
HAL Id: hal-01182104
https://hal.science/hal-01182104

Submitted on 30 Jul 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Efficient computation of polynomial explanations of
Why-Not questions

Nicole Bidoit, Melanie Herschel, Katerina Tzompanaki

To cite this version:
Nicole Bidoit, Melanie Herschel, Katerina Tzompanaki. Efficient computation of polynomial explana-
tions of Why-Not questions. 31ème Conférence sur la Gestion de Données - Principes, Technologies
et Applications - BDA 2015, Sep 2015, Île de Porquerolles, France. �hal-01182104�

https://hal.science/hal-01182104
https://hal.archives-ouvertes.fr

Efficient computation of polynomial explanations of
Why-Not questions

Nicole Bidoit
Université Paris Sud / Inria

91405 Orsay Cedex, France
nicole.bidoit@lri.fr

Melanie Herschel
Universität Stuttgart

70569 Stuttgart, Germany
melanie.herschel

@ipvs.uni-stuttgart.de

Katerina Tzompanaki
Université Paris Sud / Inria

91405 Orsay Cedex, France
katerina.tzompanaki@lri.fr

ABSTRACT
Answering a Why-Not question consists in explaining why the re-
sult of a query does not contain some expected data, called missing
answers. This paper [6] focusses on processing Why-Not questions
following a query-based approach that identifies the culprit query
components. The first contribution of this paper is a general defi-
nition of a Why-Not explanation by means of a polynomial. Intu-
itively, the polynomial provides all possible explanations to explore
in order to recover the missing answers. Moreover, this formalism
allows us to represent Why-Not explanations to extended relational
models having for instance probabilistic or bag semantics. Com-
puting the Why-Not explanation is a complex process and the sec-
ond contribution of the paper is an algorithm that efficiently gen-
erates the aforementioned polynomials that answer Why-Not ques-
tions. An experimental evaluation demonstrates the practicality of
the algorithm both in terms of efficiency and explanation quality,
compared to existing algorithms.

Répondre à des questions de type "Pourquoi pas" (Why Not)
consiste à expliquer pourquoi certaines données appelées réponses
manquantes sont absentes du résultat d’une requête. Cet article
traite de questions de type "Pourquoi pas" en suivant une approche
"requête", c’est à dire que les explications sont fournies par les
combinaisons de conditions de la requête qui sont responsables de
la non obtention de certaines réponses. La première contribution
est une définition générale de ce qu’est l’explication d’une ques-
tion "Pourquoi pas" sous la forme d’un polynôme. Intuitivement,
ce polynôme fournit toutes les voies à explorer pour récupérer les
réponses manquantes. De plus, cette définition permet, avec le
même formalisme, de s’intéresser à des extensions du modèle re-
lationnel tel que la sémantique multi-ensembliste ou probabliliste.
La deuxième contribution de cet article est liée au calcul des ex-
plications d’une question "Pourquoi pas". Un algorithme efficace
est présenté, accompagné d’une validation expérimentale et d’une
étude comparative.

1. INTRODUCTION
The increasing load of data produced nowadays is coupled with

an increasing need for complex data transformations that develop-

(c) 2015, Copyright is with the authors. Informally presented at the BDA
2015 Conference (September 29-October 2, 2015, Ile de Porquerolles,
France).
(c) 2015, Droits restant aux auteurs. Présenté à la conférence BDA 2015
(29 Septembre-02 Octobre 2015, Ile de Porquerolles, France).
.

ers design to process these data in every-day tasks. These trans-
formations, commonly specified declaratively, may result in unex-
pected outcomes. For instance, given the sample query and data of
Fig. 1 on airlines and destination countries, a developer (or trav-
eller) may wonder why Emirates does not appear in the result.
Traditionally, she would repeatedly manually analyze the query to
identify a possible reason, fix it, and test it to check whether the
missing answer is now present or if other problems need to be fixed.

Answering such Why-Not questions, that is, understanding why
some data are not part of the result, is very valuable in a series
of applications, such as query debugging and refinement, data ver-
ification or what-if analysis. To help developers explain missing
answers, different algorithms have recently been proposed for rela-
tional and SQL queries as well as other types of queries like Top-k
and reverse skyline.

For relational queries, Why-Not questions can be answered for
example based on the data (instance-based explanations), the query
(query-based explanations), or both (hybrid explanations). We fo-
cus on solutions producing query-based explanations, as these are
generally more efficient while providing sufficient information for
query analysis and debugging. Essentially, a query-based expla-
nation is a set of conditions of the query that are responsible for
pruning data relevant to the missing answers. Existing methods
producing query based explanations are not satisfactory, as they
return different explanations for the same SQL query, and miss ex-
planations. This is due to the fact that these algorithms are designed
over query trees and thus, the explanations depend on the topology
of a given tree and indeed to the ordering of the query operators in
the query tree.

EXAMPLE 1.1. Consider the SQL query and data of Fig. 1 and
assume that a developer wants an explanation for the absence of
Emirates from the query result. Fig. 2 shows two possible query
trees for the query. It also shows the tree operators that Why-
Not [9] (◦) and NedExplain [5] (?) return as query-based explana-
tions as well as the tree operators returned as part of hybrid expla-
nations by Conseil [18, 19] (•). Each algorithm returns a different
result for each of the two query trees, and in most cases, it is only a
partial result as the true explanation of the missing answer is that
both the selection is too strict for the tuple (Emirates, 1985, 3)
from table Airline and this tuple does not find join partners in
table Country.

The above example clearly shows the shortcomings of existing
algorithms. Indeed, the developer first has to understand and reason
at the level of query trees instead of reasoning at the level of the
declarative SQL query she is familiar with. Second, she always has
to wonder whether the explanation is complete, or if there are other
explanations that she could consider instead. To this problem, we
make in this paper the following contributions:

SELECT airline,
country

FROM Airline A,
Country C

WHERE ccode = code
AND year < 1985

Airline
airline year ccode
KLM 1919 1
Qatar 1993 1
Aegean 1987 2
Emirates 1985 3

Country
code country

1 Australia
2 France

Figure 1: Example query and data

Πairline,country

σyear<1985•

1code ◦ ? •

Airline Country

Πairline,country

1code

σyear<1985 ◦ ? •

Airline

Country

Figure 2: Reordered query trees for the query of Fig. 1 and
algorithm results (Why-Not ◦, NedExplain ?, Conseil •)

Extended formalization of Why-Not explanation poly-
nomial.

In preliminary work [3, 4], we introduced polynomials as Why-
Not explanations in the context of the relational model under set
semantics. A polynomial provide a complete explanation and is in-
dependent of a specific query tree representation, solving the prob-
lems illustrated by the Ex. 1.1.

This paper significantly extends on the preliminary notion of a
Why-Not explanation: the overall framework has been consider-
ably simplified while the notion of Why-Not explanation is ex-
tended to be used in the context of relational model under set, bag
and probabilistic semantics. This confirms the robustness of the
chosen polynomial representation, making it a good fit for a uni-
fied framework for representing Why-Not explanations.

Efficient Ted++ algorithm.
In our preliminary work [3, 4], we presented a naive algorithm

computing Why-Not explanations. We show that its runtime com-
plexity is impractical and propose a totally new algorithm, Ted++.
Ted++ is capable of efficiently computing the Why-Not explana-
tion polynomial, based on techniques like smart data partitioning
(allowing for a distributed computation) and advantageous trans-
lation of expensive database evaluations by mathematical calcula-
tions.

Experimental validation.
We experimentally validate both the efficiency and the effective-

ness of the solutions proposed in this paper. These experiments
include a comparative evaluation to existing algorithms comput-
ing query-based explanations for SQL queries (or sub-languages
thereof) as well as a thorough study of Ted++ performance w.r.t.
different parameters.

The remainder of this paper is structured as follows. Sec. 2 cov-
ers related work. Sec. 3 defines in detail our problem setting and
the Why-Not explanation polynomials. Next, we discuss in detail
the Ted++ algorithm in Sec 4. Finally, we present our experimental
setup and evaluation in Sec. 5 before we conclude in Sec. 6.

2. RELATED WORK
Recently, we observe the trend that growing volumes of data are

processed by programs developed not only by expert developers but
also by less knowledgable users (creation of mashups, use of web
services, etc.). These trends have led to the necessity of providing
algorithms and tools to better understand and verify the behavior
and semantics of developed data transformations, and various so-

Table 1: Algorithms for answering Why-Not questions
Algorithm Why-NotExplanation Query

question format
Query-based explanations

Why-Not [9] simple query operators SPJU
NedExplain [5] simple query operators SPJUA
Ted [3]/Ted++ complex polynomial conj. queries with inequalities

Hybrid explanations
Conseil [18, 19] simple source table edits +

query operators
SPJAN

Instance-based explanations
MA [21] simple source table edits SPJ

Artemis [20] complex source table edits SPJUA
Meliou et. al. [24] simple causes (tuples) and

responsibility
conjunctive queries

Calvanese et. al. [7]simple additions to ABox instance & conj. queries over DL-
Lite ontology

Ontology-based explanations
Cate et. al. [8] simple tuples concepts conj. queries with comparisons

Refinement-based explanations
ConQueR [28] complex rewritten query SPJA

Zhang et. al. [17] simple refined query Top-k query
Islam et. al. [22] simple refined query &

Why-Not question
Reverse skyline query

WQRTQ [13] simple refined query &
Why-Not question

Reverse Top-k query

Chen et. al. [10] simple refined query Spatial keyword Top-k query

lutions have been proposed so far, including data lineage [12] and
more generally data provenance [11], (sub-query) result inspection
and explanation [2, 15, 27], query conditions relaxation [25], trans-
formation specification simplification [23, 26], etc.

