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SUMMARY

1. The European catfish, Silurus glanis, was widely introduced in western Europe, and it has now

established self-sustaining populations in numerous large rivers of western France. Using data

collected from surveys conducted by the French National Agency for Water and Aquatic Environ-

ment (Onema) from 1989 to 2010 in more than 500 sites throughout the country (10636 electrofishing

surveys), we investigated the potential impact of the European catfish on fish communities in French

rivers.

2. In the first part of the analysis, we compared trends observed before and after the European cat-

fish was established at given sites (before after analysis). Species richness, evenness and diversity

decreased significantly after the European catfish was established at 1.4%, 1.4% and 5.8% of the sites,

respectively. Total fish biomass and density decreased significantly at 6.6% and 2.9% of the sites,

respectively. In the second part of the analysis, we compared sites with European catfish against sites

lacking European catfish during the same period (with without analysis). Fish species richness was

significantly higher in sites with European catfish. No significant differences in fish diversity, even-

ness, total fish biomass or density were found between sites with or without European catfish.

3. While our results indicate that the European catfish may in a few cases impact fish communities

or populations, it does not appear to be responsible for a countrywide collapse in fish assemblages.

Keywords: alien predator, before after analysis, biological invasion, control impact analysis, impact assess
ment

Introduction

Several threats to inland water ecosystems have been

identified, among which invasions are recognised as

serious menaces (Dudgeon et al., 2006). Often resulting

from accidental or intentional translocations of species

by humans, invasions affect a wide range of plant and

animal taxa in many lakes and rivers worldwide

(Garc!ıa-Berthou, 2007; Ricciardi & MacIssac, 2011).

Freshwater fish are among the most introduced animals

worldwide (Copp et al., 2005; Elvira & Almod!ovar,

2001), mainly because of escapes from aquaculture or

intentional releases for recreational fisheries (Copp, Tem-

pleton & Gozlan, 2007; Welcomme et al., 2010; Cucher-

ousset & Olden, 2011). Non-native game fish are often

significantly larger than native species and occupy sig-

nificantly higher trophic levels (Donaldson et al., 2011).

In freshwater ecosystems subject to strong top-down

control (Shurin et al., 2002), fish introductions may have

important effects (Vander Zanden, Casselman & Ras-

mussen, 1999) such as changes to prey-size refugia and

thus to predator prey equilibria (Chase, 1999; Clavero &

Garc!ıa-Berthou, 2005) or energy fluxes (MacAvoy et al.,

2000).

One of the most popular and successful fish introduc-

tions in Europe has involved the European catfish, Silu-

rus glanis. Originating in eastern Europe and western

Asia, the species was introduced to France at the end of
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Analyses were conducted using R software (R Develop-

ment Core Team, 2014). The impact of S. glanis was

defined from the standpoint of a quantifiable negative

effect on the recipient environment (sensu Gozlan, 2008).

Before after analysis

We considered impact as a significant decrease in total

fish richness, native fish richness, diversity, evenness,

biomass or density after S. glanis establishment at a site.

Fish assemblages were so different among sites that it

was impossible to perform a global analysis.

Silurus glanis was considered established at a given

site as soon as one individual was caught (t0). Sites that

were sampled at least once before t0 and after t0 were

selected. Among these, sites with at least four years of

S. glanis presence were used for the analysis (n 112).

Differences between the descriptive variables in each

site (total species richness, native species richness, diver-

sity, evenness, biomass and density) recorded before t0
and after t0 were tested using the Mann Whitney test.

When a significant negative difference was identified,

the Spearman correlation and autocorrelation tests (rank

1) with time before t0 were used to detect a general neg-

ative temporal trend experienced prior to t0 and not

attributable to the presence of S. glanis.

