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Abstract This paper presents a framework using siamese Multi-layer Percep-
trons (MLP) for supervised dimensionality reduction and face identification.
Compared with the classical MLP that trains on fully labeled data, the siamese
MLP learns on side information only, i.e., how similar of data examples are
to each other. In this study, we compare it with the classical MLP on the
problem of face identification. Experimental results on the Extended Yale B
database demonstrate that the siamese MLP training with side information
achieves comparable classification performance with the classical MLP training
on fully labeled data. Besides, while the classical MLP fixes the dimension of
the output space, the siamese MLP allows flexible output dimension, hence we
also apply the siamese MLP for visualization of the dimensionality reduction
to the 2-d and 3-d spaces.

Keywords siamese neural networks · multi-layer perceptrons · metric
learning · face identification · dimensionality reduction

1 Introduction

With the capability of approximating non-linear mappings, Multi-layer Per-
ceptrons (MLP) has been a popular solution to object classification problems
since the 1980s, finding applications in diverse fields such as image recogni-
tion [28] and speech recognition [20,5].

A classical MLP consists of an input layer, one or more hidden layer(s)
and an output layer of perceptrons. Generally, in a multi-class classification
problem, the size of the output layer (i.e., the output dimension), is fixed to
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Fig. 1 (a)Traditional single multi-layer perceptrons. (b) Siamese multi-layer perceptrons .

the number of classes in this problem. Figure 1 (a) illustrates the structure
of an MLP. The objective of such an MLP is to make the network outputs
approximating predefined target values (or ground truth) for different classes.
In practice, the error δ between the output and the target is used to update
the network parameters via the Back-propagation algorithm [25]. Moreover,
these predefined target values are typically binary for classification problems.
For example, for a 3-class classification problem, we usually set unit vectors
[1, 0, 0]T , [0, 1, 0]T , [0, 0, 1]T as the target vectors for the 3 classes.

In this work, we propose a siamese MLP framework to relax the constraint
on the output dimension, making flexible dimensionality reduction to the in-
put data. A siamese MLP is a symmetric architecture consisting of two MLPs,
where they actually share the same set of parameters P (Figure 1 (b)). Com-
pared with the single MLP (Figure 1 (a)), instead of constraining the outputs
approaching some predefined target values, the siamese MLP defines a specific
objective: (1) for an input pair from the same class, making the pairwise simi-
larity between their outputs larger; (2) for an input pair from different classes,
making the pairwise similarity between their outputs smaller. With such an
objective, the dimension of the target space can be arbitrarily specified.

Another advantage of the siamese MLP over the classical MLP is that the
siamese MLP is able to learn on data pairs instead of fully labeled data. In
other words, the siamese MLP is applicable for weakly supervised cases where
we have no access to the labels of training instances: only some side information
of pairwise relationship is available. This is a meaningful setting in various
applications where labeled data are more costly than the side information [3].
Examples include users’ implicit feedback on the internet (e.g., clicks on search
engine results), citations among articles or links in a social network, kinship
relationship between individuals [22].

More interestingly, the siamese MLP has these two advantages WITHOUT
losing its superior ability of accurate classification. In the experiments, we
compare the siamese MLP with the classical MLP for face identification on the
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Extended Yale B database [13]. In addition, we employ a statistical significance
testing method called Bootstrap Resampling [18] to evaluate the comparison
between the siamese MLP and the classical MLP. The testing results show that
the siamese MLP achieves comparable performance with the classical MLP on
the problem of face identification.

Overall, the main contributions of this paper are summarized as below:

– we have presented the siamese MLP as a semi-supervised learning method
for classification. It can perform learning from side-information only, in-
stead of fully labeled training data.

– we have shown the capability of the siamese MLP for dimensionality re-
duction and data visualization in 2-d and 3-d spaces. We find that the
siamese MLP projects the original input data to the vertexes of a regular
polyhedron (see Figure 7).

