentation

more accurate, but contribute to a poorer result. Consequently, the proper se-

lection of the atlases to include in the label propagation is a key step of the

segmentation process.170

2.4. Label fusion

Once the suitable atlases have been selected from the atlas dataset and labels

propagated to the target image, information from transferred labels has to be
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combined to provide the final segmentation[27–33, 37, 48, 49, 51, 64, 66, 67].

This step is commonly referred as label fusion or classifier fusion.175

Label fusion techniques known as best atlas and majority voting approach

represent the simplest strategies to combine the propagated labels. In best

atlas technique, after the registration step, the labels from the most similar

atlas to the target image are propagated to yield the final segmentation. In

majority voting method, votes for each propagated label are counted and the180

label receiving the most votes is chosen to produce the final segmentation[28, 48,

49]. Since majority voting assigns equal weights to different atlases, it makes a

strong assumption that different atlases produce equally accurate segmentations

for the target image.

To improve label fusion performance, recent work focuses on developing seg-185

mentation quality estimations based on local appearance similarity and assign-

ing weights to the propagated labels. Thus, final segmentation is obtained by

increasing the contribution of the atlases that are more similar to the target

scan[27–32, 52, 64]. Among previous weighted voting strategies, those that de-

rive weights from local similarity between the atlas and target[27, 29–31], and190

thus allow the weights to vary spatially, have demonstrated to be a better so-

lution in practice. Hence, each atlas contributes to the final solution according

to how similar to the target they are. However, the computation of the weights

is done independently for each atlas, and the fact that different atlases may

produce similar label errors is not taken into account. This assumption can195

lead to labeling inaccuracies caused by replication or redundancy in the atlas

dataset. To address this limitation, a solution for the label fusion problem

was proposed[32]. In this work the weighted voting was formulated in terms of

minimizing the total expectation of labeling error and the pairwise dependency

between atlases was explicitly modeled as the joint probability of two atlases200

making a segmentation error at a voxel. Hence, the dependencies among the

atlases were taken into consideration, and the expected label error was reduced

in the combined solution.

Another remarkable example of producing consensus segmentations, espe-
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cially in the context of medical image processing, is the algorithm named Si-205

multaneous Truth and Performance Level Estimation (STAPLE)[66]. STAPLE

approach, instead of using an image similarity metric to derive the classifier per-

formance, estimates the classifier performance parameters by comparing each

classifier to a consensus, in an iterative manner according to the Expectation

Maximization (EM) algorithm. In order to model miss registrations as part210

of the rater performance, a reformulation of STAPLE with a spatially vary-

ing rater performance model was introduced[67]. More recently, Cardoso et

al.[33] extended the classical STAPLE approach by incorporating a spatially

image similarity term into a STAPLE framework, enabling the characterization

of both image similarity and human rater performance in a unified manner,215

which was called Similarity and Truth Estimation for Propagated Segmenta-

tions (STEPS). At last, a novel reformulation of the STAPLE framework from

a non-local perspective, called Non-local Spatial STAPLE[51], was used as a

label fusion algorithm[37].

3. Statistical models220

Statistical models (SM) have become widely used in the field of computer

vision and medical image segmentation over the past decade[23, 42–47, 68–83]

. Basically, SMs use a priori shape information to learn the variation from a

suitably annotated training set, and constrain the search space to only plausible

instances defined by the trained model. The basic procedure of SM of shape225

and/or texture- is as follows: 1) the vertices (control points) of a structure are

modeled as a multivariate Gaussian distribution; 2) shape and texture are then

parameterized in terms of the mean and eigenvectors of both the vertex coordi-

nates and texture appearance; 3) new instances are constrained to a subspace of

allowable shapes and textures, which are defined by the eigenvectors and their230

modes of variation. Consequentially, if the dimensionality of the shape repre-

sentation exceeds the size of the training data, the only permissible shapes and

textures are linear combinations of the original training data.
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3.1. Training Phase. Construction of the statistical model

3.1.1. Modelling the shape235

Statistical shape model (SSM) construction basically consists in extracting

the mean shape and a number of modes of variation from a collection of train-

ing samples to represent the possible shapes that the model is able to generate.

