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Compact Brownian surfaces I. Brownian disks

Jérémie Bettinelli∗ Grégory Miermont†

October 20, 2015

Abstract

We show that, under certain natural assumptions, large random plane bipartite
maps with a boundary converge after rescaling to a one-parameter family (BDL, 0 <
L < ∞) of random metric spaces homeomorphic to the closed unit disk of R2, the
space BDL being called the Brownian disk of perimeter L and unit area. These
results can be seen as an extension of the convergence of uniform plane quadrangu-
lations to the Brownian map, which intuitively corresponds to the limit case where
L = 0. Similar results are obtained for maps following a Boltzmann distribution, in
which the perimeter is fixed but the area is random.
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1 Introduction

1.1 Motivation

Random maps are a natural discrete version of random surfaces. It has been shown in
recent years that their scaling limits can provide “canonical” models of random metric
spaces homeomorphic to a surface of a given topology. More precisely, given a random
planar map M , one can consider it as a random finite metric space by endowing its
vertex set with the usual graph metric, and multiply this graph metric by a suitable
renormalizing factor that converges to 0 as the size of the map M is sent to infinity. One
is then interested in the convergence in distribution of the resulting sequence of rescaled
maps, in the Gromov–Hausdorff topology [22] (or pointed Gromov–Hausdorff topology if
one is interested in non-compact topologies), to some limiting random metric space.

Until now, the topology for which this program has been carried out completely is that
of the sphere, for a large (and still growing) family of different random maps models, see
[26, 34, 6, 2, 11, 1], including for instance the case of uniform triangulations of the sphere
with n faces, or uniform random maps of the sphere with n edges. The limiting metric
space, called the Brownian map, turns out not only to have the topology of the sphere
[28, 33], as can be expected, but also to be independent (up to a scale constant) of the
model of random maps that one chooses, provided it is, in some sense, “reasonable.” See
however [3, 27] for natural models of random maps that converge to qualitatively different
metric spaces. These two facts indeed qualify the Brownian map as being a canonical
random geometry on the sphere. Note that a non-compact variant of the Brownian map,
called the Brownian plane, has been introduced in [20] and shown to be the scaling limit
of some natural models of random quadrangulations.
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However, for other topologies allowing higher genera and boundary components, only
partial results are known [7, 8, 10, 9]. Although subsequential convergence results have
been obtained for rescaled random maps in general topologies, it has not been shown that
the limit is uniquely defined and independent of the choice of the extraction. The goal of
this paper and its companion [12] is to fill in this gap by showing convergence of a natural
model of random maps on a given compact surface S to a random metric space with same
topology, which one naturally can call the “Brownian S.”

This paper will focus exclusively on the particular case of the disk topology, which
requires quite specific arguments, and indeed serves as a building block to construct the
boundaries of general compact Brownian surfaces in [12].

1.2 Maps

To state our results, let us recall some important definitions and set some notation. We
first define the objects that will serve as discrete models for a metric space with the disk
topology.

A plane map is an embedding of a finite connected multigraph into the 2-dimensional
sphere, and considered up to orientation-preserving homeomorphisms of the latter. The
faces of the map are the connected components of the complement of edges, and can be
then shown to be homeomorphic to 2-dimensional open disks. For every oriented edge e,
with origin vertex v, we can consider the oriented edge e′ that follows e in counterclockwise
order around v, and define the corner incident to e as a small open angular sector between e
and e′. It does not matter how we choose these regions as long as they are pairwise
disjoint. The number of corners contained in a given face f is called the degree of that
face; equivalently, it is the number of oriented edges to the left of which f lies — we say
that f is incident to these oriented edges, or to the corresponding corners. We let V(m),
E(m), F(m) denote the sets of vertices, edges and faces of a map m, or simply V, E, F
when the mention of m is clear from the context.

If m is a map, we can view it as a metric space (V(m), dm), where dm is the graph
metric on the set V(m) of vertices of m. For simplicity, we will sometimes denote this
metric space by m as well and, if a > 0, we denote by am the metric space (V(m), adm).

For technical reasons, the maps we consider will always implicitly be rooted, which
means that one of the corners (equivalently, one of the oriented edges) is distinguished
and called the root. The face f∗ incident to the root is called the root face. Since we want
to consider objects with the topology of a disk, we insist that the root face is an external
face to the map, whose incident edges forms the boundary of the map, and call its degree
the perimeter of the map. By contrast, the non-root faces are called internal faces. Note
that the boundary of the external face is in general not a simple curve (see Figure 1). As
a result, the topological space obtained by removing the external face from the surface in
which the map is embedded is not necessarily a surface with a boundary, in the sense that
every point does not have a neighborhood homeomorphic to some open set of R × R+.
However, removing any Jordan domain from the external face does of course result in a
surface with a boundary, which is homeomorphic to the 2-dimensional disk.
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1.3 The case of quadrangulations

The first part of the paper is concerned exclusively with a particular family of maps,
for which the results are the simplest to obtain and to state. A quadrangulation with a
boundary is a rooted plane map whose internal faces all have degree 4. It is a simple
exercise to see that this implies in fact that the perimeter is necessarily an even number.
For l, n ∈ N, we let Ql,n be the set of quadrangulations with a boundary having n internal
faces and perimeter 2l.

Figure 1: A quadrangulation from Q23,19. The root is the corner indicated by the red arrow.

Our main result in the context of random quadrangulations is the following.

Theorem 1. Let L ∈ [0,∞) be fixed, and (ln, n ≥ 1) be a sequence of integers such that
ln/
√

2n → L as n → ∞. Let Qn be uniformly distributed over Qln,n. There exists a
random compact metric space BDL such that( 9

8n

)1/4
Qn

(d)−→
n→∞

BDL

where the convergence holds in distribution for the Gromov–Hausdorff topology.

The random metric space BDL is called the Brownian disk with perimeter L and
unit area. We will give in Section 2 an explicit description of BDL (as well as versions
with general areas, see also Section 1.5) in terms of certain stochastic processes, and
the convention for the scaling constant (9/8)1/4 is here to make the description of these
processes simpler. The main properties of BDL are the following; they follow from [10,
Theorems 1–3].

Proposition 2. Let L > 0 be fixed. Almost surely, the space BDL is homeomorphic to
the closed unit disk of R2. Moreover, almost surely, the Hausdorff dimension of BDL is 4,
while that of its boundary ∂BDL is 2.

We stress that the case L = 0, corresponding to the situation where ln = o(
√
n), is

the statement of [10, Theorem 4], which says that BD0 is the so-called Brownian map.
Since the Brownian map is a.s. homeomorphic to the sphere [28], this means that the
boundaries of the approximating random maps are too small to be seen in the limit. This
particular case generalizes the convergence of uniform random quadrangulations, obtained
in [26, 34], corresponding to the case where ln = 2 for every n ≥ 1.



1 INTRODUCTION 5

The case where ln/
√
n → ∞ is also of interest, and is the object of [10, Theorem 5],

showing that, in this case, (2ln)−1/2Qn converges to the so-called Brownian Continuum
Random Tree [4, 5]. This means that the boundary takes over the planar geometry and
folds the map into a tree-shaped object.

We will prove our result by using the already studied case of plane maps without
boundary, together with some surgical methods. Heuristically, we will cut Qn along
certain geodesics into elementary pieces of planar topology, to which we can apply a
variant of the convergence of random spherical quadrangulations to the Brownian map.
The idea of cutting into slices quadrangulations with a boundary along geodesics appears
in Bouttier and Guitter [15, 16]. The use of these slices (also called maps with a piecewise
geodesic boundary) plays an important role in Le Gall’s approach [26] to the uniqueness
of the Brownian map in the planar case, which requires to introduce the scaling limits
of these slices. The previously cited works are influential to our approach. It however
requires to glue an infinite number of metric spaces along geodesic boundaries, which
could create potential problems when passing to the limit.

1.4 Universal aspects of the limit

Another important aspect is that of universality of the spaces BDL. Indeed, we expect
these spaces to be the scaling limit of many other models of random maps with a boundary,
as in the case of the Brownian map, which corresponds to L = 0. In the latter case, it has
indeed been proved, starting in Le Gall’s work [26], that the Brownian map is the unique
scaling limit for a large family of natural models of discrete random maps, see [6, 2, 11, 1].
The now classical approach to universality developed in [26] can be generalized to our
context, as we illustrate in the case of critical bipartite Boltzmann maps.

1.4.1 Boltzmann random maps

Let B be the set of bipartite rooted plane maps, that is, the set of rooted plane maps
with faces all having even degrees (equivalently, this is the set of maps whose internal
faces all have even degrees). For l ∈ Z+, let Bl be the set of bipartite maps m ∈ B with
perimeter1 2l. Note that when l = 1, meaning that the root face has degree 2, there is a
natural bijection between B1 and B \B0, consisting in gluing together the two edges of
the root face into one edge.

Let q = (q1, q2, . . .) be a sequence of non-negative weights. We assume throughout
that qi > 0 for at least one index i ≥ 2. The Boltzmann measure associated with the
sequence q is the measure W (q; ·) on B defined by

W (q;m) =
∏

f∈F(m)\{f∗}

qdeg(f)/2 .

1By convention, the vertex map ◦ consisting of no edges and only one vertex, “bounding” a face of
degree 0, is considered as an element of B, so that B0 = {◦}. It will only appear incidentally in the
analysis.
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This defines a non-negative, σ-finite measure, and by convention the vertex-map receives
a weight W (q, ◦) = 1. In what follows, the weight sequence q is considered fixed and its
mention will be implicit, so that we denote for example W (m) = W (q;m), and likewise
for the variants of W to be defined below.

We aim at understanding various probability measures obtained by conditioning W
with respect to certain specific subsets of B. It is a simple exercise to check that W (Bl)
is non-zero for every l ∈ N, and that W (Bl) is finite for one value of l > 0 if and only
if it is finite for all values of l > 0. In this case, it makes sense to define the Boltzmann
probability measures

Wl = W (· |Bl) =
W (· ∩Bl)

W (Bl)
, l ≥ 0 .

A random map with distribution Wl has a root face of fixed degree 2l, but a random
number of vertices, edges and faces.

Likewise, we can consider conditioned versions of W given both the perimeter and
the “size” of the map, where the size can be alternatively the number of vertices, edges
or internal faces2. We let BV

l,n, BE
l,n, BF

l,n be the subsets of Bl consisting of maps with
respectively n + 1 vertices, n edges and n internal faces. (The choice of n + 1 vertices
instead of a more natural choice of n vertices is technical and will make the statements
simpler.)

In all the statements involving a given weight sequence q and a symbol S ∈ {V,E,F}
(for “size”), it will always be tacitly imposed that (l, n) belongs to the set

ES(q) = {(l, n) ∈ Z2
+ : W (BS

l,n) > 0} .

Note that for (l, n) ∈ ES(q), it holds that W (BS
l,n) < ∞ since W (Bl) < ∞. In this way,

we can define the distribution

WS
l,n(·) = W (· |BS

l,n) .

It will be useful in the following to know what the set ES(q) looks like. More precisely, let

ESl (q) = {n ≥ 0 : (l, n) ∈ ES(q)} . (1)

As above, when the weight sequence q is unequivocally fixed, we will drop the mention of
it from the notation and write ES and ESl .

Define three numbers hV, hE, hF by

hV = gcd({n ≥ 2 : q2n > 0}) , hE = gcd({n ≥ 1 : q2n > 0}) , hF = 1 . (2)

Then we have the following lemma, which is a slight generalization of [38, Section 6.3.1].
2We could also consider other ways to measure the size of a map m, e.g. considering combinations of

the form xV|V(m)|+ xE|E(m)|+ xF|F(m)| for some xV, xE, xF ≥ 0 with sum 1 as is done for instance
in [38] (in fact, due to the Euler formula, there is really only one degree of freedom rather than two). We
will not address this here but we expect our results to hold in this context as well.
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Lemma 3. Let q be a weight sequence, and let S be one of the three symbols V, E,
F. There exists an integer βS ≥ 0 such that for every l ≥ 1, there exists a set RS

l ⊂
{0, 1, . . . , lβS − 1} such that

ESl (q) = RS
l ∪ (lβS + hSZ+) .

In fact, note that EFl (q) = Z+, which amounts to the fact that, for any q and any
n ≥ 0, l ≥ 1, there is at least one map m with n internal faces and perimeter 2l such that
W (q;m) > 0. As a consequence, we can always take βF = 0.

1.4.2 Admissible, regular critical weight sequences

Let us introduce some terminology taken from [30]. Let

fq(x) =
∑
k≥0

xk
(

2k + 1

k

)
qk+1 , x ≥ 0 .

This defines a totally monotone function with values in [0,∞].

Definition 4. We say that q is admissible if the equation

fq(z) = 1− 1

z
(3)

admits a solution z > 1. We also say that q is regular critical if moreover this solution
satisfies

z2f ′q(z) = 1

and if there exists ε > 0 such that fq(z + ε) <∞.

Note that q being regular critical means that the graphs of fq and of x 7→ 1− 1/x are
tangent at the point of abscissa z, and in particular, by convexity of fq, the solution z
to (3) is unique. We denote by

Zq = z

this solution, which will play an important role in the discussion to come.
To give a little more insight into this definition, let us introduce at this point a measure

on maps that looks less natural at first sight than the Boltzmann measure Wl, but which
will turn out to be better-behaved from the bijective point of view on which this work
relies. Let B• be the set of pairs (m, v∗) where m ∈ B is a rooted bipartite map and
v∗ ∈ V(m) is a distinguished vertex. We also let B•l be the subset of B• consisting of the
maps having perimeter 2l. We let W •(q; ·) be the measure on B• defined by

W •(q; {(m, v∗)}) = W (m) , (m, v∗) ∈ B• , (4)

as well as the probability measures W• and W•l , defined by conditioning W • respectively
on B• and B•l . Note that, if φ(m, v∗) = m denotes the map from B• to B that forgets
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the marked point, then Wl is absolutely continuous with respect to φ∗W•l , with density
function given by

dWl(m) =
Kl

|V|d(φ∗W•l )(m) , (5)

where |V| should be understood as the random variable m 7→ |V(m)| giving the number
of vertices of the map, and Kl = W•l [1/|V|]−1. This fact will be useful later.

