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Abstract

A meta-surface made of a collection of nano-resonators characterized

an electric dipole and a magnetic dipole was studied in the regime where

the wavelength is large with respect to the size of the resonators. An

effective description in terms of an impedance operator was derived.

1 Introduction

Metasurfaces are the bidimensional analogue of metamaterials [1]. They are
made of resonant elements disposed on a surface. In this context, we study the
field diffracted by a periodic set of linear nano-resonators, electromagnetically
characterized by their scattering matrix S. We are interested in the regime
where the wavelength is much larger than the size of the nano-resonators. Pos-
sible with Mie-like resonances) or nano-wires doped with quantum dots. We
proceed to an asymptotic analysis related to homogenization theory [2, 3, 4, 5].
The field diffracted by the structure is derived and it is shown that it is charac-
terized by an impedance operator. Our results extend to electric and magnetic
dipoles the results in [6] where only electric dipoles were considered.

2 Setting of the problem

The structure under study is made of an infinite number of resonators invariant
along z, periodically disposed at points Mp = (p × d, 0), where d is the period
and p ∈ Z. Each scatterer at position Mp is characterized in the frequency
domain by a scattering matrix S(ω) as well as by electromagnetic parameters
γs and δs. We assume that the wavelength in vacuum λ = 2πc/ω is much
larger than the size of the resonators, which are assumed to be contained in
a cylinder of diameter a. We therefore consider a linearly polarized incident
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field U ie−iωtez, where U i(x, y) = ei(αx±βy) and α = k0 sin θ, θ is an angle of
incidence and k0 = ω

c . According to the polarization γs and δs can be either
the relative permittivity or relative permeability.

The stationary scattering problem considered therefore reads: Find a field
U ∈ H1

loc(R
2) satisfying div(γ∇U) + k20δU = 0 in the sense of Schwartz distri-

bution in R
2 and such that Us = U −U i satisfies the outgoing wave conditions:

y > 0, Im(Us∇Us) > 0,y < 0, Im(Us∇Us) < 0. The function γ and δ are
equal, respectively, to γs and δs inside the scatterers and to 1 outside. The
following holds, see [7]

Proposition 1. Apart possibly from a discrete set of wavenumbers k1, k2, . . .
The field U exists and is unique.

Our point is to provide a simplified expression of the scattering problem by
means of an impedance operator.

Let Td denote the translation along x of amplitude d, ie. Td(f)(x) = f(x−d).
For later purpose, we define Y ∗ =

]
− pi

d ,
pi
d

]
, K = 2π

d , αn = α + nK and

βn =
√
k20 − α2

n. For α
2
n > k20 , we impose: iβn < 0. In the following, we denote

T = R/dZ
Let H = −div(γ∇·) − k20δ and let us define for α ∈ Y ∗ the field of Hilbert

spaces L2
α(T) =

{
u;u e−iαx ∈ L2(T)

}

Lemma 1. The commutateur of Td and H vanishes: [Td, H ] = 0.

Applying Floquet-Bloch analysis [8, 9, 10], we obtain:

Proposition 2. : The operator H has a direct integral decomposition H =∫ ⊕

Y ∗
Hα

dα
K where Hα = −div(γ∇·)−k20δ with domain D(Hα) =

{
L2
loc(Ry;L

2
α(T)) ∩H2

loc(Y × R)
}

3 Multiple scattering approach

The incident field has the expansion [11]: U i(x, y) =
∑

n anJn(k0r)e
inθ . For one

scatterer alone, the incident field gives rise to a field Us
p (x, y) =

∑
n s

p
nϕn(x, y)

where ϕn(x, y) = H
(1)
n (k0r)e

inθ . For the infinite set of scatterers, this gives a
diffracted field that reads as:

Us(x, y) =
∑

p,n

spnϕn(x− pd, y). (1)

Multiple scattering theory [11] allows to write that for p = 0:

b̂0 = (1− SΣ)
−1

Sâ (2)

where b̂0 = (. . . , b0−n, . . . , b
0
n, . . .)

T and â = (. . . , a−n, . . . , an, . . .)
T . The

matrix Σ is given by:
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Σ(k0, α0) =
∑
m 6=0

eiα0mT0m. Here proposition (2) was used through the intro-

duction of a Bloch phase eiα0m. In this expression, (T0m)pq = ei(p−q)θm

0 H
(1)
p−q(k0|m|d),

that is

T0m =




. . .
...

...
... . . .

. . . H0(k0|m|d) −ǫmH1(k0|m|d) H2(k0|m|d) . . .

. . . ǫmH1(k0|m|d) H0(k0|m|d) −ǫmH1(k0|m|d) . . .

. . . H2(k0|m|d) ǫmH1(k0|m|d) H0(k0|m|d) . . .

. . .
...

...
...

