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Abstract
Experimental vocal fold replicas are currently used in speech production studies in order to vali-
date simplified models on controllable devices. In addition to in-situ mechanical characterization,
it is important to be able to understand their behavior when changing assembly properties or us-
ing parameters control to tune the folds, by developing a model able to predict their static and
dynamic motions. This also enables to describe more complex vibration behaviors which could
be harder to observe experimentally.
This paper first presents a hydro-elastic finite element model of a single vocal fold. Numerical
results are discussed, along with a parametric analysis. Then this model is extended to take
into account the effect of the water pressure on the inflation of the folds and on the resonance
frequencies. A hyper-elastic calculation is first used to simulate the latex inflation. An updated
Lagrangian approach processes it as a pre-stress term in a modal analysis calculation for the small
amplitude vibrations of the hydro-elastic structure, which allows to model the water pressure
influence on the mechanical resonances of the simulated replica.

1. Introduction

Voice is one of the most important communication vectors. Its degradation still leads to major
difficulties within social interactions and voice disorders are to be considered as a public health issue.
In support of clinical and rehabilitative practices, physical modeling brings a global understanding of
phonatory organ pathologies, for which vocal folds are highly affected. In this modeling approach,
experimental replicas have been developed notably since the work of Van Den Berg [1]. By reproduc-
ing the physical phenomena involved in speech production, these tools allow to validate simplified
theoretical models, and a particular interest on the measurement and the control of vibrating structures
has emerged lately.

The present study focuses on water-filled latex replicas as used in voice or brass instrument ex-
periments, see e.g. Refs [2, 3]. The most recent design (see Fig. 1a) is made of a thin layer of latex
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(thickness of 0.2 to 0.3 mm) surrounding a half-cylinder volume of water and its metallic support.
The water pressure can be adjusted to get the proper stiffness and the metal parts are mobile to set
the vocal folds closer as it is during the abduction phase. Then, the water and its latex envelope can
vibrate as a result of a fluid-structure interaction with an airflow coming from artificial lungs. That
coupling is not studied here.

The aim of this paper is to present a theory able to predict the influence of the water pressure on
the resonance frequency of the structure. Such a problem also gained recently some interest in the
domain of the deployable structures (also known as inflatables) used in spacecrafts (see, e.g., Ref [4]).
A linear hydro-elastic model will be first described and exploited (Sec. 2), and then it will be adapted
in the Lagrangian finite strain framework to introduce the prestress in the formulation, thus enabling
the water-pressure dependency (Sec. 3).
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Figure 1: (a) Vocal fold components. (b) Boundaries, solid and fluid domains of the model.

2. Hydro-elastic modeling of the non-inflated replica

2.1 Modeling

The hydro-elastic linear modeling derives from Ref. [5], further step-by-step details are provided
in Ref. [6] and an analysis of the spectral problem can be found in [7]. Fig. 1b illustrates the solid and
the fluid domains and their respective nominal dimensions. The solid is first modeled as a deformable
isotropic linear elastic material with density ρs under the small deformation hypothesis. It is submitted
to the water pressure p on the boundary Σ, attached on Γm, all other volume forces or traction forces
on Γext being neglected, and harmonic solutions are sought (with convention exp jωt). Denoting us

the unknown displacement field and v the test function, a weak formulation of the elastodynamics
implies the solid mass and stiffness bilinear operatorsMs and Ks :

(1) Ms(us,v) =

∫
Ωs

ρsus · v dΩs and Ks(us,v) =

∫
Ωs

σs(us) : ε(v) dΩs

where σ and ε are the Cauchy stress and the small strain tensors, respectively.
The water is considered as an irrotational inviscid homogeneous Newtonian incompressible fluid

with small displacements uf and small pressure fluctuations p around the rest state. It is modeled
using the Euler linearized equation which, as detailed in Ref. [6], allows to describe the fluid state
with the fluid displacement potential ϕ, with uf = ∇ϕ and p = ρfω

2ϕ. This potential thus obeys to
the Laplace’s equation ∆ϕ = 0 within the fluid domain, and vanishes on the wall. Boundary Γl is the
inflation inlet where the static pressure can be imposed. Coupling between the solid and the fluid on
the boundary Σ expresses through the complete transmission of the normal displacements and efforts:

(2)
∂ϕ

∂n
= us · n and σ(us) · n = ρfω

2ϕ n on Σ.
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Defining the fluid massMf and the coupling Cfs bilinear operators as