Proposition 1 in [30] shows that the sequence q of non-negative weights is admissible
if and only if W •(q;B•1) < ∞ (this is in fact the defining condition of admissibility in
[30]). We see that this clearly implies that W (q;B1) <∞, and even that W (q;Bl) <∞
for every l ≥ 1. Moreover, in this case, the constant Zq has a nice interpretation in terms
of the pointed measures. Namely, it holds that

Zq = 1 +W •(B•1)/2 . (6)

From now on, our attention will be exclusively focused on regular critical weight
sequences. It is not obvious at this point how to interpret the definition, which will
become clearer when we see how to code maps with decorated trees. However, let us
explain now in which context this property typically intervenes, and refer the reader to
the upcoming Subsection 1.4.3 for two applications. For instance, if one wants to study
uniform random quadrangulations with a boundary and with n faces as we did in the
first part of this paper, it is natural to consider the sequence q◦ = δ2 = (0, 1, 0, 0, . . .)
and to note that WF

l,n(q◦; ·) is the uniform distribution on Ql,n. Here, note that the
sequence q◦ is not admissible, but the probability measure WF

l,n(q◦; ·) does make sense
because 0 < W (BF

l,n) <∞, due to the fact that there are finitely many quadrangulations
with a boundary of perimeter 2l, and with n internal faces. Now, it can be checked
that q = 12−1q◦ is admissible and regular critical, and that WF

l,n(q; ·) = WF
l,n(q◦; ·) is still

the uniform distribution on Ql,n. This way of transforming a “naturally given” weight
sequence q◦ into a regular weight sequence while leaving WS

l,n invariant is common and
very useful.

The main result is the following. Let q be a regular critical weight sequence. Define
ρq = 2 + Z3

q f
′′
q (Zq) and let σE, σV, σF be the non-negative numbers with squares

σE
2 =

ρq
Zq

, σV
2 = ρq , σF

2 =
ρq
Zq − 1

. (7)

For L > 0, we denote by S S
L the set of sequences (lk, nk)k≥0 ∈ (ES)N such that lk, nk →∞

with lk ∼ LσS
√
nk as k →∞.

Theorem 5. Let S denote one of the symbols V, E, F, and (lk, nk)k≥0 ∈ S S
L for some

L > 0. For k ≥ 0, denote by Mk a random map with distribution WS
lk,nk

. Then(
4σS

2

9
nk

)−1/4
Mk

(d)−→
k→∞

BDL

in distribution for the Gromov–Hausdorff topology.
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Remark 1. The intuitive meaning for these renormalization constants is the following:
in a large random map with Boltzmann distribution, it can be checked that the numbers
|V| and |F| of vertices and faces are of order |E|/Zq and |E|(1−1/Zq) respectively, where
|E| is the number of edges, and that conditioning on having n edges is asymptotically the
same as conditioning on having (approximately) n/Zq vertices, or n (1− 1/Zq) faces.

Remark 2. In fact, the above result is also valid in the case where L = 0, with the
interpretation that BD0 is the Brownian map. The proof of this claim can be obtained by
following ideas similar to [10, Section 6.1]. However, a full proof requires the convergence
of a map with law WS

1,n, rescaled by (4σS
2n/9)1/4, to the Brownian map, and this has

been explicitly done only in the case where S = V in [26, Section 9]. In fact, building
on the existing literature [30, 32], it is easy to adapt the argument to work for S = F
in the same way, while the case S = E, which is slightly different, can be tackled by the
methods of [1]. Writing all the details would add a consequent number of pages to this
already lengthy paper, so we will omit the proof.

1.4.3 Applications

Let us give two interesting specializations of Theorem 5. If p ≥ 2 is an integer, a 2p-
angulation with a boundary is a map whose internal faces all have degree 2p. The com-
putations of the various constants appearing in the statement of Theorem 5 have been
performed in Section 1.5.1 of [30]. These show that the weight sequence

q =
(p− 1)p−1

pp
(
2p−1
p

) δp
is regular critical, that WF

l,n is the uniform law on the set of 2p-angulations with n faces
and perimeter 2l in this case, and that the constants are

Zq =
p

p− 1
, ρq = p , σE

2 = p− 1 , σV
2 = p , σF

2 = p(p− 1) .

Therefore, in this situation, Theorem 5 for S = F gives the following result, that clearly
generalizes Theorem 1.

Corollary 6. Let L ∈ (0,∞) be fixed, (ln, n ≥ 1) be a sequence of integers such that
ln ∼ L

√
p(p− 1)n as n → ∞, and Mn be uniformly distributed over the set of 2p-

angulations with n internal faces and with perimeter 2ln. Then the following convergence
holds in distribution for the Gromov–Hausdorff topology:( 9

4p(p− 1)n

)1/4
Mn

(d)−→
n→∞

BDL.

Next, consider the case where qk = a−k, k ≥ 1 for some a > 0. In this case, for every
m ∈ B, a simple computation shows that

W (m) = a−|E(m)|+l
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so that WE
l,n is the uniform distribution over bipartite maps with n edges and a perime-

ter 2l. It was shown in [30, Section 1.5.2] (and implicitly recovered in [1, Proposition 2])
that choosing a = 1/8 makes q regular critical and that, in this case,

Zq =
3

2
, ρq =

27

4
, σE

2 =
9

2
.

Thus, one deduces the following statement, that should be compared to [1, Theorem 1].

Corollary 7. Let Mn be a uniform random bipartite map with n edges and with perime-
ter 2ln, where ln ∼ 3L

√
n/2 for some L > 0. Then the following convergence holds in

distribution for the Gromov–Hausdorff topology:

(2n)−1/4Mn
(d)−→

n→∞
BDL.

1.5 Convergence of Boltzmann maps

The models we have presented so far consist in taking a random map with a fixed size
and perimeter and letting both these quantities go to infinity in an appropriate regime.
However, it is legitimate to ask about the behavior of a typical random map with law Wl

or W•l when l → ∞, so that the perimeter is fixed and large, while the total size is left
free.

For every L ≥ 0 and A > 0, we define a random metric space BDL,A, which we interpret
as the Brownian disk with area A and perimeter L. For concreteness, the space BDL,A

has same distribution as A1/4 BDA−1/2L. To motivate the definition, note that BDL,1 has
same distribution as BDL and that if Qn is a uniform random element in QbL

√
2nc,bAnc,

then (8n/9)−1/4Qn converges in distribution for the Gromov–Hausdorff topology to BDL,A

by virtue of Theorem 1. See also Remark 3 in Section 2.3 below.
Let A• be a stable random variable with index 1/2, with distribution given by

P(A• ∈ dA) =
1√

2πA3
exp

(
− 1

2A

)
dA1{A>0} .

Note that E[1/A•] = 1, so that the formula

P(A• ∈ dA)

A
=

1√
2πA5

exp

(
− 1

2A

)
dA1{A>0}

also defines a probability distribution, and we let A be a random variable with this
distribution. We define the free Brownian disk with perimeter 1 to be a space with same
law as BD1,A, where this notation means that conditionally given A = A, it has same
distribution as BD1,A. Likewise, the free pointed Brownian disk with perimeter 1 has same
distribution as BD1,A• .

For future reference, for L > 0, it is natural to define the law of the free Brownian disk
(resp. free pointed Brownian disk) with perimeter L by scaling, setting it to be the law
of
√
LBD1,A or equivalently of BDL,L2A (resp.

√
LBD1,A• =(d) BDL,L2A•). We let FBDL

(resp. FBD•L) stand for the free Brownian disk (resp. free pointed Brownian disk) with
perimeter L.
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Theorem 8. Let q be a regular critical weight sequence. For l ∈ N, let Bl (resp. B•l ) be
distributed according to Wl(q; ·) (resp. W•l (q; ·)). Then(

2l

3

)−1/2
Bl

(d)−→
l→∞

FBD1

and respectively (
2l

3

)−1/2
B•l

(d)−→
l→∞

FBD•1

in distribution for the the Gromov–Hausdorff topology.

It is remarkable that the renormalization in this theorem does not involve q whatsoever!

1.6 Further comments and organization of the paper

The very recent preprint [35] by Miller and Sheffield aims at providing an axiomatic
characterization of the Brownian map in terms of elementary properties. In this work,
certain measures on random disks play a central role. We expect that these measures,
denoted by µk,LDISK for k ∈ {0, 1} and L > 0, are respectively the laws of the free Brownian
disk (k = 0) and the pointed free Brownian disk (k = 1) with perimeter L > 0. Miller
and Sheffield define these measures directly in terms of the metric balls in certain versions
of the Brownian map, and it is not immediate, though it is arguably very likely, that this
definition matches the one given in the present paper. Establishing such a connection
would be interesting from the perspective of [35] since, for example, it is not established
that µk,LDISK is supported on compact metric spaces, due to the possibly wild behavior of
the boundary from a metric point of view. We hope to address such questions in future
work.

Note also that [35] introduces another measure on metric spaces, called µLMET, which
intuitively corresponds to the law of a variant of a metric ball in the Brownian map, with
a given boundary length. A description of this measure in terms of slices is given in [35],
which is very much similar to the one we describe in the current work. However, there
is a fundamental difference, which is that µLMET does not satisfy the invariance under
re-rooting that is essential to our study of random disks. In a few words, in a random
disk with distribution µLMET, all points of the boundary are equidistant from some special
point (the center of the ball), while it is very likely that no such point exists a.s. in BDL,A,
or under the law µk,LDISK.

It would be natural to consider the operation that consists in gluing Brownian disks,
say with same perimeter, along their boundaries, hence constructing what should intu-
itively be a random sphere with a self-avoiding loop. However, this operation is in general
badly behaved from a metric point of view (in the sense of [17, Chapter 3] say), and it is
not clear that the resulting space has the same topology as the topological gluing. The
reason for this difficulty is that we require to glue along curves that are not Lipschitz,
since the boundaries of the spaces BDL have Hausdorff dimension 2 (by contrast, the
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gluings considered in Section 4 of the present paper are all along geodesics.) At present,
such questions remain to be investigated.

The rest of the paper is organized as follows. In Section 2, we give a self-standing
definition of the limiting objects. As in many papers on random maps, we rely on bi-
jective tools, and Section 3 introduces these tools. Section 4 is dedicated to the proof of
Theorem 1. In Sections 5–7, we address the question of universality and prove Theorems 5
and 8.

Acknowledgments. This work is partly supported by the GRAAL grant ANR-14-
CE25-0014. We also acknowledge partial support from the Isaac Newton Institute for
Mathematical Sciences where part of this work was conducted, and where G.M. benefited
from a Rothschild Visiting Professor position during January 2015.

We thank Erich Baur, Timothy Budd, Guillaume Chapuy, Nicolas Curien, Igor Ko-
rtchemski, Jean-François Le Gall, Jason Miller, Gourab Ray and Scott Sheffield, for useful
remarks and conversations during the elaboration of this work.

2 Definition of Brownian disks
Recall that the Brownian map BD0 is defined ([24], see also [31]) in terms of a certain
stochastic process called the normalized Brownian snake. Likewise, the spaces BDL, L > 0
of Theorem 1 are defined in terms of stochastic processes, as we now discuss.

2.1 First-passage bridges and random continuum forests

The first building blocks of the Brownian disks are first-passage bridges of Brownian
motion. Informally, given A, L > 0, the first-passage bridge at level −L and time A
is a Brownian motion conditioned to first hit −L at time A. To be more precise, let
us introduce some notation. We let X be the canonical continuous process, and Gs =
σ(Xu, u ≤ s) be the associated canonical filtration. Denote by P the law of standard
Brownian motion, and by PA the law of standard Brownian motion killed at time A > 0.
For L ≥ 0, let TL = inf{s ≥ 0 : Xs = −L} be the first hitting time of −L. We denote the
density function of its law by

jL(A) =
P(TL ∈ dA)

dA
=

L√
2πA3

exp

(
−L

2

2A

)
. (8)

With this notation, the law FAL of the first-passage bridge at level −L and at time A
can informally be seen as PA( · |TL = A). It is best defined by an absolute continuity
relation with respect to PA. Namely, for every s ∈ (0, A) and every non-negative random
variable G that is measurable with respect to Gs, we let

FAL(G) = PA
[
G1{TL>s}

jL+Xs(A− s)
jL(A)

]
. (9)
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It can be seen [18] that this definition is consistent and uniquely extends to a law FAL on
GA, supported on continuous processes, and for which FAL(TL = A) = 1.

An alternative description of first-passage bridges, which will be useful to us later, is
the following.

Proposition 9. Let A, L > 0. Then for every y ∈ (0, L) and for every non-negative
random variable G that is measurable with respect to GTy , we have

FAL [G] = PA
[
G1{Ty<A}

jL−y(A− Ty)
jL(A)

]
. (10)

Moreover, this property characterizes FAL among all measures on GA supported on contin-
uous functions.

Proof. The definition of FAL implies that the processM = (1{TL>s}jL+Xs(A−s)/jL(A), 0 ≤
s < A) is a (Gs, 0 ≤ s < A)-martingale. Therefore, for every stopping time T such that
T < A a.s. under FAL , and for every E ∈ GT , we have

FAL(E) = lim
s↑A

PA[1E∩{T≤s}Ms] = lim
s↑A

PA[1E∩{T≤s}PA[Ms | GT ]] = lim
s↑A

PA[1E∩{T≤s}MT ] ,

and this is equal to PA[1EMT ]. The formula is obtained by applying this result to T = Ty,
and by a standard approximation procedure of a general measurable function by weighted
sums of indicator functions.

The fact that FAL is characterized by these formulas comes from the following obser-
vation. Define F̃AL on GTy as being absolutely continuous with respect to PA|GTy , with
densityMTy . Then for every s < A, F̃AL(Ty < s) = PA[1{Ty<s}jL−y(A − Ty)/jL(A)], and
this clearly converges to 0 as y ↑ L. Therefore, Ty converges F̃AL-a.s. to A as y ↑ L. Then
for every s < A and E ∈ Gs, similar manipulations to the above ones show that

F̃AL(E) = lim
y↑L

F̃AL(E ∩ {Ty > s}) = lim
y↑L

PA
[
1E∩{Ty>s}MTy

]
= lim

y↑L
PA
[
1E∩{Ty>s}Ms

]
and this is limy↑L FAL(E ∩ {Ty > s}) = FAL(E).