The work presented in this paper falls in the category of data
provenance research, and specifically explaining missing answers
from query results. Due to the lack of space, the subsequent dis-
cussion focuses on this sub-problem, thus on algorithms answer-
ing Why-Not questions. Tab. 1 summarizes these algorithms, first
classifying them according to the type of explanation they generate
(instance-based, query-based, hybrid, ontology-based or refinement-
based). The table further shows whether an algorithm supports
simple Why-Not questions, i.e., questions where each condition
impacts one relation only, or more complex ones. The last two
columns summarize the form of a returned explanation and the
class of query supported by an algorithm respectively.

Query-based and hybrid explanations.
Why-Not [9] takes as input a simple Why-Not question and re-

turns so called picky query operators as query-based explanation.
To determine these, the algorithm first identifies tuples in the source
database that satisfy the conditions of the input Why-Not question
and that are not part of the lineage [12] of any tuple in the query re-
sult. These tuples, named compatible tuples, are traced through the
query operators of a query tree representation to identify which op-
erators include them in their input but not in their output. In [9] the
algorithm is shown to work for queries involving selection, projec-
tion, join, and union (SPJU query). NedExplain [5] is very similar
to Why-Not in the sense that it supports simple Why-Not questions
and returns a set of picky operators as query-based Why-Not expla-
nation as well. However, it supports a broader range of queries, i.e.,
queries involving selection, projection, join, and aggregation (SPJA
queries) and unions thereof and the computation of picky operators
is significantly different. In this work, we support a wider class of
Why-Not questions (complex ones) and provide a new formaliza-
tion of Why-Not explanation as polynomials.

Conseil [18, 19] produces hybrid explanations that include an
instance-based and a query-based component. The latter consists
in a set of picky query operators. However, as Conseil considers
both the data to be possibly incomplete and the query to be possi-

bly faulty, the set of picky query operators associated to a hybrid
explanation depends on the set of source edits of the same hybrid
explanation.

Instance-based explanations.
Both Missing-Answers (MA) [21] and Artemis [20] compute

instance-based explanations in the form of source table edits. Whereas
MA returns correct explanations for simple Why-Not questions and
SQL queries involving selection, projection, and join (SPJ queries),
Artemis supports complex Why-Not questions on a larger fraction
of SQL queries (including union or aggregation, denoted SPJUA).
Meliou et. al. [24] study the unification of instance-based expla-
nations of missing answers and of data present in a conjunctive
query result, leveraging the concepts of causality and responsibil-
ity. Finally, Calvanese et. al.. [7] leverage abductive reasoning and
theoretically examines the problem of computing instance-based
explanations for a class of simple Why-Not questions on data rep-
resented by a DL-Lite ontology. As here the explanations are in
the form of source edits, we consider these works orthogonal to
query-based ones.

Ontology-based explanations.
Cate et. al. [8] introduce ontology-based explanations for con-

junctive queries with comparisons (=,>,<), using external or data
workload generated ontologies. They also provide an algorithm
that computes these ontology-based explanations. The algorithm as
well as the explanations are completely independent of the query to
be analysed and therefore, we consider this approach orthogonal to
our work here.

Refinement-based explanations.
Given a set of missing answers and a SPJUA query, ConQueR [28]

refines the query such that all missing answers become part of the
output. Refinements of the query and of the Why-Not question
have been proposed in other contexts as well like for Top-k queries
(Zhang et. al. [17]), reverse skyline queries (Islam et. al. [22]), re-
verse Top-k queries (WQRTQ [13]), spatial keyword Top-K queries
(Chen et. al. [10]) etc. Although these approaches are generally
very interesting, they do not focus on pinpointing to the user the
erroneous parts of the query, but on directly refining the query. In-
deed, the generated queries may contain changes that are not nec-
essarily tied to an erroneous part of the query. For this reason, they
are out of the scope of this paper.

3. WHY-NOT EXPLANATION POLYNOMIAL
This section introduces a polynomial formalization of query-

based Why-Not explanations. We assume the reader familiar with
the relational model [1], and we only briefly revisit some relevant
notions in Sec. 3.1 while we formalize Why-Not questions. Then,
in Sec. 3.2, we define the explanation of a Why-Not question as a
polynomial and in Sec. 3.3 we provide a unified general framework
for Why-Not explanations in the context of probabilistic, set, and
bag semantics databases.

3.1 Preliminaries
For the moment, we limit our discussion to relational databases

under set semantics. A database schema S is a set of relation
schemas. A relation schema R is a set of attributes. We assume
each attribute ofR qualified, i.e., of the formR.A and, for the sake
of simplicity we assume a unique domain D. I denotes a database
instance over S and I|R denotes the instance of a relationR∈S. We
assume that each database relation R has a special attribute R.Id,

R
A B R.Id
1 3 Id1

2 4 Id2

4 5 Id3

8 9 Id4

S
D E S.Id
4 8 Id5

5 3 Id6

3 9 Id7

T
B C D T.Id
3 4 5 Id8

3 8 1 Id9

5 3 3 Id10

5 9 4 Id11

(a) Sample Instance I

S = {R,S, T}

Γ = {R.B, S.D, T.C}

C = {c1, c2, c3, c4, c5}

C
c1 R.A > 3
c2 R.B = T.B
c3 T.C ≥ 8
c4 T.D = S.D
c5 S.E ≥ 3

{R.B<S.D, T.C ≤ 9}

(c) Why-Not questionWN

(b) queryQ = (S,Γ, C) and naming of conditions

Figure 3: Running example

which is used as identifier for the tuples in I|R. For any objectO (a
relational schema, database schema, condition etc), A(O) denotes
the set of attributes occurring in O. Finally, a condition c over S is
defined as an expression of the form R.A θ a where a∈D or of the
form R.A θ S.B, where R.A, S.B∈A(S), and θ∈{=, 6=, <,≤}.
A condition over two relations is complex, otherwise it is simple. In
this article, we consider conjunctive queries with inequalities. Note
that, in our approach, the database schema S denotes the query in-
put schema. In an SQL-like approach, each time we need an in-
stance of a relation, we refer to it by a different name. In this way,
we are able to correctly define Why-Not questions in the case of
self-join.

DEFINITION 3.1 (QUERY Q). A query Q is specified by the
triple (S,Γ, C), where S is a database schema, Γ ⊆ A(S) is the
projection attribute set, and C is a set of conditions over A(S).
The semantics of Q are given by the relational algebra expression
πΓ [σ ∧

c∈C
c
[×R∈S [R]]].

The result ofQ over a database instance I of S is denoted byQ[I].
Note here that we are not concerned about the evaluation/optimization
of Q.

EXAMPLE 3.1. Fig. 3 describes our running example. Fig. 3(a)
displays an instance I over S={R,S, T}. Fig. 3(b) displays a
query Q over S, whose conditions have been named for conve-
nience. R.B=T.B and T.D=S.D are complex whereas the others
are simple conditions. Moreover,Q[I]={(R.B:5, S.D:4, T.C:9)}.

In our framework, a Why-Not question specifies missing tuples
from the result of a queryQ through a conjunctive set of conditions.
As a Why-Not question is related to the result of Q, the conditions
of the Why-Not question are restricted to the attributes of the output
schema of Q.

DEFINITION 3.2 (WHY-NOT QUESTION). A Why-Not ques-
tion WN w.r.t. Q is defined as a set of conditions over Γ.

The notion of complex and simple conditions is extended to com-
plex and simple Why-Not questions in a straight forward manner.

As we said, a Why-Not questionWN summarizes a set of (miss-
ing) tuples that the user expected to find in the query result. To be
able to obtain these missing tuples as query results, data from the
input relation instances that satisfy WN need to be combined by
the query. The candidate data combinations are what we call com-
patible tuples and these can be computed using WN as in Def. 3.3.

DEFINITION 3.3 (COMPATIBLE TUPLES). Consider the query
QWN=(S,A(S),WN), where S is the input schema ofQ. The set
CT of compatible tuples is the result of the query QWN over I.

We further introduce the notion of a well founded Why-Not ques-
tion. Intuitively, a Why-Not question can be answered under a
query-based approach, only if some data in I match the Why-Not
question (otherwise instance-based explanations should be sought
for). Moreover, a Why-Not question is meaningfull if it tracks data
not already returned by the query.

DEFINITION 3.4 (WELL FOUNDED WHY-NOT QUESTION).
A Why-Not question WN is said to be well founded if CT 6=∅ and
πΓ [CT] ∩Q[I]=∅.