(3) Mf (ϕ, ψ) =

∫
Ωf

ρf∇ϕ · ∇ψ dΩf and Cfs(us, ψ) =

∫
Σ

ρfψ(us · n) dΣ,

the coupled eigenproblem is to find (ω,us, ϕ) ∈ R× Cs × Cf so that

(4)
{
∀v ∈ Cs, Ks(us,v) = ω2Ms(us,v) + ω2Cfs(v, ϕ),
∀ψ ∈ Cf , 0 = Mf (ϕ, ψ)− Cfs(us, ψ).

where Cs and Cf are the Hilbert spaces of kinematically admissible solid displacement and fluid
potential fields:

(5)
Cs = {v ∈ H1(Ωs) such that v = 0 on Γm} ,
Fs = {ψ ∈ H1(Ωf ) such that ψ = 0 on Γl} .

These spaces are approached by the finite element spaces Chs and Chf : quadratic functions for the
solid displacement (P2, see Sec. 2.2), and linear functions for the fluid potential (P1), leading to the
discretized matrix formulation linking the vectors of solid and fluid degrees of freedom:

(6)
(

Ks 0
−CT

fs Mf

)(
us

ϕ

)
= ω2

(
Ms Cfs

0 0

)(
us

ϕ

)
While the pressure is prescribed on some subpart of the fluid boundary, the fluid mass matrix Mf

can be inverted, and the fluid potential dofs can be eliminated through a Schur complement method
(ϕ = M−1

f CT
fsus), introducing an added-mass matrix Ma taking into account the influence of the

motion of the water onto the vibrations of the latex membrane. The modal analysis of the non inflated
membrane consists in the generalized eigenproblem:

(7) Find (ω,us) ∈ R× Chs such as Ksus = ω2 (Ms + Ma)us with Ma = CfsM−1
f CT

fs

and is to be compared with the purely elastic problem where Ma is neglected.

2.2 Numerical results

Simulations have been conducted using the FreeFem++ software [8]. Default configuration con-
siders a latex half-cylinder with inner radius R = 10mm, thickness e = 0.25mm and length
L = 4.5cm, density ρs = 956kg/m3, Young modulus E = 1.8MPa and Poisson’s ratio ν = 0.49.

A first two-dimensional purely elastic study has helped to define convergence with respect to
meshing the solid domain. A structured mesh of Ωs with 3 layers within the thickness (and circumfer-
ence subdivision ensuring adequate mesh quality) is sufficient for functions in P2 while P1 elements
would require at least 9 layers to reach the same precision, dramatically increasing memory require-
ment and CPU time. We do know that plate or shell elements can overcome that problem, but the
current work is intended to be used as a reference for model reduction.

Table 1 presents a summary of the first eigenfrequencies in several configurations. It is noticeable
that the 2D simulations lead to eigenfrequencies smaller than the ones resulting from the 3D compu-
tations. In fact, the 2D case refers to the displacement invariant relative to the axis of the cylinder,
which is a configuration that is less stiff than the 3D case where Dirichlet boundaries conditions at
the ends of the cylinder are imposed (which compares with the experimental setup).

Numerical experiments show that the mesh of the fluid domain does not need to conform to the
solid mesh on the interface Σ (see also Ref. [7]) and that P1 basis functions are sufficient, with bigger
elements size far from the inlet Γl and from the interface Σ. As visible in Table 1, the fluid motion
clearly influences the behavior by strongly lowering the eigenfrequencies.
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Table 1: Eigenfrequencies (Hz) of several problems: purely elastic or hydro-elastic, 2D or 3D study,
P1 or P2 basis functions. Default mesh for Ωs is made of 3 layers

Case 1st mode 2nd mode 3rd mode 4th mode 5th mode 6th mode
Elastic 2D P1 38.4 84.0 155.9 238.0 344.5 457.7
Elastic 2D P2 24.6 54.0 100.1 153.3 221.5 296.3
Elastic 2D P2

with 10 layers
24.4 53.7 99.5 152.4 220.1 294.5

Elastic 3D P2 97.7 104.5 157.1 164.5 165.4 166.1
Hydro-elastic 2D
solid P2 - fluid P1

8.8 21.8 45.5 64.5 78.7 121.1
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Figure 2: Influence of the four dimensionless quantities on the eigenfrequencies.

