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ABSTRACT
Answering a Why-Not question consists in explaining why a query
result does not contain some expected data, called missing answers.
This paper focuses on processing Why-Not questions in a query-
based approach that identifies the culprit query components. Our
first contribution is a general definition of a Why-Not explanation
by means of a polynomial. Intuitively, the polynomial provides
all possible explanations to explore in order to recover the missing
answers, together with an estimation of the number of recoverable
answers. Moreover, this formalism allows us to represent Why-Not
explanations in a unified way for extended relational models with
probabilistic or bag semantics. We further present an algorithm to
efficiently compute the polynomial for a given Why-Not question.
An experimental evaluation demonstrates the practicality of the so-
lution both in terms of efficiency and explanation quality, compared
to existing algorithms.

Categories and Subject Descriptors
H.4 [Information Systems Applications]: Miscellaneous

General Terms
Algorithms

Keywords
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1. INTRODUCTION
The increasing load of data produced nowadays is coupled with

an increasing need for complex data transformations that develop-
ers design to process these data in every-day tasks. These trans-
formations, commonly specified declaratively, may result in unex-
pected outcomes. For instance, given the sample query and data of
Fig. 1 on airlines and destination countries, a developer (or trav-
eller) may wonder why Emirates does not appear in the result.
Traditionally, she would repeatedly manually analyze the query to
identify a possible reason, fix it, and test it to check whether the
missing answer is now present or if other problems need to be fixed.

.

SELECT airline,
country

FROM Airline A,
Country C

WHERE ccode = code
AND year < 1985

Airline
airline year ccode
KLM 1919 1
Qatar 1993 1
Aegean 1987 2
Emirates 1985 3

Country
code country

1 Australia
2 France

Figure 1: Example query and data

Πairline,country

σyear<1985•

1code ◦ ? •

Airline Country

Πairline,country

1code

σyear<1985 ◦ ? •

Airline

Country

Figure 2: Reordered query trees for the query of Fig. 1 and
algorithm results (Why-Not ◦, NedExplain ?, Conseil •)

Answering such Why-Not questions, that is, understanding why
some data are not part of the result, is valuable in a series of appli-
cations, such as query debugging and refinement, data verification
or what-if analysis. To help developers explain missing answers,
different algorithms have recently been proposed for relational and
SQL queries and other types of queries (top-k, reverse skyline).

For relational queries, Why-Not questions can be answered for
example based on the data (instance-based explanations), the query
(query-based explanations), or both (hybrid explanations). We fo-
cus on solutions producing query-based explanations, as these are
generally more efficient while providing sufficient information for
query analysis and debugging. Essentially, a query-based expla-
nation is a set of query conditions that are responsible for pruning
out data relevant to the missing answers. Existing methods pro-
ducing query-based explanations are not satisfactory as they are
designed over query trees, making the explanations depending on
the topology of a given tree. Consequently, they return different
explanations for the same SQL query and may miss explanations.

EXAMPLE 1.1. Consider again the SQL query and data of Fig. 1
and assume that a developer wants an explanation for the absence
of Emirates from the query result. Fig. 2 shows two possible query
trees. It also shows the tree operators that Why-Not [7] (◦) and
NedExplain [3] (?) return as query-based explanations as well as
the tree operators returned as part of hybrid explanations by Con-
seil [13, 14] (•). Each algorithm returns a different result for each
of the two query trees, and in most cases, it is only a partial result as
the true explanation of the missing answer is that both the selection
is too strict for the tuple (Emirates, 1985, 3) from table Airline
and this tuple does not find join partners in table Country.



The above example clearly shows the shortcomings of existing
algorithms. Indeed, the developer first has to understand and reason
at the level of query trees instead of reasoning at the level of the
declarative SQL query she is familiar with. Second, she always
has to wonder whether the explanation is complete, or if there are
other explanations that she could consider instead. In this paper,
we make the following contributions:
Extended formalization of Why-Not explanation polynomial.
We have recently introduced polynomials as Why-Not explanations
in the context of the relational model under set semantics [2]. A
polynomial provides a complete explanation and is independent of
a specific query tree representation, solving the problems illustrated
by Ex. 1.1. We now extend Why-Not explanations to the relational
model under bag and probabilistic semantics. This confirms the ro-
bustness of the chosen polynomial representation, making it a good
fit for a unified framework for representing Why-Not explanations.
In parallel, we considerably simplify our initial framework by elim-
inating the formerly used notion of query tableaux.
Efficient Ted++ algorithm. We show that a naive algorithm com-
puting Why-Not explanations, as presented in [2], is impractical.
We thus propose a novel algorithm, Ted++, capable of efficiently
computing the Why-Not explanation polynomial, based on tech-
niques like schema and data partitioning (allowing for a distributed
computation) and advantageous replacement of expensive database
evaluations by mathematical calculations.
Experimental validation. We validate our solutions both in terms
of efficiency and effectiveness. Our experiments include a com-
parative evaluation to existing algorithms computing query-based
explanations for SQL queries (or sub-languages thereof) as well as
a thorough study of Ted++ performance w.r.t. different parameters.
Note that such an evaluation was missing from [2].

The remainder of this paper is structured as follows. Sec. 2 cov-
ers related work. Sec. 3 defines in detail our problem setting and the
Why-Not explanation polynomials. Next, we discuss the Ted++ al-
gorithm in Sec 4. Finally, we present our experimental setup and
evaluation in Sec. 5 and conclude in Sec. 6.

2. RELATED WORK
The work presented in this paper falls in the category of data

provenance research and specifically on explaining missing answers
from query results. Due to the lack of space, we focus here on this
sub-problem, thus on algorithms answering Why-Not questions,
summarized in Tab. 1. This table classifies the algorithms accord-
ing to the type of explanation they generate and reports the class of
query and Why-Not question (simple or complex)1 they support.
Query-based and hybrid explanations. Why-Not [7] takes as in-
put a simple Why-Not question and a selection, projection, join,
and union (SPJU) query and returns the erroneous query operators
as query-based explanations. Similarly, NedExplain [3] consid-
ers selection, projection, join, and aggregation and unions thereof
(SPJUA queries) and simple Why-Not questions as well. The com-
mon drawback of the two algorithms is that their design is depen-
dent on a specific query tree representation, thus the explanations
proposed are tied to this tree. Moreover, the generated explanations
are incomplete. To address this problem, Ted [2] proposes explana-
tions in the form of a polynomial. The shortcomings of this work
have already been presented in Sec. 1.

Conseil [13, 14] produces hybrid explanations that include an
instance-based and a query-based component. The latter consists
in a set of picky query operators. However, as Conseil considers
1A simple Why-Not question involves conditions that impact one
relation only, otherwise it is complex (see Sec. 3).