It is convenient to view a first-passage bridge as encoding a random continuum forest.
This is a classical construction that can be summarized as follows, see for instance [36].
Here we work under FAL . For 0 ≤ s ≤ s′ ≤ A, define Xs,s′ = inf{Xu : s ≤ u ≤ s′} and let

dX(s, s′) = Xs +Xs′ − 2Xs∧s′,s∨s′ s, s′ ∈ [0, A]. (11)

The function dX on [0, A]2 is a pseudo-distance, to which one can associate a random
metric space FAL = [0, A]/{dX = 0}, endowed with the quotient metric induced from dX .
This metric space is a.s. a compact R-tree, that is, a compact geodesic metric space into
which S1 cannot be embedded. It comes with a distinguished geodesic of length L, which
is the image of the first hitting times {Ty, 0 ≤ y ≤ L} under the canonical projection
pX : [0, A]→ FAL . It is convenient to view this segment as the floor of a forest of R-trees,
these trees being exactly of the form Ty = pX((Ty−, Ty]), corresponding to the excursions
of X above its past infimum. One should imagine that the R-tree Ty is grafted at the
point pX(Ty) of the floor lying at distance y from pX(0).
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2.2 Snakes

We now enrich the random “real forest” described above by assigning labels to it. In-
formally speaking, the trees of the forest are labeled by independent Brownian snakes
[23, 21], while the floor of the forest is labeled by a Brownian bridge with variance factor
3.

More precisely, let X be a first-passage bridge with law FAL . Conditionally given X,
we let (Z0

s , 0 ≤ s ≤ A) be a centered Gaussian process with covariance function

Cov (Z0
s , Z

0
s′) = inf

u∈[s∧s′,s∨s′]
(Xu −Xu) s, s′ ∈ [0, A] ,

where Xu = inf0≤v≤uXv is the past infimum of X. Note in particular that Z0
s and Z0

s′ are
independent if s, s′ belong to two different excursion intervals of X above X. It is classical
[23] that Z0 admits a continuous modification, see also [7] for a discussion in the current
context. For this modification, we a.s. have Z0

Ty
= 0 for every y ∈ [0, L] (for a given y,

this comes directly from the variance formula). The process Z0 is sometimes called the
head of the Brownian snake driven by the process X −X, the reason being that it can be
obtained as a specialization of a path-valued Markov process called the Brownian snake
[23] driven by X −X. The process Z0 itself is not Markov.

Let also b be a standard Brownian bridge of duration L, so that

Cov (by, by′) =
y(L− y′)

L
, 0 ≤ y ≤ y′ ≤ L .

We define the process Z to be

Zs = Z0
s +
√

3 bT−1(s) , 0 ≤ s ≤ A , (12)

where T−1(s) = sup{y ≥ 0 : Ty ≤ s}. We abuse notation and still denote by FAL the
law of the pair (X,Z) thus defined, so that FAL is seen as a probability distribution on
the space C([0, A],R)2. In the same spirit, we will still denote by Gt the natural filtration
σ({(Xs, Zs), 0 ≤ s ≤ t}). Note that the absolute continuity relations (9) and (10) are
still valid verbatim with these extended notation and, in particular, the density function
involves only X and not Z.

It is classical that a.s. under FAL , Z is a class function on [0, A] for the equivalence
relation {dX = 0}, so that Z can also be seen as a function on the forest FAL . Note
that T−1(Ty) = y for every 0 ≤ y ≤ L, which corresponds to the fact that, in the above
depiction of the random forest, the point pX(Ty) receives label

√
3 by.

It is a simple exercise to check that the above definition of Z is equivalent to the
following quicker (but more obscure) one. Conditionally given X, we have that Z is
Gaussian, centered, with covariance function

Cov (Zs, Zs′) = Xs,s′ −Xs′ − 3Xs(L+Xs′)/L s, s′ ∈ [0, A] .

Similarly as (11), we define a pseudo-distance function using the process Z instead
ofX, but with an extra twist. As above, let Zs,s′ = inf{Zu : u ∈ [s, s′]} for 0 ≤ s ≤ s′ ≤ A,
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and this time we extend the definition to 0 ≤ s′ < s ≤ A by setting

Zs,s′ = inf{Zu : u ∈ [s, A] ∪ [0, s′]} = Zs,A ∧ Z0,s′ ,

so if we see [0, A] as a circle by identifying 0 with A, Zs,s′ is the minimum of Z on the
directed arc from s to s′. We let

dZ(s, s′) = Zs + Zs′ − 2 max(Zs,s′ , Zs′,s) s, s′ ∈ [0, A] . (13)

2.3 Brownian disks

We are now ready to give the definition of Brownian disks. Consider the set D of all
pseudo-distances d on [0, A] satisfying the two properties{

{dX = 0} ⊆ {d = 0}
d ≤ dZ .

The set D is nonempty (it contains the zero pseudo-distance) and contains a maximal
element D∗ defined by

D∗(s, s′) = inf

{
k∑
i=1

dZ(si, ti) :
k ≥ 1 , t1, s2, . . . , sk ∈ [0, A], s1 = s, tk = s′,
dX(ti, si+1) = 0 for every i ∈ {1, . . . , k − 1}

}
, (14)

see [17, Chapter 3]. The Brownian disk BDL,A with area A and perimeter L is the quotient
set [0, A]/{D∗ = 0}, endowed with the quotient metric induced from D∗ (which we still
denote by D∗ for simplicity), and considered under the law FAL . In the case A = 1, we
drop the second subscript and write BDL = BDL,1.

Remark 3. Observe that, by usual scaling properties of Gaussian random variables,
under the law FAL , the scaled pair ((λ1/2Xs/λ, 0 ≤ s ≤ λA), (λ1/4Zs/λ, 0 ≤ s ≤ λA)) has
law FλA

λ1/2L
, from which we deduce that the random metric space λ−1/4BDλ1/2 L,λA has the

same distribution as BDL,A.

The reason why we say that BDL,A has “area” A is that it naturally comes with a
non-negative measure of total mass A, which is the image of the Lebesgue measure on
[0, A] by the canonical projection p : [0, A] → BDL,A. It will be justified later that
BDL,A is a.s. homeomorphic to the closed unit disk, so that the term area makes more
sense in this context. Furthermore, the boundary ∂BDL,A will be shown to be equal to
p({Ty : 0 ≤ y ≤ L}), so that it can be endowed with a natural non-negative measure with
total mass L, which is the image of the Lebesgue measure on [0, L] by y 7→ p(Ty). This
justifies the term “perimeter”.
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3 The Schaeffer bijection and two variants
This work strongly relies on powerful encodings of discrete maps by trees and related ob-
jects. In this section we present the encodings we will need: the original Cori–Vauquelin–
Schaeffer bijection [19, 37], a variant for so-called slices [26] and a variant for plane quad-
rangulations with a boundary (particular case of [14]). We only give the constructions
from the encoding objects to the considered maps and refer the reader to the aforemen-
tioned works for converse constructions and proofs.

3.1 The original Cori–Vauquelin–Schaeffer bijection

Let (t, `) be a well-labeled tree with n edges. Recall that this means that t is a rooted plane
tree with n edges, and ` : V(t)→ Z is a labeling function such that `(u)−`(v) ∈ {−1, 0, 1}
whenever u and v are neighboring vertices in t. It is usual to “normalize” ` in such a way
that the root vertex of t gets label 0, but we will also consider different conventions: in
fact, all our discussion really deals with the function ` up to addition of a constant. For
simplicity, in the following, we let `∗ = min{`(v) : v ∈ V(t)} − 1.

Note. Throughout this paper, whenever a function f is defined at a vertex v, we extend
its definition to any corner c incident to v by setting f(c) = f(v). In particular, the label
`(c) of a corner is understood as the label of the incident vertex.

Let c0, c1, . . . , c2n−1 be the sequence of corners of t in contour order, starting from
the root corner. We extend the list of corners by periodicity, setting c2n+i = ci for every
i ≥ 0, and adding one corner c∞ incident to a vertex v∗ not belonging to t, with label
`(c∞) = `(v∗) = `∗. Once this is done, we define the successor functions by setting

s(i) = inf{j > i : `(cj) = `(ci)− 1} ∈ Z+ ∪ {∞} , i ∈ {0, 1, . . . , 2n− 1} ,

and s(ci) = cs(i). The Cori–Vauquelin–Schaeffer construction consists in linking ci with
s(ci) by an arc, in a non-crossing fashion, for every i ∈ {0, 1, . . . , 2n− 1}. The embedded
graph q with vertex set V(t) ∪ {v∗} and edge set the set of arcs (excluding the edges
of t) is then a quadrangulation, which is rooted according to some convention (we omit
details here as this point is not important for our purposes), and is naturally pointed
at v∗. Moreover, the labels on V(q) inherited from those on t (and still denoted by `) are
exactly the relative distances to v∗ in q:

dq(v, v∗) = `(v)− `∗ , v ∈ V(q).

(This entirely determines ` as soon as the value `(v0) is known for some specific v0, but
recall that in general we do not want to fix the normalization of `.) See Figure 2 for an
example of the construction.
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0

1 −1

−1

−2 0 −2

0

1 −1

−1

−2 0 −2

−3

?

?

(t, `)

q

v∗

Figure 2: The Cori–Vauquelin–Schaeffer bijection. There are two possible rootings of q: they
are indicated with question marks.
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−1

−2 0 −2

0

1 −1

−1

−2 0 −2

−3

−1

−2

v∗

(t, `)
q′

Figure 3: A map with geodesic boundary is associated with a well-labeled tree via the modified
Schaeffer bijection. The maximal geodesic is represented in red on the left and the shuttle is the
green chain on the right.
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3.2 Slices

We now follow [26] and describe a modification of the previous construction that goes as
follows. See Figure 3 for an example, and compare with Figure 2.

Rather than appending to t a single corner c∞ incident to a vertex v∗, we add a
sequence of corners c′1, c′2, . . . , c′`(c0)−`∗−1, c

′
`(c0)−`∗ = c∞, and set labels `(c′i) = `(c0) − i,

so in particular this is consistent with the label we already set for c∞. Also, instead of
extending the sequence c0, c1, . . . , c2n−1 by periodicity, we add an extra corner c2n to
the right of c0 and we let c2n+i = c′i for i ∈ {1, 2, . . . , `(c0) − `∗}. The definition of the
successor

s(i) = inf{j > i : `(cj) = `(ci)− 1} , s(ci) = cs(i) (15)

then makes sense for i ∈ {0, 1, . . . , 2n+ `(c0)− `∗ − 1}, and we can draw the arcs from ci
to s(ci) for every i ∈ {0, 1, . . . , 2n+ `(c0)− `∗ − 1}. In particular, note that the arcs link
c2n with c′1, c′2, . . . , c′`(c0)−`∗−1, c∞ into a chain, which we call shuttle, and to which are
connected the arcs ci → s(ci) with i ≤ 2n − 1 and s(i) > 2n − 1. Let q′ be the map
obtained by this construction. This map contains two distinguished geodesic chains, which
are, on the one hand, the so-called maximal geodesic made of arcs between consecutive
successors c0, s(c0), s(s(c0)), . . . , c∞ and, on the other hand, the shuttle linking c2n, c′1,
c′2, . . . , c′`(c0)−`∗−1, c∞. Note that both chains indeed have the same length (number of
edges), equal to `(c0) − `∗. In particular, we have dq′(c0, c∞) = dq(c0, c∞) = `(c0) − `∗,
where q is the quadrangulation from the previous section, constructed from the same
well-labeled tree (t, `). These two chains are incident to a face of q′ of degree 2dq(c0, c∞),
and all other faces have degree 4. Observe that the maximal geodesic and the shuttle
only intersect at the root vertex of the tree and v∗; as a result, the boundary of the degree
2dq(c0, c∞)-face is a simple curve. Finally, the quadrangulation q can then be obtained
from q′ by identifying one by one the edges of the maximal geodesic with the edges of the
shuttle, in the same order.

3.3 Plane quadrangulations with a boundary

We now present the variant for plane quadrangulation with a boundary, which is a par-
ticular case of the Bouttier–Di Francesco–Guitter bijection [14]. We rather use the pre-
sentation of [9], better fitted to our situation.

The encoding object of a plane quadrangulation with a boundary having n internal
faces and perimeter 2l is a forest f = (t1, . . . , tl) of l trees with n edges in total, together
with a labeling function ` : V(f) =

⊔
iV(ti)→ Z satisfying the following:

• for 1 ≤ i ≤ l, the tree ti equipped with the restriction of ` to V (ti) is a well-labeled
tree;

• for 1 ≤ i ≤ l, we have `(ρi+1) ≥ `(ρi)− 1, where ρi denotes the root vertex of ti and
setting `(ρl+1) = `(ρ1) by convention.
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Note that the condition on the labels of the root vertices is different from the condition on
the labels of neighboring vertices of a given tree. The reader familiar with the Bouttier–
Di Francesco–Guitter bijection may recognize the label condition for faces of even degree
more than 4. We will come back to this during Section 5.

Here and later, it will be convenient to normalize ` by asking that `(ρ1) = 0. As
before, we define `∗ = min{`(v) : v ∈ V(f)} − 1. We identify f with the map obtained by
adding l edges linking the roots ρ1, ρ2, . . . , ρl of the successive trees in a cycle. This map
has two faces, one of degree 2n+ l (the bounded one on Figure 4) and one of degree l (the
unbounded one on Figure 4). We then follow a procedure similar to that of Section 3.1.
We let c0, c1, . . . , c2n+l−1 be the sequence of corners of the face of degree 2n+ l in contour
order, starting from the root corner of t1. We extend this list by periodicity and add
one corner c∞ incident to a vertex v∗ lying inside the face of degree 2n + l, with label
`(c∞) = `(v∗) = `∗. We define the successor functions by (15) and draw an arc from ci
to s(ci) for every i ∈ {0, 1, . . . , 2n+ l− 1}, in such a way that this arc does not cross the
edges of f , or other arcs.

The embedded graph q′′ with vertex set V(f)∪ {v∗} and edge set given by the added
arcs is a plane quadrangulation with a boundary, whose external face is the degree-2l face
corresponding to the face of degree l. It is rooted at the corner of the unbounded face
that is incident to the root vertex of t1, and it is naturally pointed at v∗. See Figure 4.
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1
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2
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(f , `)
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0

1

1
2

0

−1

2

0

0 −1

0

−1

q′′

t5

ρ5

ρ6

ρ1

ρ2

ρ3

ρ4

t6

t1

t2

t3

t4

Figure 4: The bijection for a plane quadrangulation with a boundary. The l edges we added to f
are represented by dotted lines and the root edge of q′′ is represented in red. Note that we used
for ` the normalization given by `(ρ1) = 0.