Landmarks based method is a generic technique coined as Point Distribution

Models (PDMs) by Cootes et al.[69], which has been extensively used in SSMs240

for surface representation. This method regularly distributes a set of points

across the surface, which usually relies on high curvatures of boundaries. How-

ever, they do not need to be placed at salient feature points as per the common

definition of anatomical landmark, which is the reason of why they have also

been referred as semi-landmarks. Among other shape representation models245

that have been recently used in medical image segmentation[68] we can identify

medial models or skeletons, meshes, vibration modes of spherical meshes or the

use of wavelets, for example.

Alignment of the training shape samples in a common coordinate frame is

the first step to create the shape model. Once the samples are co-registered, a250

reduced number of modes of variation that best describes the variation observed

are extracted, which is usually done by applying Principal Components Analysis

(PCA) to the set of vectors describing the shapes[70]. PCA picks out the main

axes of the cloud, and models only the first few, which account for the majority

of the variation. Thus, any new instance of the shape can be modeled by the255

mean shape of the object and a combination of its modes of variations[69].

3.1.2. Modelling the appearance

As an extension of the statistical models of shape, the texture variability

observed in the training set was included in the model, leading to appearance

models(AMs)[71]. In this approach, in addition to the shape, the intensity vari-260

ation seen in the training set is also modeled. As in the SSM, the variability

observed in the training set is parameterized in terms of its mean and eigenvec-

tors. Once the shape has been modeled (See section 3.1.1), the statistical model
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of the gray level appearance has to be built. For this purpose, sample images

are warped based on the mean shape. Then, the intensity information from the265

shape-normalized image is sampled over the region covered by the mean shape.

Different techniques to sample the intensity in the warped image can be found

in the literature[68].

3.2. Segmentation Phase. Search algorithm

Once the SM has been created, it is important to define the strategy to270

search new instances of the model in the input images. This step consists

essentially in finding the most accurate parameters of the statistical model that

best define a new object. Active shape models(ASM) and active appearance

models(AAM) are the most frequently employed constrained search approaches

and are described below.275

3.2.1. Active Shape Model

Originally introduced by Cootes et al.[69, 70], ASM is a successful technique

to find shapes with known prior variability in input images. ASM has been

widely used for segmentation in medical imaging[68], including segmentation of

subcortical structures on brain[44, 45, 72–79]. It is based on a statistical shape280

model (SSM) to constrain the detected organ boundary to plausible shapes

(i.e. shapes similar to those in the training data set). Given a coarse object

initialization, an instance of the model can be fit to the input image by selecting

a set of shape parameters defined in the training phase (see Section 3.1.1).

Original ASM method[70] was improved in [72] by using an adaptive gray-285

level AM based on local image features around the border of the object. Thus,

landmarks points could be moved to better locations during the optimization

process. To allow some relaxation in the shape instances fitted by the model,

ASM can be combined with other methods, as in [74]. They employed a frame-

work involving deformable templates constrained by statistical models and other290

expert prior knowledge. This approach was used to segment four brain struc-

tures: corpus callosum, ventricles, hippocampus and caudate nuclei. Most of
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the ASMs used in the literature are based on the assumption that the organs

to segment are usually located on strong edges, which may lead to a final shape

far from the actual shape model. Instead, [78] presented a novel method which295

was based on the combined use of ASM and Local Binary Patterns(LBP) as fea-

tures for local appearance representations to segment the midbrain. In this way,

segmentation performance was improved with respect to the ASM algorithm.

A major limitation of ASM is the size of the training set (especially in 3D),

due to lack of representative data and time needed for model construction pro-300

cess. Hence, 3D ASMs tend to be restrictive in regard to the range of allowable

shapes, over-constraining the deformation. Zhao et al.[75] overcame this limita-

tion by using a partitioned representation of the ASM where, given a PDM, the

mean mesh was partitioned into a group of small tiles, which were used to create

the statistical model by applying the PCA over them. Other techniques focus305

on artificially enlarging the size of the training set. Koikkalainen et al.[80] con-

cluded that the two best enlargement techniques were the non-rigid movement

technique and the technique that combines PCA and a finite element model.