EXAMPLE 3.2. Continuing Ex. 3.1, we may wonder why there
is not a tuple for which R.B<S.D and T.C ≤ 9. According to
Def. 3.2, this Why-Not question is the conjunction of the conditions
R.B<S.D ∧ T.C ≤ 9 (Fig. 3(c)). Since R.B<S.D is a complex
condition,WN is a complex Why-Not question. The compatible tu-
ples setCT is the result of the queryQWN=σR.B<S.D∧T.C≤9[R×
S×T], which contains 12 tuples. For example, one compatible tu-
ple is τ1=(R.Id:1, R.A:1, R.B:3, S.Id:5, S.D:4, S.E:8, T.Id:8,
T.B:3, T.C:4, T.D:5).

Each tuple in CT could have led to a missing tuple, if it was
not eliminated by some of the query’s conditions. Thus, explaining
WN amounts to identifying these blocking query conditions.

3.2 The Why-Not Explanation Polynomial
To build the query-based explanation of WN , we start by spec-

ifying what explains that a compatible tuple τ did not lead to an
answer. Intuitively, the explanation consists of the query conditions
pruning τ .

DEFINITION 3.5 (EXPLANATION FOR τ). Let τ∈CT be a
compatible tuple w.r.t. WN , given Q. Then, the explanation for
τ is the set of conditions Eτ={c|c∈C and τ 6|= c}.

EXAMPLE 3.3. Reconsider the compatible tuple τ1 in Ex. 3.2.
The conditions of Q (see Ex. 3.1), not satisfied by τ1 are: c1, c3,
and c4. So, the explanation for τ1 is Eτ1={c1, c3, c4}.

Having defined the explanation wrt one compatible tuple, the
explantion forWN is obtained by simply summing up the explana-
tions for all the compatible tuples in CT . This leads to an expres-
sion of the form

∑
τ∈CT

∏
c∈Eτ

c. We justify modelling the explana-

tion of τ with a product (meaning conjunction) of conditions by the
fact that in order for τ to ‘survive’ the query conditions and give rise
to a missing tuple, every single condition in the explanation must
be ‘repaired’. The sum (meaning disjunction) of the products for
each τ∈CT implies that if any explanation is ‘correctly repaired’,
the associated τ will produce a missing tuple.

Of course, several compatible tuples can share the same expla-
nation. Thus, the final Why-Not explanation is a polynomial hav-
ing as variables the query conditions and as integer coefficients the
number of compatible tuples sharing an explanation.

DEFINITION 3.6 (WHY-NOT EXPLANATION). With the same
assumption as before, the Why-Not explanation for WN is defined
as the polynomial

PEX =
∑
E∈E

coefE
∏
c∈E

c

where E = 2C , coefE∈{0, . . . , |CT |} is the number of tuples in
CT sharing E as an explanation, and

∑
E∈E

coefE = |CT |.

Intuitively, E contains all possible explanations, i.e., condition
combinations and each of these explanations prunes from zero to
at most |CT | compatible tuples. Each compatible tuple is pruned
by exactly one condition combination, which is why the sum of all
coefficients is equal to the number of compatible tuples.

We mentioned before that each term of the polynomial provides
an alternative explanation to be explored by the user who wishes
to recover some missing tuples. Additionally, the polynomial as in
Def. 3.6 offers through its coefficients some useful hints to users
interested in the number of recoverable tuples. More precisely, by
isolating an explanation E to repair, we can obtain an upper bound
for the number of compatible tuples that can be recovered. The
upper bound is calculated as the sum of the coefficients of all the
explanations that are sub-sets of (the set of conditions of) E , be-
cause when E is changed it is likely that some sub-combinations
are also repaired.

EXAMPLE 3.4. In Ex. 3.3 we found the explanation {c1, c3, c4},
leading to the polynomial term c1 ∗ c3 ∗ c4. Taking into consider-
ation all the 12 compatible tuples of our example, we obtain the
following PEX polynomial: 2 ∗ c1 ∗ c4 + 2 ∗ c1 ∗ c3 ∗ c4 + 4 ∗ c1 ∗
c2 ∗ c4 + 2 ∗ c1 ∗ c2 ∗ c3 + 2 ∗ c1 ∗ c2 ∗ c3 ∗ c4. In the polynomial,
each addend, composed by a coefficient and an explanation, cap-
tures a way to obtain missing tuples. For instance, the explanation
c1 ∗ c2 ∗ c4 indicates that we may recover some missing answers if
c1 and c2 and c4 are changed. Then, the sum of its coefficient 4 and
the coefficient 2 of the explanation c1 ∗ c4 ({c1, c4}⊆{c1, c2, c4})
indicates that we can recover from 0 to 6 tuples.

As the presentation of the polynomial per se may sometimes
be cumbersome, and thus not easy for a user to manipulate, some
post-processing steps could be applied. For example, depending on
the application or needs, only a subset of the explanations could
be returned like minimum explanations (i.e., for which no sub-
explanations exist), or those explanations supposed to recover a
specific number of tuples, or having specific condition types etc.

3.3 Extension: Bag & Probabilistic Semantics
So far, we have considered databases under set semantics only.

In this section, we discuss how the definition of Why-Not expla-
nation (Def. 3.6) extends to settings with conjunctive queries over
bag semantics and probabilistic databases.
K-relations, as introduced in [14], capture in a unified manner

relations under probabilistic, bag or set semantics. Briefly, a K-
relation maps tuples to elements of a setK, that isK-relation tuples
are annotated with elements in K. In our case, we consider that K
is a set of tuple identifiers, similar to our special attribute R.Id in
Sec. 3.1.

In what follows, we use the notion of how-provenance of tu-
ples in the result of a query Q. The how-provenance of t∈Q(I)
is modelled as the polynomial obtained by the positive algebra on
K-relations, proposed in [14]. Briefly, each t is annotated with
a polynomial whose variables are tuple identifiers and coefficients
are natural numbers. Following [14]’s algebra, if t results from a
selection operator on a tuple t1 annotated with Id1, then t is also
annotated with Id1. If t is the result of the join of t1 and t2, then t
is annotated with Id1Id2.

We compute the generalized Why-Not explanation polynomial
as follows. Firstly, we compute the how-provenance for compatible
tuples in CT by evaluation of the query QWN (Def. 3.3) wrt the
algebra in [14]. Recall that QWN contains only selection and join
operators. Thus, we assume that each compatible tuple τ in CT is
annotated with its how-provenance polynomial, denoted by ητ .

In a second step, we associate the expressions of how and why-
not provenance. In order to do this, for each compatible tuple τ in
CT , we combine its how-provenance polynomial ητ with its expla-
nation Eτ (Def. 3.5). So, each τ is annotated with the expression
ητEτ .

Finally, as before, we sum the combined expressions for all com-
patible tuples. The result is the generalized Why-Not explanation
PEXgen =

∑
τ∈CT

ητEτ .

We now briefly comment on how PEXgen is instantiated to deal
either with the set, bag or probabilistic semantics. Indeed, the ’spe-
cialization’ of PEXgen relies on the interpretation of the elements
in K, that is on a function Eval from K to some set L. For the
set semantics, each tuple in a relation occurs only once. This re-
sults in choosing L to be the singleton {1} and mapping each tuple
identifier to 1. It is then quite obvious to note, for the set seman-
tics, that PEXgen = PEX (Def. 3.6). In the same spirit, for bag
semantics, L is chosen as the set of natural numbers N and each
tuple identifier is mapped to its number of occurences. Finally, for
probabilistic databases, L is chosen as the interval [0, 1] and each
tuple identifier is mapped to its occurrence probability.

Thus, the generalized definition of Why-Not explanation is pa-
rameterized by the mapping Eval of the annotations (elements in
K) in the set L.

DEFINITION 3.7. (Generalized Why-Not explanation polynomial)
Given a query Q over a database schema S of K-relations, the
generalized Why-Not explanation polynomial for WN is

PEXgen =
∑
E∈E

∑
τ∈CTs.t. Eτ=E

Eval(ητ)E

whereE=2C , ητ is the how-provenance of τ , andEval:K → L
evaluates the elements of K to values in L.

The specializations of PEXgen share the same explanations (terms
of the polynomial), capturing the same ‘erroneous’ parts of the
query. However, the coefficients are interpreted wrt the how-prove-
nance.

4. TED++ ALGORITHM
In [3], we have introduced Ted, a naive algorithm that imple-

ments the definitions of [3] for Why-Not explanations in a straight-
forward manner. Briefly, Ted enumerates the set of compatible tu-
plesCT by executing the queryQWN (Def. 3.3). Then, it computes
the explanation for each compatible tuple inCT , which leads to the
computation of the final Why-Not explanation. However, both of
these steps make Ted computationally prohibitive. Not only is the
computation of CT time and space consuming as it often requires
cross product executions, but also the iteration over this (poten-
tially very large) set is time consuming. Ted’s time complexity is
O(n|S|), n=max({| IR |}), R∈S. As experiments in Sec. 5 con-
firm, this complexity renders Ted of no practical interest.

To overcome the poor performance of Ted, we propose Ted++.
The main feature of Ted++ is to completely avoid enumerating and
iterating over the set CT , thus it significantly reduces both space
and time consumption. Instead, Ted++ opts for (i) iterating over
the space of possible explanations, which is expected to be much
smaller, (ii) computing partial sets of passing compatible tuples,
and (iii) computing the number of eliminated compatible tuples for
each explanation. Intuitively, passing tuples w.r.t. an explanation
are tuples satisfying the conditions of the explanation. Finally, the
polynomial is computed based on mathematical calculations.