The before after analysis does not allow the assign-

ment of negative trends observed in the field to S. glanis

(i.e. correlation does not imply causation). We per-

formed the before after analysis with a comparison of

sites with and without S. glanis (with without analysis)

to parallel the intervention analysis (IA) and impact ver-

sus references sites (IVRS) analyses of Stewart-Oaten &

Bence (2001).

With without analysis

The impact of S. glanis was judged according to whether

sites with S. glanis (W-sites) exhibited significantly lower

total species richness, native species richness, diversity,

evenness, biomass or density than sites where environ-

mental conditions would allow the presence of S. glanis

but where it has never been recorded (while electrofish-

ing or angling; Wt-sites).

The W-sites were selected using species distribution

models (set from 236 occurrence and 874 absence sites

throughout France), taking into account elevation, dis-

tance from source, slope, catchment surface, mean tem-

perature in January and mean temperature in July.

Because of the non-native status of S. glanis, many of

these absences were not environmentally caused. We

the 19th century and has now established self-sustaining 
populations in many French rivers (Copp et al., 2009; 
Poulet, Beaulaton & Dembski, 2011). This long-lived 
predator may reach a total length of over 2.5 m, becom-

ing twice as large as the native piscivore, northern pike 
(Esox Lucius).

The large number of videos broadcast and articles 
published in newspapers and angling magazines, feed-
ing myths about the size or behaviour of specimens 
caught, and even some scientific publications (e.g. Cuch-
erousset et al., 2012), have resulted in strong views for 
or against S. glanis and deep concerns about its foraging 
behaviour and impact on freshwater biota. Although 
S. glanis has been hypothesised to affect waterbird popu-
lations in Spanish reservoirs (Carol et al., 2009), little is 
known about the ecology of the introduced S. glanis and 
there is no evidence that it as a voracious predator 
(Copp et al., 2009; Syv€aranta et al., 2010).

Using data collected from 10636 electrofishing surveys 
conducted within the last two decades in more than 500 
sites throughout France, we aimed to evaluate the poten-
tial impact of S. glanis on riverine fish populations in the 
metropolitan area of France. Fish species richness, even-
ness, diversity, density and biomass were compared in 
different rivers (i) prior to and after S. glanis establish-
ment (before after analysis) and (ii) between sites with 
and without S. glanis (with without analysis).

Methods

Fish survey

The French National Agency for Water and Aquatic 
Environments (Onema) has been monitoring freshwater 
fish populations in the whole river network of France 
for several decades. Sites were sampled during the low-

flow period (from May to October) using standardised 
electrofishing procedures appropriate to prevailing river 
widths and depths. Streams were sampled by wading 
(mostly two-pass removal), while fractional sampling 
strategies were used in larger rivers (see Poulet et al., 
2011). Fish were identified to species, counted, weighed 
and then released.

Data analysis

Only surveys performed with the same sampling proto-
col at a given site were selected. Density and biomass 
were expressed as fish number and biomass per 100 m2. 
Species diversity was described using Shannon’s diver-
sity index and evenness using Pielou’s evenness index.



thus chose an iterative ensemble modelling approach

(Lauzeral, Grenouillet & Brosse, 2012) that combined six

different statistical methods. Two-thirds of the sites were

chosen at random and used to calibrate the models, and

the other third was kept for independent evaluation. The

calibrated model was then projected over France, giving

rise to a potential species distribution. The selection of

the calibration data set was repeated ten times. The ten

resulting distributions were then summed, giving rise to

a map of the level of habitat suitability. Each model-

selected site (n 521) was submitted to the expertise of

field technicians from Onema. First, the experts were

asked to judge the probability of S. glanis presence in or

near the site. In fact, especially in large rivers, European

catfish is not always detected using electrofishing and

the field technicians were sometimes aware of the pres-

ence of the species (from anecdotal evidence of anglers).

Then, the experts were asked to judge the suitability of

habitat at each site, to refine results from the model

(10’ 9 10’ resolution). Some model-selected sites had

local habitat features (not previously used in the model)

that were not suitable for S. glanis (e.g. water velocity).