3.2.2. Active Appearance Model

The active appearance model(AAM) is an extension of the ASM that, apart310

from the shape, models both the appearance and the relationship between shape

and appearance of the object[71]. Since the purpose of this review is to give

a view about the use of these methods in medical image segmentation (espe-

cially of the subcortical structures on MRI), and not to enter into detail in the

mathematical foundations of each methods, we encourage the readers to review315

a detailed description of the algorithm in [71].

Initially, Cootes et al.[46] demonstrated the application of 2D AAMs on find-

ing structures in brain MR images. Nevertheless, they are not suitable for 3D

images in their primary form because of the underlying shape representation

(i.e. PDM) that becomes impractical in 3D. Some approaches extended them320

to higher dimension by using non-linear registration algorithms for the auto-

matic creation of a 3D-AAM. Duchesne et al.[42] segmented medial temporal
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lobe structures by including nonlinear registration vector fields into a 3D warp

distribution model.

(REVIEW)However, a number of considerations have to be taken into ac-325

count in adapting a generic AAM approach to a specific task. Babalola et

al.[81] built AAMs of some subcortical structures using groupwise registration

to establish correspondences, i.e. to initialize the composite model within the

new image. To build the AAMs, the intensities along vectors normal to the

surface of the structures were sampled, which is known as profile AAM. In [47],330

the proposed approach used a global AAM to find an approximate position of

all the structures in the brain. Once the coarse localization was found, shape

and location of each structure were refined by using a set of AAMs individually

trained for each of the structures. Although the probability of object occupancy

could be derived from the training set, they demonstrated that the use of sim-335

ple regressors at each voxel based on the pattern of grey level intensities nearby

provided better results.

3.2.3. Initialization

Most of the methods that aim to locate a SSM in a new input image use

a local search optimization process. So, they need to be initialized near the340

structure of interest, so that the model boundaries fall in the close vicinity of

object boundaries in the image. Straightforward solution for the initialization

problem is human-interaction. In some cases, it is sufficient to roughly align the

mean shape with the input data, whereas in other cases, it is preferred to use

a small number of points to guide the segmentation process[72]. Alternatively,345

more robust techniques can be used to initialize the model in the image[81–83].

4. Deformable models

The term deformable model (DM) was pioneered by Terzopoulos et al.[84]

to refer to curves or surfaces, defined in the image domain, and which are de-

formed under the influence of internal and external forces. Internal forces are350

related with the curve features and try to keep the model smooth during the
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deformation process. In the other hand, external forces are the responsible of

attracting the model toward features of the structure of interest, and are related

with the image features of the adjacent regions to the curve. Hence, DM tackles

the segmentation problem by considering an object boundary as a single, con-355

nected structure, and exploiting a priori knowledge of object shape and inherent

smoothness[84]. Although DM were originally developed to provide solutions for

computer vision applications to natural scenes and computer graphics problems,

their applicability in medical image segmentation has already been proven[85].

According to the type of shape representation used to define the model, DM360

methods can be categorized in: parametric or explicit deformable models[38, 39,

53, 86, 87] and geometric or implicit deformable models[24, 34, 40, 54, 55, 88–92].

4.1. Parametric deformable models

The first parametric model used in image segmentation found in the litera-

ture was originally introduced by Kass et al.[86], coined with the name of snakes.365

It was proposed as an interactive method where, because of its limitations, ini-

tial contours must be placed within the vicinity of object boundaries. First, the

energy of the contour depends on its spatial positioning and changes along the

shape. Sensitivity to initial location obliges the contour to be placed close to the

object boundary, leading to failure in case of improper initialization. Second,370

the presence of noise may cause the contour to be attracted by a local minimum

and get stuck in a location that might not correspond with the ground truth .

To overcome these limitations different approaches have been proposed[85, 87].