Table 1: Algorithms for answering Why-Not questions
Algorithm Why-NotExplanation Query

question format
Query-based explanations

Why-Not [7] simple query operators SPJU
NedExplain [3] simple query operators SPJUA

Ted [2] complex polynomial conj. queries with inequalities
Hybrid explanations

Conseil [13, 14] simple source table edits +
query operators

SPJAN

Instance-based explanations
MA [16] simple source table edits SPJ

Artemis [15] complex source table edits SPJUA
Meliou et. al. [19] simple causes (tuples) and

responsibility
conjunctive queries

Calvanese et. al. [5]simple additions to ABox instance & conj. queries over DL-
Lite ontology

Ontology-based explanations
Cate et. al. [6] simple tuples concepts conj. queries with comparisons

Refinement-based explanations
ConQueR [20] complex refined query SPJA
TALOS [21] SPJ
FlexIQ [17] simple refined query &

Why-Not question
SPJ

Zhang et. al. [12] simple refined query Top-k query
Islam et. al. [18] simple refined query &

Why-Not question
Reverse skyline query

WQRTQ [9] simple refined query &
Why-Not question

Reverse Top-k query

Chen et. al. [8] simple refined query Spatial keyword Top-k query

both the data to be possibly incomplete and the query to be possi-
bly faulty, the set of picky query operators associated to a hybrid
explanation depends on the set of source edits of the same hybrid
explanation.
Instance-based explanations. Missing-Answers (MA) [16] and
Artemis [15] compute explanations in the form of source table edits
for SPJ queries and SPJUA queries respectively. Meliou et. al. [19]
study the concepts of causality and responsibility of instance-based
explanations for data present or missing in a conjunctive query re-
sult. Calvanese et. al. [5] compute instance-based explanations on
data represented by a DL-Lite ontology.
Ontology-based explanations. Cate et. al. [6] have recently in-
troduced this type of explanation that is based on external or data-
workload generated ontologies. However, they are completely in-
dependent of the query to be analyzed.
Refinement-based explanations. Another approach to answering
Why-Not questions is by directly proposing queries that include in
their result the missing answers. Several algorithms follow this di-
rection for different types of queries, like relational, Top-K, reverse
sklyline queries, etc, as listed in Tab. 1. Although these approaches
are generally very interesting, they do not focus on pinpointing the
erroneous parts of the query. Indeed, the refined queries may con-
tain changes that are not necessarily tied to an erroneous part of the
query. Moreover, the changes are based on the database values and
do not take into account any semantics or domain knowledge that
could render a refinement meaningful for the user.

3. WHY-NOT EXPLANATION POLYNOMIAL
This section introduces a polynomial formalization of query-

based Why-Not explanations. We assume the reader familiar with
the relational model [1], and we only briefly revisit some rele-
vant notions in Sec. 3.1 while we formalize Why-Not questions.
In Sec. 3.2, we define the explanation of a Why-Not question as a
polynomial. In Sec. 3.3 we provide a unified general framework for
Why-Not explanations in the context of set, bag, and probabilistic
semantics databases.



R
A B R.Id
1 3 Id1

2 4 Id2

4 5 Id3

8 9 Id4

S
D E S.Id
4 8 Id5

5 3 Id6

3 9 Id7

T
B C D T.Id
3 4 5 Id8

3 8 1 Id9

5 3 3 Id10

5 9 4 Id11

(a) Sample Instance I

S = {R,S, T}

Γ = {R.B, S.D, T.C}

C = {c1, c2, c3, c4, c5}

C
c1 R.A > 3
c2 R.B = T.B
c3 T.C ≥ 8
c4 T.D = S.D
c5 S.E ≥ 3

{R.B<S.D, T.C ≤ 9}

(c) Why-Not questionWN

(b) queryQ = (S,Γ, C) and naming of conditions

Figure 3: Running example

3.1 Preliminaries
For the moment, we limit our discussion to relational databases

under set semantics. A database schema S is a set of relation
schemas. A relation schema R is a set of attributes. We assume
each attribute of R qualified, i.e., of the form R.A and for the
sake of simplicity we assume a unique domain Dom. I denotes
a database instance over S and I|R denotes the instance of a rela-
tion R∈S. We assume that each database relation R has a special
attribute R.Id, which is used as identifier for the tuples in I|R. For
any object O (relational or database schema, condition etc), A(O)
denotes the set of attributes occurring in O. Finally, a condition
c over S is defined as an expression of the form R.A θ a where
a∈Dom or of the form R.A θ S.B, where R.A, S.B∈A(S), and
θ∈{=, 6=, <,≤}. A condition over two relations is complex, oth-
erwise it is simple. In this article, we consider conjunctive queries
with inequalities. Note that in our approach, the database schema
S denotes the query input schema. In an SQL-like approach, each
time we need an instance of a relation, we refer to it by a differ-
ent name. In this way, we are able to correctly define Why-Not
questions in case of self-joins as well.

DEFINITION 3.1 (QUERY Q). A query Q is specified by the
triple (S,Γ, C), where S is a database schema, Γ ⊆ A(S) is the
projection attribute set, and C is a set of conditions over A(S).
The semantics of Q are given by the relational algebra expression
πΓ [σ ∧

c∈C
c
[×R∈S [R]]].

The result of Q over I is denoted by Q[I]. Note here that we are
not concerned about the evaluation/optimization of Q and that any
equivalent rewriting of the algebraic expression given in Def. 3.1 is
a candidate for evaluating Q.

EXAMPLE 3.1. Fig. 3 describes our running example. Fig. 3(a)
displays an instance I over S={R,S, T}. Fig. 3(b) displays a
query Q over S, whose conditions have been named for conve-
nience. R.B=T.B and T.D=S.D are complex whereas the others
are simple conditions. Moreover,Q[I]={(R.B:5, S.D:4, T.C:9)}.

In our framework, a Why-Not question specifies missing tuples
from the result of a query Q through a conjunctive set of condi-
tions. A Why-Not question is related to the result of Q and so its
conditions are restricted to the attributes of the output schema ofQ.

DEFINITION 3.2 (WHY-NOT QUESTION). A Why-Not ques-
tion WN w.r.t. Q is defined as a set of conditions over Γ.

The notion of complex and simple conditions is extended to com-
plex and simple Why-Not questions in a straightforward manner.

Due to lack of space, we do not provide here more real-world exam-
ples of Why-Not questions and refer the reader to scenarios in [4].

As we said, a Why-Not questionWN summarizes a set of (miss-
ing) tuples that the user expected to find in the query result. To be
able to obtain these missing tuples as query results, data from the
input relation instances that satisfy WN need to be combined by
the query. The candidate data combinations are what we call com-
patible tuples and can be computed using WN as in Def. 3.3.

DEFINITION 3.3 (COMPATIBLE TUPLES). Consider the query
QWN=(S,A(S),WN), where S is also the input schema of Q.
The set CT of compatible tuples is the result of the query QWN
over I.

We further introduce the notion of a well founded Why-Not ques-
tion. Intuitively, a Why-Not question can be answered under a
query-based approach, only if some data in I match the Why-Not
question (otherwise instance-based explanations should be sought
for). Moreover, a Why-Not question is meaningful if it tracks data
not already returned by the query.

DEFINITION 3.4 (WELL FOUNDED WHY-NOT QUESTION).
A Why-Not question WN is said to be well founded if CT 6=∅ and
πΓ [CT ] ∩Q[I]=∅.