– we have demonstrated that the siamese MLP has the above two advantages
WITHOUT losing its superior ability of accurate classification. It achieves
comparable performance with the standard MLP on face identification.

The remainder of this paper is organized as follows: Section 2 briefly sum-
marizes the related work on siamese neural networks and metric learning.
Section 3 presents the proposed siamese MLP method. Section 4 depicts the
datasets and experiments on face identification. Finally, we draw the conclu-
sions in Section 5.

2 Related Work

Using MLP for dimensionality reduction is an old idea which has its origins
in the late 1980s and early 1990s. The first work may be the Auto-Associate
Neural Networks (AANN) [8,14], a special type of MLP where the input and
output layers have the same number of neurons, and the middle hidden layer
has fewer neurons than the input and output layers. The objective of AANN is
to reproduce the input pattern at its output. Thus it actually learns a mapping
on the input patterns into a lower-dimensional space and then an inverse
mapping to reconstruct the input patterns. Since it does not need the input
data to be labeled, the middle hidden layer learns a compact representation
of the input data in an unsupervised manner [11]. However, researchers have
found that the dimensionality reduction by the AANN is quite similar with
the well-known Principal Components Analysis (PCA) technique [12].

More recently, a more mature and powerful AANN, the deep autoencoder
networks [16] have presented an effective way of initializing the network pa-
rameters that leads the low-dimensional coding much better than PCA. For
all the layers in the deep networks, the authors proposed a restricted Boltz-
mann machine to pretrain the network parameters layer-by-layer, followed by
a fine-tuning procedure for optimal reconstruction via the Back-propagation
algorithm [25].

Different from the unsupervised dimensionality reduction by the above
AANNs, we propose to employ the MLP to perform dimensionality reduction
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in a supervised manner using siamese neural networks. Siamese neural net-
works have first been presented by Bromley et al. [6] using Time Delay Neural
Networks (TDNN) on the problem of signature verification. This idea was then
adopted by Chopra et al. [7] who used siamese Convolutional Neural Networks
(CNN) for face verification, i.e., to decide if two given face images belong to the
same person or not. Recently, Berlemont et al. [4] also successfully employed
the siamese neural networks for inertial gesture recognition and rejection.

Concretely, the siamese neural networks minimize a loss function that
drives the similarity metric to be small for data pairs from the same class,
and large for pairs from different classes [7]. This technique of specifying a
metric from data pairs (or triplets) is also called Metric Learning [3,27,10,
29]. In this paper, the proposed siamese MLP employs the Triangular Similar-
ity Metric Learning (TSML) objective function [29] as the loss function, and
shows its effectiveness on dimensionality reduction and object classification.

3 Siamese Multi-Layer Perceptron

In this section, we present the classical MLP model and the proposed siamese
MLP model. Since the siamese MLP takes the MLP as a basic component,
we first introduce the classical MLP model in detail. After that, we develop
the siamese variant. Concretely, we use a 3-layer MLP consisting of an input
layer, an output layer and only one hidden layer.

3.1 Three-layer MLP

An MLP is a feed-forward neural network, i.e., the activation of the neurons
is propagated layer-wise from the input to the output layer [11]. Moreover,
the activation function of the neurons has to be differentiable in order to up-
date the network parameters via the Back-propagation algorithm. Commonly
used non-linear activation functions include the sigmoid function and the tanh
function (i.e., the hyperbolic tangent function). In contrast with that the sig-
moid function allows only positive output values, the tanh function produces
both negative and positive output values. Since negative values are necessary
in the proposed siamese MLP (Section 3.2), we choose the tanh function in
our experiments. The tanh function and its derivative are:

tanh(x) =
ex − e−x

ex + e−x
, (1)

tanh′(x) = 1− tanh2(x). (2)

3.1.1 Feed-forward

First, we introduce the feed-forward procedure of the 3-layer MLP. For any
given input sample xi, assuming its output on the MLP is ai. At the first
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step, from the the input layer to the hidden layer, with the parameter matrix
W (1) and the bias vector b(1), the values in the hidden layer are computed
as hi = tanh(W (1)xi + b(1)). At the second step, from the hidden layer to
the output layer, with the parameter matrix W (2) and the bias vector b(2), the
output values are calculated as ai = tanh(W (2)hi+b