The method presented in [87] provides different mechanisms to enable the con-

tour topology to change during the deformation process. In [85], an extensive375

study of DM and different types of external forces was presented.

Regarding the segmentation of subcortical structures, parametric DM have

been recently employed to perform the segmentation, in combination with other

approaches[38, 39, 53]. Ada-boosted algorithm was used in [38] to detect brain-

stem and cerebellum candidate areas, followed by an active contour model to380

provide the final boundaries. An extension of natural snakes was proposed in
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[53], where desired properties of physical models were combined with Fourier

parameterizations of shapes representations and their shape variability to seg-

ment the corpus callosum. In [39], the application of genetic algorithms to DM

was explored in the task of corpus callosum segmentation. In this approach,385

genetic algorithms were propose to reduce typical deformable model weaknesses

pertaining to model initialization, pose estimation and local minima, through

the simultaneous evolution of a large number of models.

4.2. Geometric deformable models

One of the main drawbacks of parametric DM is the difficulty of naturally390

handling topological changes for the splitting and merging of contours, restrict-

ing severely the degree of topological adaptability of the model. To introduce

topological flexibility, geometric DM have been implicitly implemented by using

the level set algorithm developed by Osher and Sethian[88]. These models are

formulated as evolving contours or surfaces, usually called fronts, which define395

the level set of some higher-dimensional surface over the image domain.

Generally, image gray level based methods face difficult challenges such as

poor image contrast, noise, and diffuse or even missing boundaries, especially

for certain subcortical structures. In most of these situations, the use of prior

model based algorithms can solve these issues. The method proposed in [89]400

used a systematic approach to determine a boundary of an object as well as

the correspondence of boundary points to a model by constructing a statistical

model of shape variation. Ghanei et al. [34] used a deformable contour technique

to customize a balloon model to the subjects’ hippocampus. In order to avoid

local minima due to mismatches between model edge and multiple edges in the405

image, their technique incorporates statistical information about the possible

range of allowable shapes for a given structure. Geodesic active contours were

extended in [40] by incorporating shape information into the evolution process.

PCA and level set functions of the object boundaries were employed to form

a statistical shape model from a training set. The segmenting curves evolved410

according to image gradients and a maximum a posteriori (MAP) estimated the
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shape and pose.

Additionally, the use of level set methods to formulate the segmentation

problem has been reported to increase the capture range of DM and constrain

the deformation through the incorporation of some prior shape information.415

Because of these advantages geometric DMs have been extensively used to carry

out the segmentation task of brain subcortical structures[34, 40, 54, 55, 89–92].

In some situations, texture information is also required to constrain the

deformation on the contours. As a consequence, statistical models of both

shape and texture are used in addition to only shape prior based segmenta-420

tion methods[46, 71]. The modeled structure can be located by finding the

parameters, which minimize the difference between the synthesized model im-

age and the target image in conjunction with the statistical model of the shape

based on landmark points and texture.

5. Machine learning methods425

Machine Learning(ML) techniques have been extensively used in the MRI

analysis domain almost since its creation. Artificial Neural Networks (ANN),

or Support Vector Machines (SVM), are among the most popular methods used

not only for segmentation of brain anatomical structures[22, 35, 36, 41, 56–

59, 93–95] ,but also for tumors classification[96–98] or automatic diagnosis[99].430

5.1. Artificial neural networks

An artificial neural network (ANN) represents an information processing

system containing a large number of interconnected individual processing com-

ponents, i.e. neurons. Motivated by the way the human brain processes input

information, neurons work together in a distributed manner inside each net-435

work to learn from the input knowledge, process such information and generate

a meaningful response. Each neuron n inside the network processes the input

through the use of its own weight wn, a bias value bn, and a transfer func-

tion which takes the sum of wn and bn. Depending on the transfer function
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selected and the way the neurons are connected, distinct neural networks can440

be constructed.