EXAMPLE 3.2. Continuing Ex. 3.1, we may wonder why there
is not a tuple for which R.B<S.D and T.C ≤ 9. According
to Def. 3.2, this Why-Not question can be seen as the conjunc-
tion of the conditions R.B<S.D ∧ T.C ≤ 9 (Fig. 3(c)). Since
R.B<S.D is a complex condition, WN is a complex Why-Not
question. The compatible tuples set CT is the result of the query
QWN=σR.B<S.D∧T.C≤9[R × S × T ], which contains 12 tuples.
For example, one compatible tuple is τ1=(R.Id:1, R.A:1, R.B:3,
S.Id:5, S.D:4, S.E:8, T.Id:8, T.B:3, T.C:4, T.D:5).

Each tuple in CT could have led to a missing tuple, if it was not
eliminated by some of the query conditions. Thus, explaining WN
amounts to identifying these blocking query conditions.

3.2 Why-Not Explanation
To build the query-based explanation of WN , we start by spec-

ifying what explains that a compatible tuple τ did not lead to an
answer. Intuitively, the explanation consists of the query conditions
pruning out τ .

DEFINITION 3.5 (EXPLANATION FOR τ ). Let τ∈CT be a
compatible tuple w.r.t. WN , given Q. Then, the explanation for
τ is the set of conditions Eτ={c|c∈C and τ 6|= c}.

EXAMPLE 3.3. Consider the compatible tuple τ1 in Ex. 3.2.
The conditions of Q (see Ex. 3.1), not satisfied by τ1 are: c1, c3,
and c4. So, the explanation for τ1 is Eτ1={c1, c3, c4}.

Having defined the explanation w.r.t. one compatible tuple, the
explanation for WN is obtained by simply summing up the ex-
planations for all the compatible tuples in CT , leading to the ex-
pression

∑
τ∈CT

∏
c∈Eτ

c. We justify modelling the explanation of

τ with a product (meaning conjunction) of conditions by the fact
that in order for τ to ‘survive’ the query conditions and give rise
to a missing tuple, every single condition in the explanation must
be ‘repaired’. The sum (meaning disjunction) of the products for
each τ∈CT means that if any explanation is ‘correctly repaired’,
the associated τ will produce a missing tuple.

Of course, several compatible tuples can share the same expla-
nation. Thus, the final Why-Not explanation is a polynomial hav-
ing as variables the query conditions and as integer coefficients the
number of compatible tuples sharing an explanation.



DEFINITION 3.6 (WHY-NOT EXPLANATION). With the same
assumption as before, the Why-Not explanation for WN is defined
as the polynomial

PEX =
∑
E∈E

coefE
∏
c∈E

c

where E = 2C and coefE∈{0, . . . , |CT |}.

Intuitively, E contains all potential explanations, and each of
these explanations prunes from zero to at most |CT | compatible
tuples. Moreover, an important property of PEX is the fact that
coefE= | {τ∈CT |E is the explanation for τ} |, meaning that coefE
equals the number of compatible tuples with the same explanation.

Each term of the polynomial provides an alternative explanation
to be explored by the user who wishes to recover some missing
tuples. Additionally, the polynomial offers, through its coefficients,
some useful hints to users interested in the number of recoverable
tuples. More precisely, by choosing an explanation E to repair, we
obtain an upper bound for the number of compatible tuples that can
be recovered. The upper bound is the sum of the coefficients of all
the explanations that are sub-sets of (the set of conditions of) E .
Consequently, the coefficients could be used to answer Why-Not
questions of the form Why-Not $x missing tuples?.

EXAMPLE 3.4. In Ex. 3.3 we found the explanation {c1, c3, c4},
which is translated to the polynomial term c1 ∗ c3 ∗ c4. Taking into
consideration all the 12 compatible tuples of our example, we ob-
tain the following PEX polynomial: 2∗c1∗c4+2∗c1∗c3∗c4+4∗
c1 ∗c2 ∗c4 +2∗c1 ∗c2 ∗c3 +2∗c1 ∗c2 ∗c3 ∗c4. In the polynomial,
each addend, composed by a coefficient and an explanation, cap-
tures a way to obtain missing tuples. For instance, the explanation
c1 ∗ c2 ∗ c4 indicates that we may recover some missing answers if
c1 and c2 and c4 are changed. Then, the sum of its coefficient 4 and
the coefficient 2 of the explanation c1 ∗ c4 ({c1, c4}⊆{c1, c2, c4})
indicates that we can recover from 0 to 6 tuples.

As the visualization of the polynomial per se may be cumber-
some and thus not easy for a user to manipulate, some post-processing
steps could be applied. Depending on the application or needs, only
a subset of the explanations could be returned like for instance min-
imum explanations (i.e., for which no sub-explanations exist), or
explanations giving the opportunity to recover a specific number of
tuples, or have specific condition types etc.

3.3 Extension: Bag & Probabilistic Semantics
So far, we have considered databases under set semantics only.

In this section, we discuss how the definition of Why-Not expla-
nation (Def. 3.6) extends to settings with conjunctive queries over
bag and probabilistic semantics.
K-relations, as introduced in [10], capture in a unified manner

relations under set, bag, and probabilistic semantics. Briefly, tuples
in a K-relation are annotated with elements in K. In our case, we
consider that K is a set of unique tuple identifiers, similar to our
special attribute R.Id in Sec. 3.1.

In what follows, we use the notion of how-provenance of tu-
ples in the result of a query Q. The how-provenance of t∈Q(I)
is modelled as the polynomial obtained by the positive algebra on
K-relations, proposed in [10]. Briefly, each t is annotated with a
polynomial where variables are tuple identifiers and coefficients are
natural numbers. Roughly, if t results from a selection operator on
t1 annotated with Id1, then t is also annotated with Id1. If t is the
result of the join of t1 and t2, then t is annotated with Id1Id2.

We compute the generalized Why-Not explanation polynomial
PEXgen as follows. Firstly, we compute the how-provenance for

compatible tuples inCT by evaluation of the queryQWN (Def. 3.3)
w.r.t. the algebra in [10]. Recall that QWN contains only selection
and join operators. Thus, each compatible tuple τ in CT is anno-
tated with its how-provenance polynomial, denoted by ητ .

Then, we associate the expressions of how and why-not prove-
nance. In order to do this, for each compatible tuple τ in CT , we
combine its how-provenance polynomial ητ with its explanation Eτ
(Def. 3.5). So, each τ is associated with the expression ητEτ .

Finally, we sum the combined expressions for all compatible tu-
ples, which leads to the expression

∑
τ∈CT

ητEτ .

We now briefly comment on how PEXgen is instantiated to deal
either with the set, bag, or probabilistic semantics. Indeed, the ‘spe-
cialization’ of PEXgen relies on the interpretation of the elements
in K, that is on a function Eval from K to some set L. For the
set semantics, each tuple in a relation occurs only once. This re-
sults in choosing L to be the singleton {1} and mapping each tuple
identifier to 1. It is then quite obvious to note, for the set seman-
tics, that PEXgen = PEX (Def. 3.6). In the same spirit, for bag
semantics, L is chosen as the set of natural numbers N and each
tuple identifier is mapped to its number of occurences. Finally, for
probabilistic databases, L is chosen as the interval [0, 1] and each
tuple identifier is mapped to its occurrence probability.