Theorem 4.1 states that Ted++ is sound and complete w.r.t. Def. 3.6.

Algorithm 1: Ted++
Input: Q=(S,Γ, C), I,WN
Output: PEX

1 E ← powerset(C);
2 P ←validPartitioning(S,WN); *(Def. 4.1)*
3 for Part in P do
4 CT|Part ← (Part,A(Part),WN|Part)[I|Part] ;

5 coefficientEstimation(E,Partition);
6 PEX←post-processing();
7 return PEX;

THEOREM 4.1. Given a query q, a Why-Not question WN and
an input instance I, Ted++ computes exactly PEX.

Alg. 1 provides an outline of Ted++. The input includes the
query Q=(S,Γ, C), the Why-Not question WN and the input in-
stance I. Firstly, in Alg. 1, line 1, all potential explanations (com-
binations of the conditions in C) are enumerated (E=2C). The
remaining steps, discussed in the next subsections, aim at comput-
ing the coefficient of each explanation. To illustrate the concepts
introduced in the detailed discussions, we will rely on our running
example, for which Fig. 4 shows all relevant intermediate results.
It should be read bottom-up. For convenience, in our examples, we
use subscript i instead of ci.

4.1 Partial Compatible Tuples Computation
Using the conditions in WN , Ted++ partitions the schema S

(Alg. 1 line 2) into components of relations connected by the con-
ditions in WN (Def. 4.1).

DEFINITION 4.1. (Valid Partitioning of S). Given WN , the
partitioning of a database schema S into k partitions, denoted
P = {Part1, . . . , Partk}, is valid if each Parti, i∈{1, . . . , k} is
minimal w.r.t. the following property:
if R∈Parti and R′∈S s.t. ∃c∈WN with A(c)∩A(R′) 6=∅ and
A(c)∩A(R) 6=∅ then R′∈Parti.

The partitioning of S allows for handling compatible tuples more
efficiently, by ‘cutting’ them in distinct meaningful ‘chunks’, avoid-
ing combining chunks over distincts partitions through cross prod-
uct. We refer to the chunks of compatible tuples as partial com-
patible tuples and group them in sets depending on the partition
they belong to. The set CT|Part of partial compatible tuples wrt
Part∈P is obtained by evaluating the queryQPart=(Part,A(Part),
WN|Part) over I|Part (Alg. 1, line 4). WN|Part and I|Part de-
note the restriction of WN and I over the relations in Part, re-
spectively.

EXAMPLE 4.1. The valid partitioning of S is Part1={R,S}
(because of the condition R.B<S.D) and Part2={T}. The sets
of partial compatible tuples CT|Part1 and CT|Part2 are given in
the bottom line of Fig. 4.

It is easy to prove that the valid partitioning of S is unique and
that the set CT can be computed from the individual CT|Parti.

LEMMA 4.1. Let P be the valid partitioning of S. Then,
CT=×Parti∈P [CT|Parti].

Indeed, Lemma. 4.1 makes it clear how CT is computed from
partial compatible tuples. Our algorithm is designed in a way that
avoids computing CT and relies on the computation of CT|Parti
only.

Algorithm 2: coefficientEstimation
Input: E explanations space, P valid partitioning of S

1 for E∈E *access in ascending size order* do
2 Compute partE ;
3 if | E |= 1 then
4 materialize VE ;
5 βE ← Eq. (B);
6 else
7 if αsubcombination of E 6= 0 then
8 {E1,E2}← subCombinationsOf(E);
9 Γ12 ← Γ1 ∩ Γ2; *Γi is the output schema of VEi*

10 if Γ12 6= ∅ then
11 VE ← VE1 1Γ12

VE2;
12 materialize VE ;
13 else
14 | VE |←| VE1 | ∗ | VE2 |;

15 else
16 | VE |←| VE1 | ∗ | VE2 |;

17 βE ←
∏

Part∈partE
|CT|Part|− | (

n⋃
i=1

Vci)
ext |; * Eq. (E)*

18 αE ← Eq. (A);

Next, we compute the number of compatible tuples eliminated
by each possible explanation, starting with the partial compatible
tuple sets previously defined. These numbers approximate the co-
efficient of the explanations in the polynomial. Since from this
point on, we are only handling (partial) compatible tuples, we omit
the word ‘compatible’ to lighten the discussion.

4.2 Polynomial Coefficient Estimation
Each set E in the powerset E is in fact a potential explanation

that is further processed. In order to do that, we associate E with
(i) the set of partitions partE on which E is defined, (ii) the view
definition VE meant to store the passing partial tuples wrt E1, and,
(iii) the number αE of tuples eliminated by E .

Alg. 2 describes how we process E in ascending order of expla-
nation size, in order to compute αE . Each step deals with explana-
tions of size s, reusing results from previous steps avoiding cross
product computations through mathematical calculations.

We first determine the set of partitions for an explanation E as
partE=∪c∈E {Partc}, where Partc contains at least one relation
over which c is specified.

EXAMPLE 4.2. Consider E1={c1} and E2={c2}. From Fig. 3(b)
and the partitions in Fig. 4, we can see that c1 impacts only Part1,
whereas c2 spans overPart1 andPart2. Hence, partE1={Part1}
and partE2={Part1, Part2}. Then, E={c1, c2} is impacted by
the union of partE1 and partE2 , thus partE={Part1, Part2}.

We use Eq. (A) to calculate the number αE of eliminated tuples,
using the number βE of eliminated partial tuples and the cardinality
of the partitions not in partE . Intuitively, this formula extends the
partial tuples to “full” tuples over CT ’s schema.

αE = βE ∗
∏

Part∈partE

|CT|Part|, (A)

where partE=P \ partE . Note that when partE is empty, we abu-
sively consider that

∏
∅=1.

The presentation now focuses on calculating βE . Two cases arise
depending on the size of E .

1We choose to store passing rather than eliminated tuples as they
are usually less numerous. In an optimized version this decision
could be made dynamically based on view cardinality estimation.

Atomic explanations.
We start with explanations E containing only one condition c

(Algorithm 2 lines 3-5), which we call atomic explanations. To
find the number of eliminated partial tuples βE , we firstly compute
the set of passing partial tuples w.r.t. c, which we store in the view
Vc:

Vc =


π{R_id|R∈Part}(σc[CT|Part]) if partE={Part}

π{R_id|R∈Part1∪Part2}([CT|Part1] 1c [CT|Part2])

if partE={Part1, Part2}

Then,

βE =
∏

Part∈partE

|CT|Part| − |Vc| (B)

EXAMPLE 4.3. For c2, we have partc2={Part1, Part2}, so
Vc2=πR_Id,S_Id,T _Id([CT|Part1]1R.B=T.B [CT|Part2]). This re-
sults in |Vc2 |=4, and by Eq. (B) we obtain βc2=|CT|Part1| ∗
|CT|Part2|−|Vc2|=3 ∗ 4−4=8. Since all partitions of P are
in partc2, applying Equ. (A) results in αc2=βc2=8. For c3,
βc3=|CT|Part2 |−Vc3=4−2=2, so αc3=3∗2 = 6. Fig. 4 (second
level) displays the process for all atomic explanations.

Non atomic explanations.
Now, consider E={c1, . . . , cn}, n > 1 (Alg. 2, lines 6-16). For

the moment, we assume that the conditions in E share the same
schema, so the intersection and union of Vci for i = 1, . . . , n are
well-defined. Firstly, we compute the view VE storing the pass-
ing partial tuples wrt E as VE=Vc1∩ . . .∩Vcn. To compute the
number of partial tuples pruned out by E , we need to find the
number of partial tuples pruned out by c1 and . . . and cn, i.e.,
βE= | Vc1 ∩ · · · ∩ Vcn |. By the well-known DeMorgan law [29],
we have βE=|Vc1 ∪ · · · ∪ Vcn|, which spares us from computing
the complements of Vci.