Because of their efficacy in solving optimization problems, ANN have been

integrated in segmentation algorithms to define subcortical structures[22, 56–

58, 93, 94]. In the method proposed in [22], grey-level dilated and eroded

versions of the MR T1 and T2-weighted images were used to minimize leak-445

ing from the HC to surrounding tissue combined with possible foreground tis-

sue. An ANN was applied to a manually selected bounding box, which result

was used as an initial segmentation and then used as input of the grey-level

morphology-based algorithm. Magnotta et al.[56] used a three-layer ANN to

segment caudate, putamen and whole brain. The ANN was trained using a450

standard back-propagation algorithm and a piecewise linear registration was

used to define an atlas space to generate a probability map which was used as

input feature of the ANN. This approach was later employed by [93] and ex-

tended by [58] through the incorporation of a landmark registration to segment

the cerebellar regions. Based on the success of applying ANN approaches to seg-455

ment cerebellar regions by incorporating a higher dimensional transformation,

Powel et al.[57] extended the initial algorithm of [56] to use a high dimensional

intensity-based transform. Further, they compared the use of ANN with SVM,

as well as with more classical approaches such as single-atlas segmentation and

probability based segmentation. In [94], a two-stage method to segment brain460

structures was presented, where geometric moment invariants (GMI) were used

to improve the differentiation between the brain regions. In the first stage, GMI

were used along voxel intensity values as an input feature and a signed distance

function of a desired structure as an output of the network. To represent the

brain structures, the GMI were employed in 8 different scales, using one ANN465

for each of the scales. In the second stage, the network was employed as a

classifier and not as a function approximator.

Some limitations must be taken into account when ANN are employed. Their

performance strongly depends on the training set, achieving good results only in

those structures for which a suitable training can be developed. This may limit470
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their value with inherently difficult structures that human beings have difficulty

delineating reliably, such as the thalamus[56]. As a consequence, ANN must be

well designed, and different types of ANN may require specific training data set

development, depending on the structure-identification task.

5.2. Support vector machine475

Support vector machine represent one of the latest and most successful sta-

tistical pattern classifiers. It has received a lot of attention from the machine

learning and pattern recognition community. Although SVM approaches have

been mainly employed for brain tumor recognition[96–98] in the field of medical

image classification, recent works have also used them for tissue classification[95]480

and segmentation of anatomical human brain structures[35, 36, 41, 57, 59].

The main idea behind SVM is to find the largest margin hyperplane that

separates two classes. The minimal distance from the separating hyperplane to

the closest training example is called margin. Thus, the optimal hyperplane is

the one showing the maximal margin, which represents the largest separation485

between the classes. The training samples that lie on the margin are referred as

support vectors, and conceptually are the most difficult data points to classify.

Therefore, support vectors define the location of the separating hyperplane,

being located at the boundary of their respective classes.

The growing interest on SVM for classification problems lies in its good490

generalization ability and its capability to successfully classify non-linearly sep-

arable data. First, SVM attempts to maximize the separation margin i.e.,

hyperplane- between classes, so the generalization performance does not drop

significantly even when the training data are limited. Second, by employing ker-

nel transformations to map the objects from their original space into a higher495

dimensional feature space[100], SVM can separate objects which are not linearly

separable. Moreover, they can accurately combine many features to find the op-

timal hyperplane. Hence, as can be seen, SVM globally and explicitly maximize

the margin while minimizing the number of wrongly classified examples, using

any desired linear or non-linear hypersurface.500
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Powell et al.[57] compared the performance of ANN and SVM when segment-

ing subcortical (caudate, putamen, thalamus and hippocampus) and cerebellar

brain structures. In their study the same input vector was used in both machine

learning approaches, which was composed by the following features: probability

information, spherical coordinates, area iris values, and signal intensity along505

the image gradient. Although results obtained where very similar, ANN based

segmentation approach slightly outperformed SVM. However, their employed

a reduced number of brains to test (only 5 brains), and 25 manually selected

features, which means that generalization to other datasets was not guarantee.

PCA was used in [59] to reduce the size of the input training pool, followed by a510

SVM classification to identify statistical differences in the hippocampus. In ad-

dition, Dolz et al.[41] explored the use of SVM to segment the corpus callosum.