Finally, 47 stations were confidently selected.

The previously selected Wt-sites were compared with

W-sites showing homogenous environmental conditions.

To identify these W-sites, a hierarchical classification

(HC, Ward’s method) was performed on the environ-

mental data set containing both W-sites and Wt-sites.

This hierarchical classification generated four groups. A

redundancy analysis (RDA) showed significant differ-

ences between the groups (99% randomisation test,

ADE4 package for R), although two groups of stations

overlapped, revealing very close environmental condi-

tions. These two groups, containing 46 of the 47 sites

without S. glanis, were retained for further analysis.

To detect a potential time lag in S. glanis impact, Wt-

sites were compared with W-sites colonised for 0

2 years, 3 5 years, 6 10 years or more than 10 years dur-

ing the same period of time (here, the last data recorded

in the database, that is from 2006 to 2010). Significant dif-

ference in fish richness, native fish richness, diversity,

evenness, biomass or density between Wt-sites and W-

sites was identified using the Mann Whitney test.

Results

Before after analysis

Total fish species richness, native fish richness, evenness

and diversity were potentially affected by S. glanis in

1.4% (1/69), 1.4% (1/69), 1.4% (1/69) and 5.8% (4/69) of

S. glanis was affected at 5.8% (5/69) of sites.

The biomass of the three fish species most strongly

represented (in terms of biomass) in the data set was

potentially impacted by S. glanis in 3.3% (chub, Squalius

cephalus) and 4.1% (barbel, Barbus barbus) of sites but

with no impact identified for the European eel, Anguilla

anguilla (Table 1).

The densities of the three fish species most strongly

represented (in terms of density) during electrofishing

(roach, Rutilus rutilus; chub and bleak, Alburnus alburnus)

were significantly lower at 13%, 1.4% and 2.9% of sites,

respectively, in relation to S. glanis introduction.

For the top predators, a significant decrease in bio-

mass was detected in 8.3% (northern pike, Esox lucius)

and 1.8% (Eurasian perch, Perca fluviatilis) of sites and a

significant change in densities was found in 5.5% and

6.2% of sites, respectively. No significant change, how-

ever, was observed in either biomass or density of pike-

perch, Sander lucioperca.

With without analysis

Irrespective of time since S. glanis introduction, no dif-

ference was found between W-sites and Wt-sites with

respect to total evenness, diversity, biomass or density.

A significant difference in total species richness was

found between W-sites and Wt-sites (K W test;

P 0.0036); most Wt-sites held fewer fish species than

W-sites (mean values: Wt 14; W[0-2] 17; W[2-5] 17;

W[5-10] 18; W>10 19). This difference originates from

significant differences in both native and non-native fish

species richness (K-W test; P 0.04 and P < 0.001,

respectively).

The with without analysis showed no differences in

biomass of the three most represented species (carp,

European eel and chub), or densities of the three most

numerically represented species (roach, chub and bleak)

or biomass and density of the top-predators (northern

pike, pikeperch and Eurasian perch) (Table 2).

Discussion

Comparisons between sites with and without S. glanis

did not highlight any drastic changes in species richness

during the study period, and no fish species extinction

sites, respectively. Total fish biomass was potentially 
affected at 6.6% (4/61) of sites, while total biomass of 
fish other than S. glanis was potentially affected at 13.1%
(9/61) of sites. The total density of sampled fish was 
potentially affected after S. glanis establishment at 2.9%
(3/69) of sites, while total density of fish other than



was attributed to S. glanis. On the contrary, sites with

S. glanis had higher mean total, native and non-native

species richness. Sites without catfish are probably less

prone to colonisation because of low local habitat suit-

ability, physical barriers such as dams or waterfalls, or

lower anthropogenic propagule pressure (Lockwood,

Cassey & Blackburn, 2005), which limit the spread of

S. glanis as well as other species of fish and thus do not

permit a rise in species richness (Daufresne & Bo€et,

2007).