A parametric study of a similar hydro-elastic coupling evidenced (see Ref. [6]) four dimensionless
quantities while normalizing with the radius R of the cylinder, the thickness e of the latex and some
arbitrary frequency Ω: the aspect ratio e/R, the ratio of densities ρs/ρf , the Poisson’s ratio ν and the
effective stiffness of the membrane Keff = E/(ρsR

2Ω2). Figure 2 highlights this dependence: while
the stiffness and the low aspect ratio seems to act as a mere multiplicative factor, the influence of the
ratio of densities enhances the difference between light and heavy fluid loading. Figures 2b-2d also
evidence that there is at least one eigenfrequency with a variation that differs from the others (f4 in
Fig. 2d, it crosses the others frequencies in the other plots). Investigating the eigenvectors, it appears
that almost all the modes correspond to hydro-elastic motions with an effective coupling, while the
singular mode (others singular modes appear at higher frequencies) correspond to modes essentially
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localized at the pressure inlet, i.e. with little participation of the membrane, as visible in Fig. 3. As
performed in Ref [6], it is possible to discriminate the kind of modes by comparing the fluid and
solid kinetic energy of the modal shapes (preferably when normalized with respect to the total mass
matrix).

(a) Mode 2 (b) Mode 5

Figure 3: Modal shapes highlighting vibration localization at the pressure inlet for mode 5. Scaling
is identical for solid and fluid displacements.

3. Analysis of the inflated membrane

While predicting the influence of the fluid loading on the vibrations of the latex membrane, the
linear modeling presented in the previous section does not account for the effect of the static pressure
in the water. As this is a primary control parameter of the replicas used to simulate the phonation, it
is essential to be able to predict how the pressure controls the mechanical resonances. The modeling
is hereafter adapted to take into account the prestress coming from the static inflation, and a modal
analysis of the inflated state is then performed. We will consider the initial configuration Ω0, the
configuration after inflation ΩS , and the inflated-deformed configuration Ω∗, as well as the respective
transformations ϕS and ϕ∗.

ϕS ϕ∗

Ω∗ΩSΩ0

3.1 Static equilibrium configuration

Water pressure p (up to 10 kPa) can induce moderate to large displacements and requires a La-
grangian formulation of the problem on the Ω0 configuration, with the introduction of the deformation
gradient tensor F(us), its determinant J(us), the Green-Lagrange tensor E(us) and the 1st and 2nd

Piola- Kirchhoff tensors Π(us) and S(us):

(8) F(us) = I +∇Xus, E(us) = 1/2 (F(us)
T · F(us)− I), and Π(us) = F(us) · S(us).

For the sake of simplicity, we assume a priori a St Venant-Kirchhoff constitutive law, a hyper-elastic
extension of isotropic linear elastic model:

(9) S(us) = C : E(us) = λ tr(E(us)) I + 2µE(us).
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Neglecting volume forces and traction on the Γext boundary, the variational formulation writes, on the
initial undeformed configuration:

(10) ∀v ∈ Cs,
∫

Ω0

S(us) :

(
∂E

∂u

∣∣∣∣
us

· v
)
−
∫

Σ0

pJ(us)(F(us)
−T ·N) · v = 0

with the Lagrangian gradient operator ∇X . The left hand side is denoted R(us,v) and its first term
KNL(us,v) generalizes the linear stiffness operatorKs in the finite strain framework. The second term
is a follower pressure term denoted fNL(us,v) that accounts for the variation (in size and orientation)
of the surface the water pressure applies on. The problem appears now as non-linear due to both
the two contributions. The zero of the nonlinear operator R is searched using a modified Newton
procedure. The non-symmetric contribution of fNL to the tangent matrix is ignored, the approximation
of the tangent matrix being non critical with respect to the convergence of the Newton scheme. At
each iteration k, we then look for the increment w solving the linear system:

(11) ∀v, R(uk
s ,v) +

∂KNL

∂u

∣∣∣∣
uk
s ,v

·w = 0 then uk+1
s = uk

s + w.

with a convergence criterion of 10−7 using the L2-norm of w relative to the one of the iterated uk
s .

The expanded expressions of Eq. (11) can be found in Ref. [9].
The vector field u0 solution of Eq. (10) is then used to calculate J(u0), E(u0) and S(u0). We

finally deduce the Cauchy stress in the inflated configuration by the expression:

(12) σ0 = σ(u0) = J(u0)−1F(u0) · S(u0) · F(u0)T .