(2)). Finally, the objective
function of an MLP classifier is simply the Mean Squared Error (MSE) between
the computed outputs and their desired targets for all training samples:

J =
1

2N

N∑
i=1

(ai − gi)
2, (3)

where N is the number of all possible training samples, gi is the target vector
for the output sample ai. Remind that gi is usually hand-crafted unit vectors.
For example, for a 3-class classification problem, we usually set unit vectors
[1, 0, 0]T , [0, 1, 0]T , [0, 0, 1]T as the target vectors for the 3 classes.

3.1.2 Back-propagation

Now we use the Back-propagation algorithm [25] to update the set of parame-
ters P : {W (2), b(2),W (1), b(1)}. Taking derivative of Equation (3), the gradient
for the ith sample is:

∂Ji
∂P

= (ai − gi)
T ∂ai

∂P
, (4)

and the differential on the output layer, with respect to z
(2)
i = W (2)hi + b(2),

is:
δ
(2)
i = (1− ai � ai)� (ai − gi), (5)

where the notation � means element-wise multiplication. Subsequently, the

differential on the hidden layer, with respect to z
(1)
i = W (1)xi + b(1), is:

δ
(1)
i = (1− hi � hi)� [(W (2))T δ

(2)
i ], (6)

and the differentials of the network parameters are computed as:

∆iW
(2) = δ

(2)
i hT

i , (7)

∆ib
(2) = δ

(2)
i , (8)

∆iW
(1) = δ

(1)
i xT

i , (9)

∆ib
(1) = δ

(1)
i . (10)

After that, the parameters P : {W (2), b(2),W (1), b(1)} can be updated by using
the following gradient descent function:

P = P − µ
N∑
i=1

∆iP , (11)

where µ is the learning rate. The default learning rate is set to 10−4 in our
experiments.
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3.2 Siamese MLP

As we have illustrated in Figure 1 (b), a siamese MLP consists of two MLPs
which actually share the same set of parameters P : {W (2), b(2),W (1), b(1)}.
Let ai = f(xi, P ) denotes the output of an input xi, and bi = f(yi, P ) denotes
the output of the other input yi. Compared with the traditional MLP that
makes the output ai close to its hand-crafted target gi, the siamese MLP aims
to make {ai,bi} close if {xi,yi} are of the same class and to separate {ai,bi}
if {xi,yi} are of two different classes [29]. Consequently, the siamese MLP
needs no hand-crafted targets.

To achieve this goal, we employ a modified Triangular Similarity Metric
Learning (TSML) objective function [29]:

Ji = K(‖ai‖+ ‖bi‖ − ‖ci‖) +
1

2
(‖ai‖ −K)2 +

1

2
(‖bi‖ −K)2, (12)

where K is a constant that constrains the length (i.e., the L2 norm) of ai and
bi; ci = ai + sibi and si = 1 (resp. si = −1) means that the two vectors ai

and bi are a within-class pair (resp. a between-class pair). Generally, we can
set the constant K with the average length of all the input training vectors.

The first part of Equation (12), ‖ai‖ + ‖bi‖ − ‖ci‖, includes three sides
of an triangle (Figure 2 (a)). According to the well-known triangle inequality
theorem: the sum of the lengths of two sides of a triangle must always be
greater than the length of the third side, the first part should be always larger
than 0. Moreover, minimizing this part is equivalent to minimizing the angle θ
inside a within-class pair (si = 1) or maximizing the angle θ inside a between-
class pair (si = −1), in other words, minimizing the cosine similarity between
ai and sibi. Note that ‖ai‖+‖bi‖ = ‖ci‖ when the cost Ji arrives the minimum
0. Besides, the second part of Equation (12), 1