The with without analysis also revealed no signifi-

cant differences in fish evenness, biomasses or fish

densities, regardless of time since the invasion began.

Nor was there a time lag between S. glanis establish-

ment and any change over a period ranging from 0 to

more than 10 years since S. glanis was first caught (i.e.

when old and large individuals were probably not

well represented). Some river basins are considered as

non-equilibrium islands in which species extinctions

(related to historical events) are not fully balanced by

colonisations from neighbouring river basins (Obe-

rdorff, Hugueny & Gu!egan, 1997; Reyjol et al., 2007).

Species-unsaturated rivers are more susceptible to

invasion by non-native species because ecological space

is less densely packed and interspecific competition is

less intense (Hutchinson, 1959; Kennedy et al., 2002). In

addition, S. glanis appears to be a scavenging predator,

able to exploit a wide variety of prey sources (Copp

et al., 2009) so that, despite its size, the species does

not occupy the highest trophic position in fish

communities of large rivers in France (Syv€aranta et al.,

2009). Feeding on a wide spectrum of available prey

alleviates predation pressure on any particular cate-

gory or species of prey (except for some specialised

S. glanis individuals; see Syv€aranta et al., 2009; Cucher-

ousset et al., 2012).

Few sites have experienced a significant impact of

S. glanis introduction, and this lessens the effect of

S. glanis as one among the numerous variables driving

river ecosystems. Some systems, such as ponds or

streams, are known to be more sensitive to invasion than

large systems (Elton, 2000; Gozlan, 2008), and anthropo-

genic alterations may have an additive or synergistic

impact with S. glanis on the host system (Light &

Marchetti, 2006).

Possible impacts on a given species were detected in a

small percentage (usually <5%) of sites in our analysis.

Roach decreased to the greatest extent after S. glanis

establishment. Wysujack & Mehner (2005) reported that

S. glanis (TL ranging from 40 to 100 cm) feeds mostly on

crayfish and roach. Predation by S. glanis on mostly

smaller roach individuals, in comparison with predation

by either northern pike or pikeperch, could explain why

15% of the sites experienced a significant decrease in

roach density. Nevertheless, sites without S. glanis did

not hold significantly more roach than sites with the

invader, and neither roach biomass nor density

decreased with time since S. glanis establishment. Cli-

mate change may affect roach reproduction (Geraudie

et al., 2009), and efforts to enhance water quality made

Species

Biomass Density

Sampled sites B>A rs B<A Sampled sites B<A rs B<A

Abramis brama (N) 38 1 1 (2.6%) 0 44 1 1 (2.3%) 2
Alburnus alburnus (N) 59 2 2 (3.4%) 1 69 2 2 (2.9%) 5
Ameiurus melas (NN) 21 0 2 22 0 1
Anguilla anguilla (N) 54 0 3 58 1 3
Barbus barbus (N) 49 2 2 (4.1%) 0 51 1 1 (2.0%) 2
Cyprinus carpio (NN) 23 0 0 24 0 0
Esox lucius (N) 48 4 4 (8.3%) 0 55 3 3 (5.5%) 0
Perca fluviatilis (N) 57 1 1 (1.8%) 0 65 4 4 (6.2%) 0
Rutilus rutilus (N) 60 7 5 (8.3%) 0 69 10 9 (13.0%) 0
Sander lucioperca (NN) 25 0 2 29 0 4
Squalius cephalus (N) 60 2 2 (3.3%) 1 69 1 1 (1.4%) 0
Tinca tinca (N) 42 0 0 53 0 0

(N), native species; (NN), non native species (Poulet et al., 2011). B>A: number of sites with a significant decrease in before after analysis,
using the Mann Whitney test. rs: number of sites where the significant decrease in fish population was not associated with a temporal trend
already established before S. glanis settlement, using the Spearman correlation test. The value of rs in % corresponds to the proportion of
sites where S. glanis potentially affected fish species biomass or density. Significant increases in biomass or density (Mann Whitney test) are
displayed in the column B<A.