Thus, the generalized definition of Why-Not explanation is para-
metrized by the mapping Eval of the annotations (elements in K)
in the set L.

DEFINITION 3.7. (Generalized Why-Not explanation polynomial)
Given a query Q over a database schema S of K-relations, the
generalized Why-Not explanation polynomial for WN is

PEXgen =
∑
E∈E

(
∑

τ∈CTs.t. Eτ=E

Eval(ητ ))E

where E=2C , ητ is the how-provenance of τ , and Eval:K → L
maps the elements of K to values in L.

4. TED++ ALGORITHM
The naive Ted algorithm [2] implements the definitions of [2]

for Why-Not explanations in a straightforward manner. Essentially,
Ted first enumerates the set of compatible tuples. Then, it computes
the explanation for each compatible tuple, leading to the computa-
tion of the final Why-Not explanation. However, both of these steps
make Ted computationally prohibitive. Not only is the computation
of the set of compatible tuples time and space consuming as it often
requires cross product executions, but the same holds for the iter-
ation over this (potentially very large) set. Ted’s time complexity
is O(n|S|), n=max({| IR |}), R∈S. As experiments in Sec. 5
confirm, this complexity renders Ted impractical.

To overcome Ted’s poor performance, we propose Ted++. The
main feature of Ted++ is to completely avoid enumerating and it-
erating over the set CT , thus it significantly reduces both space
and time consumption. Instead, Ted++ opts for (i) iterating over
the space of possible explanations, which is expected to be much
smaller, (ii) computing partial sets of passing compatible tuples,
and (iii) computing the number of eliminated compatible tuples for
each explanation. Intuitively, passing tuples w.r.t. an explanation
are tuples satisfying the conditions of the explanation. Finally, we
compute the polynomial based on mathematical calculations.

Alg. 1 provides an outline of Ted++. The input includes the
query Q=(S,Γ, C), the Why-Not question WN and the input in-
stance I. Firstly in Alg. 1, line 1, all potential explanations (com-
binations of the conditions in C) are enumerated (E=2C ). The
remaining steps, discussed in the next subsections, aim at comput-
ing the coefficient of each explanation. To illustrate the concepts



Algorithm 1: Ted++
Input: Q=(S,Γ, C), I,WN
Output: PEX

1 E ← powerset(C);
2 P ←validPartitioning(S,WN ); * Def. 4.1 *
3 for Part in P do
4 CT|Part ← (Part,A(Part),WN|Part)[I|Part] ;

5 coefficientEstimation(E,Partition);
6 PEX←post-processing(); * Eq. (F) *
7 return PEX;

introduced in the detailed discussions, we will rely on our running
example, for which Fig. 4 shows all relevant intermediate results.
It should be read bottom-up. For convenience, in our examples, we
use subscript i instead of ci.

The subsequent discussion on Ted++ can be considered as a
proof sketch of the following theorem.

THEOREM 4.1. Given a queryQ, a Why-Not questionWN and
an input instance I, Ted++ computes exactly PEX.

4.1 Partial Compatible Tuples Computation
Using the conditions in WN , Ted++ partitions the schema S

(Alg. 1, line 2) into components of relations connected by the con-
ditions in WN (Def. 4.1 ).

DEFINITION 4.1. (Valid Partitioning of S). Given WN , the
partitioning of a database schema S into k partitions, denoted
P = {Part1, . . . , Partk}, is valid if each Parti, i∈{1, . . . , k} is
minimal w.r.t. the following property:
if R∈Parti and R′∈S s.t. ∃c∈WN with A(c)∩A(R′) 6=∅ and
A(c)∩A(R) 6=∅ then R′∈Parti.

The partitioning of S allows for handling compatible tuples more
efficiently, by ‘cutting’ them in distinct meaningful ‘chunks’. We
refer to chunks of compatible tuples as partial compatible tuples
and group them in sets depending on the partition they belong to.

The set CT|Part, where Part∈P is obtained by evaluating the
query QPart=(Part,A(Part), WN|Part) over I|Part (Alg. 1,
line 4). WN|Part and I|Part denote the restriction of WN and I
over the relations in Part, respectively.

EXAMPLE 4.1. The valid partitioning of S is Part1={R,S}
(because of the condition R.B<S.D) and Part2={T}. The sets
of partial compatible tuples CT|Part1 and CT|Part2 are given in
the bottom line of Fig. 4.

It is easy to prove that the valid partitioning of S is unique and
that the set CT can be computed from the sets CT|Part.

LEMMA 4.1. Let P be the valid partitioning of S. Then,
CT=×Part∈P [CT|Part].

Lemma. 4.1 makes it clear how to compute CT from partial
compatible tuples. Our algorithm is designed in a way that avoids
computing CT and relies on the computation of CT|Part only.

Next, we compute the number of compatible tuples pruned by
each potential explanation, using the partial compatible tuple sets.
In this way we calculate the coefficient of the terms in the poly-
nomial. Since from this point on we are only handling compatible
tuples, we omit the word ‘compatible’ to lighten the discussion.

Algorithm 2: coefficientEstimation
Input: E explanations space, P valid partitioning of S

1 for E∈E *access in ascending size order* do
2 Compute partE ;
3 if | E |= 1 then
4 materialize VE ;
5 βE ← Eq. (B);
6 else
7 if αsubcombination of E 6= 0 then
8 {E1,E2}← subCombinationsOf(E);
9 Γ12 ← Γ1 ∩ Γ2; *Γi is the output schema of VEi*

10 if Γ12 6= ∅ then
11 VE ← VE1 1Γ12

VE2;
12 materialize VE ;
13 else
14 | VE |←| VE1 | ∗ | VE2 |;

15 else
16 | VE |←| VE1 | ∗ | VE2 |;

17 βE ←
∏

Part∈partE
|CT|Part|− | (

n⋃
i=1

Vci)
ext |; * Eq. (E) *

18 αE ← Eq. (A);

4.2 Polynomial Coefficient Estimation
Each set E in the powerset E is in fact a potential explanation

that is further processed. This process is meant to associate with E
(i) the set of partitions partE on which E is defined, (ii) the view
definition VE meant to store the passing partial tuples w.r.t. E2, and
(iii) the number αE of tuples eliminated by E .

Alg. 2 describes how we process E in ascending order of ex-
planation size. This enables us to reuse results obtained for sub-
explanations and in combination with mathematics, avoid cross
product computations.

We first determine the set of partitions for an explanation E as
partE=∪c∈E {Partc}, where Partc contains at least one relation
over which c is specified.

EXAMPLE 4.2. Consider E1={c1} and E2={c2}. From Fig. 3(b)
and the partitions in Fig. 4, we can see that c1 impacts only Part1,
whereas c2 spans overPart1 andPart2. Hence, partE1={Part1}
and partE2={Part1, Part2}. Then, E={c1, c2} is impacted by
the union of partE1 and partE2 , thus partE={Part1, Part2}.