To compute the cardinality of the union among Vci, we rely on
the Principle of Inclusion and Exclusion for counting [16]:

|
n⋃
i=1

Vci | =
∑

∅6=J⊆[n]

(−1)|J|+1 |
⋂
j∈J

Vcj |

We further rewrite the previous formula to re-use results obtained
for sub-combinations of E , obtaining Eq. (C).

|
n⋃
i=1

Vci | = |
n−1⋃
i=1

Vci | + | Vcn |

+
∑

∅6=J⊆[n−1]

(−1)|J| |
⋂
j∈J

Vcj ∩ Vcn |
(C)

At this point, we have all the necessary data to compute βE .
However, so far we assumed that the conditions in E have the same
schema. In the general case, we have to “extend” the schema of a
view Vc to the one of VE , in order to have well-defined set opera-
tions. The cardinality of an extended V extc is given by Eq. (D).

| V extc |=
∏

Part∈partE\partc

| CTPart | ∗ | Vc | (D)

Based on Eq. (D) we obtain Eq. (E) that generalizes Eq. (C).

c1	

 c2	

 c3	

 c4	

 c5	

CTPart1	

 Passing partial	

 compatible tuples ���

 (Example 4.1)	

Vε	

Explanation ε 	

αε (Eq. (A))	

	

 eαε (Eq. (B)) 	

4 * 3 = 12	

	

3 - 0 = 3	

1 * 8 = 8	

	

3 * 4 - 4 = 8	

3 * 2 = 6	

	

4 - 2 = 2	

1 * 9 = 9	

	

3 * 4 - 3 = 9	

4 * 0 = 0	

	

3 - 3 = 0	

Explanation ε	

c1c3	

 c2c3	

 c2c4	

 c3c5	

	

αε (Eq. (A))	

	

eαε (through Eq. (E))	

���
	

1 * 6 = 6	

	

3 * 4 - (0 + 6 - |V13|) = 6	

1 * 4 = 4	

	

3 * 4 - (4 + 6 - |V23|) = 4	

1 * 6 = 6	

	

3 * 4 - (4 + 3 - |V24|) = 6	

Explanation ε	

c1c2c3	

 c2c3c4	

0	

(because α5=0)	

	

	

αε (Equ. (A))	

	

 eαε (through Eq. (E))	

1 * 4 = 8	

	

3 * 4 - (8 + 0 - 0 - 0 + |V123 |)	

 = 4	

1 * 3 = 3	

	

3 * 4 - (6 + 6 - 2 - 1 + |V234 |)	

= 3	

...	

 ...	

...
	

|ε|=1	

|ε|=2	

|ε|=3	

...	

 ...	

 ...	

R_Id	

 S_Id	

 R_A	

 R_B	

 S_D	

 S_E	

Id1	

 Id5	

 1	

 3	

 4	

 8	

Id1	

 Id6	

 1	

 3	

 5	

 3	

Id2	

 Id6	

 2	

 4	

 5	

 3	

T_Id	

 T_B	

 T_C	

 T_D	

Id8	

 3	

 4	

 5	

Id9	

 3	

 8	

 1	

Id10	

 5	

 3	

 3	

Id11	

 5	

 9	

 4	

R_Id	

 S_Id	

 T_Id	

Id1	

 Id5	

 Id8	

Id1	

 Id5	

 Id9	

Id1	

 Id6	

 Id8	

Id1	

 Id6	

 Id9	

V2	

 T_Id	

Id9	

Id11	

V3	

 R_Id	

 S_Id	

 T_Id	

Id1	

 Id5	

 Id11	

Id1	

 Id6	

 Id8	

Id2	

 Id6	

 Id8	

V4	

 R_Id	

 S_Id	

Id1	

 Id5	

Id1	

 Id6	

Id2	

 Id6	

V5	

R_Id	

 S_Id	

 T_Id	

Id1	

 Id5	

 Id9	

Id1	

 Id6	

 Id9	

V23	

 R_Id	

 S_Id	

 T_Id	

Id1	

 Id6	

 Id8	

V24	

...
	

Vε	

CTPart2	

 0	

(because α5=0)	

	

	

Vε	

V1	

V123	

V13	

V234	

(V35 not materialized)	

(V235 not materialized)	

c2c3c5	

Figure 4: Running example with the different steps of Ted++ (up to explanations of size 3) in Alg. 1 and Alg. 2

| (
n⋃
i=1

Vci)
ext | = | (

n−1⋃
i=1

Vci)
ext | + | V extcn |

+
∑

∅6=J⊆[n−1]

(−1)|J| | ((1 Vcj)j∈J 1 Vcn)ext |

(E)

In Eq. (E) we have replaced the intersection with natural join.
The cardinalities of the views VE′ = (1Vcj)j∈J1Vcn associated
with E ′ for | J |< n−1, have already been computed by previous
steps and have only to be extended to the schema of VE . When
|J |=n−1, then VE′=VE . A detailed discussion on how and when
we materialize the view VE is given shortly after.

Using the above, we trivially compute the number βE of elimi-

nated partial tuples as the complement of | (
n⋃
i=1

Vci)
ext | (Alg. 2,

line 17). The number of eliminated tuples is then calculated by
Eq. (A).

EXAMPLE 4.4. To illustrate the concepts introduced above,
please follow on Fig. 4 below discussion.

For the explanation c2c3, Eq. (E) gives: |(V2∪V3)ext|=|V ext2 |+
|V ext3 |− |(V2 1 V3)ext|. The schema of part23={Part1, Part2}
is Γ23={R_Id, S_Id, T_Id}. The view V2 has already a match-
ing schema, thus |V ext2 |=|V2|=4. For V3, Γ3={T_Id}, we
thus apply Eq. (D) and obtain |V ext3 |=|VPart1 |∗ |V3|=3 ∗ 2=6.
Still, |V23|=|(V2 1 V3)ext| remains to be calculated. Intu-
itively, because V2 and V3 target schemas share attribute T_Id,
V23=V21T _IdV3. The view V23 is materialized and contains 2
tuples (as shown in Fig. 4). So, finally, from Eq. (E) we obtain

|(V2 ∪ V3)ext|=4+6−2=8. Since |Part1| ∗ |Part2| = 12 then
β23=12− 8=4, and by Eq. (A) α23=4.

We now focus on the explanation c3c5. The schemas of V3

and V5 are disjoint and intuitively V35=V3"V5. Here, V35 is
not materialized, we simply calculate |V35|=|V3|∗|V5|=6. Then,
|β35|=12−(12+6−6)=0. As we will see later, these steps are
never performed in our algorithm. The fact that c5 does not
eliminate any tuple (see α5=0 in Fig. 4) implies that neither
do any of its super-combinations. Thus, a priori we know that
α35=α235= . . .=0.

Finally, we illustrate the case of a bigger size combination, for
example c2c3c4 of size 3. Eq. (E) yields |(V2∪V3∪V4)ext|=|(V2∪
V4)ext|+ |V ext3 |−|(V2 1 V3)ext|−|(V4 1 V3)ext|+|(V2 1 V3 1

V4)ext|. All terms of the right side of the equation are available
from previous iterations, except for |(V2 1 V3 1 V4)ext|. As
before, we check the common attributes of the views and obtain
V234=V241R_Id,S_Id,T _IdV3. So,|(V2 ∪ V3 ∪ V4)ext|=6 + 6 −
2 − 1 + 0=9 and β234=α234=12 − 9 = 3. In the same way, we
compute all the possible explanations until c1c2c3c4c5.

View Materialization: when and how.
To decide when and how to materialize the views for the ex-

planations, we partition the set of the views associated with the
conditions in E . Consider the relation ∼ defined over these views
by Vi ∼ Vj if the target schemas of Vi and Vj have at least one
common attribute. Consider the transitive closure ∼∗ of ∼ and the
induced partitioning of VE through ∼∗.

When this partitioning is a singleton, VE needs to be material-
ized (Alg. 2, line 9). The materialization of VE is specified by
joining the views associated with the sub-conditions, which may

be done in more than one way, as usual. For example, for the com-
bination c2c3c4, V234 can either be computed through V231V4 or
V241V3 or V341V2 or V21V31V4. . . because all these views are
known from previous iterations. The choice of the query used to
materialize VE is done based on a cost function. This function
gives priority to materializing VE by means of one join, which is
always possible: because VE needs to be materialized, we know
that at least one view associated with a sub-combination of size
n−1 has been materialized. In other words, priority is given to us-
ing at least one materialized view associated with one of the largest
sub-combinations. For our example, it means that either V231V4

or V241V3 or V341V2 is considered. In order to choose among the
one-join queries computing VE , we favor a one-join query Vi1Vj
minimal w.r.t. |Vi|+|Vj |. For the example, and considering also
Fig. 4 we find that |V2|+|V34|=|V4|+|V23|=5 and |V3|+|V24|=3.
So, the query used for the materialization is V31V24 (its result
being empty in our example). Nevertheless, we avoid the mate-
rialization of VE if the partitioning is a singleton (Alg. 2, line 9
& 16), when for some sub-combination E ′ of E it was computed
that αE′=0. In that case, we know a priori that αE=0 (see Ex. 4.4).

If the partitioning is not a singleton, VE is not materialized (Alg. 2,
line 14). For example, the partitioning for c3c5 is not a singleton
and so the size |V35|=|V3|×|V5|=6.

Post-processing.
In Alg. 2 we associated with each possible explanation E the

number of eliminated tuples αE . However, recall that the calcula-
tion of this number so far counts any tuple eliminated by E , even
though the same tuples may be eliminated by some super-combinations
of E (see Ex. 4.5). This means that for some tuples, multiple expla-
nations have been assigned. To make things even, the last step of
Ted++ (Alg. 1, line 6) is about calculating the coefficient of E by
subtracting the coefficients of its super-combinations from αE :

coefE= αE−(
∑
E⊆E′

coefE′) (F)

EXAMPLE 4.5. Consider known coef1234=2 and coef123=2.
We have found in Ex. 4.4 that α23=4. With Eq. (F),
coef23=4−2−2=0. In the same way coef2=4−0−2−2=0. The
algorithm leads to the expected Why-Not explanation polynomial
already provided in Ex. 3.4.