. . .




where ǫm = sign(m) (note that: eiθ
m

0 = −sign(m). The following series [12]
indexed by p appear:

Σp =
∑

m 6=0

eimα0ǫpmHp(k0|m|d). (3)

and the entries of the matrix Σ(k0, α0) are: (Σ(k0, α0))pq = Σp−q

In the regime where k0a ≪ 1 the cylinder can be described by a 3× 3 scat-
tering matrix (this corresponds to an electric dipole and a magnetic dipole) and
the field by 3 coefficients b−1, b0, b1 [11]. Therefore, only 3 series are involved:
Σ0, Σ1, Σ2. It holds:

Σ(k0, α0) =




Σ0 −Σ1 Σ2

Σ1 Σ0 −Σ1

Σ2 Σ1 Σ0




In the extreme limit (a ≪ d) where the scatterers are very small as compared to
the wavelength and the period, the scattering matrix S(ω) reduces to a scalar
matrix s0(ω): the scatterers are thus dipoles with a dipole moment along ez and
the only involved series is Σ0, this situation was addressed in [6]. The multiple
scattering relation (2) then becomes:

b00(k0, α0) = (1− S0Σ0)
−1

S0 . (4)

where the series Σ0 can be written [10, 6]:

Σ0(k0, α0) =
∑

m 6=0

eikmdH0(k0|m|d) (5)

For the more general case of an electric dipole and a magnetic dipole the fol-
lowing asymptotic expressions hold in the limit k0d ≪ 1 [13]:

Proposition 3.

Σ0(k0, α0) ∼ −1− 2i
π γ + 2i

π ln
(

2K
k0

)
+ K

πβ0

Σ1(k0, α0) ∼
α0

πk0

(
−2 + iKβ0

)

Σ2(k0, α0) ∼
K
πk2

0

β2

0
−α2

0

β0

− i
πk2

0

(
K2

3 − β2
0 + α2

0

) (6)
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4 Scattering properties of the meta surface

Define Pz = b00 the electric moment andM = (Mx,My) =
(
(b01 + b0−1), i(b

0
1 − b0−1)

)

the magnetic moment. We write m = Mx + iMy and m∗ = Mx − iMy and
κ+
n = (αn, βn), κ−

n = (αn,−βn).
We can now state the following:

Theorem 1. The total field has the expression:

y > a : U(x, y) = ei(α0x−β0y) +
∑

n rne
i(αnx+βny)

y < a : U(x, y) =
∑

n tn e
i(αnx−βny)

(7)

where:
rn = K

πβn

(Pz + iM · κ+
n ) ,

tn = δn0 +
K

πβn

(Pz + iM · κ−
n ) .

(8)

Proof. We start with the following relation, obtained from Poisson formula:

∑

n

H0(k0|r − ndex|)e
iknd =

2

d

∑

n

1

βn
ei(αnx+βn|y|)

Upon applying the operator ∂ = ∂x + i∂y, using the fact that the series on the
right hand side is normally convergent( thanks to the term eiβn|y|) and using
the relation: ∂H0(r) = −H1(r)e

iθ , we obtain

−k0
∑

n

ϕ1(x− nd, y)eiknd =
2

d

∑

n

(iαn − βnǫ)

βn
ei(αnx+βn|y|) (9)

where ǫ = sign(y). therefore we get:

Us(x, y) =
2

d

∑

n

b00 + iαn(b
0
1 + b0−1) + (b0−1 − b01)βnǫ

βn
ei(αnx+βn|y|).

The result follows after some simple algebra.

A simple, but interesting corollary is :

Corollary 1. As n ∼ +∞:

rn ∼
K

π
m =

2Kb0−1

π
, tn ∼

K

π
m∗ =

2Kb01
π

. (10)

We are not a priori in the homogenization regime where k0d ≪ 1 and hence
there can be several reflected and transmitted orders. In expression (7), the
propagative waves correspond to the βn’s that are real associated with the finite
set U = {n ∈ Z, βn ∈ R

+} corresponding to the diffractive orders of the grating
and the evanescent waves to the infinite set U+ = {n ∈ Z, iβn ∈ R

−}.
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5 impedance operator formulation

Our point is now to replace the set of nano-resonators by a meta-surface S which
is simply the line y = 0. This requires to specify the boundary conditions there
in terms of an impedance operator.

To so, consider the continuation of the field U obtained by making a = 0
in (7). The continued field is still denoted U . It is a singular distribution. To
handle this situation, let us introduce the following fields of Sobolev spaces:

Hs/2
α (Y ) =

{
u =

∑

n

une
iαnx;

∑

n

(1 + |kn|
2)s/2|un|

2 < +∞

}
(11)

and the dual spaces:

H−s/2
α (Y ) =

{
u =

∑

n

une
iαnx;

∑

n

(1 + |kn|
2)−s/2|un|

2 < +∞

}
. (12)

Let Z be the pseudo-differential operator defined by: Z[u] = v where

u(x) =
∑

n

une
iαnx, v(x) =

∑

n

iβnune
iαnx (13)

It is straightforward to show the following:

Proposition 4. Z is continuous and invertible from H
−s/2
α (Y ) to H

−s/2−1
α (Y ),

for s > 1.