The above mapping is a bijection between previously described labeled forests and the
set of pointed plane quadrangulations (q, v∗) with a boundary having n internal faces and
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perimeter 2l that further satisfy the property that dq(e+∗ , v∗) = dq(e−∗ , v∗) + 1, where e∗
denotes the root edge of q, that is, the oriented edge incident to the root face that
directly precedes the root corner in the contour order (see Figure 4). In words, the
pointed quadrangulations that are in the image of the above mapping are those whose
root edge points away from the distinguished vertex v∗.

The requirement that the root edge is directed away from the distinguished vertex is
not a serious issue, as we can dispose of this constraint simply by re-rooting along the
boundary:

Lemma 10. Let (Q, v∗) be uniformly distributed in the set Q•,+l,n of rooted and pointed
quadrangulations such that Q ∈ Ql,n and such that the root edge e∗ points away from v∗.
Let c′ be a uniformly chosen random corner incident to the root face of Q, and let Q′ be
the map Q re-rooted at c′. Then Q′ is a uniform random element of Ql,n.

Proof. The probability that Q′ is a given rooted map q′ is equal

P(Q′ = q′) =
1

2l

∑
v∈V(q′)

+∑
c

P((Q, v∗) = (q, v)) =
1

2l

∑
v∈V(q′)

+∑
c

1

|Q•,+l,n |
,

where the factor 1/2l is the probability that c′ is chosen to be the root corner of q′, the
symbol

∑+
c stands for the sum over all corners incident to the root face of q′ that point

away from v, and q is the map q′ re-rooted at the corner c.
Now fix the vertex v ∈ V(q′). Due to the bipartite nature of q′, among the 2l oriented

edges incident to the root face, l are pointing away from v, and l are pointing toward v.
Indeed, let c̃0 be the root corner of Q, and c̃1, c̃2, . . . , c̃2l−1, c̃2l = c̃0 be the corners incident
to the root face in cyclic order. The sequence (dq′(c̃i, v∗), 0 ≤ i ≤ 2l) takes integer values,
varies by ±1 at every step as q′ is bipartite, and takes the same value at times 0 and 2l.
This means that l of its increments are equal to +1 and l are equal to −1, respectively
corresponding to edges that point away from v and toward v.

Therefore, the sum
∑+

c contains exactly l elements. Noting that every map in Ql,n

has n+ l + 1 vertices, by the Euler characteristic formula, this gives

P(Q′ = q′) =
n+ l + 1

2 |Q•,+l,n |
,

which depends only on n, l and not on the particular choice of q′.

4 Proof of Theorem 1

4.1 Subsequential convergence

Recall the construction of Section 3.3 and consider an encoding labeled forest (f , `). We
will further encode it by a pair of real-valued functions. Before we proceed, it will be
convenient to add an extra vertex-tree ρl+1 with label `(ρl+1) = `(ρ1) to the forest. This
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extra vertex does not really play a part but its introduction will make the presentation
simpler. We also add l edges between ρi and ρi+1, for 1 ≤ i ≤ l. See Figure 5.

We let c0, c1, . . . , c2n+l−1 be as in the previous section and we add to this list the cor-
ner c2n+l incident to the extra vertex-tree ρl+1. We define the contour and label processes
on [0, 2n+ l] by

C(j) = df (cj, ρl+1)− l and `(j) = `(cj), 0 ≤ j ≤ 2n+ l

and by linear interpolation between integer values.

C

`

(f , `)

ρ7

0

ρ1

0

0 −1

ρ2

0

−1

ρ3

2

2

3 0

1

ρ4

2 1

2

ρ5

0

−1

0

−1

ρ6

Figure 5: The contour and label processes associated with the labeled forest of Figure 4. The
extra vertex-tree ρ7 and the edges linking the roots are represented with a dashed line. Note that
the normalization we chose for the labels is equivalent to imposing `(0) = 0.

Let us fix L ∈ (0,∞) and a sequence (ln, n ≥ 1) such that ln ∼ L
√

2n as n→∞. We
let (Fn, `n) be uniformly distributed over the set of labeled forests of ln trees with n edges
in total, and let (Qn, v∗) be the random pointed quadrangulation associated with Fn via
the bijection of Section 3.3. Note that up to re-rooting Qn at a uniform corner incident
to the root face, we may assume that Qn is uniform in Qln,n by Lemma 10.

We let Cn, `n be the associated contour and label processes, and we define their
renormalized versions

C(n)(s) =
Cn
(
(2n+ ln)s

)
√

2n
, `(n)(s) =

(
9

8n

)1/4

`n
(
(2n+ ln)s

)
, 0 ≤ s ≤ 1 .

We let Dn(i, j) be the distance in Qn between the vertices incident to the i-th and j-th
corner of Fn, for i, j ∈ {0, 1, . . . , 2n + ln}. We extend Dn to a continuous function on
[0, 2n+ ln]2 by “bilinear interpolation,” writing {s} = s− bsc for the fractional part of s,
and then setting

Dn(s, t) = (1− {s})(1− {t})Dn(bsc, btc) + {s}(1− {t})Dn(bsc+ 1, btc)
+ (1− {s}){t}Dn(bsc, btc+ 1) + {s}{t}Dn(bsc+ 1, btc+ 1).

(16)

We finally define its renormalized version

D(n)(s, t) =

(
9

8n

)1/4

Dn

(
(2n+ ln) s, (2n+ ln) t

)
, 0 ≤ s, t ≤ 1 . (17)
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It is shown in [10] that, from every increasing family of positive numbers, one can extract
a further subsequence along which

(C(n), `(n), D(n))
(d)−→

n→∞
(X,Z,D)

in distribution in the space C([0, 1]) × C([0, 1]) × C([0, 1]2). (At this moment, the need
of extracting a subsequence is caused by the last coordinate D(n) and the convergence
without extraction holds if one drops this coordinate.) Here, D is a random pseudo-
distance on [0, 1] and (X,Z) has the distribution3 F1

L defined in Section 2. This means
that X is a first-passage bridge, attaining level −L for the first time at time 1, and Z is
the associated snake process.

Moreover, the pointed random metric space (V(Qn), (9/8n)1/4dQn , v∗) converges in
distribution, still along the same subsequence, to the random metric space ([0, 1]/{D =
0}, D, x∗), in the sense of the pointed Gromov–Hausdorff topology. Here, we let x∗ =
p(s∗), where p : [0, 1] → [0, 1]/{D = 0} is the canonical projection, and s∗ is the (a.s.
unique [10, Lemma 11]) point in [0, 1] at which Z reaches its global minimum.

Proposition 11 ([10]). Almost surely, the space D = [0, 1]/{D = 0} is a topological disk
whose boundary ∂D satisfies

p−1(∂D) = {s ∈ [0, 1] : Xs = Xs} . (18)

Almost surely, the Hausdorff dimension of D is 4, and that of ∂D is 2.

Recall that v∗ is a uniform random vertex in Qn, conditionally given the latter. From
this observation, we obtain an invariance under re-rooting property of (D, D, x∗), along
the same lines as [25].

Lemma 12. Let U be a uniform random variable in [0, 1], independent of (X,Z,D). Then
the two pointed spaces (D, D,p(U)) and (D, D, x∗) have the same distribution.

The following lemma is an easy consequence of the study of geodesics done in [9].

Lemma 13. Almost surely, for every x ∈ D \ ∂D, there exists a geodesic from x to x∗
that does not intersect ∂D. Moreover, this is the only geodesic from x to x∗ for µ-almost
every x ∈ D, where µ = p∗(Leb[0,1]).

Proof. For s ∈ [0, 1], we define the path Φs : [0, D(s∗, s)]→ D by

Φs(w) = p
(
sup

{
r : Zr,s = Zs∗ + w

})
, 0 ≤ w ≤ D(s∗, s) = Zs − Zs∗ .

It is shown in [9, Proposition 23] that the path Φs is a geodesic from x∗ to p(s) in D
and that a.s. all the geodesics from x∗ are of this form. We call increase point of a
function a point t such that the function is greater than its value at t on a small interval

3This is of course an abuse of notation since (X,Z) previously denoted the canonical process, however
we did not want to introduce a further specific notation at this point.
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of the form [t − ε, t] or [t, t + ε] for some ε > 0. Clearly, for 0 ≤ w < D(s∗, s), the
point sup

{
r : Zr,s = Zs∗ + w

}
is an increase point of the process Z, which is furthermore

different from 0. On the other hand, the expression (18) shows that p−1(∂D) is made
only of increase points of X, together with the point 0. Moreover, [9, Lemma 18] states
that, a.s., the processes X and Z do not share any increase points. As a consequence, Φs

may only intersect ∂D at its endpoint p(s) and the first statement follows.
In addition, [9, Proposition 17] entails that, for 0 ≤ s ≤ t ≤ 1, D(s, t) = 0 if and only

if one of the following occurs:

(19a) Xs = Xt = Xs,t;

(19b) Zs = Zt = Zs,t or Zs = Zt = Zt,s.

Moreover, for s 6= t, only one of the previous situations can happen. In some sense, this
can be thought of as a continuous version of the bijection from Section 3.3: point (19a)
constructs the continuous random forest and drawing an arc between a corner and its
successor becomes, in the limit, identifying points with the same label and such that
the labels visited in between in the contour order are all larger (point (19b)). Standard
properties of the process Z then allow us to conclude that Leb[0,1]({s : ∃t 6= s : D(s, t) =
0}) = 0, so that, for µ-almost every x ∈ D, the set p−1(x) is a singleton and the only
geodesic from x∗ to x is thus Φp−1(x).

Combining Lemmas 12 and 13, we see that the conclusion of the latter is still valid
if x∗ is replaced by a uniformly chosen point in D, that is, a random point of the form
p(U) as in the first lemma. Finally, we will use the following result.

Lemma 14 ([10]). The following properties hold almost surely.

• D ∈ D.

• D(s, s∗) = Zs − Zs∗ for every s ∈ [0, 1].

4.2 Identification of the limit

Recall the notation D∗ from Section 2.3. In this section, we show the following result.

Theorem 15. Almost surely, it holds that D = D∗.

Theorem 1 is an immediate consequence of this. Indeed, since D∗ is a measurable
function of (X,Z), this shows that D∗ is the only possible subsequential limit of D(n).
This, combined with the tightness of the sequence (D(n), n ≥ 1) that we alluded to above,
implies that D(n) converges in distribution to D∗.

In turn, this convergence implies that of (9/8n)1/4Qn to BDL = (D, D∗) in the
Gromov–Hausdorff sense and even that of the pointed space ((9/8n)1/4Qn, v∗) to (BDL, x∗),
where we recall that x∗ = p(s∗). Let us recall how to prove this fact. First, one can assume
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that the convergence of (C(n), `(n), D(n)) to (X,Z,D∗) is almost-sure, by using Skorokhod’s
representation theorem. Then we define a correspondence Rn between Qn and BDL by

Rn = {(vb(2n+ln)sc,p(s)) : s ∈ [0, 1]} ∪ {(v∗,p(s∗))} ,

where vi is the vertex of Qn incident to the i-th corner ci. It is elementary to see from the
uniform convergence of D(n) to D∗ that the distortion of Rn with respect to the metrics
(9/8n)1/4dQn and D∗ converges to 0 as n→∞.

Recall that [a, b] is an excursion interval of X above X if a < b and Xa = Xb = Xb.
Let us arrange the excursion intervals of X above X as [ai, bi], i ≥ 1 in decreasing order
of length. For a given i, the excursion interval [ai, bi] encodes a Brownian map with a
geodesic boundary in the sense of [26]. Namely, let diZ(s, t) = Zs + Zt − 2Zs∧t,s∨t for
s, t ∈ [ai, bi], and let D̃i be the maximal pseudo-distance on [ai, bi] that is less than diZ
and satisfies dX(s, t) = 0 =⇒ D̃i(s, t) = 0. More explicitly,

D̃i(s, t) = inf

{
k∑
j=1

diZ(sj, tj) :
k ≥ 1 , s1, t1, s2, t2, . . . , sk, tk ∈ [ai, bi], s1 = s, tk = t,
dX(tj, sj+1) = 0 for every j ∈ {1, . . . , k − 1}

}
.

The next key lemma states that the distance D can be identified as a metric gluing of
the maps with geodesic boundaries ([ai, bi], D̃

i)/{D̃i = 0}, i ≥ 1. This guides the intuition
of its proof, which will partly consist in going back to the discrete slices that compose the
quadrangulations with boundaries we took the limit of.

Lemma 16. Let D̃ be the pseudo-distance on
⋃
i≥1[ai, bi] defined by D̃(s, t) = D̃i(s, t)

if s, t ∈ [ai, bi] for some i ≥ 1, and D̃(s, t) = ∞ otherwise. Then for almost every
(s, t) ∈ [0, 1]2 with respect to the Lebesgue measure, it holds that

D(s, t) = inf

{
k∑
j=1

D̃(sj, tj) :
k ≥ 1 , s1, t1, s2, t2, . . . , sk, tk ∈ [0, 1], s1 = s, tk = t,
dZ(tj, sj+1) = 0 for every j ∈ {1, . . . , k − 1}

}
.

Moreover, the above infimum is attained.

Proof. Clearly, D(s, t) ≤ dZ(s, t) ≤ diZ(s, t) whenever s, t ∈ [ai, bi], so that D(s, t) ≤
D̃(s, t) for s, t ∈ [0, 1] and, as a consequence, the left-hand side is smaller than the
right-hand side. We then only need to prove the converse inequality.

Let us first define the discrete analogs to the functions D̃i. We consider the i-th largest
tree t of Fn and we suppose that it is visited between times ani and bni in the contour order
of Fn. For j, k ∈ {ani , . . . , bni }, we let D̃n(j, k) be the distance in the slice corresponding
to t between the vertices vj and vk incident to the j-th and k-th corner of Fn. In other
words, D̃n(j, k) is the length of a shortest path linking vj to vk and that do not “traverse”
the images in Qn of the maximal geodesic and shuttle of the aforementioned slice. We
then extend D̃n to a continuous function on [ani , b

n
i ]2 by bilinear interpolation, and define

its renormalized version D̃i
(n) on a subsquare of [0, 1]2 by the analog of (17). We define

D̃i
(n) arbitrarily for i > ln.
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As an easy consequence of [26, Proposition 9.2], we obtain that(
C(n), `(n),

(
D̃i

(n)

)
i≥1

)
−−−→
n→∞

(
X,Z,

(
D̃i
)
i≥1

)
(20)

in distribution in the space C([0, 1]) × C([0, 1]) × C([0, 1]2)N . Applying Skorokhod’s rep-
resentation theorem, we furthermore assume from now on that the previous convergence
holds a.s.