4.3 Complexity analysis.
In the pseudo-code for Ted++ provided in Alg. 1, we can see

that Ted++ divides into the phases of (i) partitioning S, (ii) ma-
terializing a view for each partition, (iii) computing the explana-
tions, and (iv) computing the exact coefficients. When comput-
ing the explanations, according to Alg. 2, Ted++ iterates through
2|C| condition combinations and for each, it decides upon view
materialization (again through partitioning) before materializing it,
or simply calculates |VE | before applying equations to compute
αE . Overall, we consider that all mathematical computations are
negligible so, the worst case complexities of steps (i) through (iv)
are O(|S|+|WN |)+O(|S|) + O(2|C|(|S|+ |C|))+O(2|C|). For
large enough queries, we can assume that |S|+|C|<<2|C|, in which
case the complexity simplifies to O(2|C|).

Obviously, the complexity analysis above does not take into ac-
count the cost of actually materializing views; in its simplified
form, it only considers how many views need to be materialized
in the worst case. Assume that n=max({|IR||R∈S}). The ma-
terialization of any view is bound by the cost of materializing a
cross product over the relations involved in the view - in the worst

Table 2: Queries for the scenarios in Tab. 3
QueryExpression

Q1 C 1sector W 1witnessName S 1hair,clothes P
Q2 σC.sector>99[C] 1sector W 1witnessName S 1hair,clothes P
Q3 W 1sector2 C2 1sector1 σC.type=Aiding [C]
Q4 P2 1!name,hair σP1.name<B [P1]
Q5 L1movieIdσM.year>2009[M]1nameσR.rating≥8[R]
Q6 σAA.party=Republican[AA] 1id σCo.Byear>1970[Co]
Q7 E1eIdσES.sub=Sen. Com.[ES]1idσSPO.party=Rep.[SPO]

Qs3 σtype=Aiding [Q2]
Qs4 σwitnessname>S [Qs3]
Qj C 1sector σname>S [W]
Qj2 Qj 1witnessname S
Qj3 Qj2 1clothes P
Qj4 Qj3 1hair P
Qc L11lidL2 1M2.mid=L2.mid M2 1year,!mid σyear=1980[M1]

QtpchC1ckeyσodate<1998−07−21[O]1okeyσsdate>1998−07−21[L]

case O(n|S|). This yields a combined complexity of O(2|C|n|S|).
However, Ted++ in the general case (more than one induced parti-
tions), has a tighter upper bound: O(nkE1 + nkE2 + · · ·+ nkEN),
where kE=|partE |, for all combinations E and N = 2|C|. It is
easy to see that nkE1+nkE2+ . . .+nkEN < 2|C|n|S|, when there
is more than one partition.

5. EXPERIMENTAL EVALUATION
This section presents an experimental evaluation of Ted++, us-

ing real and synthetic datasets. In Sec. 5.1, we compare Ted++
with the existing algorithms returning query-based explanations,
i.e., with NedExplain [5] and Why-Not [9]. Sec. 5.2 studies the
runtime of Ted++ with respect to various parameters that we vary
in a controlled manner. We have implemented Ted, Ted++, Ned-
Explain, and Why-Not in Java. We ran the experiments on a Mac
Book Air, running MAC OS X 10.9.5 with 1.8 GHz Intel Core
i5, 4GB memory, and 120GB SSD. We used PostegreSQL 9.3 as
database system.

5.1 Comparative Evaluation
The comparative evaluation to Why-Not and NedExplain consid-

ers both efficiency (runtime) and effectiveness (explanation qual-
ity). When considering efficiency, we also include Ted in the com-
parison (Ted producing the same Why-Not explanation as Ted++).

For the experiments in this section, we have used data from three
databases named crime, imdb, and gov. The crime database cor-
responds to the sample crime database of the Trio system (avail-
able at http://infolab.stanford.edu/trio/) and was previously used to
evaluate Why-Not and NedExplain. The data describes crimes and
involved persons (suspects and witnesses). The imdb database con-
tains real-world movie data from IMDB (http://www.imdb.com).
Finally, the gov database contains information about US congress-
men and financial activities (data from http://bioguide.congress.gov,
http://usaspending.gov, and http://earmarks.omb.gov).

For each dataset, we have created a series of scenarios (crime1-
gov5 in Tab. 3 - ignore remaining scenarios for now). Each scenario
consists of a query further defined in Tab. 2 (Q1-Q7) and a simple
Why-Not question, as Why-Not and NedExplain support only this
type of Why-Not question. The queries have been designed to in-
clude queries with a small set of conditions (Q6) or a larger one
(Q1, Q3, Q5, Q7), containing self-joins (Q3, Q4), having empty in-
termediate results (Q2), as well as containing inequalities (Q2, Q4,
Q5, Q6).

5.1.1 Why-Not Explanation Evaluation
In Tab. 1 we report that the explanations returned by Why-Not

Table 3: Scenarios
Scenario Query Why-Not question
crime1 Q1 {P.Name=Hank,C.Type=Car theft}
crime2 Q1 {P.Name=Roger,C.Type=Car theft}

crime3 Q2 {P.Name=Roger,C.Type=Car theft}
crime4 Q2 {P.Name=Hank,C.Type=Car theft}
crime5 Q2 {P.Name=Hank}

crime6 Q3 {C2.Type=kidnapping}
crime7 Q3 {W.Name=Susan,C2.Type=kidnapping}

crime8 Q4 {P2.Name=Audrey}

imdb1 Q5 {name=Avatar}
imdb2 Q5 {name=Christmas Story,L.locationId=USANew York}

gov1 Q6 {Co.firstname=Christopher}
gov2 Q6 {Co.firstname=Christopher,Co.lastname=MURPHY}
gov3 Q6 {Co.firstname=Christopher,Co.lastname=GIBSON}

gov4 Q7 {sponsorId=467}
gov5 Q7 {SPO.sponsorln=Lugar,E.camount>=1000}

crimes− Q1,Q2, {P.Name=Hank,C.Type=Car theft}crimes4 Qs3,Qs4
crimej−crimej4 Qj−Qj4,{W.name=Jane, C.type=Car theft}

imdbc Qc4
{L2.locationid=L1.locationid, M1.mid=L2.mid,
L1.year>L2.year,M1.name=Duck Soup}

imdbc2 Qc4
({L2.locationid=L1.locationid, M1.mid=L2.mid,
L1.year>L2.year}

crime5c2 Q2 {P.Name=Hank, C.type=Car theft}
crime5c3 Q2 {P.Name=Hank, C.type=Car theft, S.witness=Aphrodite}

crime5c4 Q2 ({P.Name=Hank ,C.type=Car theft, S.witness=Aphrodite,
W.sector =34}

crime5c5 Q2 {P.Name=Hank ,C.type=Car theft, S.witness=Aphrodite,
W.sector =34,S.hair=green}

imdbcc Qc {M.year>M2.year}
tpchs Qtpch {L.extprice>50000,O.odate<1996-01-01}
tpchc Qtpch {L.extprice>100000, O.odate=L.cdate, C.nkey=4}

and NedExplain consist of sets of query conditions, whereas Ted++
returns a polynomial of query conditions. For comparison pur-
poses, we trivially map Ted++’s Why-Not explanation to sets of
conditions, e.g., 3c3 ∗ c4 + 2c3 ∗ c6 maps to {{c3, c4}, {c3, c6}}.
For conciseness, we abbreviate condition sets, e.g., to c34, c36.

Tab. 4 summarizes the Why-Not explanations of the three algo-
rithms. These scenarios make apparent that the explanations by
NedExplain or Why-Not are incomplete, in two senses. First, they
produce only a subset of the possible explanations, failing to pro-
vide alternatives that could be useful to the user when she tries to
fix the query. Second, even the explanation they provide may lack
parts, which can drive the user to fruitless fixing attempts. On the
contrary, Ted++ produces all the possible, complete explanations.

For the first argument, consider the scenario gov2. Why-Not
and NedExplain return c1 and c3 respectively, but they both fail
to indicate that both the explanations are valid, as opposed to
Ted++. Then, consider crime8. NedExplain returns the join c2
(S1hairP) - Why-Not falsely does not produce any explanations
in this case. Ted++ indicates that except for this join, the selec-
tion c3 (σname<‘B′ [P]) for instance is also an explanation. From
a developer’s perspective, selections are typically easier or more
reasonable to change. So, having the complete set of explanations
potentially provides the developer with useful alternatives.

For the second argument consider crime5. NedExplain returns
c1 (C1sectorW). The explanation of Ted++ does not contain the
atomic explanation c1, but there exist combinations including c1 as
a part, like c15. This means that the explanation by NedExplain
is incomplete; a repair attempt of c1 alone will never yield the de-
sired results. Similarly, crime7 illustrates a case, when the Why-
Not algorithm produces an explanation (c3) that misses some parts.
Then, in gov3 NedExplain and Why-Not both return c2. However,
let us now assume the developer prefers to not change this condi-
tion. Keeping in mind that those algorithms’ answers may change

Table 4: Ted++, Why-Not, NedExplain answers per scenario
Scenario Ted++ Why-Not NedExplain
crime1 c1234, . . . , c12, c3, c2, c1 c1
crime2 c1234, c34, c13, . . . , c3 c34 c34, c1

crime3 c12345, . . . , c145, c345, c35 c34,c5 c5, c34

crime4 c12345, . . . , c25, c15 c5 c1, c5
crime5 c12345, . . . , c15, c5 c5 c1

crime6 c123, c31, c23, c12, c3, c2, c1 c3 c2
crime7 c123, c13, c12, c1 c3 c2, c1

crime8 c23, c3, c2, c1 c2

imdb1 c123, c13, c23, c3 c3 c3,c2
imdb2 c13 c1, c3

gov1 c123, c13, c23, c12, c3, c2, c1 c3 c2, c3
gov2 c13, c3, c1 c1 c3
gov3 c123, c23, c2 c2 c2

gov4 c123, c23, c2 c3 c3, c2
gov5 c124, c14, c24, c12, c4, c2, c1 c1 c1

when changing the query tree, she may start trying different trees
to possibly obtain a Why-Not explanation without c2. Knowing
the explanation of Ted++ prevents her from spending any effort on
this, as it shows that all explanations contain c2 as a part.