Table 1 Results of the before after selection procedure of the sites exhibiting the Silurus glanis impact on biomass or density of the main 
freshwater fish species
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native freshwater fish? Journal of Applied Ichthyology, 21,
242 262.
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benign feline? A review of the environmental biology of
European catfish Silurus glanis in its native and intro
duced ranges. Fish and Fisheries, 10, 252 282.

Copp G.H., Templeton M. & Gozlan R.E. (2007) Propagule
pressure and the invasion risks of non native freshwater
fishes: a case study in England. Journal of Fish Biology, 71,
148 159.

Crouzet P. (1999) L’eutrophisation des rivi#eres en France :
o#u en est la pollution verte ? Les Donn!ees de l’Environne
ment, 48, 1 4.

Cucherousset J., Boulêtreau S., Az!emar F., Compin A., Guil
laume M. & Santoul F. (2012) ‘Freshwater killer whales’:
beaching behavior of an alien fish to hunt land birds.
PLoS ONE, 7, e50840.

Cucherousset J. & Olden J.D. (2011) Ecological impacts of
non native freshwater fishes. Fisheries, 36, 215 230.

Daufresne M. & Bo€et P. (2007) Climate change impacts on
structure and diversity of fish communities in rivers.
Global Change Biology, 13, 2467 2478.

Donaldson M.R., O’Connor C.M., Thompson L.A., Ginge
rich A.J., Danylchuk S.E., Duplain R.R., et al. (2011) Con
trasting global game fish and non game fish species.
Fisheries, 36, 385 397.

Dudgeon D., Arthington A.H., Gessner M.O., Kawabata Z.
I., Knowler D.J., L!evêque C., et al. (2006) Freshwater bio
diversity: importance, threats, status and conservation
challenges. Biological Reviews of the Cambridge Philosophical
Society, 81, 163 182.

Elton C.S. (2000) The Ecology of Invasions by Animals
and Plants. The University of Chicago Press, Chicago
60637.

Elvira B. & Almod!ovar A. (2001) Freshwater fish introduc
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21st century. Journal of Fish Biology, 59, 323 331.

during the study period led to a decrease in pollution 
by phosphorus and organic substances (Crouzet, 1999), 
while river incision led to an increase in water velocity 
(Wy!zga, 2001; Kondolf, Pi!egay & Landon, 2002). These 
changes could be responsible for declines in limnophilic 
or eurytopic populations such as those of roach or perch 
(Jeppesen et al., 2000; Olin et al., 2002; Poulet et al., 
2011).

Silurus glanis might potentially affect predatory spe-
cies such as northern pike or pikeperch via predation or 
competition for food or habitat. However, densities of 
predators are often low (<1 individual 100 m"2), and the 
number of sites holding these species is often small; this 
may limit the robustness of our analysis for such spe-
cies. Predatory fish are also very popular with anglers, 
potentially creating a significant pressure on their popu-
lations through harvesting. The population dynamics of 
such species are also blurred by numerous stocking epi-
sodes, for which statistics are often absent and where 
stocking efficiency may vary widely from year to year 
(Arlinghaus et al., 2007; Arlinghaus, Matsumura & 
Dieckmann, 2010.

Our study showed no generalised impact of S. glanis 
on fish biomass, density or community structure in 
French rivers. Nevertheless, S. glanis may have local 
effects on fish populations since significant changes in 
fish biomass and density after S. glanis establishment 
were identified at several sites. Future studies should 
determine in greater detail whether S. glanis might 
change the structure of the food web in the decades 
after its establishment. Additionally, research should 
focus on potential effects on migratory species (Mac-

Avoy et al., 2000) whose populations are not monitored 
by Onema’s electrofishing survey.
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