It suffices to prove the claimed formula where s, t are replaced by two independent
uniform random variables U , V , independent of (X,Z,D). Let γ : [0, D(U, V )] → D be
the geodesic in (D, D) from p(U) to p(V ), which by Lemmas 12 and 13 is unique and
does not intersect ∂D, a.s. Let also Im(γ) = γ([0, D(U, V )]) be the image of γ and define

I(U, V ) =
{
i ≥ 1 : p−1(Im(γ)) ∩ [ai, bi] 6= ∅

}
.

Claim 1. The set I(U, V ) is finite almost surely.

Proof. Let us argue by contradiction, assuming that I(U, V ) is infinite with positive
probability. Then it holds that, still with positive probability, there is an increasing
integer sequence (in)n≥1 and a sequence (rn)n≥1 with values in [0, D(U, V )] such that
γ(rn) ∈ p([ain , bin ]). Then, up to extraction, the sequence (rn) converges to some limit r,
and if sn ∈ [ain , bin ] is a choice of a given element in p−1(γ(rn)), then, again up to possibly
further extraction, (sn) converges to a limit s with p(s) = γ(r). By construction, s is not
in
⋃
i≥1(ai, bi), since the intervals in this union are pairwise disjoint. This implies that

Xs = Xs, meaning that γ(r) = p(s) ∈ ∂D, which is the contradiction we were looking
for. 3

Let γil , γir be the left and right “geodesic boundaries” of the space ([ai, bi]/d
i
Z , d

i
Z),

defined by

γil (t) = p
(

inf{s ∈ [ai, bi] : Zs = Zai − t}
)
, γir(t) = p

(
sup{s ∈ [ai, bi] : Zs = Zai − t}

)
,

where t ranges over [0, Zai − Zai,bi
] (recall that Zai = Zbi). Those are geodesic paths

in (D, D) from p(ai) to p(s∗i ), where s∗i is the (a.s. unique [29]) time in [ai, bi] at which
Z attains its infimum on that same interval. Alternatively, these paths are parts of the
geodesics Φai and Φbi introduced earlier. Note also that Im(γil )∩ Im(γir) is not necessarily
reduced to {p(s∗i )}.
Claim 2. It is not possible to find r1 < r2 < r3 such that γ(r1), γ(r3) ∈ Im(γil ) and
γ(r2) /∈ Im(γil ). The same statement is valid for γir instead of γil .

Proof. Indeed, such a situation would clearly violate the uniqueness of the geodesic γ,
since we could replace it between times r1 and r3 by the arc of γil from γ(r1) to γ(r3), and
still obtain a geodesic from p(U) to p(V ), distinct from γ. 3

Claim 3. Almost surely, for every i ≥ 1, the topological boundary of p([ai, bi]) in (D, D)
is included in Im(γil ) ∪ Im(γir).
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Proof. This claim is relatively obvious with the interpretation that ([ai, bi]/{D̃i = 0}, D̃i)
is a space with geodesic boundaries given by γil , γir, but since we are not referring explicitly
to these spaces, let us give a complete proof for this. In fact, the topological boundary
of p([s, t]) for any ai ≤ s ≤ t ≤ bi is given by [9, Lemma 21] but, as the proof is quite
short, we restate the arguments here. Note that p([ai, bi]) is closed so that every point
in ∂p([ai, bi]) is of the form p(s′) for some s′ ∈ [ai, bi] and is a limit of a sequence of
points of the form p(sn), n ≥ 1, where sn /∈ [ai, bi] for every n ≥ 1. Up to extraction,
(sn) converges to a limit s /∈ (ai, bi) such that D(s, s′) = 0. If s ∈ {ai, bi} then the
claim follows immediately. Otherwise, s 6= s′ and, as mentioned during the proof of
Lemma 13, this implies dX(s, s′) = 0 (19a) or dZ(s, s′) = 0 (19b). It cannot hold that
dX(s, s′) = 0 because s′ ∈ [ai, bi] while s /∈ [ai, bi], so necessarily dZ(s, s′) = 0. Assuming
for instance that Zs = Zs′ = Zs,s′ , so that Zu ≥ Zs′ for every u ∈ [ai, s

′], this implies that
dZ(s, inf{u ∈ [ai, bi] : Zu = Zs) = 0. Finally, we get that p(s) = γil (Zai − Zs) ∈ Im(γil ).
Similarly, if Zs = Zs′ = Zs′,s, we obtain that p(s) ∈ Im(γir). 3

From the three claims above, we obtain that there exists a finite number of points
x1, x2, . . . , xk+1 ∈ D and integers i1, . . . , ik with x1 = p(U), xk+1 = p(V ), such that γ
visits the points x1, x2, . . . , xk+1 in this order, and such that the segment of γ between xj
and xj+1 is

(21a) either included in Im(γ
ij
l ) or included in Im(γ

ij
r )

(21b) or included in p([aij , bij ]) and such that its intersection with Im(γ
ij
l ) ∪ Im(γ

ij
r ) is a

subset of {xj, xj+1}.
Indeed, Claims 1 and 2 entail that Im(γ)∩(

⋃
i Im(γil )∪Im(γir)) is a finite union of segments

satisfying (21a) and the parts of γ linking two successive such segments satisfy (21b), by
Claim 3. Since the segment of γ between xj and xj+1 is included in p([aij , bij ]) in both
cases, we may choose sj, tj ∈ [aij , bij ] such that xj = p(sj) and xj+1 = p(tj). For any
such choice,

D(U, V ) =
k∑
j=1

D(sj, tj) .

We will soon justify that we can choose sj, tj satisfying the extra property that
D(sj, tj) = D̃(sj, tj) on the event {max(I(U, V )) ≤ N}. Since, by definition, p(tj) =
p(sj+1), one has dX(tj, sj+1) = 0 or dZ(tj, sj+1) = 0 so that D̃(tj, sj+1) = 0 or dZ(tj, sj+1)
= 0. Similarly, D̃(U, s1) = 0 or dZ(U, s1) = 0 and D̃(tk, V ) = 0 or dZ(tk, V ) = 0. As
a result, up to potentially doubling some sj’s and tj’s, we wrote D(U, V ) in the desired
form and we conclude the proof by letting N →∞, as max(I(U, V )) <∞ almost surely
by Claim 1.

Let us work from now on on the event {max(I(U, V )) ≤ N} and justify the possi-
bility of choosing sj, tj as previously claimed. If the segment of γ between xj and xj+1

satisfies (21a), then the claim readily follows from Lemma 14, as

D(sj, tj) ≥ |D(sj, s∗)−D(tj, s∗)| = |Zsj − Ztj | ≥ diZ(sj, tj) ≥ D̃(sj, tj)
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(Recall that the converse inequality always holds.) We now suppose that the segment
of γ between xj and xj+1 satisfies (21b) and we go back to the discrete setting. For
u ∈ {0, 1/(2n+ ln), . . . , 1}, we denote by cn(u) the (2n+ ln)u-th corner of Fn. We let anij
and bnij be such that cn(anij) and cn(bnij) are the first and last corners of the ij-th largest
tree of Fn. Standard properties of Brownian motion and the convergence C(n) → X entail
that anij → aij and bnij → bij . Choose two sequences snj , tnj ∈ [anij , b

n
ij

] indexed by n such
that snj → sj and tnj → tj. We denote by unj and vnj the vertices incident respectively to
cn(snj ) and cn(tnj ) and we let γnj be a geodesic in Qn from unj to vnj .

We also let Vj be the set of vertices of ij-th largest tree of Fn that do not belong to the
maximal geodesic of the slice corresponding to this tree, seen as a subset of V(Qn). We
will see that Im(γnj ) \Vj is only constituted of vertices “close” to the extremities of γnj in
the scale n−1/4. Notice first that the middle point γnj

(
bDQn(unj , v

n
j )/2c

)
of γnj necessarily

belongs to Vj for large n. Indeed, let us assume otherwise. Then, for infinitely many
values of n, we can find real numbers un /∈ [anij , b

n
ij

] such that cn(un) is incident to the
middle point of γnj . Up to further extraction, we may suppose that un → u /∈ (aij , bij),
so that p(u) does not belong to the interior of p([aij , bij ]). As p(u) is at mid-distance
between xj and xj+1, we obtain a contradiction with (21b).

We then let s̃nj ∈ [anij , b
n
ij

] be such that cn(s̃nj ) is incident to

γnj
(

min
{
α ≤ DQn(unj , v

n
j )/2 : γnj (β) ∈ Vj for all β ∈ [α,DQn(unj , v

n
j )/2]

})
and, symmetrically, t̃nj ∈ [anij , b

n
ij

] be such that cn(t̃nj ) is incident to

γnj
(

max
{
α ≥ DQn(unj , v

n
j )/2 : γnj (β) ∈ Vj for all β ∈ [DQn(unj , v

n
j )/2, α]

})
.

Up to further extraction, we may suppose that s̃nj → s̃j and t̃nj → t̃j. We necessarily have
p(sj) = p(s̃j). Indeed, let us argue by contradiction and suppose that p(sj) 6= p(s̃j). The
definition immediately entails that p(s̃j) ∈ Im(γ

ij
l )∪ Im(γ

ij
r ). But, as p(s̃j) ∈ p([aij , bij ]),

the condition (21b) yields p(sj) = p(s̃j), a contradiction. This implies D(sj, s̃j) = 0,
which also implies dX(sj, s̃j) = 0 or dZ(sj, s̃j) = 0, so that D̃(sj, s̃j) = 0 as sj and s̃j
both belong to the same excursion interval [aij , bij ]. The same argument shows that
D(tj, t̃j) = D̃(tj, t̃j) = 0. Finally,D(n)(s̃

n
j , t̃

n
j ) = D̃

ij
(n)(s̃

n
j , t̃

n
j ) by construction and we obtain

D(s̃j, t̃j) = D̃(s̃j, t̃j) by (20), and thenD(sj, tj) = D̃(sj, tj) by the previous discussion.

Note that from the formula for D(s, t) given in the statement of Lemma 16 and the
definition of D∗, it holds that D(s, t) ≥ D∗(s, t) for Lebesgue-almost every s, t ∈ [0, 1], so
that equality holds since D ≤ D∗ by Lemma 14. Since D∗ ≤ dZ , which is continuous on
[0, 1]2 and null on the diagonal, we get immediately that the pseudo-distances D, D∗ are
continuous when seen as functions on [0, 1]2, and by density we get that D = D∗. This
proves Theorem 15.



5 BOLTZMANN RANDOM MAPS AND WELL-LABELED MOBILES 28

5 Boltzmann random maps and well-labeled mobiles

5.1 The Bouttier–Di Francesco–Guitter bijection

There is a well-known extension of the Cori–Vauquelin–Schaeffer bijection to general
maps. This extension, due to Bouttier, Di Francesco and Guitter [14], can roughly be
described in the following way. Any bipartite map can be coded by an object called a
well-labeled mobile. Namely, a mobile is a rooted plane tree t (we usually call e0 its root
edge) together with a bicoloration of its vertices into “white vertices” and “black vertices.”
We denote by V◦(t), V•(t) the corresponding sets of vertices, and ask that any two
neighboring vertices carry different colors, and that e−0 ∈ V◦(t), meaning that mobiles
are rooted at a white vertex.

Moreover, the set V◦(t) carries a label function ` : V◦(t) → Z, that satisfies the
following property: if v′ ∈ V•(t) is a black vertex, and if v′0, v′1, . . . , v′k−1 ∈ V◦(t) denote
the neighbors of v′ arranged in clockwise order around v′ induced by the planar structure
of t (so that k = degt(v

′)), it holds that

`(v′i+1)− `(v′i) ≥ −1 , ∀ i ∈ {0, 1, . . . , k − 1} ,

with the convention that v′k = v′0. A simple counting argument shows that, as soon as one
of the labels, say that of `(v′0), is fixed, there are exactly

(
2k−1
k

)
possible choices for the

other labels `(v′1), . . . , `(v′k−1). At this point of the discussion, we do not insist that the
label of any given vertex is fixed, so we really view ` as a function defined up an additive
constant, as we did in Section 3. We will fix a normalization in the next section.

In our context of maps with a boundary, we use the following conventions. The objects
encoding the bipartite maps with perimeter 2l (maps of Bl) are forests f = (t1, . . . , tl)
of l mobiles, together with a labeling function ` : V◦(f) =

⊔
iV◦(ti) → Z satisfying the

following:

• for 1 ≤ i ≤ l, the mobile ti equipped with the restriction of ` to V◦(ti) is a well-
labeled mobile;

• for 1 ≤ i ≤ l, we have `(ρi+1) ≥ `(ρi)− 1, where ρi denotes the root vertex of ti and
`(ρl+1) = `(ρ1).

Remark 4. These forests are in simple bijection with the set of mobiles rooted (unusually)
at a black vertex of degree l. But since the external face really plays a different role from
the other faces, we prefer indeed to view those as forests of individual mobiles, rather
than one single mobile.

The BDG bijection is very similar to the construction presented in Section 3.3. We
consider a forest f = (t1, . . . , tl) of l mobiles, labeled by ` as above and we set `∗ =
min{`(v) : v ∈ V◦(f)}− 1. We let NV be its number of white vertices, NF be its number
of black vertices, and NE = NV + NF be its total number of vertices. (The reason for
this notation will become clear in a short moment.)
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We identify f with the map obtained by adding l edges linking the roots ρ1, ρ2, . . . ,
ρl of the successive trees in a cycle. This map has one face of degree l incident to the l
added edges and another face of degree 2NE − l, incident to the l added edges as well
as all the mobiles. In the latter face, we let c0, c1, . . . , c2NV−l−1 be the sequence of
corners incident to white vertices, listed in contour order, starting from the root corner
of t1. We extend this list by periodicity and add one corner c∞ incident to a vertex v∗
lying inside the face of degree 2NE − l, with label `(c∞) = `(v∗) = `∗. We define the
successor functions by (15) and draw arcs in a non-crossing fashion from ci to s(ci) for
every i ∈ {0, 1, . . . , 2NV− l−1}. We root the resulting map at the corner of the degree 2l-
face that is incident to the root vertex of t1. We obtain a rooted bipartite map m with
perimeter 2l, with vertex set V◦(t)∪{v∗}, which is naturally pointed at v∗, and such that
the root edge points away from v∗.

As in Section 3.3, the fact that the root edge necessarily points away from v∗ is a
bit unfortunate and we use the same trick in order to overcome this technicality. More
precisely, we consider the map obtained from m by forgetting its root and re-rooting it
at a corner chosen uniformly at random among the 2l corners of the root face.