By mapping the explanation of Ted++ to sets of explanations, we
have let aside an important property: the coefficients of the polyno-
mial. For example, the complete Why-Not explanation polynomial
of crime8 is 2384 ∗ c23 + 20 ∗ c3 + 4 ∗ c1 + 8 ∗ c2. Assume that
the developer would like to recover at least five missing tuples, by
changing as few conditions as possible. The polynomial suggests
to change either c3 or c2: they both require one condition change
and provide the possibility of obtaining up to 20 and 8 missing tu-
ples, respectively. The coefficient of c1 being 4, does not make
c1 a good candidate, whereas c2c3 require two condition changes.
Clearly, the results of NedExplain or Why-Not are not informative
enough for such a discussion.

5.1.2 Runtime Evaluation
We now compare the performance w.r.t. runtime of Ted++ with

the other algorithms.

Ted++ vs. NedExplain and Why-Not.
For this comparative evaluation, we again consider scenarios

crime1 through gov5 of Tab. 3 as they involve simple Why-not
questions, making them processable by all three algorithms. Fig. 5
summarizes the runtimes in logarithmic scale for each algorithm
and scenario. We observe that the runtime of Ted++ is always com-
parable to the runtime of NedExplain and that in some cases, it is
significantly faster than Why-Not.

Why-Not traces compatible tuples based on tuple lineage stored
in Trio. As already stated in [5, 9], this design choice slows
down Why-Not performance. On the contrary, both NedExplain
and Ted++ compute the compatible data more efficiently by issu-

1"

10"

100"

1000"

10000"

100000"

crim
e1"
crim

e2"
crim

e3"
crim

e4"
crim

e5"
crim

e6"
crim

e7"
crim

e8" gov
1"

gov
2"

gov
3"

gov
4"

gov
5"
imd

b1"
imd

b2"

!m
e$
(lo

gm
s)
$

scenarios$with$simple$Why6Not$ques!ons$

Ted++" Ted" NedExplain" WhyANot"

Figure 5: Runtimes for Ted++, Ted, NedExplain and Why-Not

24,4	
 226,6	
 41,2	
 264	
 24	
 1401,8	
 467,6	
 3633,4	
 464,6	
 3607,8	
 477,4	
 15504	

0	

200	

400	

600	

800	

imdb2	
 8	
 crime8	
 2,4K	
 crime7	
 5,7K	
 gov2	
 37,3K	
 gov3	
 37,3K	
 gov1	
 150K	

!m
e	

(m

s)
	

scenarios	
 /	
 cc-­‐tuples	
 	

AlgPEX/Ted	

postprocessing	
 coeff.Es>ma>on	
 par>alCompa>bles	
 preprocessing	

Figure 6: Ted++ and Ted runtime distribution

ing SQL statements to the database and further using the unique
identifiers of the source tuples. We claim that a better implemen-
tation choice for tuple tracing in Why-Not would yield a runtime
comparable to NedExplain, a claim backed up by their comparable
runtime complexities. Another definition and implementation issue
of both Why-Not and NedExplain, which explains the sometimes
faster runtime of Ted++ is the fact that their input is potentially
much larger as it includes the full database instance instead of the
compatible data only. Clearly, this slows the tracing of compatible
data through the query tree.

Let us see what happens when Ted++ is slower than - but still
comparable to - NedExplain, for example in gov1-gov3. In Ned-
Explain all compatible tuples are pruned out by conditions very
close to the leaf level of the query tree, so the bottom-up traversal
of the tree can stop very early. Ted++ always “checks” all condi-
tions so cannot benefit from such an early termination. However,
this runtime improvement of NedExplain often comes at the price
of incomplete explanations (e.g., gov1).

Ted++ vs. Ted.
Fig. 5 also reports runtimes for Ted on 6 out of 15 scenarios (for

the others, Ted runs out of time). To experimentally demonstrate
where Ted’s problem lies, we compare the time distribution in Ted
and Ted++.

Fig. 6 divides the runtime into four common phases. Among
these, the coefficientEstimation phase is the one that is inherently
different in both algorithms. Ted iterates over the set of compatible
tuples and computes the explanation for each one. Ted++ explores
the search space of possible explanations and calculates, based on
the number of passing partial compatible tuples, the number of
compatible tuples eliminated by each explanation. Thus, this is
the phase in which we expect to have an important runtime differ-
ence between Ted and Ted++. In reporting the phase-wise runtime,
Fig. 6 cuts the bar for Ted in the scenarios crime7, gov1, gov2 and
gov3 as the execution time is much higher compared to the other
scenarios and to the runtime of Ted++ (the runtime of the coeffi-
cientEstimation phase is the label on the respective bars).

As said in Sec. 4, Ted’s main issue w.r.t. efficiency is its strong
dependence on the number of compatible tuples. This is experi-
mentally observed in Fig. 6: with the growth of the set of compati-
ble tuples in the scenarios, the time dedicated to coefficientEstima-
tion also grows (the scenarios are reported in an ascending order).
Ted++ depends on the number of compatible tuples as well, but
not as strongly as Ted. This can be seen in crime8 and crime7, or
gov3 and gov1; while the number of tuples grows, Ted++’s coeffi-
cientEstimation phase remains roughly steady.

5.2 Ted++ Analysis
We now study Ted++’s behavior w.r.t. the following parameters:

0	

400	

800	

1200	

1600	

crim
e_s	

crim
e_s2

	

crim

e_s3
	

crim

e_s4
	

!m
e	

(m

s)
	

scenario	

increasing	
 simple	
 condi7ons	

(a) simple conditions

0	

300	

600	

900	

1200	

crim
e_j	

crim
e_2

j	

crim
e_3

j	

crim
e_4

j	

!m
e	

(m

s)
	

scenario	

increasing	
 complex	
 condi9ons	

(b) complex conditions

Figure 7: Ted++ runtime w.r.t. number of conditions in q

(i) the type (simple or complex) of the input query Q and the num-
ber ofQ’s conditions, (ii) the type of the Why-Not question (simple
or complex) and the number and selectivity of conditions the Why-
Not question involves, and (iii) the size of the database instance
I. Note that (ii) and (iii) are tightly connected with the number of
compatible tuples, which is one of the main parameters influencing
the performance. In addition to the number of compatible tuples,
another important factor is the selectivity of the query conditions
over the compatible data (i).

Experimental Setup.
For the parameter variations (i) and (ii), we use again the crime,

imdb, and gov databases. To adjust the database instance size for
case (iii), we use data produced by the TPC-H benchmark data gen-
erator (http://www.tpc.org/tpch/). More specifically, we generate
instances of 1GB and 10GB and further produce smaller data sets
of 10MB and 100MB to obtain a series of datasets whose size dif-
fers by a factor of 10. In this paper, we report results for the original
query Q3 of the TPC-H set of queries. It includes two complex and
three simple conditions, two of which are inequality conditions.
Since the original TPC-H query Q3 is an aggregation query, we
have changed the projection condition. The queries used in this
section are summarized in Tab. 2 (Qs-Qtpch) and the scenarios in
Tab. 3 (crimes-tpchc).

Adjusting the query.
Given a fixed database instance and Why-Not question, we start

from query Q1 and gradually add simple conditions, yielding the
series of queries Q1, Q2, Qs3, Qs4. The evolution of Ted++ run-
time for this series of queries is shown in Fig. 7 (a). Similarly,
starting from query Qj , we introduce step by step complex condi-
tions, yielding Qj-Qj4. Corresponding runtime results are reported
in Fig. 7 (b).

As expected, in both cases, increasing the number of query con-
ditions (either complex or simple) results in increasing runtime.
The incline of the curve depends on the selectivity of the intro-
duced condition; the less selective the condition the steeper the line
becomes. This is easy to explain, as in the coefficientEstimation
phase, a view contains more tuples (=passing partial tuples) when
the condition is less selective. This results in more computations
in the super-combinations iterations, leaving space for further opti-

0	

200	

400	

600	

800	

1000	

crim
e5	

crim
e5_

c2	

crim
e5_

c3	

crim
e5_

c4	

crim
e5_

c5	

!m
e	

(m

s)
	

scenario	

increasing	
 simple	
 condi8ons	

(a) simple conditions

1000	

1100	

1200	

1300	

imdb_cc3	
 imdb_cc2	
 imdb_cc	

!m
e	

(m

s)
	

scenario	
 	

increasing	
 #par44ons/decreasing	
 complex	

(b) complex conditions

Figure 8: Ted++ runtime w.r.t. number of conditions in WN

mization by dynamically deciding on passing vs eliminated tuples
materialization.