We use Eq. (A) to calculate the number αE of eliminated tuples,
using the number βE of eliminated partial tuples and the cardinality
of the partitions not in partE . Intuitively, this formula extends the
partial tuples to “full” tuples over CT ’s schema.

αE = βE ∗
∏

Part∈partE

|CT|Part|, (A)

where partE=P \ partE . Note that when partE is empty, we abu-
sively consider that

∏
∅=1.

The presentation now focuses on calculating βE . Two cases arise
depending on the size of E .
Atomic explanations. We start with atomic explanations E con-
taining only one condition c (Algorithm 2 lines 3-5). We firstly
compute the set of passing partial tuples w.r.t. c, i.e., the tuples that
satisfy c, which we store in the view Vc:

Vc =


π{R_id|R∈Part}(σc[CT|Part]) if partE={Part}

π{R_id|R∈Part1∪Part2}([CT|Part1 ] 1c [CT|Part2 ])

if partE={Part1, Part2}
2We choose to store passing rather than eliminated tuples as they
are usually less numerous. In an optimized version this decision
could be made dynamically based on view cardinality estimation.



Then, the number of eliminated partial tuples by E is

βE =
∏

Part∈partE

|CT|Part| − |Vc| (B)

EXAMPLE 4.3. For c2, we have partc2={Part1, Part2}, so
Vc2=πR_Id,S_Id,T _Id([CT|Part1 ]1R.B=T.B [CT|Part2 ]). This re-
sults in |Vc2 |=4, and by Eq. (B) we obtain βc2=|CT|Part1| ∗
|CT|Part2|−|Vc2|=3 ∗ 4−4=8. Since all partitions of P are
in partc2, applying Equ. (A) results in αc2=βc2=8. For c3,
βc3=|CT|Part2 |−Vc3=4−2=2, so αc3=3∗2 = 6. Fig. 4 (second
level) displays the process for all atomic explanations.

Non atomic explanations. Now, assume that E={c1, . . . , cn},
n > 1 (Alg. 2, lines 6-16). For the moment, we assume that
the conditions in E share the same schema, so the intersection and
union of Vci for i = 1, . . . , n are well-defined. Firstly, we compute
the view VE of passing partial tuples w.r.t. E as VE=Vc1∩ . . .∩Vcn.
To compute the number of partial tuples pruned out by E , we need
to find the number of partial tuples pruned out by c1 and . . . and
cn, i.e., βE= | Vc1 ∩ · · · ∩ Vcn |. By the well-known DeMor-
gan law [22], we have βE=|Vc1 ∪ · · · ∪ Vcn|, which spares us from
computing the complements of Vci.

To compute the cardinality of the union of the Vci, we rely on
the Principle of Inclusion and Exclusion for counting [11]:

|
n⋃
i=1

Vci | =
∑

∅6=J⊆[n]

(−1)|J|+1 |
⋂
j∈J

Vcj |

We further rewrite the previous formula to reuse results obtained
for sub-combinations of E , obtaining Eq. (C).

|
n⋃
i=1

Vci | = |
n−1⋃
i=1

Vci | + | Vcn |

+
∑

∅6=J⊆[n−1]

(−1)|J| |
⋂
j∈J

Vcj ∩ Vcn |
(C)

At this point, we can compute βE . However, so far we assumed
that the conditions in E have the same schema. In the general case,
this does not hold and we have to “extend” the schema of a view
Vc to the one of VE , in order to ensure set operations to be well-
defined. The cardinality of an extended V extc is given by Eq. (D).

| V extc |=
∏

Part∈partE\partc

| CTPart | ∗ | Vc | (D)

Based on Eq. (D) we obtain Eq. (E) that generalizes Eq. (C).

| (
n⋃
i=1

Vci)
ext | = | (

n−1⋃
i=1

Vci)
ext | + | V extcn |

+
∑

∅6=J⊆[n−1]

(−1)|J| | ((1 Vcj)j∈J 1 Vcn)ext |

(E)

In Eq. (E) we have replaced the intersection with natural join.
The cardinalities of the views VE′ = (1Vcj)j∈J1Vcn associated
with E ′ for | J |< n−1, have already been computed by previous
steps and have only to be extended to the schema of VE . When
|J |=n−1, then VE′=VE . A detailed discussion on how and when
we materialize the view VE is given shortly after.

Now, we trivially compute the number βE of eliminated partial

tuples as the complement of | (
n⋃
i=1

Vci)
ext | (Alg. 2, line 17). The

number of ‘full’ eliminated tuples is then calculated by Eq. (A).

EXAMPLE 4.4. To illustrate the concepts introduced above,
please follow on Fig. 4 below discussion.

For the explanation c2c3, Eq. (E) gives: |(V2∪V3)ext|=|V ext2 |+
|V ext3 |− |(V2 1 V3)ext|. The schema of part23={Part1, Part2}
is Γ23={R_Id, S_Id, T_Id}. The view V2 has already a match-
ing schema, thus |V ext2 |=|V2|=4. For V3, Γ3={T_Id}, we
thus apply Eq. (D) and obtain |V ext3 |=|VPart1 |∗ |V3|=3 ∗ 2=6.
Still, |V23|=|(V2 1 V3)ext| remains to be calculated. Intu-
itively, because V2 and V3 target schemas share attribute T_Id,
V23=V21T _IdV3. The view V23 is materialized and contains 2
tuples (as shown in Fig. 4). So, finally, from Eq. (E) we obtain
|(V2 ∪ V3)ext|=4+6−2=8. Since |Part1| ∗ |Part2| = 12 then
β23=12− 8=4, and by Eq. (A) α23=4.

We now focus on the explanation c3c5. The schemas of V3

and V5 are disjoint and intuitively V35=V3"V5. Here, V35 is
not materialized, we simply calculate |V35|=|V3|∗|V5|=6. Then,
|β35|=12−(12+6−6)=0. As we will see later, these steps are
never performed in our algorithm. The fact that c5 does not
eliminate any tuple (see α5=0 in Fig. 4) implies that neither
do any of its super-combinations. Thus, a priori we know that
α35=α235= . . .=0.

Finally, we illustrate the case of a bigger size combination, for
example c2c3c4 of size 3. Eq. (E) yields |(V2∪V3∪V4)ext|=|(V2∪
V4)ext|+ |V ext3 |−|(V2 1 V3)ext|−|(V4 1 V3)ext|+|(V2 1 V3 1

V4)ext|. All terms of the right side of the equation are available
from previous iterations, except for |(V2 1 V3 1 V4)ext|. As
before, we check the common attributes of the views and obtain
V234=V241R_Id,S_Id,T _IdV3. So,|(V2 ∪ V3 ∪ V4)ext|=6 + 6 −
2 − 1 + 0=9 and β234=α234=12 − 9 = 3. In the same way, we
compute all the possible explanations until c1c2c3c4c5.

View Materialization: when and how. To decide when and how
to materialize the views for the explanations, we partition the set of
the views associated with the conditions in E . Consider the relation
∼ defined over these views by Vi ∼ Vj if the target schemas of Vi
and Vj have at least one common attribute. Consider the transitive
closure ∼∗ of ∼ and the induced partitioning of VE through ∼∗.