A noticeable fact about the BDG bijection is that the black vertices of the forest are
in bijection with the internal faces of the map. More precisely, if v ∈ V•(f) corresponds to
the face f of m, then degm(f) = 2 degf (v). Furthermore, the white vertices are bijectively
associated with V(m) \ {v∗} (so that we can naturally identify these two sets), in such a
way that the label function ` gives distances to v∗ via the formula

dm(v, v∗) = `(v)− min
V◦(t)

`+ 1 . (22)

As a result (and with the help of the Euler characteristic formula), note that NV + 1, NF

and NE respectively correspond to the number of vertices, internal faces, and edges of m
— this explains the notation.

5.2 Random mobiles

We now show how to represent the pointed Boltzmann measures W•l of Section 1.4.2 in
terms of random trees, via the BDG bijection. Let µ◦ be the geometric distribution with
parameter 1/Zq, given by

µ◦(k) =
1

Zq

(
1− 1

Zq

)k
, k ≥ 0 .

Let also

µ•(k) =
Zkq
(
2k+1
k

)
qk+1

fq(Zq)
k ≥ 0 .

Let Ml be the law of a two-type Bienaymé–Galton–Watson forest, with l independent
tree components, and in which even generations (white vertices) use the offspring dis-
tribution µ◦, while odd generations (black vertices) use the offspring distribution µ•.
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Formally, we let Ml = (M1)
⊗l where M1 is defined by

M1({t}) =
∏

u∈V◦(t)

µ◦(ku(t))
∏

u∈V•(t)

µ•(ku(t))

for every tree t, where ku(t) is the number of children of u in t. Finally, given a forest
with law Ml, the white vertices carry random integer labels with the following law. Let ξ1,
ξ2, . . . be a sequence of i.i.d. random variables with shifted geometric(1/2) distributions

P(ξi = l) = 2−l−2 , l ≥ −1 , i ≥ 1 ,

and let (Y1, . . . , Yk) be distributed as the partial sums (ξ1, ξ1 + ξ2, . . . , ξ1 + . . .+ ξk) condi-
tionally given ξ1 + . . .+ ξk+1 = 0. We say that (Y1, . . . , Yk) is a discrete bridge with shifted
geometric steps, and we let νk be the law of this random vector. It is simple to see that,
if ν0k is the uniform distribution on{

(x1, . . . , xk, xk+1) ∈ {−1, 0, 1, 2, . . .}k+1 :
k+1∑
i=1

xi = 0

}
,

then νk is the image measure of ν0k under (x1, . . . , xk+1) 7→ (
∑j

i=1 xj, 1 ≤ j ≤ k).
Conditionally given the tree, if u is a black vertex with parent u0 and children u1, u2,

. . . , uk, then the law νk of the label differences (`(ui) − `(u0), 1 ≤ i ≤ k) is given by νk,
while those label differences are independent as u ranges over all black vertices. Finally,
the labels of the roots ρ1, . . . , ρl of the forest have same law as (0, Y1, . . . , Yl), where
(Y1, . . . , Yl) has law νl. These specify entirely the law of the labels, and in fact, one sees
that labels are uniform among all admissible labelings of the forest, in which the root ρ1
of the first tree carries label 0. For simplicity, we still denote by Ml the law of forest of
well-labeled mobiles thus obtained.

For S ∈ {V,E,F}, we let B•,Sl,n be the set of pointed maps (m, v∗) ∈ B• such that
m ∈ BS

l,n and we define
W•,Sl,n = W •( · ∣∣B•,Sl,n ) , (23)

where W • was defined by (4).

Proposition 17. Let q be an admissible sequence, and l ≥ 1. Then the image of Ml under
the Bouttier–Di Francesco–Guitter bijection is, after uniform re-rooting on the boundary,
the probability measure W•l .

For S ∈ {V,E,F}, the same statement holds if we replace both Ml with Ml( · |NS =
n)) and W•l with W•,Sl,n .

This is proved by following the same steps as in [30, Proposition 7] and by apply-
ing a straightforward analog of Lemma 10; we omit the details. At this point, we can
prove Lemma 3, which describes the set ES(q) of pairs (l, n) such that W(BS

l,n) > 0 or,
equivalently, such that Ml(N

S = n) > 0.
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Proof of Lemma 3. Let us fix the symbol S. By Proposition 2.2 in [38], under the law M1,
there exist two constants α, h such that the support of NS is included in α + hZ+, and
moreover, for every m large enough, M1(N

S = α+ hm) > 0. In particular, there exists β
such that M1(N

S = β + hm) > 0 for every m ≥ 0. This means that the support of the
law of NS under M1 is equal to R∪ (β+hZ+), for some R ⊂ {0, 1, . . . , β− 1}. From this,
we immediately deduce the similar result for forests under the distribution Ml. Namely,
the support of NS under Ml is equal to Rl ∪ (βl+ hZ+), for some Rl ⊂ {0, 1, . . . , βl− 1}.
From this observation and Proposition 17, using the remark at the end of the preceding
section that the image of NS under the BDG bijection is |S|−1{S=V}, we obtain that the
support of the law of |S(m)| − 1{S=V} under W•l (or under Wl by the absolute continuity
relation (5)) is equal to

Rl ∪ (βl + hZ+) .

The result follows immediately from this, since the explicit form of h was computed in
Section 6.3.1 of [38].

Again, in all the following, when considering pairs (l, n) where l corresponds to the
boundary length of a map, and n to its size (measured with respect to the symbol S), it
will always be implicitly assumed that (l, n) ∈ ES(q), which by Lemma 3 means that, up
to finitely many exceptions,

n = βSl [modhS] .

6 Convergence of the encoding processes
Let us now consider an infinite forest F with distribution M∞ = (M1)

⊗N. With it, we
associate several exploration processes. Let v0, v1, v2. . . denote the vertices of F (black
or white), listed in depth-first order, tree by tree. Let H be the so-called height process
associated with F , that is, H(i) denotes the distance between the vertex vi and the root
of the tree to which it belongs. For i ≥ 0, we denote by ˆ̀(i) the label of vi, as well as
ˆ̀0(i) = ˆ̀(i) − `(ρ(i)), where ρ(i) is the root of the tree to which vi belongs. Note that
this notion of label process differs from the one introduced during Section 4; we use the
notation with a hat in order to avoid confusion. Recall also that, under M∞, the labels are
normalized in such a way that the root of the first tree gets label 0, so that the process ˆ̀

is defined without ambiguity. Finally, let Υ(i) be the number of fully explored trees at
time i, that is, Υ(i) + 1 = p whenever vi belongs to the p-th tree of F , that is ρ(i) = ρp.
We also let

τl = inf{i ≥ 0 : Υ(i) = l}
be the number of (black or white) vertices in the first l trees of the forest. Note for
instance that, with the notation of Section 5.1, one has NE = τl under the law Ml.
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6.1 Convergence for an infinite forest

A key result is the following. Recall that Zq is given by (6) and ρq = 2+Z3
q f
′′
q (Zq). Define

σ2
q =
Zqρq

4
, σE

2 =
ρq
Zq

.

Proposition 18. The following joint convergence holds in distribution in C(R+,R) under
M∞: (

H(m ·)√
m

,
Υ(m ·)√

m
,

ˆ̀0(m ·)
m1/4

)
(d)−→

m→∞

(
2

σq
(X −X),−σEX,

√
2σE

3
Z0

)
where (Xt, t ≥ 0) is a standard Brownian motion, X t = inf0≤s≤tXs and Z0 is the Brow-
nian snake with driving process X −X, introduced in Section 2.2.

Proof. We note that the two-type branching process with offspring distributions µ◦, µ•
and alternating types is a critical branching process, in which the offspring distributions
have small exponential moments (this is the place where we use the fact that q is regular
critical), as discussed in Proposition 7 of [30]. Furthermore, the spatial displacements
with distribution νk are centered and carried by [−k, k]k respectively. In particular, they
have moments of all orders, which grow at most polynomially, in the sense that for every
a > 0,

〈νk, | · |a〉 = O(ka) ,

where |·| is the Euclidean norm in Rk. This is exactly what is needed to apply Theorems 1
and 3 in [32], which in our particular context stipulate that(

H(m ·)√
m

,
Υ(m ·)√

m
,

ˆ̀0(m ·)
m1/4

)
(d)−→

m→∞

(
2

σ
(X −X),− σ

b◦
X,Σ

√
2

σ
Z0

)
,

where the constants σ, b◦ and Σ are defined in the following way. The mean matrix of
the two-type Galton–Watson process under consideration is given by(

0 m◦
m• 0

)
,

where m◦ is the mean of µ◦, and m• is the mean of µ•. Note that m• = m−1◦ as an
immediate consequence of the fact that q is regular critical. This matrix admits a left
invariant vector a = (a◦, a•) normalized to be a probability, namely a◦ = (1 +m◦)

−1 and
a• = (1 + m•)

−1, and a right invariant b = (b◦, b•) normalized in such a way that the
scalar product a · b = 1, namely b◦ = (1 + m◦)/2 and b• = (1 + m•)/2. Finally, with
(µ◦, µ•), one can associate a quadratic function Q : R2 → R2 given by

Q(x◦, x•) = ((σ2
◦ +m◦(m◦ − 1))x2• , (σ

2
• +m•(m• − 1))x2◦) ,

where σ2
◦ and σ2

• are the variances of µ◦ and µ•. Then σ2 is given by the scalar product

σ2 = a ·Q(b) .
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Finally, Σ2 is given by the formula

Σ2 =
1

2

∑
k≥1

µ•(k)

m•
(Σk
•)

2

where (Σk
•)

2 = 〈νk, | · |2〉 = k(k + 1)/3, as can be checked in [30]. After computations,
which have been performed in Section 3.2 of [30], one obtains in particular

m◦ = Zq − 1 , b◦ =
Zq
2
, σ2 =

Zqρq
4

, Σ2 =
ρq
6
.

The conclusion follows.

We are also going to need the following fact. For every m ≥ 1, let

ΛV(m) =
∣∣{i ∈ {0, 1, . . . ,m− 1} : vi ∈ V◦(f)

}∣∣ ,
ΛF(m) =

∣∣{i ∈ {0, 1, . . . ,m− 1} : vi ∈ V•(f)
}∣∣ , (24)

be respectively the number of white vertices and the number of black vertices among the
first m vertices of F in depth-first order. For convenience, we also let ΛV(m) = m (the
number of vertices of either type), so that ΛS makes sense for every S ∈ {V,E,F}. Define

aV = Z−1q , aF = 1−Z−1q , aE = 1 . (25)

The first two quantities are the ones that appeared in the proof of Proposition 18, under
the notation aV = a◦ and aF = a•. (Recall that, through the BDG bijection, V correspond
essentially to white vertices, F to black vertices and E to edges of the mobile, which are
in direct bijection with the set of vertices of both colors.)

In the following statement and later, the notation oe(n) stands for a quantity that is
bounded from above by c exp(−c′nc′′) for three positive constants c, c′, c′′, uniformly in n.

Proposition 19. Fix S ∈ {V,E,F}. Then it holds that(
ΛS(m ·)
m

)
−→
m→∞

(aS t, t ≥ 0)

in probability under M∞ for the uniform topology over compact subintervals of R+. More
precisely, for every K > 0, one has the concentration result

M∞
(

max
0≤k≤Km

|ΛS(k)− aS k| > m3/4

)
= oe(m) .

Proof. The result is obvious for S = E, so that we suppose S ∈ {V,F}. We first note
that, since ΛS(k) ≤ k, it suffices to prove the same bound with the maximum restricted
over indices k ∈ [m1/2, Km]. Now [32, Proposition 6 (ii)] shows that if GS

k is the number of
vertices in depth-first order (of either type) that have been visited before the k-th vertex
of type S (white if S = V, black if S = F), then M∞(|GS

k − a−1S k| > k3/4) = oe(k). Now
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|ΛS(k)− aS k| > m3/4 implies that GS
aSk+m3/4 ≤ k or GS

(aSk−m3/4)+
≥ k, the probability of

which is bounded from above by

M∞
(
|GS

aSk+m3/4 − a−1S (aS k +m3/4)| ≥ a−1S m3/4
)

+ M∞
(
|GS

(aSk−m3/4)+
− a−1S (aS k −m3/4)+| ≥ a−1S m3/4

)
.

Taking the maximum over all k ∈ [m1/2, Km] ∩ Z, we see that this quantity is oe(m), as
claimed.

6.2 Convergence for a conditioned forest

We now want a conditioned version of Proposition 19. We are going to need the following
estimates. Recall the definition (2) of hS, the definition (8) of jL(A), and define QS(l, n) =
Ml(N

S = n). We will also need the notation

τSl = ΛS(τl) .

In words, τEl = τl is the number of vertices in the l first trees of the forest, while τVl
(resp. τFl ) is the number of white (resp. black) vertices in these trees.

Lemma 20. Let S ∈ {V,E,F}. Then

sup
n∈ESl

∣∣∣ l2QS(l, n)− hS j1/σS
(n
l2

)∣∣∣ −→
n→∞

0 .

Proof. Suppose first that S = E. In this case, a consequence of the convergence of the
second component in Proposition 18 is that

τl
l2

(d)−→
l→∞

T1/σE ,

where we recall that T1/σE = inf{t ≥ 0 : X t = −1/σE} is a.s. a continuous function of X
under the Wiener measure, due to the fact that X(T1/σE−ε)+

> −1/σE > XT1/σE+ε a.s. for
every ε > 0. Moreover, τl under M∞ is the sum of l i.i.d. random variables with same
law as τ1: these are given by the number of vertices of the first l trees in the infinite
forest of independent random mobiles. Since it is well known that T1/σE follows a stable
distribution with index 1/2, with a density given by j1/σE , we conclude that τ1 under M∞
is in the domain of attraction of this law. The statement is then a consequence of the
local limit theorem for stable random variables [13, Theorem 8.4.1].

The remaining two cases S ∈ {V,F} are now direct consequences of the case S = E
and of Proposition 19, which together imply that we have

τSl
l2

=
ΛS(τl)

l2
=
aS τl (1 + oP(1))

l2
, (26)
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where oP(1) denotes a quantity that converges to 0 in probability. This yields that

τSl
l2

(d)−→
l→∞

aST1/σE
(d)
= T√aS/σE = T1/σS ,

as can be checked using (7) and (25). The conclusion follows by the same arguments as
in the case S = E.