Note that the curve in Fig. 7 (a) starts at a much higher point
than in Fig. 7 (b). This is because the query Q1 (crimes) initially
includes four complex conditions, in contrast to Qj (crime10) that
includes one complex and one simple condition.

Adjusting the Why-Not question.
Next, we vary the type and the number of conditions in the Why-

Not question WN . Fig. 8 shows the cases when we start (a) with
a simple WN and progressively add more simple conditions and
(b) start with a complex WN and progressively add more complex
conditions.

The scenarios considered for Fig. 8 (a) have as starting point the
simple scenario crime5 (see Tab. 3). Then, keeping the same input
instance and query, we add attibute-constant comparisons to WN ,
a procedure resulting in fewer tuples in each step. As expected, the
more conditions (the less tuples) the faster the Why-Not explana-
tion is returned, until we reach a certain point (here from crime5c3
on). From this point, the runtime is dominated by the time to com-
municate with the database that is constant over all scenarios.

As we introduce complex conditions in the WN , the number of
generated partitions (potentially) drops as more relations are in-
cluded in a same partition. To study the impact of the induced
number of partitions in isolation, we keep the number of the com-
patible tuples constant in our series of complex scenarios (imdbcc-
imdbcc3). The number of partitions entailed by imdbcc, imdbcc2,
and imdbcc3 are 3, 2, and 1, respectively. The results of Fig. 8
(b) confirm our theoretical complexity discussion, i.e., as the num-
ber of partitions decreases, the time needed to produce the Why-
Not explanation increases.

Increasing size of input instance.
The last parameter we study is the input database size. To this

end, we have created two scenarios, one with a simple and one with
a complex Why-Not question WN , and both using the same query
Qtpch. We run both scenarios for database sizes 10MB, 100MB,
1GB, and 10GB. The simple WN includes two inequality condi-
tions, in order to be able to compute a reasonable number of com-
patible tuples. The complex WN contains one complex condition,

300	

3000	

30000	

300000	

3000000	

10	
 100	
 1000	
 10000	

!m
e	

(lo

gm
s)
	

TPC-­‐H	
 dataset	
 size	
 (MB)	

complex	
 simple	

(a) runtime

100000	

1E+09	

1E+13	

1E+17	

1E+21	

10	
 100	
 1000	
 10000	

co
m
p.
	
 tu

pl
es
	
 (l
og
)	

TPC-­‐H	
 dataset	
 size	
 (MB)	

complex	
 simple	

(b) number of compatible-tuples

Figure 9: Ted++ (a) runtime, and (b) number of compatible
tuples for increasing database size, complex and simple WN

one inequality simple condition and one equality simple condition.
It thus represents an average complex Why-Not question, creating
two partitions over three relations.

Fig. 9 (a) shows the runtimes for both scenarios. The increas-
ing runtime is tightly coupled to the fact that the number of com-
puted tuples is augmenting proportionally to the database size, as
shown in Fig. 9 (b). We observe that for small datasets (<500MB)
in the complex scenario Ted++’s performance decreases with a low
rate, whereas the rate is higher for larger datasets. For the simple
scenario, runtime deteriorates in a steady pace. This behavior is
aligned with the theoretical study; when the number of partitions is
decreasing the complexity rises.

In summary, our experiments have shown that Ted++ generates a
more informative, useful and complete Why-Not explanation than
the state of the art. Moreover, Ted++ is competitive in terms of
runtime. The dedicated experimental evaluation on Ted++ veri-
fies that it can be used in a large variety of scenarios with different
parameters and that the obtained runtimes match the theoretical ex-
pectations. Finally, the fact that the experiments were conducted on
an ordinary laptop, with no special capabilities in memory or disk
space, supports Ted++’s feasibility.

6. CONCLUSION AND OUTLOOK
This paper provides a framework for Why-Not explanations

based on polynomials, which enables to consider relational
databases under set, bag and probabilistic semantics in a unified
way. To efficiently compute the Why-Not explanation polynomial
under set semantics we have designed a new algorithm Ted++,
whose main feature is to completely avoid enumerating and iter-
ating over the set of compatible tuples, thus it significantly reduces
both space and time consumption. Our experimental evaluation
showed that Ted++ is at least as efficient as existing algorithms
while providing useful insights in its Why-Not explanation for a
developer. Also, we saw that Ted++ scales well with various pa-
rameters, making it a practical solution. The proposed Why-Not
explanation polynomial are easy to extend for unions of conjunctive
queries, whereas an extension is not trivial for aggregation queries
and is subject to future work.

Currently, we have been working on exploiting the Why-Not ex-
planation polynomial to efficiently rewrite a query in order to in-
clude the missing answers in its result set. As there are many rewrit-
ing possibilities, we plan to select the most promising ones based
on a cost function, built with the polynomial. For instance, we may
rank higher rewritings with minimum condition changes (i.e., small
combinations), minimum side-effects (i.e., small coefficients), etc.

7. REFERENCES
[1] S. Abiteboul, R. Hull, and V. Vianu. Foundations of

Databases. Addison-Wesley, 1995.
[2] A. Baid, W. Wu, C. Sun, A. Doan, and J. F. Naughton. On

debugging non-answers in keyword search systems. In
EDBT, 2015.

[3] N. Bidoit, M. Herschel, and K. Tzompanaki. Immutably
answering why-not questions for equivalent conjunctive
queries. In TAPP, 2014.

[4] N. Bidoit, M. Herschel, and K. Tzompanaki. Immutably
answering why-not questions for equivalent conjunctive
queries. In BDA, 2014.

[5] N. Bidoit, M. Herschel, and K. Tzompanaki. Query-based
why-not provenance with NedExplain. In EDBT, 2014.

[6] N. Bidoit, M. Herschel, and K. Tzompanaki. Efficient
computation of polynomial explanations of why-not
questions. In CIKM (to appear), 2015.

[7] D. Calvanese, M. Ortiz, M. Simkus, and G. Stefanoni.
Reasoning about explanations for negative query answers in
DL-Lite. JAIR, 2013.

[8] B. t. Cate, C. Civili, E. Sherkhonov, and W.-C. Tan.
High-level why-not explanations using ontologies. In PODS,
2015.

[9] A. Chapman and H. V. Jagadish. Why not? In SIGMOD,
2009.

[10] L. Chen, X. Lin, C. S. Jensen, and J. Xu. Answering why-not
questions on spatial keyword top-k queries. In ICDE, 2015.

[11] J. Cheney, L. Chiticariu, and W. C. Tan. Provenance in
databases: Why, how, and where. ACM-FTD, 1(4), 2009.

[12] Y. Cui, J. Widom, and J. L. Wiener. Tracing the lineage of
view data in a warehousing environment. TODS, 25(2), 2000.

[13] Y. Gao, Q. Liu, G. Chen, B. Zheng, and L. Zhou. Answering
why-not questions on reverse top-k queries. PVLDB,
8(7):738–749, 2015.

[14] T. J. Green, G. Karvounarakis, and V. Tannen. Provenance
semirings. In PODS, 2007.

[15] T. Grust and J. Rittinger. Observing sql queries in their
natural habitat. TODS, 38(1):3, 2013.

[16] M. Hall. Combinatorial theory, volume 71. John Wiley &
Sons, 1998.

[17] Z. He and E. Lo. Answering why-not questions on top-k
queries. In ICDE, 2012.

[18] M. Herschel. Wondering why data are missing from query
results? ask Conseil Why-Not. In CIKM, 2013.

[19] M. Herschel. A hybrid approach to answering why-not
questions on relational query results. ACM-JDIQ,
5(3):10:1–10:29, 2015.

[20] M. Herschel and M. A. Hernández. Explaining missing
answers to SPJUA queries. PVLDB, 3(1), 2010.

[21] J. Huang, T. Chen, A. Doan, and J. F. Naughton. On the
provenance of non-answers to queries over extracted data.
PVLDB, 1(1), 2008.

[22] M. S. Islam, R. Zhou, and C. Liu. On answering why-not
questions in reverse skyline queries. In ICDE, 2013.

[23] N. Khoussainova, Y. Kwon, M. Balazinska, and D. Suciu.
SnipSuggest: Context-aware autocompletion for SQL.
PVLDB, 4(1), 2010.

[24] A. Meliou, W. Gatterbauer, K. F. Moore, and D. Suciu. The
complexity of causality and responsibility for query answers
and non-answers. PVLDB, 2011.

[25] D. Mottin, A. Marascu, S. B. Roy, G. Das, T. Palpanas, and
Y. Velegrakis. A probabilistic optimization framework for the
empty-answer problem. PVLDB, 6(14), 2013.

[26] A. Nandi and H. V. Jagadish. Guided interaction: Rethinking
the query-result paradigm. PVLDB, 4(12), 2011.

[27] S. Roy and D. Suciu. A formal approach to finding
explanations for database queries. In SIGMOD, 2014.

[28] Q. T. Tran and C.-Y. Chan. How to ConQueR why-not
questions. In SIGMOD, 2010.

[29] R. Vaught. Set Theory An Introductino. Birkhaeuser, 2001.