In this work, in addition to the input features used in [57], geodesic image trans-

form map was added as input vector of the SVM. However, selection of proper

discriminative features is not a trivial task, which has already been explored in515

the SVM domain. To overcome this problem, AdaBoost algorithm was com-

bined with a SVM formulation[36]. AdaBoost was used in a first stage to select

the features that most accurately span the classification problem. Then, SVM

fused the selected features together to create the final classificatory. Further-

more, they compared four automated methods for hippocampal segmentation520

using different machine learning algorithms: hierarchical AdaBoost, SVM with

manual feature selection, hierarchical SVM with automated feature selection

(Ada-SVM), and a publicly available brain segmentation package (FreeSurfer).

In their proposed study, they evaluated the benefits of combining AdaBoost and

SVM approaches sequentially.525

6. Discussion

Generally, none of the presented methods can singly handle brain subcortical

structures segmentation with the presence of brain lesions. Typically, methods

discussed in this survey rely on the existent information in a training set. How-
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ever, subjects presenting brain lesions are not usually representative for a large530

set of patients, because of lesions may strongly differ and produce random defor-

mations on the subcortical structures. As a consequence, they are not included

in the training stage and the deformations on the structures caused by the lesion

cannot be therefore modeled.

Model based approaches, such as atlas or statistical models trend to perform535

reasonably well when there is no high anatomical deviation between the train-

ing set and the input case to analyze. Nevertheless, these approaches might

completely fail if shape variability is not properly modeled, which often occurs

in the presence of brain lesions. Additionally to the shape variability, regis-

tration plays an important role in atlas-based approaches. Registrations with540

large initial dissimilarity in shape between the atlases and the target might not

be handled properly. This can lead to inappropriately weights when there are

initially large shapes differences resulting in incorrect image correspondences

established by the atlas registration. In the other hand, in statistical model ap-

proaches, which are only capable of generating a plausible range of shapes, the545

presence of a tumor might deform a determined structure to an unpredictable

shape. This will cause the failure of SM approaches, because of their incapabil-

ity to generate new unknown shapes which considerably differs from the shapes

in the training set.

In the context of SMs, PCA was originally used in a framework called Active550

Shape Model(ASM)[70] and has become a standard technique used for shape

analysis in segmentation tasks, and the preferred methodology when trying to

fit a model into new image data. Compared to ASM, AAM makes an excessive

usage of the memory when it creates the 3D texture model, and the implemen-

tation of ASM is relatively easier than the AAM implementation. While ASMs555

search around the current location and along profiles, AAMs only examine the

image under its current area of interest, allowing the ASMs to generally have a

larger capture range. However, the use of information solely around the model

points makes that ASMs may be less reliable, since they do not profit from all

texture information available across a structure, unlike AAM. Another interest560
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advantage of the AAMs reported by [46] is related with the number of land-

marks required to build a statistical model. Compared to the ASMs, AAMs can

build a convincing model with a relatively small number of landmarks, since

any extra shape variation may be encoded by additional modes of the texture

model. Consequently, although the ASM is faster and achieves more accurate565

feature point location than the AAM, the AAM gives a better match to the

image texture, due to it explicitly minimizes texture errors. Furthermore, ASM

is less powerful in detecting the global minima and may converge to a local

minimum due to multiple nearby edges in the image. These situations make

AAM usually more robust than ASM. Although the main advantage of using570

PCA in SMs is to constraint the segmentation task to the space spanned by the

eigenvectors and their modes of variation, it has two major limitations. First,

the deformable shapes that can be modeled are often very restricted. Secondly,

finer local variations of the shape model are not usually encoded in these eigen-

vectors. Consequently, new instances containing these small variations will not575

be properly fitted in the model instance.
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Method Ref. Structures
Image