In this section, it is convenient to consider processes whose total duration is not fixed.
We let W be the set of real-valued continuous functions f defined on an interval of the
form [0, ζ] for some ζ = ζ(f) ∈ [0,∞). This set is endowed with the distance

dist(f, g) = ‖f(· ∧ ζ(f))− g(· ∧ ζ(g))‖∞ + |ζ(f)− ζ(g)|

which makes it a complete separable metric space. For instance, the height process H
under the law Ml is a function with duration ζ(H) = NE.

Recall the definition of S S
L given right after (7).

Proposition 21. Let S ∈ {V,E,F} and (lk, nk)k≥0 ∈ S S
L for some L > 0. Then, under

Mlk( · |NS = nk), it holds that(
H(a−1S nk ·)√

nk
,
Υ(a−1S nk ·)√

nk
,

ˆ̀0(a−1S nk ·)
nk1/4

)
(d)−→
k→∞

(
2√
aS σq

(X −X),−σSX,
√

2σS
3
Z0

)
,

in distribution in the spaceW3 where, in the limit, X, Z0 are understood under the law F1
L

defined in Section 2.2.

Proof. For simplicity, let Ξk denote the triple appearing in the left-hand side of the con-
vergence. Denote by Fp the σ-field generated by the p first trees of the generic (canonical
process) infinite forest f = (t1, t2, . . .), together with their labels. Let G be measurable
with respect to Fl′k , with l′k < lk. Then we have

Mlk

[
G
∣∣NS = nk

]
= M∞

[
G
QS(lk − l′k, nk − τSl′k)

QS(lk, nk)

]
, (27)

where it should be understood that the quantity in the expectation is 0 whenever τSl′k > nk.
Now, we impose that G = Φ(Ξ′k) is a continuous, bounded function of the triple of
processes

Ξ′k =

(
H(a−1S nk · ∧τl′k)√

nk
,
Υ(a−1S nk · ∧τl′k)√

nk
,

ˆ̀0(a−1S nk · ∧τl′k)
n
1/4
k

)
,

where we assume that l′k ∼ L′σS
√
nk for some 0 < L′ < L. Proposition 18 shows the

convergence in distributionH(a−1S nk ·)√
a−1S nk

,
Υ(a−1S nk ·)√

a−1S nk

,
ˆ̀0(a−1S nk ·)(
a−1S nk

)1/4
 (d)−→

k→∞

(
2

σq
(X −X),−σEX,

√
2σE

3
Z0

)
,
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where the limit is understood under the law P. Using the convergence of the second
component, the asymptotic behavior of l′k and the fact that aSσS2 = σE

2, it follows that

τl′k
a−1S nk

(d)−→
k→∞

TL′ ,

and that this convergence holds jointly with the previous one. From this, it follows that Ξ′k
converges in distribution under M∞ to the triple

Ξ′∞ =

(
2√
aS σq

(X −X) · ∧TL′ ,−σSX · ∧TL′ ,
√

2σS
3
Z0
· ∧TL′

)

and an application of (26) implies that τSl′k/nk → TL′ jointly with the above convergence.
By the Skorokhod representation theorem, we may assume that the probability space is
chosen in such a way that these convergences hold in the almost-sure sense, and then (27)
together with Lemma 20 implies that

Mlk

[
Φ(Ξ′k) |NS = nk

] (d)−→
k→∞

E

Φ(Ξ′∞)
L2

(L− L′)2
j1/σS

(
(1− TL′)

σS2 (L− L′)2
)

j1/σS

(
1

σS2L2

)


and the limit can be re-expressed as

E
[
Φ(Ξ′∞)

jL−L′(1− TL′)
jL(1)

]
= F1

L[Φ(Ξ′∞)] .

By definition, Φ(Ξ′∞) is GTL′ -measurable and, by Galmarino’s test, we have GTL′ =
σ(X· ∧TL′ , Z

0
· ∧TL′ ), so that, if it exits, the limit of the triple considered in the statement of

the proposition necessarily has the claimed law, by virtue of Proposition 9.
To conclude the proof, it remains to prove that the laws of the processes under consid-

eration are tight in W3. We can argue as follows. Let f be a continuous function defined
on an interval I, and J ⊆ I be a subinterval of I. Denote by

ω(f, δ, J) = sup
s,t∈J, |t−s|≤δ

|f(t)− f(s)|

the modulus of continuity of f restricted to J , and let ω(f, δ) = ω(f, δ, I).
Here, let Yk denote either of the components of Ξk. Then, under Mlk( · |NS = nk),

ω(Yk, δ) ≤ ω
(
Yk, δ, [0, aSτl′k/nk]

)
+ ω

(
Yk, δ, [aSτl′k/nk, aSτlk/nk]

)
while the second component has same distribution as

ω
(
Yk, δ, [0, aSτlk−l′k/nk]

)
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by a symmetry argument (the lk trees of the labeled forest are exchangeable). Choosing
l′k ∼ lk/2, we obtain from the convergence of Ξ′k (for L′ = L/2) that

lim sup
n→∞

Mlk

(
ω(Yk, δ) ≥ ε

)
≤ lim sup

n→∞
Mlk

(
ω
(
Yk, δ, [0, aSτl′k/nk]

)
≥ ε/2

)
+ Mlk

(
ω
(
Yk, δ, [0, aSτlk−l′k/nk]

)
≥ ε/2

)
≤ 2F1

L

(
ω
(
Y∞, δ, [0, TL/2]

)
≥ ε/2

)
,

where Y∞ is the limit of Yk (for instance Y∞ = 2(X−X)/
√
aS σq if Yk is the first component

of Ξk). This quantity converges to 0 as δ → 0, for any fixed ε > 0. From this, it is an
immediate consequence of the Ascoli–Arzela theorem that the laws of Ξk, k ≥ 1 are
relatively compact in W3.

Corollary 22. Let S ∈ {V,E,F} and (lk, nk)k≥0 ∈ S S
L for some L > 0. Then, under

Mlk( · |NS = nk), it holds that(
H(a−1S nk ·)√

nk
,
Υ(a−1S nk ·)√

nk
,

ˆ̀(a−1S nk ·)
nk1/4

)
(d)−→
k→∞

(
2√
aS σq

(X −X),−σSX,
√

2σS
3
Z

)
,

in distribution in the spaceW3 where, in the limit, X, Z are understood under the law F1
L,

defined in Section 2.2.

Proof. It suffices to apply the preceding proposition, noting that one can get the following
representation for the label process ˆ̀ in terms of ˆ̀0:

ˆ̀(i) = ˆ̀0(i) + B(Υ(i)) ,

where B is a discrete bridge with shifted geometric step, with law νlk defined in Section 5.2.
It holds that, under our hypotheses, B(σS

√
nk ·)/

√
2σSn

1/4
k converges in distribution to a

Brownian bridge b with duration L (see [10, Proposition 7]). Putting things together, we
obtain that

ˆ̀(a−1S nk ·)
nk1/4

=
ˆ̀0(a−1S nk ·)
nk1/4

+
B
(
σS
√
nk (Υ(a−1S nk ·)/σS

√
nk)
)

nk1/4
,

which converges in distribution to s 7→
√

2σS/3Z
0
s +
√

2σS b−Xs
, jointly with the rescaled

processes H and Υ. By definition (12), this yields the result.

Finally, we note that the convergence of ΛS stated in Proposition 19 still holds under
conditioned forests. Indeed, since the conditioning event {NS = nk} has a probability
QS(lk, nk) = Θ(l−2k ) = Θ(n−1k ) by Lemma 20, we obtain that for any c′ > 0,

Mlk

(
max

0≤i≤NE
|ΛS(i)− aS i| > n

3/4
k |NS = nk

)
≤ cnkM∞

(
max

0≤i≤c′nk
|ΛS(i)− aS i| > n

3/4
k

)
+ Mlk(N

E > c′nk |NS = nk) .
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for some constant c > 0. The first term is oe(nk) by Proposition 19. The second term is
equal to 0 if S = E and c′ > 1. If S = V, it can be bounded by

cnkM∞(ΛV(c′nk) ≤ nk) = oe(nk) ,

as soon as c′ is chosen strictly larger than a−1V , again by Proposition 19. The argument is
the same if S = F. In particular, as ΛS(NE) = NS, this implies that, under Mlk( · |NS =
nk), one has

NS

NE
−→ aS

in probability as k →∞. This implies the following reformulation and refinement of the
preceding corollary.

Corollary 23. Let S ∈ {V,E,F} and (lk, nk)k≥0 ∈ S S
L for some L > 0. Then, under

Mlk( · |NS = nk), it holds that(
H(NE ·)√

nk
,
Υ(NE ·)√

nk
,

ˆ̀(NE ·)
nk1/4

)
(d)−→
k→∞

(
2√
aS σq

(X −X),−σSX,
√

2σS
3
Z

)
,

in distribution in the spaceW3, where, in the limit, X, Z are understood under the law F1
L.

Moreover, one has, still under under Mlk( · |NS = nk),(
ΛS(NEt)

NS
, 0 ≤ t ≤ 1

)
−→
k→∞

Id[0,1]

in probability.

6.3 Convergence of the white contour and label processes

Finally, we consider a variant of the latest corollary where the height process is replaced
by the slightly more convenient contour processes. First, given the forest F with possibly
infinitely many trees, we let C̄ be its contour process, defined as follows. We first add
edges linking the roots of consecutive trees as we did before (see for instance the left part
of Figure 5). We then let c0, c1. . . be the list of corners of the trees, arranged in contour
order. The purpose of the added edges linking the roots is to “split in two” the root
corners of the trees: a tree with p edges will thus have 2p+1 corners. Finally, we let C̄(i)
be the distance between ci and the root of the tree to which it belongs. Note that there is
slight difference with the contour function C defined in Section 4.1, where a downstep was
separating the contours of successive trees, instead of the horizontal step we have here. It
is a standard fact, proved in [21, Chapter 2.4], that the contour and height process of a
forest are asymptotically similar in the following sense. First, let f(i) + 1 be the number
of distinct vertices incident to the corners c0, c1, . . . , ci (these vertices being v0, . . . , vf(i)).
Then it holds that f(i) ≤ i for every i ≥ 0, and for every m ≥ 0, one has

sup
0≤i≤m

∣∣C̄(i)−H(f(i))
∣∣ ≤ 1 + sup

0≤i≤m

∣∣H(i+ 1)−H(i)
∣∣
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and
max
0≤i≤m

∣∣∣∣f(i)− i

2

∣∣∣∣ ≤ 1 +
1

2
max
0≤i≤m

Hi . (28)

From this, and the convergence of the rescaled height process stated in Corollary 23, it
follows easily that under the same hypotheses,

C̄(2NE ·)√
nk

(d)−→
k→∞

2√
aS σq

(X −X) ,

where X is understood under F1
L. Now, we want to consider the white contour process C̄◦,

defined as follows. We let c◦0, c◦1, . . . , c◦NE−1 be the list of corners that are incident to white
vertices, arranged in contour order as above. Then 2C̄◦(i) is the distance between c◦i and
the root of the tree to which it belongs (note that this number is even). In the contour
process, white vertices are visited once in every pair of steps, except at times when one
of the trees has been fully explored. The number of such exceptions is lk = O(

√
nk), so

clearly the preceding convergence implies

C̄◦(NE·)√
nk

(d)−→
k→∞

1√
aS σq

(X −X) ,

where the limit is understood under F1
L. Define Υ◦(i) to be the number of completely

explored trees when visiting c◦i , as well as `◦(i) to be the label of c◦i . Beware that the
definitions of C̄◦, Υ◦ and `◦ involve corners listed in contour order, instead of vertices
listed in depth-first order, as in the definitions of H, Υ and ˆ̀. Similar arguments entail
the following joint convergence.

Corollary 24. Let S ∈ {V,E,F} and (lk, nk)k≥0 ∈ S S
L for some L > 0. Then, under

Mlk( · |NS = nk), it holds that(
C̄◦(NE ·)√

nk
,
Υ◦(NE ·)√

nk
,
`◦(NE ·)
nk1/4

)
(d)−→
k→∞

(
1√
aS σq

(X −X),−σSX,
√

2σS
3
Z

)
,

in distribution in the spaceW3, where, in the limit, X, Z are understood under the law F1
L.

7 Proof of the invariance principle
In this section, we prove Theorem 5 and Theorem 8. The arguments, originating in [26,
Section 8], are now very standard, and have been applied successfully in [6, 2, 11, 1] in
particular. Our approach is an easy adaptation of the arguments that can be found in
either of these papers, so here we will be a bit sketchy. Let q be a regular critical sequence
as in the previous section.
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7.1 Convergence of conditioned pointed maps

The goal of this subsection is to prove the following analog of Theorem 5 under the pointed
laws W•,Sl,n , defined by (23).

Theorem 25. Let S denote one of the symbols V, E, F, and (lk, nk)k≥0 ∈ S S
L for some

L > 0. For k ≥ 0, denote by M•
k a random map with distribution W•,Slk,nk . Then(
4σS

2

9
nk

)−1/4
M•

k

(d)−→
k→∞

BDL

in distribution for the Gromov–Hausdorff topology.

Fix S ∈ {V,E,F} and (lk, nk)k≥0 ∈ S S
L for some L > 0. For every k ≥ 0, consider

a forest (F, `) of labeled mobiles with law Mlk( · |NS = nk), and let M•
k be the random

map with distribution W•,Slk,nk obtained by the process of Proposition 17.
The proof of the convergence of M•

k to the Brownian disk follows closely in spirit that
of [26, Section 8]. Let

D′k(i, j) = dM•k (c◦i , c
◦
j) , 0 ≤ i, j ≤ NE

(with the convention that c◦NE = c◦0) and extend D′k to a continuous function on [0, NE]2

by a formula similar to (16). In this way, D′k satisfies the triangle inequality, and one has

D′k(i, j) ≤ `◦(i) + `◦(j)− 2 max

(
min

[i∧j,i∨j]
`◦, min

[i∨j,NE]∪[0,i∧j]
`◦
)

+ 2 , (29)

see for instance [24, Lemma 3.1] for the special case of p-mobiles (in which black vertices
all have degree p, which corresponds to 2p-angulations via the BDG bijection), but the
proof in this general context is the same. Clearly, it also holds that, if c◦i and c◦j are
incident to the same vertex, which means that C̄◦(i) = C̄◦(j) = minr∈[i∧j,i∨j] C̄

◦(r) and
Υ◦(i) = Υ◦(j) then D′k(i, j) = 0. This generalizes to all s, t ∈ [0, NE] rather than just
integer values.