2 (‖ai‖ −K)2 + 1
2 (‖bi‖ −K)2,

aims to prevent ‖ai‖ and ‖bi‖ from degenerating to 0.
Further, Equation (12) can be rewritten as:

Ji =
1

2
‖ai‖2 +

1

2
‖bi‖2 −K‖ci‖+K2, (13)

with gradient over the parameters P :

∂Ji
∂P

= (ai −K
ci
‖ci‖

)T
∂ai

∂P
+ (bi −K

sici
‖ci‖

)T
∂bi

∂P
. (14)

Now, we can obtain the optimal cost Ji = 0 at the zero gradient: ai−K ci

‖ci‖ = 0

and bi −K sici

‖ci‖ = 0. In other words, the gradient function has set K ci

‖ci‖ and

K sici

‖ci‖ as targets for ai and bi, respectively. See Figure 2(b): for a within-class

pair, ai and bi are mapped to the same vector along the diagonal (the red
solid line); for a between-class pair, ai and bi are mapped to opposite vectors
along the other diagonal (the blue solid line).

More interestingly, substituting the hand-crafted target gi with the two
automatically computed targets K ci

‖ci‖ and K sici

‖ci‖ , the siamese MLP gradient
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Fig. 2 Geometrical interpretation of the cost and gradient. (a) Minimizing the cost means
to make a within-class pair parallel and make a between-class pair opposite. (b) Taking zero
gradient means to set diagonal vectors as targets for ai and bi. (si = 1 for a within-class
pair and si = −1 for a between-class pair)

function (Equation (14)) is exactly a double copy of the traditional MLP
gradient function (Equation (4)). And this fact allows us to use the same
Back-propagation algorithm to update the network parameters (Section 3.1.2).

3.3 Difference between MLP and Siamese MLP

In the last two subsections, we have shown that the classical MLP and the
siamese MLP have similar gradient formulations that allows us to employ
the same Back-propagation algorithm for training. However, there are also
apparent differences between them on both the input and output layers.

For each input vector xi, the classical MLP needs to know which class xi
belongs to. In contrast, the siamese MLP takes a more flexible constraint: it
only needs the side information – whether two input vectors xi and yi are of
the same class or not. The relationship between the two constraints can be
summarized as:

– when we know the classes of xi and yi, we know whether xi and yi are of
the same class or not;

– however, even we know whether xi and yi are of the same class or not, we
may have no idea about the class labels of xi and yi.

As a result, the siamese MLP is applicable with the second constraint while
the classical MLP is not, i.e., the siamese MLP can learn on side information
only (Section 1). More important, we will demonstrate that the relaxation
of constraint would not cause classification accuracy loss to the experiments
(Section 4).

On the output layer, the classical MLP fixes the output dimension equal
to the number of classes. However, the siamese MLP has no constraint on
the output dimension. Therefore, for a problem with more than 3 classes, the
siamese MLP is applicable for data visualization, i.e., projecting the input
data into 2-d or 3-d spaces; but the classical MLP can only make a projection
into a space with dimension more than 3. In Section 4.4, we will illustrate the
effect of the siamese MLP on dimensionality reduction and data visualization.
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3.4 Batch Gradient Descent or Stochastic Gradient Descent

Once we have defined an error function and its gradient, the Back-propagation
algorithm [25] applies the gradient descent technique to minimize the overall
error for all training data iteratively.

There are mainly three modes to perform gradient descent: stochastic gra-
dient descent, batch gradient descent, or the trade-off between them, mini-
batch gradient descent. Concretely, stochastic gradient descent uses only one
training sample in each iteration while batch gradient descent uses all training
samples in each iteration. Mini-batch gradient descent, as the name suggests,
takes several training samples in each iteration. Usually, the mini-batch gra-
dient descent is the fastest choice among the three for many optimization
problems1.