The inverse of Z is the admittance operator Y defined by: v = Y [u].

Let us denote F an element of H
−s/2
α (Y ) × H

−s/2−1
α (Y ), representing the

discontinuity of the field and its derivative through S. The traces of the field

and its derivative are: F+ =

(
U(x, 0+)
∂U
∂y (x, 0

+)

)
and F− = −

(
U(x, 0−)
∂U
∂y (x, 0

−)

)
. By

definition, it holds F+ + F− = F . The Calderòn projectors [14] are defined by
F+ = P+F, F− = P−F . The preceding shows that

Proposition 5.

P+ =
1

2

(
1 Y
Z 1

)
, P− =

1

2

(
1 −Y

−Z 1

)
(14)

Obviously, it holds: P+ +P− = I, (P+)2 = P+, (P−)2 = P− and P+P− =
P−P+ = 0, as it should.

The transmission conditions on S can be written:

[U(x, 0+)− U(x, 0−)] =
2iKMy

π

∑

n

eiαnx =
2iKMy

π

∑

n

1

iβnrn
iβnrne

iαnx (15)

[
∂U

∂y
(x, 0+)−

∂U

∂y
(x, 0−)

]
=

∑

n

iβn(δn0 + rn + tn)e
iαnx =

∑

n

iβn
(δn0 + rn + tn)

δn0 + rn
rne

iαnx , (16)
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This suggests to define the following pseudo-differential operators, acting on
u =

∑
n une

iαnx

X [u](x) =
∑

n

(
1 +

tn
δn0 + rn

)
une

iαnx (17)

W [u](x) =
2iKMy

π

∑

n

1

rn
une

iαnx (18)

Both rn and tn are bounded with respect to n (see eq. (10)), hence the following:

Proposition 6. The pseudo-differential operators X and W are isomorphism

of L2
α(T).

These conditions can be rewritten conveniently in the operator form:

Theorem 2. The traces of the field U(x, y) diffracted by the meta-surface under

the illumination of a plane wave U i satisfy the impedance conditions:

T F+ = F− , (19)

where

T =

(
1 −YW

−ZX 1

)

The operator T is the transfer matrix of the meta surface. The discontinuity
of the (effective) field U at y = 0 is due to the existence of a magnetic dipole
moment. In the homogenization limit of very large wavelengths, i.e. larger than
the wavelengths corresponding to magnetic resonances and larger than twice the
period, there are only one transmitted and one reflected wave, the evanescent
waves can be discarded and the magnetic resonances have no effect, we then
have:

Proposition 7. For a wavelength λ ≥ 2d and larger than the largest magnetic

resonance, the propagative part of the field is given by:

y > 0 : U(x, y) = ei(α0x−β0y) + r0e
i(α0x+β0y) (20)

y < 0 : U(x, y) = t0e
i(α0x−β0y) (21)

where r0 =
2b0

0

dβ0

and t0 = 1 + r0. The transfer matrix becomes:

T =

(
1 0

−2iβ0
r

1+r 1

)
. (22)

The form found for the transfer matrix matches that obtained in another
context in [10].
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6 Conclusion

The scattering of a plane wave by a grating of nano-rods was described in the
framework of meta-surfaces by exhibiting an impedance condition. This takes
into account both the electric and the magnetic dipoles characterizing each
nano-rod. This study can be generalized to higher multipoles but also to non-
periodic, for instance quasi-periodic, structures [15], to elementary scatterers
deposited on an arbitrary smooth surface. A similar approach was used in [17]
to study the coupling of a quantum emitter with the modes supported by the
meta-surface, see also [16]. The proposed formalism can be used in this context
to analyze the role of resonances.
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plasma frequency in metallic photonic crystals,” Phys. Rev. E 74, 056612
(2006).

[11] D. Felbacq, G. Tayeb and D. Maystre, “Scattering by a random set of
parallel cylinders,” J. Opt. Soc. Am. A 11, 2526-2538 (1997).

[12] C. M. Linton, “Lattice sums for the Helmholtz equation,” SIAM Review
52, 630-674 (2010).

[13] A. I. Cabuz, “Electromagnetic Metamaterials - From Photonic Crys-
tals to Negative Index Composites,” PhD Thesis, Appendix A,
https://hal.archives-ouvertes.fr/tel-00161428.

[14] M. Cessenat, Mathematical methods in electromagnetism, World Scientific
Publishing, Singapore, 1996.

[15] F. Zolla, D. Felbacq and B. Guizal, “A remarkable diffractive property of
photonic quasi-crystals,” Opt. Comm. 148, 1-3 (1998).

[16] A. Cazé, R. Pierrat and R. Carminati, “Strong Coupling to Two-
Dimensional Anderson Localized Modes,” Phys. Rev. Lett. 111, 053901
(2013).

[17] D. Felbacq, “Weak and strong coupling of a quantum emitter with a meta-
surface,” Superlatt. Microstruct. 78, 79-87 (2015).

8