Modalities
Drawbacks Advantages

Kwak[25] Hippocampus MR T1

Wu[52] Multi-structure MR T1
Single

Atlas-based

-Lower accuracy if significant

anatomical variation

-Fast

-Sufficient for intrapatient

segmentation

Bonciau[3] Brainstem MR T1,T2

Zarpalas[26] Hippocampus MR T1

Artaechevarria[27] Multi-structure MR

Collins[28] Hippocampus,amygdala MR T1

Khan[29] Hippocampus MR T1

Kim[30] Hippocampus MR 7T

Coupé[31] Multi-structure MR T1

Wang[32] Hippocampus MR

Cardoso[33] Hippocampus MR T1

Panda[37] Optic nerve, eye globe CT

Heckemann[48] Multi-structure MR T1

Aljabar[49] Multi-structure MR T1

Lötjönen[50] Multi-structure MR T1

Multiple

Atlas-based

Asman[51] Multi-structure MR

-Computationally expensive

-Depends on the registration

-Success depends on atlas

building

-Capable to cover a

higher variability.

-Combination of propagated

labels may overcome

limitations of single-atlas.

Bailleul[44] Multi-structure MR

Tu[45] Multi-structure MR T1

Pitiot[74] Multi-structure MR T1

Zhao[75] Multi-structure MR

Rao[76] Multi-structure MR

Bernard[77] Subthalamic nucleus MR T1

Active

shape

models

Olveres[78] Mid brain MR T1,SWI

-Cannot create new shapes

-Not robust when new or

different images are

introduced.

-May not converge to good

solution

-Relatively fast.

-Easy implementation.

-Larger capture range than

AAM.

-Rboust against noise.

Hu[23] Hippocampus,amygdala MR T1,T2

Duchesne[42] Medial temporal lobe MR T1

Hu[43] Medial temporal lobe MR T1

Cootes[46] Multi-structure MR

Brejl[73] Corpus callosum,cerebellum MR

Active

appearance

models

Babalola[47, 81] Multi-structure MR T1

-Excessive usage of memory.

-Cannot generalize well to

unsampled population

-Hard to implement.

-More powerful than ASM in

detecting the global minima.

-Better match to image

texture than ASM.

-Robust against noise.

Lee[38] Brainstem,cerebellum MR

McIntosh[39] Corpus callosum MR

Szekely[53] Multi-structure MR

Parametric

deformable

models.
Mcinerney[87] Corpus callosum,cerebellum MR

-Sensitive to initialization.

-Susceptible to noise and

artifacts.

-No training.

-Provide flexibility.

Shen[21] Hippocampus MR T1

Zhao[24] Hippocampus MR

Ghanei[34] Hippocampus MR

Leventon[40] Corpus callosum MR

Yang[54] Multi-structure MR

Tsai[55]
Ventricle, caudate nuclei,

lenticular nucleus
MR

Wang[89]
Corpus callosum, basal ganglia,

ventricle boundaries
MR

Duncan[90] Hippocampus MR T1

Geometric

deformable

models

Bekes[91] Eyeballs,lens,nerves CT

-Sensitive to initialization.

-Stopping criteria difficult

to define.

-May get stuck in any local

minima.

-No training.

-Provide flexibility.

-Ability to handle topological

changes.

-Easily deform to highly

complex structures.

Hult[22] Hippocampus MR T1,T2

Magnotta[56]
Corpus callosum,putamen,

caudate nuclei
MR T1,T2

Powell[57] Multi-structure MR T1,T2,PD

Pierson[58] Cerebellar subregions MR T1,T2

Spinks[93] Thalamus,mediodorsal nucleus MR T1,T2,PD

Moghaddam[94] Putamen,caudate, thalamus MR T1

Machine

Learning.

ANN

-Computationally expensive for

complex problems.

-Hard to understand.

-Large training dataset.

-Training longer than SVM.

-Usually outperform other

methods.

-Able to solve complex

classification problems.

-Search faster than SVM.

-Faster than classical

segmentation methods.

-Flexibility of input features.

-Easy to integrate with

other methods.

Morra[35, 36] Hippocampus MR T1

Dolz[41] Corpus callosum MR T1

Powell[57] Multi-structure MR T1,T2,PD

Golland[59]
Hippocampus,amygdala,

corpus callosum
MR

Machine

Learning.