Particularly, batch gradient descent can be involved in some advanced op-
timization algorithms to accelerate the learning speed, such as the Conjugate
Gradient Descent (CGD) algorithm [23] and the Limited-memory Broyden
Fletcher Goldfarb Shanno (L-BFGS) algorithm [21]. Compared with the stan-
dard gradient descent technique, these advanced algorithms have no need to
manually pick a learning rate and are usually much faster for small and medium
scale problems. However, for a large scale problem with an overlarge training
dataset, it may be impossible to load all the training data into memory in
a single iteration. In this case, the mini-batch gradient descent may be more
applicable as it takes only a few training samples in each iteration.

For the proposed siamese MLP, the advanced algorithms using batch gradi-
ent descent maybe only suitable for small scale problems, because the siamese
MLP takes data pairs in the learning procedure, and the total number of all
training sample pairs is exponentially larger than the total number of training
samples. Specifically, for a problem of N training samples, the number of all
possible sample pairs is N(N − 1)/2. Therefore, for medium and large scale
problems, we have to use stochastic gradient descent or mini-batch gradient
descent.

Commonly, a probable mini-batch contains equivalent number of within-
class pairs and between-class pairs [7,29]. However, the actual ratio of within-
class pairs and between-class pairs is not equivalent. For example, for m classes
each with n training samples, the number of within-class pairs is mn(n− 1)/2
and the number of all between-class pairs is mn(mn − n)/2. Thus the ratio
between within-class pairs and between-class pairs is n−1

n(m−1) , i.e., one within-

class pair is accompanied by n(m−1)
n−1 between-class pairs. Consequently, instead

of taking equivalent number of within-class pairs and between-class pairs in
a mini-batch, we propose the following strategy to choose data pairs for a
mini-batch:

– Count the training samples and denote the number as N , hence there are
totally N(N − 1)/2 sample pairs.

1 http://en.wikipedia.org/wiki/Stochastic gradient descent
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 SDR /=

Fig. 3 Index matrix for mini-batch gradient descent of the siamese MLP. The first row
stores the S within-class pairs, followed by all the between-class pairs. The empty positions
in the end of the matrix can be optionally filled with some between-class pairs.

– Count the within-class pairs and denote the number as S, then the number
of between-class pairs is D = N(N − 1)/2− S.

– Let R = dD/Se, i.e., the smallest integer not less than D/S.
– Make an index matrix with R+ 1 rows and S columns (Figure 3), put the

indexes of the S within-class pairs in the first row and put the indexes of
all the between-class pairs in the following rows.

– (Optional) Randomly pick some between-class pairs to fill the remain
empty position in the end of the matrix.

– Take the indexes in each column as a mini-batch, which contains a single
within-class pair and R between-class pairs.

In general, we summarize the optimization procedure for the proposed
siamese MLP in Algorithm 1. For a large scale problem, the mini-batch gradi-
ent descent is used in optimization; for a small scale problem, the batch gra-
dient descent is adopted. Particularly, the scale of a problem is small or large
depends on the machine capacity we used. In our case, we usually consider a
problem with more than 1, 000 training samples as a large scale problem, since
the number of all possible similar and dissimilar pairs is at least 499, 500.

4 Experiment and Analysis

4.1 Extended Yale B Database

We perform experiments on the Extended Yale B database [13]. It contains
2,414 frontal-face images of 38 individuals. These images were captured under
various lighting conditions. All the images have been cropped and normalized,
with the same size 192×168. Figure 4 provides some example images of an
individual in the database. We can see that the lighting directions in different
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Algorithm 1: Optimization of the siamese MLP

input : Training set; Number of training data N ;
output: Parameters P

% initialization
Random initialization to the set of parameters P ;
% optimization by back propagation
if N is large then

% this is a large scale problem (N > 1000)
Set learning rate µ = 10−4;
Generate mini batches that each contains 1 similar pair and R dissimilar pairs
(Figure 3);
Employ mini-batch gradient descent to update P ;

else
% this is a small scale problem
Generate a whole batch which contains all similar and dissimilar pairs;
Employ batch gradient descent (the advanced L-BFGS algorithm) to update P ;

% output the final set of parameters
return P .