When this partitioning is a singleton, VE needs to be material-
ized (Alg. 2, line 9). The materialization of VE is specified by
joining the views associated with the sub-conditions, which may
be done in more than one way, as usual. For example, for the com-
bination c2c3c4, V234 can either be computed through V231V4 or
V241V3 or V341V2 or V21V31V4. . . because all these views are
known from previous iterations. The choice of the query used to
materialize VE is done based on a cost function. This function
gives priority to materializing VE by means of one join, which is
always possible: because VE needs to be materialized, we know
that at least one view associated with a sub-combination of size
n−1 has been materialized. In other words, priority is given to us-
ing at least one materialized view associated with one of the largest
sub-combinations. For our example, it means that either V231V4

or V241V3 or V341V2 is considered. In order to choose among the
one-join queries computing VE , we favour a one-join query Vi1Vj
minimal w.r.t. |Vi|+|Vj |. For the example, and considering also
Fig. 4 we find that |V2|+|V34|=|V4|+|V23|=5 and |V3|+|V24|=3.
So, the query used for the materialization is V31V24 (its result
being empty in our example). Nevertheless, we avoid the mate-
rialization of VE if the partitioning is a singleton (Alg. 2, line 9
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Figure 4: Running example with the different steps of Ted++ (up to explanations of size 3) in Alg. 1 and Alg. 2

& 16), when for some sub-combination E ′ of E it was computed
that αE′=0. In that case, we know a priori that αE=0 (see Ex. 4.4).

If the partitioning is not a singleton, VE is not materialized (Alg. 2,
line 14). For example, the partitioning for c3c5 is not a singleton
and so the size |V35|=|V3|×|V5|=6.

Post-processing. In Alg. 2 we associated with each possible ex-
planation E the number of eliminated tuples αE . However, αEs
includes any tuple eliminated by E , even though the same tuples
may be eliminated by some super-combinations of E (see Ex. 4.5).
This means that for some tuples, multiple explanations have been
assigned. To make things even, the last step of Ted++ (Alg. 1,
line 6) is about calculating the coefficient of E by subtracting the
coefficients of its super-combinations from αE :

coefE= αE−(
∑
E⊆E′

coefE′) (F)

EXAMPLE 4.5. Consider known coef1234=2 and coef123=2.
We have found in Ex. 4.4 that α23=4. With Eq. (F),
coef23=4−2−2=0. In the same way coef2=4−0−2−2=0. The
algorithm leads to the expected Why-Not explanation polynomial
already provided in Ex. 3.4.

4.3 Complexity Analysis
In the pseudo-code provided by Alg. 1, we can see that Ted++

divides into the phases of (i) partitioning S, (ii) materializing a view
for each partition, (iii) computing the explanations, and (iv) com-
puting the exact coefficients. When computing the explanations,

according to Alg. 2, Ted++ iterates through 2|C| condition combi-
nations and for each, it decides upon view materialization (again
through partitioning) before materializing it, or simply calculates
|VE | before applying equations to compute αE . Overall, we con-
sider that all mathematical computations are negligible so, the worst
case complexities of steps (i) through (iv) sum up to
O(|S|+|WN |)+O(|S|) +O(2|C|(|S|+ |C|))+O(2|C|). For suf-
ficiently large queries, we can assume that |S|+|C|<<2|C|, in
which case the complexity simplifies to O(2|C|).

The complexity analysis above does not take into account the
cost of actually materializing views; in its simplified form, it only
considers how many views need to be materialized in the worst
case. Assume that n=max({|IR||R∈S}). The materialization of
any view is bound by the cost of materializing a cross product over
the relations involved in the view - in the worst case O(n|S|). This
yields a combined complexity of O(2|C|n|S|). However, Ted++ in
the general case (more than one induced partitions), has a tighter
upper bound: O(nkE1 + nkE2 + · · ·+ nkEN ), where kE=|partE |,
for all combinations E and N = 2|C|.

5. EXPERIMENTAL EVALUATION
We perform an experimental evaluation of Ted++ on real and

synthetic datasets. In Sec. 5.1, we compare Ted++ to Ted [2],
NedExplain [3], and Why-Not [7]. Sec. 5.2 studies the runtime
of Ted++ w.r.t. various parameters that we vary in a controlled
manner. All Java implementations of the algorithms ran on MAC
OS X 10.9.5 with 1.8 GHz Intel Core i5, 4GB memory, and 120GB
SSD. PostgreSQL 9.3 was used as database system.



Table 2: Queries for the scenarios in Table 3
QueryExpression

Q1 C 1sector W 1witnessName S 1hair,clothes P
Q2 σC.sector>99[C] 1sector W 1witnessName S 1hair,clothes P
Q3 W 1sector2 C2 1sector1 σC.type=Aiding [C]
Q4 P2 1!name,hair σP1.name<B [P1]
Q5 L1movieIdσM.year>2009[M ]1nameσR.rating≥8[R]
Q6 σAA.party=Republican[AA] 1id σCo.Byear>1970[Co]
Q7 E1eIdσES.sub=Sen. Com.[ES]1idσSPO.party=Rep.[SPO]

Qs3 σtype=Aiding [Q2]
Qs4 σwitnessname>S [Qs3]
Qj C 1sector σname>S [W ]
Qj2 Qj 1witnessname S
Qj3 Qj2 1clothes P
Qj4 Qj3 1hair P
Qc L11lidL2 1M2.mid=L2.mid M2 1year,!mid σyear=1980[M1]

QtpchC1ckeyσodate<1998−07−21[O]1okeyσsdate>1998−07−21[L]

5.1 Comparative Evaluation
The comparative evaluation to Why-Not and NedExplain consid-

ers both efficiency (runtime) and effectiveness (explanation qual-
ity). When considering efficiency, we also include Ted in the com-
parison (Ted producing the same Why-Not explanation as Ted++).

For the experiments we have used data from three databases
named crime, imdb, and gov. The crime database (available at
http://infolab.stanford.edu/trio/) is a synthetic database about crimes
and involved persons (suspects and witnesses). The imdb database
contains real-world movie data from IMDB (http://www.imdb.com).
Finally, the gov database contains information about US congress-
men and financial activities (data from http://bioguide.congress.gov,
http://usaspending.gov, and http://earmarks.omb.gov).

For each dataset, we have created a series of scenarios (crime1-
gov5 in Tab. 3 - ignore remaining scenarios for now). Each scenario
consists of a query further defined in Tab. 2 (Q1-Q7) and a simple
Why-Not question, as Why-Not and NedExplain support only this
type of Why-Not question. We have designed queries with a small
set of conditions (Q6) or a larger one (Q1, Q3, Q5, Q7), containing
self-joins (Q3, Q4), having empty intermediate results (Q2), as well
as containing inequalities (Q2, Q4, Q5, Q6).