Fig. 4 compares the maximal transverse displacement on the centerline of the replica. The ex-
perimental data are extracted from the detection of the glottal contours on pictures taken for various
water pressure. Taking into account the nonlinear behavior of the material improves the prediction of
the static inflation of the replica in comparison with the small strain inflation model. Linear elasticity
greatly overestimates the inflation, while the finite strain theory leads to slightly underestimated val-
ues. This computation also enables to evaluate the range of strain to consider. Up to a water pressure
of 10kPa, strain remains at most of 10%, justifying a posteriori the choice of the St Venant-Kirchhoff
behavior law instead of more commonly used ones, e.g. Mooney-Rivlin or Ogden models.

3.2 Modal analysis with prestress

In the manner of Ref. [5], the introduction of small vibrations u∗ in the vicinity of the static
inflated configuration results in the eigenproblem:

(13) Find (ω,u∗) ∈ R× Chs such as ∀v ∈ Cs,
∂R

∂u

∣∣∣∣
u0,v

· u∗ = ω2 (Ms +Ma) (u∗,v)

where the tangent stiffness operator replaces the previous linear elastic stiffness operator. It can be
obtained as the last tangent operator of the modified Newton procedure described in Sec. 3.1. It is
worth to provide some insight on its components. First the gradient of the nonlinear stiffness operator
KNL writes:

(14)
∂KNL

∂u

∣∣∣∣
u0,v

· u∗ =

∫
Ω0

(
∂E

∂u

∣∣∣∣
u0

· u∗

)
: C :

(
∂E

∂u

∣∣∣∣
u0

· v

)
+ S(u0) : (∇Xu∗ · ∇Xv) .

The first term describes the stiffening/softening effect of the initial deformation of the structure (pre-
deformation stiffness operator) while the second one is the so-called geometric stiffness operator
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Figure 4: Static maximal normal displacement of latex under water pressure Pwater

related to the initial stresses S(u0). In addition, contrary to the hydro-elastic linear model, the follower
pressure should contribute too for the tangent stiffness operator, but it is ignored in the present study.

Last it should be emphasized that the fluid is supposed to be at rest under pressure p in the inflated
configuration, i.e. the inflation is supposed to have little influence on the fluid configuration. However
the added-mass operator should be evaluated taking into account the inflated geometry: the coupling
Cfs and the fluid massMf operators involve integration on the deformed interface and deformed fluid
domain, respectively.

In conclusion, the water pressure influences the modal analysis through several means:
– the stiffness operator corresponds now to the tangent stiffness operator evaluated in the inflated

configuration,
– the added-mass operator that accounts for the effect of the fluid load on the structure vibration

now also depends on the deformed geometry, which in turns results from the water pressure.
Fig. 5 presents the variation of the first eigenfrequency depending on the water pressure, for sev-

eral values of the Poisson’s ratio and of the thickness of the latex membrane. The theory predicts
the increase of the frequency for low inflation but a decrease appears above a threshold that de-
pends on the geometric and mechanical characteristics of the structure. This is in contradiction with
the experiments which does not exhibit the non-monotonic evolution. Several hypothesis are under
investigation, among which the bad conditioning of the displacement based formulation. Ref. [9]
mentions that displacement-pressure formulations may behave better when approaching the incom-
pressible limit ν = 0.5.

4. Conclusion

A linear hydro-elastic model has first been presented, showing interesting features in terms of
kinds of modes that can exist in the fluid-structure interaction under study. Considering its failure
in retrieving the experimentally observed behavior, i.e. the influence of the water pressure on the
eigenfrequencies, it has been extended to include the effect of the pressure in terms of static inflation
and of pressure-dependent eigenmodes, by means of the tangent stiffness operator accounting for the
pre-stress and for the pre-deformation. The first results evidence the ability to predict this dependency,
but also show some limitations that may be due to the known bad performance of the displacement
based formulation near the incompressible limit behavior. It was also computed in the static study
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Figure 5: Evolution of the first eigenfrequency with the water pressure for various values of the
Poisson’s ratio (a) or of the latex thickness (b).
The red curves show the default configuration: ν = 0.49 and e = 0.25mm.

that moderate strain occurs in the latex in the range of experimental water pressure, thus justifying
the use of a moderately hyper elastic law such as the St Venant-Kirchhoff one.
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