Fig. 4 Example images of an individual in the Extended Yale B database. These frontal-face
images were captured under various lighting conditions.
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images are significantly varied. For instance, it is difficult to recognize the face
in the middle of Figure 4 since it hides in deeply dark.

We divide the whole database into three non-overlapping subsets: training,
validation and testing. We learn a model on the training set, choose the best set
of parameters that achieves the highest performance on the validation set, and
report the performance on the testing set using the best parameters. Especially,
we take a small scale training set in the experiments: for each individual, only
one out of ten images are used for training, i.e., there are 263 face images
in the training set. And the size ratio of the training, validation and testing
sets is 1:3:6. All the experiments are repeated 10 times with randomly shuffled
data, and the mean accuracy (± standard error of the mean) are reported.

4.2 Face Descriptors

Popular face descriptors for face detection and face recognition include eigen-
faces [26], Gabor wavelets [9], haar-like features [19], SIFT [17], Local Binary
Pattern(LBP) [1], etc. Recently, Barkan et al. [2] proposed Over-complete
Local Binary Patterns (OCLBP), a new variant of LBP that significantly im-
proved the face verification performance. Thus we adopt the OCLBP feature
as the major face descriptor in our experiments. Besides, we also use Gabor
wavelets and the standard LBP to represent the face images as a comparison.
Following [2,29], both the original face descriptors and their square roots are
evaluated in the experiments.

Gabor wavelets: we extract Gabor wavelets with 5 scales and 8 orien-
tations on each downsampled image. The downsampling rate is 10×10 for all
the 192×168 images, thus the dimension of an extracted Gabor vector is 12160
(= 5×8×19×16).

Local Binary Patterns: we use the uniform LBP [24] to represent face
images. The uniform LBP is denoted as LBPu2

p,r, where u2 stands for ’uniform’,
(p, r) means to sample p points over a circle with a radius r. The dimension of
an uniform pattern is 59. Concretely, each 192×168 image is divided into non-
overlapping 16 × 16 blocks and uniform LBP patterns LBPu2

8,1 are extracted
from all the blocks. We catenate all the LBP patterns into a feature vector,
whose dimension is 7788 (= 12×11×59).

Over-complete Local Binary Patterns: besides LBP, we also use its
new variant, OCLBP, to improve the overall performance on face identifica-
tion [29]. Unlike LBP, OCLBP adopts overlapping to adjacent blocks. For-
mally, the configuration of OCLBP is denoted as S : (a, b, v, h, p, r). An im-
age is divided into a × b blocks with vertical overlap of v and horizontal
overlap of h, and then uniform pattern LBPu2

p,r are extracted from all the
blocks. Moreover, the OCLBP is composed of several different configurations:
S1 : (16, 16, 12 ,

1
2 , 8, 1), S2 : (24, 24, 12 ,

1
2 , 8, 2), S3 : (32, 32, 12 ,

1
2 , 8, 3). The three

configurations consider three block sizes: 16×16, 24×24, 32×32, and adopt half
overlap rates along the vertical and horizontal directions. We shift the block
window to produce overlaps. Taking the 16 × 16 block window for example,



12 Lilei Zheng et al.

with the shifting step 16× 1
2 = 8 to the left and downwards, the total number

of 16× 16 blocks is ( 192
8 − 1)× ( 168

8 − 1) = 460. Similarly, shifting the 24× 24
window produces 195 blocks and shifting the 32 × 32 window produces 110
blocks. The dimension of our OCLBP vectors is 45, 135 ((460+195+110)×59).
Apparently, the OCLBP contains the LBP as a subpart, hence using OCLBP
always achieves better classification performance than using LBP.

Usually, directly taking the original face descriptors for learning causes
computational problem. For example, the time required for multiplications
between 45, 135-d OCLBP vectors would be unacceptable. Therefore, before
learning, we apply whitened PCA to reduce the vector dimension. Since the
size of the training set is small (only 263 samples), we keep all the variance
during dimensionality reduction. Thus the reduced dimension is 262, and these
262-d feature vectors are taken as inputs to the classical MLP or the siamese
MLP.