5.1.1 Why-Not Explanation Evaluation
Tab. 1 states that the explanations returned by Why-Not and Ned-

Explain consist of sets of query conditions, whereas Ted++ returns
a polynomial of query conditions. For comparison purposes, we
trivially map Ted++’s Why-Not explanation to sets of conditions,
e.g., 3c3 ∗ c4 + 2c3 ∗ c6 maps to {{c3, c4}, {c3, c6}}. For concise-
ness, we abbreviate condition sets, e.g., to c34, c36.

Tab. 4 summarizes the Why-Not explanations of the three algo-
rithms. These scenarios make apparent that the explanations by
NedExplain or Why-Not are incomplete, in two senses. First, they
produce only a subset of the possible explanations, failing to pro-
vide alternatives that could be useful to the user when she tries to
fix the query. Second, even the explanation they provide may lack
parts, which can drive the user to fruitless fixing attempts. On the
contrary, Ted++ produces all the possible, complete explanations.

For the first argument, consider the scenario gov2. Why-Not
and NedExplain return c1 and c3 respectively, but they both fail to
indicate that both the explanations are valid, as opposed to Ted++.
Then, consider crime8. NedExplain returns the join c2 (S1hairP )
- Why-Not does not produce any explanations. Ted++ indicates
that except for this join, the selection c3 (σname<‘B′ [P ]) for in-
stance is also an explanation. From a developer’s perspective, se-
lections are typically easier or more reasonable to change. So, hav-
ing the complete set of explanations potentially provides the devel-
oper with useful alternatives.

Table 3: Scenarios
Scenario Query Why-Not question
crime1 Q1 {P.Name=Hank,C.Type=Car theft}
crime2 Q1 {P.Name=Roger,C.Type=Car theft}

crime3 Q2 {P.Name=Roger,C.Type=Car theft}
crime4 Q2 {P.Name=Hank,C.Type=Car theft}
crime5 Q2 {P.Name=Hank}

crime6 Q3 {C2.Type=kidnapping}
crime7 Q3 {W.Name=Susan,C2.Type=kidnapping}

crime8 Q4 {P2.Name=Audrey}

imdb1 Q5 {name=Avatar}
imdb2 Q5 {name=Christmas Story,L.locationId=USANew York}

gov1 Q6 {Co.firstname=Christopher}
gov2 Q6 {Co.firstname=Christopher,Co.lastname=MURPHY}
gov3 Q6 {Co.firstname=Christopher,Co.lastname=GIBSON}

gov4 Q7 {sponsorId=467}
gov5 Q7 {SPO.sponsorln=Lugar,E.camount>=1000}

crimes− Q1,Q2, {P.Name=Hank,C.Type=Car theft}crimes4 Qs3,Qs4
crimej−crimej4 Qj−Qj4,{W.name=Jane, C.type=Car theft}

imdbc Qc4
{L2.locationid=L1.locationid, M1.mid=L2.mid,
L1.year>L2.year,M1.name=Duck Soup}

imdbc2 Qc4
({L2.locationid=L1.locationid, M1.mid=L2.mid,
L1.year>L2.year}

crime5c2 Q2 {P.Name=Hank, C.type=Car theft}
crime5c3 Q2 {P.Name=Hank, C.type=Car theft, S.witness=Aphrodite}

crime5c4 Q2 ({P.Name=Hank ,C.type=Car theft, S.witness=Aphrodite,
W.sector =34}

crime5c5 Q2 {P.Name=Hank ,C.type=Car theft, S.witness=Aphrodite,
W.sector =34,S.hair=green}

imdbcc Qc {M.year>M2.year}
tpchs Qtpch {L.extprice>50000,O.odate<1996-01-01}
tpchc Qtpch {L.extprice>100000, O.odate=L.cdate, C.nkey=4}

For the second argument consider crime5. NedExplain returns
c1 (C1sectorW ). The explanation of Ted++ does not contain the
atomic explanation c1, but there exist combinations including c1 as
a part, like c15. This means that the explanation by NedExplain
is incomplete; a repair attempt of c1 alone will never yield the de-
sired results. Similarly, crime7 illustrates a case, when the Why-
Not algorithm produces an explanation (c3) that misses some parts.
Then, in gov3 NedExplain and Why-Not both return c2. However,
let us now assume the developer prefers to not change this condi-
tion. Keeping in mind that those algorithms’ answers may change
when changing the query tree, she may start trying different trees
to possibly obtain a Why-Not explanation without c2. Knowing
the explanation of Ted++ prevents her from spending any effort on
this, as it shows that all explanations contain c2 as a part.

By mapping the explanation of Ted++ to sets of explanations, the
usefulness of the coefficients of the polynomial has been neglected.
For example, the Why-Not explanation polynomial of crime8 is
2384 ∗ c23 + 20 ∗ c3 + 4 ∗ c1 + 8 ∗ c2. Assume that the developer
would like to recover at least 5 missing tuples, by changing as few
conditions as possible. The polynomial implies to change either
c3 or c2: they both require one condition change and provide the
possibility of obtaining up to 20 and 8 missing tuples, respectively.
c1 can recover up to 4 tuples, whereas c2c3 require two condition
changes. Clearly, the results of NedExplain or Why-Not are not
informative enough for such a discussion.

5.1.2 Runtime Evaluation
Ted++ vs. NedExplain and Why-Not. Fig. 5 shows the run-
times in logarithmic scale for each algorithm and scenario. We
observe that Ted++ and NedExplain are comparable and that in
some cases,Ted++ is significantly faster than Why-Not.

Why-Not traces compatible tuples based on tuple lineage stored
in Trio. As already stated in [3, 7], this design choice slows down
Why-Not. On the contrary, both NedExplain and Ted++ compute



Table 4: Ted++, Why-Not, NedExplain answers per scenario
Scenario Ted++ Why-Not NedExplain
crime1 c1234, . . . , c12, c3, c2, c1 c1
crime2 c1234, c34, c13, . . . , c3 c34 c34, c1

crime3 c12345, . . . , c145, c345, c35 c34,c5 c5, c34

crime4 c12345, . . . , c25, c15 c5 c1, c5
crime5 c12345, . . . , c15, c5 c5 c1

crime6 c123, c31, c23, c12, c3, c2, c1 c3 c2
crime7 c123, c13, c12, c1 c3 c2, c1

crime8 c23, c3, c2, c1 c2

imdb1 c123, c13, c23, c3 c3 c3,c2
imdb2 c13 c1, c3

gov1 c123, c13, c23, c12, c3, c2, c1 c3 c2, c3
gov2 c13, c3, c1 c1 c3
gov3 c123, c23, c2 c2 c2

gov4 c123, c23, c2 c3 c3, c2
gov5 c124, c14, c24, c12, c4, c2, c1 c1 c1
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Figure 5: Runtime for Ted++, Ted, NedExplain, and Why-Not

compatible data more efficiently. We claim that a better implemen-
tation choice for tuple tracing in Why-Not would yield a runtime
comparable to NedExplain, a claim backed up by their comparable
runtime complexities. Another problem of NedExplain and Why-
Not lies in the choice to trace compatible data w.r.t. tuples from the
input relations but not necessarily compatible ones.