Now for s, t ∈ [0, 1] let D′(k)(s, t) = (4σS
2nk/9)−1/4D′k(N

Es,NEt). The same proof as
[24, Proposition 3.2] (the key ingredients being (29) and the convergence of the rescaled
labeled process `◦, established in Corollary 24) shows that, under Mlk , the laws of D′(k)
are tight in the space C([0, 1]2,R). Therefore, from any extraction, one can further extract
a subsequence along which one has the following joint convergence in distribution under
Mlk(· |NS = nk),(

C̄◦(NE ·)√
nk/(
√
aSσq)

,
Υ◦(NE ·)
σS
√
nk

,
`◦(NE ·)

(4σS2nk/9)1/4
, D′(k)

)
(d)−→
k→∞

(X −X,−X,Z,D′) (30)

where D′ is some random continuous function on [0, 1]2, and (X,Z) is the snake process
under the law F1

L introduced in Section 2.2. Recall the definition of the setD in Section 2.3,
as well as the definition of s∗, the a.s. unique time in [0, 1] such that Zs∗ = inf Z. We
have the following result, which follows from a simple limiting argument, based on (29)
and the discussion below, as well as (22) for the last point.
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Lemma 26. Almost-surely, it holds that

• the random function D′ is a pseudo-distance on [0, 1], such that D′ ∈ D, and

• for every s ∈ [0, 1], D′(s, s∗) = Zs − Zs∗.

Let D∗ be the Brownian disk distance defined from the process (X,Z) by (14). By
definition, it holds that D′ ≤ D∗. The conclusion will follow from the following re-rooting
property.

Lemma 27. Let U , V be two independent uniform random variables in [0, 1], independent
of the other random variables under consideration. Then D′(U, V ) and D′(s∗, U) have the
same distribution.

Proof. This is again obtained by a limiting argument. The idea is to couple the random
variables U and V with two uniformly chosen vertices of M•

k .
For i ∈ {1, 2, . . . , NV}, let g(i) be the first time j such that c◦j is the i-th white

vertex in depth-first order. We also let g(0) = 0 and extend by linear interpolation g
into a continuous increasing function on [0, NV]. Recall the definition (24) of ΛV(i) (for
0 ≤ i ≤ NE), the number of white vertices among v0, . . . , vi, where v0, v1. . . are listed in
depth-first order. For i ∈ {1, 2, . . . , NV}, let

K(i) = inf{j ∈ {0, 1, . . . , NE} : ΛV(j) = i} ,

so by definition, vK(i) is the i-th visited white vertex in depth-first order. Recall also from
Section 6.3 that f(j) + 1 is the number of distinct vertices incident to the corners c0, . . . ,
cj, so if we let

K ′(i) = inf{j ≥ 0 : f(j) = i} ,
then cK′(i) is the first time of visit of the vertex vi in contour order. Consequently,K ′(K(i))
is the first time of visit, in the contour sequence c0, c1. . . , of vK(i). Finally, since g(i) is
the first index j such that c◦j is incident to vK(i), we have that

g(i) = K ′(K(i))/2 +Rk(i) (31)

where the error term satisfies sup1≤i≤NV |Rk(i)| ≤ lk = O(
√
nk), recalling the discussion

of Section 6.3.
It follows from the last part of Corollary 23 and from (28) respectively that

K(NV·)
NE

−→
k→∞

Id[0,1] ,
K ′(NE ·)

2NE
−→
k→∞

Id[0,1] ,

in probability under Mlk( · |NS = nk). From this and (31), we conclude that

g(NV·)
NE

−→
k→∞

Id[0,1] , (32)

still in the same sense.



7 PROOF OF THE INVARIANCE PRINCIPLE 42

Now, if I is a uniform random variable on {1, 2, . . . , NV} independent of the rest, then
vK(I) is uniformly distributed among the white vertices of the forest, that is, among the
vertices of the map M•

k distinct from the distinguished vertex v∗. Therefore, if we let
v(1) = vK(dNVUe) and v(2) = vK(dNVV e), then v(1), v(2) can be coupled with two independent
uniform vertices v′(1), v

′
(2) of M

•
k in such a way that the conditional probability given M•

k

that v(i) 6= v′(i), i ∈ {1, 2}, is at most 1/|V(M•
k )|. The latter quantity, also equal to

1/(NV + 1), converges to 0 in probability under Mlk( · |NS = nk) as k →∞.
Since v∗ is a uniform random vertex of M•

k , we obtain that

dM•k (v∗, v
′
(1))

(d)
= dM•k (v′(1), v

′
(2)) .

Due to the above discussion, outside a set of vanishing probability, we may assume that
v′(1) = v(1) and v′(2) = v(2).

Now note that, by (22),

dM•k (v∗, v(1)) = `◦
(
g(dNVUe)

)
− inf `◦ + 1 ,

and, by definition of D′k,

dM•k (v(1), v(2)) = D′k
(
g(dNVUe), g(dNVV e)

)
.

Using (32), we conclude that(
4σS

2nk
9

)−1/4
dM•k (v∗, v(1))

(d)−→
k→∞

ZU − inf Z = D′(s∗, U) ,

while (
4σS

2nk
9

)−1/4
dM•k (v(1), v(2))

(d)−→
k→∞

D′(U, V ) .

It follows that D′(U, V ) and D′(s∗, U) have same distribution, as claimed.

To conclude the proof of Theorem 25, we note that, by Lemma 27,

E[D′(U, V )] = E[D′(s∗, U)] = E[ZU − inf Z] = E[D∗(s∗, U)] = E[D∗(U, V )] ,

whence it follows that D′(U, V ) = D∗(U, V ) a.s. since D′ ≤ D∗. Note that we have used
the fact that D∗(s∗, U) and D∗(U, V ) have same distribution, a fact that follows from
Theorem 15 and Lemma 12. This is in fact the only place where we use the specific study
of Sections 3 and 4.

This implies, by Fubini’s theorem, that a.s. D′(s, t) = D∗(s, t) for a.e. s, t ∈ [0, 1], so
that D′ = D∗ a.s. by a density argument. This identifies D′ uniquely, and shows that the
convergence of D′(k) to D′ = D∗ holds without having to pass to a subsequence. From
there, showing the Gromov–Hausdorff convergence of (4σS

2nk/9)−1/4M•
k under W•,Slk,nk to

BDL is routine, see e.g. [10, Section 3.2].
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7.2 De-pointing

Here we show how to dispose of the pointing that intervenes in Theorem 25. The argument
closely follows the last section of [1], see also [11] for a similar situation.

Similarly to the absolute continuity relation (5), for S ∈ {V,E,F}, we have

dWS
l,n(m) =

KS
l,n

|V| d(φ∗W•,Sl,n )(m) (33)

where KS
l,n = W•,Sl,n [1/|V|]−1. In particular, WV

l,n = φ∗W•,Vl,n for every l, n, so there is
nothing more to prove for S = V; Theorem 5 is equivalent to Theorem 25 in this case.

Now suppose that S ∈ {E,F}. Then, by Propositions 17 and 19, it holds that, for
every ε > 0,

W•,Slk,nk

(∣∣∣|V| − aV
aS

nk

∣∣∣ > εnk

)
= Mlk

(∣∣∣NV + 1− aV
aS

nk

∣∣∣ > εnk

∣∣∣∣NS = nk

)
= oe(nk) .

(Note that a bound of the form o(1/nk) would suffice for the argument to work.) From
this and the fact that 1/|V| ≤ 1, we obtain that, for every δ > 0,

W•,Slk,nk

[∣∣∣∣ aV nkaS |V|
− 1

∣∣∣∣] ≤ δ +
(aV
aS

nk + 1
)
W•,Slk,nk

(∣∣∣aV
aS

nk − |V|
∣∣∣ > δ |V|

)
= δ + oe(nk) ,

since

W•,Slk,nk
(∣∣∣aV
aS

nk − |V|
∣∣∣ > δ |V|

)
≤W•,Slk,nk

(
|V| ≤ aV

aS

nk
2

)
+ W•,Slk,nk

(∣∣∣aV
aS

nk − |V|
∣∣∣ > δ

aV
aS

nk
2

)
= oe(nk) .

From this it follows that KS
lk,nk

= aV
aS
nk(1 + o(1)) as k →∞, and then that

W•,Slk,nk

[∣∣∣∣∣KS
lk,nk

|V| − 1

∣∣∣∣∣
]
−→
k→∞

0 .

From this and (33), we obtain the following result.

Lemma 28. For every S ∈ {E,F}, and every (lk, nk)k≥0 ∈ S S
L , one has∥∥WS

lk,nk
− φ∗W•,Slk,nk

∥∥ −→
k→∞

0 ,

where ‖ · ‖ is the total variation norm.

Theorem 5 is now a direct consequence of this statement combined with Theorem 25.
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7.3 Proof of the convergence of Boltzmann maps

This section is dedicated to the proof of Theorem 8. As in the proof of Theorem 5, we
first focus on random maps with distribution W•l , which are easier to handle, since they
are directly related by Proposition 17 to random labeled forests with law Ml.

The result follows from the fact that, for any measurable and bounded function Φ,

W•l [Φ] =
∑
n∈EVl

W•l
(
|V| = n+ 1

)
W•,Vl,n [Φ] (34)

=
∑
n∈EVl

Ml

(
NV = n

)
W•,Vl,n [Φ].

At this point, recall from Lemma 3 that EVl = RV
l ∪ (βVl + hVZ+), where βV ≥ 1 and

RV
l ⊂ {0, 1, . . . , βVl − 1}. For simplicity, let us use the notation β = βV and h = hV.

Therefore,

W•l [Φ] =
∑
n≥0

Ml

(
NV = βl + hn

)
W•,Vl,βl+hn[Φ] +Rl

=

∫
R+

l2QV
(
l, βl + hbl2Ac

)
W•,Vl,βl+hbl2Ac[Φ] dA+Rl

where |Rl| ≤ ‖Φ‖∞W•l (|V| ≤ βl). Recall that, under W•l , the random variable |V| − 1
has same distribution as a sum of l i.i.d. random variables with distribution QV(1, ·). The
proof of Lemma 20 yields that, under W•l

|V|
l2

(d)−→
l→∞

1

σV2
A•

where A• is a stable random variable with density j1. Clearly, this implies that Rl → 0
as l → ∞. Now assume that Φ = ϕ((2l/3)−1/2M) where ϕ is a continuous and bounded
function on the Gromov–Hausdorff space. Then one has, by Theorem 25,

W•,Vl,βl+hbl2Ac
[
ϕ
(
(2l/3)−1/2M

)]
−→
l→∞

E
[
ϕ
(
(hσV

2A)1/4 BD(hσV2A)−1/2

)]
= E

[
ϕ
(
BD1,hσV2A

)]
,

where the lase equality follows from Remark 3. At this point, we apply Lemma 20, which
implies that for every A > 0,

l2QV
(
l, βl + hbl2Ac

)
−→
l→∞

hj1/σV(hA) = hσV
2j1
(
hσV

2A
)
.

Since we are dealing with probability densities, the Scheffé Lemma implies that the latter
convergence holds in fact in L1(dA), and we conclude that

lim
l→∞

W•l
[
ϕ
(
(2l/3)−1/2M

)]
=

∫
R+

hσV
2j1
(
hσV

2A
)
E
[
ϕ
(
BD1,hσV2A

)]
dA

=

∫
R+

j1(A)E[ϕ(BD1,A)] dA



7 PROOF OF THE INVARIANCE PRINCIPLE 45

and this is equal to E[ϕ(FBD•1)]. The second part of Theorem 8 follows.

To obtain the result under Wl instead of W•l , note that (5) implies

Wl(|V| = n+ 1) = Kl
W•l (|V| = n+ 1)

n+ 1
(35)

where Kl = W•l [1/|V|]−1. We then use the following lemma, which is certainly known,
but for which we did not find a proper reference.

Lemma 29. Let X1, X2. . . be a sequence of i.i.d. r.v.s with values in {1, 2, 3, . . .}, and
such that

P(X1 > k) ∼
k→∞

c

kα

for some constants c ∈ (0,∞) and α ∈ (0, 1). Then

E
[

l1/α

X1 + . . .+Xl

]
−→
l→∞

E
[

1

S

]
where S is the limit in distribution of (X1 + . . .+Xl)/l

1/α as l→∞ (so that S is a stable
distribution of index α).

Proof. By hypothesis and standard facts on stable domains of attractions [13, Chapter 8],
our hypotheses imply that as s ↑ 1,

E[sX1 ] = 1− c′(1− s)α(1 + o(1))

for some constant c′ ∈ (0,∞) depending only on c and α. Applying this to s = exp(−λ)
for λ ≥ 0 implies that

E[exp(−λX1)] = 1− c′λα(1 + o(1))

as λ ↓ 0, so that there exists c′′ ∈ (0,∞) such that for every λ ∈ [0, 1], one has

E[exp(−λX1)] ≤ 1− c′′λα
≤ exp(−c′′λα) . (36)

On the other hand, the assumption thatX1 ≥ 1 a.s. implies that E[exp(−λX1)] ≤ exp(−λ)
for every λ ≥ 0. This implies that, possibly by choosing c′′ smaller, one can assume
that (36) is valid for every λ ≥ 0, as we supposed α ≤ 1.

Now note that, for every x > 0, one has (using the inequality 1[0,1](u) ≤ e exp(−u) in
the first step)

P
(
X1 + . . .+Xl ≤ xl1/α

)
≤ eE

[
exp

(
− (X1 + . . .+Xl)/(xl

1/α)
)]

≤ eE
[

exp
(
−X1/(xl

1/α)
)]l

≤ e exp(−c′′x−α) ,

where we used the version of (36) valid for all λ at the last step. This stretched-exponential
tail bound is uniform in l and clearly implies the convergence of all negative moments.
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Since, as we observed, |V| − 1 under W•l is distributed as a sum of l i.i.d. random
variables satisfying the hypotheses of Lemma 29 with α = 1/2 (by Lemma 20), this
entails that

lim
l→∞

Kl

l2
= E

[
σV

2

A•
]−1

=
1

σV2
.

Repeating the previous argument, only changing W•l (|V| = n + 1) by Wl(|V| = n + 1)
in (34) and applying (35), and then performing the same steps using the equivalent we
obtained for Kl, we obtain

lim
l→∞

Wl

[
ϕ
(
(2l/3)−1/2M

)]
=

∫
R+

hσV
2

hσV2A
j1
(
hσV

2A
)
E
[
ϕ
(
BD1,hσV2A

)]
dA

and this is E[ϕ(FBD1)], as wanted.
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