4.3 Dimensionality Reduction in Face Identification

We evaluate three different methods in our experiments: K-Nearest Neighbors
(KNN), MLP and the proposed siamese MLP. Since the siamese MLP is de-
signed for nonlinear mapping rather than classification, it is hard to directly
make class predictions on its output. Hence we apply KNN on its output to
perform class identification. This is also the reason why we evaluate the KNN
method as a comparison. Specifically, KNN in our experiments uses the cosine
function to measure the pairwise distance and the number of nearest neighbors
K is set to 1.

4.3.1 Output dimension of the siamese MLP

Empirically, the size of the hidden layer is set to 100 for both the classical
MLP and the siamese MLP. As the number of different classes in the Extended
Yale B database is 38, the output dimension of the classical MLP is fixed to
38. In contrast, the siamese MLP allows flexible output dimension, thus we
shift the output dimension from 2 to 250 and record the influence on the
identification accuracy. Note that the input dimension is 262, so we keep the
output dimension less than 262 in order to perform dimensionality reduction.
Figure 5 shows the identification accuracy curve of the siamese MLP method
on the square-rooted OCLBP feature. We can see that the curve rises rapidly
when the output dimension increases from 2 to 10, but then climbs much more
slowly. The optimal solution is with the output dimension of more than 80.

4.3.2 Comparison to the classical MLP

Table 1 summarizes the results of different methods on different face descrip-
tors on the extended Yale B database. The output dimension of the siamese
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Fig. 5 Identification accuracy curve of the siamese MLP method on the square-rooted
OCLBP feature, with respect to the increasing output dimension.

Table 1 Face identification performance on the extended Yale B database. Generally,
Siamese MLP = MLP > KNN. The output dimension of the siamese MLP is set to 80.

Method KNN MLP Siamese MLP

Gabor
original 0.6937(±0.0432) 0.7972(±0.0349) 0.7970(±0.0344)

square-rooted 0.8032(±0.0043) 0.9248(±0.0027) 0.9262(±0.0028)

LBP
original 0.7906(±0.0042) 0.9215(±0.0041) 0.9227(±0.0039)

square-rooted 0.8478(±0.0051) 0.9628(±0.0030) 0.9634(±0.0031)

OCLBP
original 0.8250(±0.0054) 0.9641(±0.0028) 0.9659(±0.0031)

square-rooted 0.8611(±0.0055) 0.9833(±0.0017) 0.9842(±0.0016)

Table 2 Significance testing between MLP and siamese MLP. A p-value smaller than 0.05
or 0.01 indicates a significant difference. Results confirm no significant difference between
MLP and siamese MLP.

Method MLP Siamese MLP p-value

Gabor
original 0.7972(±0.0349) 0.7970(±0.0344) 0.4982

square-rooted 0.9248(±0.0027) 0.9262(±0.0028) 0.3559

LBP
original 0.9215(±0.0041) 0.9227(±0.0039) 0.4150

square-rooted 0.9628(±0.0030) 0.9634(±0.0031) 0.4486

OCLBP
original 0.9641(±0.0028) 0.9659(±0.0031) 0.3364

square-rooted 0.9833(±0.0017) 0.9842(±0.0016) 0.3341

MLP is set to 80. Compared with KNN, the siamese MLP has brought signifi-
cant improvement on face identification. Compared with the classical MLP, the
siamese MLP achieves comparable results. For example, on the square-rooted
LBP features, the siamese MLP obtains an accuracy of 0.9634, seems slightly
better than the result of the classical MLP, 0.9628. Besides, methods using
square-rooted features always obtain better performance than those using the
original features. This phenomenon is consistent with that on the problem of
face verification [29].