Let us see what happens when Ted++ is slower than - but still
comparable to - NedExplain, for example in gov1-gov3. In Ned-
Explain all compatible tuples are pruned out by conditions very
close to the leaf level of the query tree, so the bottom-up traversal
of the tree can stop very early. Ted++ always “checks” all condi-
tions so cannot benefit from such an early termination. However,
this runtime improvement of NedExplain often comes at the price
of incomplete explanations (e.g., gov1).
Ted++ vs. Ted. Fig. 5 reports runtimes for Ted on 6 out of 15 sce-
narios as for the others, Ted runs out of time. To examine this be-
havior, we compare the time distribution in Ted and Ted++(Fig. 6).
The algorithms are divided in four common phases. Note that in
scenarios crime7, gov1 − gov3 the diagram bars for Ted are not
totally displayed as the execution time is much higher compared to
the other scenarios and to the runtime of Ted++ (the runtime of the
coefficientEstimation phase is the label on the respective bars) .

As said in Sec. 4, Ted’s main issue is its dependence on the num-
ber of compatible tuples. This is experimentally observed in Fig. 6:
with the growth of the set of compatible tuples, the time dedicated
to coefficientEstimation also grows (the scenarios are reported in an
ascending order of number of compatible tuples). The number of
compatible tuples affects Ted++ too, but not as much. This can be
seen in crime8 and crime7, or gov3 and gov1; while the number
of tuples grows, Ted++’s runtime remains roughly steady.

5.2 Ted++ Analysis
We now study Ted++’s behavior w.r.t. the following parameters:

(i) the type (simple or complex) of the input query Q and the num-
ber ofQ’s conditions, (ii) the type of the Why-Not question (simple
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Figure 7: Ted++ runtime w.r.t. number of conditions in Q

or complex) and the number and selectivity of conditions the Why-
Not question involves, and (iii) the size of the database instance
I. Note that (ii) and (iii) are tightly connected with the number of
compatible tuples, which is one of the main parameters influencing
the performance. Another important factor is the selectivity of the
query conditions over the compatible data.

For the parameter variations (i) and (ii), we use again the crime,
imdb, and gov databases. To adjust the database instance size for
case (iii), we use data produced by the TPC-H benchmark data gen-
erator (http://www.tpc.org/tpch/). We have generated instances of
1GB and 10GB and further produced smaller data sets of 10MB and
100MB to obtain a series of datasets whose size differs by a factor
of 10. In this paper, we report results for the original query Q3 of
the TPC-H set of queries. It includes two complex and three simple
conditions, two of which are inequality conditions. Since the origi-
nal TPC-H query Q3 is an aggregation query, we have changed the
projection condition. The queries used in this section are Qs-Qtpch
(Tab. 2) and the scenarios are crimes-tpchc (Tab. 3).
Adjusting the query. Given a fixed database instance and Why-
Not question, we start from query Q1 and gradually add simple
conditions, yielding the series of queries Q1, Q2, Qs3, Qs4. The
evolution of Ted++ runtime for these queries is shown in Fig. 7 (a).
Similarly, starting from query Qj , we introduce step by step com-
plex conditions, yielding Qj-Qj4. Corresponding runtime results
are reported in Fig. 7 (b).

As expected, in both cases, increasing the number of query con-
ditions (either complex or simple) results in increasing runtime.
The incline of the curve depends on the selectivity of the intro-
duced condition; the less selective the condition the steeper the line
becomes. This is easy to explain, as the view for the explanations
involving a low selective condition contains more tuples (=passing
partial tuples). This, leaves space for further optimization by dy-
namically deciding on passing vs eliminated tuples materialization.
Adjusting the Why-Not question. The scenarios considered for
Fig. 8 (a) have as starting point the simple Why-Not question of
crime5 (see Tab. 3). Keeping the same input instance and query,
we add attibute-constant comparisons (i.e., simple conditions) to
WN , resulting in fewer tuples in each step. As expected, the more
conditions (the less tuples) the faster the Why-Not explanation is
returned, until we reach a certain point (here from crime5c3 on).
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Figure 9: Ted++ behavior for varying database size

From this point, the runtime is dominated by the time to communi-
cate with the database that is constant over all scenarios.

In Fig. 8 (b) we examine complex Why-Not questions. As we
add complex conditions in a Why-Not question, the number of
generated partitions (potentially) drops as more relations are in-
cluded in a same partition. To study the impact of the induced
number of partitions in isolation, we keep the number of the com-
patible tuples constant in our series of complex scenarios (imdbcc-
imdbcc3). The number of partitions entailed by imdbcc, imdbcc2,
and imdbcc3 are 3, 2, and 1, respectively. The results of Fig. 8
(b) confirm our theoretical complexity discussion, i.e., as the num-
ber of partitions decreases, the time needed to produce the Why-
Not explanation increases.
Increasing size of input instance. Now we increase the database
size for scenarios with one simple or one complex Why-Not ques-
tion WN , over the same query Qtpch. The simple WN includes
two inequality conditions, in order to be able to compute a rea-
sonable number of compatible tuples. The complex WN contains
one complex condition, one inequality simple condition and one
equality simple condition. It thus represents an average complex
Why-Not question, creating two partitions over three relations.

Fig. 9 (a) shows the runtimes for both scenarios. The increas-
ing runtime is tightly coupled to the fact that the number of com-
puted tuples is augmenting proportionally to the database size, as
shown in Fig. 9 (b). We observe that for small datasets (<500MB)
in the complex scenario Ted++’s performance decreases with a low
rate, whereas the rate is higher for larger datasets. For the simple
scenario, runtime deteriorates in a steady pace. This behavior is
aligned with the theoretical study; when the number of partitions is
decreasing the complexity rises.

In summary, our experiments have shown that Ted++ generates
a more useful and complete Why-Not explanation than the state
of the art. Moreover, Ted++ is competitive in terms of runtime.
The dedicated experimental evaluation on Ted++ verifies that it can
be used in a large variety of scenarios with different parameters.
Finally, the fact that the experiments were conducted on an ordinary
laptop supports Ted++’s feasibility.

6. CONCLUSION AND OUTLOOK
This paper provides a framework for Why-Not explanations

based on polynomials, which enables to consider relational

databases under set, bag and probabilistic semantics in a unified
way. To efficiently compute the Why-Not explanation polynomial
under set semantics we have designed a new algorithm Ted++,
whose main feature is to completely avoid enumerating and iter-
ating over the set of compatible tuples, thus significantly reducing
both space and time consumption. Our experimental evaluation
showed that Ted++ is at least as efficient as existing algorithms
while providing useful insights in its Why-Not explanation for a
developer. Also, we show that Ted++ scales well w.r.t various pa-
rameters, making it a practical solution.

Why-Not explanation polynomials are easy to extend for unions
of conjunctive queries, whereas an extension for aggregation
queries is subject to future work. Currently, we have been working
on exploiting the Why-Not explanation polynomial to efficiently
rewrite a query in order to include the missing answers in its re-
sult set. As there are many rewriting possibilities, we plan to se-
lect the most promising ones based on a cost function, built with
the polynomial. For instance, we may rank higher rewritings with
minimum condition changes (i.e., small combinations), minimum
side-effects (i.e., small coefficients), etc.
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