SVM

-Computationally expensive for

complex problems.

-Large training dataset.

-Usually outperform other

methods.

-Able to solve non-linear

classification problems by

using kernels.

-Faster than classical

segmentation methods.

-Flexibility of input features.

-Easy to integrate with

other methods.

Table 2 Summary of all methods presented to segment OARs in brain cancer.
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Contrary to statistical models, DM provide flexibility and do not require

explicit training, though they are sensitive to initialization and noise. SMs

may lead to greater robustness, however they are more rigid than DM and

may be over-constrained, not generalizing well to the unsampled population,580

particularly for small amounts of training data relative to the dimensionality.

This situation can appear on new input examples with pathologies, lesions or

presenting high variance, different from the training set. Models having local

priors similar to DM formulation do not have this problem. They will easily

deform to highly complex shapes found in the unseen image. Hence, many585

methods attempt to find a balance between the flexibility of the DM and the

strict shape constraints of the SM by fusing learnt shape constraints with the

deformable model.

Notwithstanding, some main limitations have to be taken into account when

working with generic parametric DM. First, if the stopping criterion is not de-590

fined properly, or boundaries of the structures are noisy, DM may get stuck in a

local minimum which does not correspond to the desired boundary. Second, in

situations where the initial model and the desired object boundary differ greatly

in size and shape, the model must be reparameterized dynamically to faithfully

recover the object boundary. Methods for reparameterization in 2D are usu-595

ally straightforward and require moderate computational overhead. However,

reparameterization in 3D requires complicated and computationally expensive

methods. Further, it has difficulties when dealing with topological adaptation,

caused by the fact that a new parameterization must be constructed whenever

the topology change occurs, which may require sophisticated schemes. This is-600

sue can be overcome by using Level sets. Moreover, as DM represent a local

search, they must be initialized near the structure of interest.

By introducing machine learning methods, algorithms developed for medical

image processing often become more intelligent than conventional techniques.

Improvements in the resulting relative overlaps came from the application of605

the machine learning methods including ANN and SVM[57]. A comparison

done in this work between four methods (template based, probabilistic atlas,
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ANN and SVM) showed that machine learning algorithms outperformed the

template and probabilistic-based methods when comparing the relative overlap.

There was also little disparity between the ANN and SVM based segmentation610

algorithms. ANN training took significantly longer than SVM training but can

be applied more quickly to segment the regions of interest. It was reported that

it took a day to train an ANN for the classification of only one structure from

the others even though a random sampled data was used instead of the whole

dataset. While machine learning methods are undoubtedly powerful tools for615

classification and pattern recognition, there are potential disadvantages when

applying them to a given problem. Machine learning approaches, in general, are

notoriously hard to interpret and analyze, and in situations where it is desirable

to simply and concisely define the process transforming inputs to output values

it can be difficult to justify their use.620

However, despite the large number of presented techniques to perform auto-

matic segmentation of brain subcortical structures, it still remains challenging,

especially when lesions, such as tumors, are present. The presence of lesions

in the brain might compress some of the subcortical areas, making these de-

formations hard to model by some of the presented methods. Thus, the main625

challenge lies in the segmentation of subcortical structures with anatomical de-

viation caused by the presence of tumor with different shape, size, location and

intensities. The tumor not only changes the part of the brain where tumor ex-

ists, but also sometimes influences shape and intensities of other structures of

the brain. Thus the existence of such anatomical deviation makes use of prior630

information about intensity and spatial distribution challenging.

7. Conclusion

Four approaches applicable to the (semi-)automatic segmentation of subcor-

tical brain structures in general have been presented in this work. In spite of

the availability of a large variety of state-of-art methods for subcortical brain635

structures segmentation on MRI, we may conclude that there is a gap missing
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in such state-of-the-art, as no subcortical structures segmentation methods with

presence of tumors seem to have been fully explored yet.

The development of segmentation algorithms that can deal with such lesions

in the brain and still provide a good performance when segmenting subcortical640

structures is highly required in practice by some clinical applications, such as

radiotherapy or radio-surgery.
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