To confirm the comparison, we employ the Bootstrap Resampling ap-
proach [18] to evaluate the pairwise statistical significance between the two
methods. Note that the smaller the p-value, the larger the significance. Usu-
ally, we consider a p-value smaller than 0.05 or 0.01 to indicate a significant
difference. The significance testing results in Table 2 are all in the range [0.3,
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Fig. 6 Face images that the siamese MLP using square-rooted OCLBP failed to recognize.

0.5], showing that there is no significant performance difference between the
classical MLP and the siamese MLP. We also test the significance between
siamese MLP and KNN, the p-value is always 0 on all the difference features,
demonstrating that the siamese MLP has significantly improve the perfor-
mance over the KNN method.

Comparing the three different face descriptors, the results on OCLBP are
significantly better than those on Gabor wavelets and those on LBP. For ex-
ample, the siamese MLP using square-rooted OCBLP achieves an average
accuracy of 0.9842 on the 10 repeated experiments. Figure 6 shows the face
images that the siamese MLP failed to recognize. Most of the failure examples
are rather dark so that it is difficult to extract effective facial texture features
from them. However, there are also some failure examples in good lighting
condition. This is probably because we apply KNN as the classifier and the
final decision relies on the test sample’s nearest neighbor in the training set.
Since the training data are randomly selected, a good nearest neighbor for
each test sample is not guaranteed.

4.4 Dimensionality Reduction in Data Visualization

In this subsection, we apply the siamese MLP to illustrate data visualization
on a few data from the Extended Yale B database. We select the first 4 classes
each with 7 face images, totally 28 face images. These images are represented
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Fig. 7 Visualization of dimensionality reduction into the 2-d or 3-d spaces using (a )
Whitened PCA and (b) Siamese MLP.

by 262-d OCLBP feature vectors. For data visualization, all the input vectors
are projected into the 2-d and 3-d spaces, respectively. In addition, we also
visualize the projection of whitened PCA as a comparison in Figure 7.

Figure 7 (a) shows the data distribution in the 2-d and 3-d target spaces
using whitened PCA, points with different colors are from 4 different classes.
We can see that points of different classes are mixing in both the 2-d and
3-d spaces. In contrast, the siamese MLP successfully separates the points of
different classes (Figure 7 (b)). More interestingly, points of the same class
concentrate tightly at a certain position, standing as a vertex of a square in
the 2-d space or a regular tetrahedron in the 3-d space. Note that both the
square and the regular tetrahedron take the origin point as the center. Thus
all the between-class pairs share exactly the same angle: (1) in the 2-d space,
the angle between two points from different classes is 90◦; (2) in the 3-d space,
the between-class angle is about 109.47◦. In summary, the objective of our
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Fig. 8 Illustration of dimensionality reduction into the 2-d or 3-d spaces using Siamese
MLP.
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siamese MLP has been satisfied perfectly: separating the between-class pairs
and concentrating the within-class pairs.

Figure 8 pictures a more detailed procedure of data projection by the
siamese MLP using the mini-batch gradient descent algorithm (Section 3.4).
At the beginning, the siamese MLP is initialized with random parameters, so
we observe mixed data classes around the origin point in Figure 8 (a). Towards
the objective of closing the within-class pairs and separating between-class
pairs, the points scatter away after 1000 iterations. Successively, after 3000
iterations, data from different classes have found their own optimal positions,
and we can see clear blank boundaries between different classes. Finally, after
20000 iterations, data of the same class concentrate at each optimal position
in Figure 8 (d).

5 Conclusion

In this work, we have presented the siamese MLP method for dimensionality
reduction. One advantage of the siamese MLP is that it allows flexible output
dimension, we have visualized the results of dimensionality reduction into the
2-d and 3-d spaces, showing interesting geometrical characteristic. Another
advantage of the siamese MLP is that it learns on side information only. And
we have compared it with the classical MLP on the problem of face identifi-
cation, showing that the siamese MLP training with side information achieves
comparable classification performance with the classical MLP training on fully
labeled data. In the future, we are interested in changing the proposed opti-
mal objective into a margin-based variant [27] and applying it for manifold
learning [15].
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