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Abstract

Given a univariate polynomial, its abscissa is the maximum real part of its roots.
The abscissa arises naturally when controlling linear differential equations. As a
function of the polynomial coefficients, the abscissa is Hölder continuous, and not
locally Lipschitz in general, which is a source of numerical difficulties for designing
and optimizing control laws. In this paper we propose simple approximations of the
abscissa given by polynomials of fixed degree, and hence controlled complexity. Our
approximations are computed by a hierarchy of finite-dimensional convex semidefi-
nite programming problems. When their degree tends to infinity, the polynomial
approximations converge in norm to the abcissa, either from above or from below.

Keywords

Linear systems control, non-convex non-smooth optimization, polynomial
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1 Introduction

Given a univariate polynomial, its abscissa is the maximum real part of its roots. When
studying linear differential equations, the abscissa of the characteristic polynomial of
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the equation is used as a measure of the decay or growth rate of the solution. In linear
systems control, the abscissa function is typically parametrized by a small number of
real parameters (the controller coefficients), and it should be minimized so as to ensure a
sufficiently fast decay rate of closed-loop trajectories.

As a function of the polynomial coefficients (expressed in some basis), the abscissa is
a Hölder continuous function (with exponent equal to the reciprocal of the polynomial
degree), but it is not locally Lipschitz. As a consequence of this low regularity, numerical
optimization of the polynomial abscissa is typically a challenge.

For a recent survey on the abscissa function and its applications in systems control, see [6].
A detailed variational analysis of the abscissa was first carried out in [5]. These ideas were
exploited in a systems control setup in [4], using randomized techniques of non-convex
non-smooth local optimization, however without rigourous convergence guarantees.

In the space of controller parameters, the zero sublevel set of the abscissa function of the
characteristic polynomial of a linear system is the so-called stabilizability region, and it is
typically non-convex and non-smooth, see [8] where this set is approximated with simpler
sets such as balls or ellipsoids. In [7], ellipsoidal approximations of the stabilizability
region were generalized to polynomial sublevel set approximations, obtained by replacing
negativity of the abscissa function with positive definiteness of the Hermite matrix of the
characteristic polynomial.

This paper continues the research efforts of [8] and [7], in the sense that we would like
to approximate the complicated geometry of the abscissa function (and its sublevel sets)
with a simpler function, namely a low degree polynomial. The level of complexity of the
approximation is the degree of the polynomial, to be fixed in advance. Moreover, we would
like the quality of the approximation to improve when the degree increases, eventually
converging (in some appropriate sense) to the original abscissa function when the degree
tends to infinity.

The outline of the paper is as follows. After introducing in Section 2 the abscissa function
and some relevant notations, we address in Section 3 the problem of finding an upper
approximation of the abscissa. In Section 4, we address the more difficult problem of
approximating the abscissa from below, first by using elementary symmetric functions,
and second by using the Gauß-Lucas theorem, inspired by [5]. Explicit numerical examples
illustrate our findings throughout the text.
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2 Preliminaries

Notation and definitions

Let n ∈ N and Q ⊆ Rn be a compact semi-algebraic set on which a Borel measure with
support Q can be defined and whose moments are easy to compute. For simplicity, in this
paper we choose Q = [−1, 1]n = {q ∈ Rn : 1− q2

1 ≥ 0, . . . , 1− q2
n ≥ 0}.

Let C (Q) denote the space of continuous functions onQ. Its topological dual is isometrically
isomorphic to the vector space M (Q) of signed Borel measures on Q. By Banach-Alaoglu’
s theorem [1, 2], the unit ball of M (Q) is compact (and sequentially compact) in the
weak-star topology of M (Q).

Denote by R[q]d the vector space of real polynomials in the variables q = (q1, . . . , qn) of
degree at most d. Let Σ[q] ⊂ R[q] be the convex cone of real polynomials that are sums of
squares of polynomials and denote by Σ[q]2d its subcone of sum of squares polynomials of
degree at most 2d.

The abscissa function

Consider the monic non-constant polynomial p ∈ R[s] defined by

p : s 7→ p(q, s) :=
m∑
k=0

pk(q)sk

with s ∈ C complex, q = (q1, . . . , qn) ∈ Q and given polynomials pk ∈ R[q] for k =
0, 1, . . . ,m with pm(q) ≡ 1 and m > 0.

Denote by sk(q), k = 1, . . . ,m, the roots of p(q, ·) and by a : Q → R (or ap if it is necessary
to clarify the dependence on the polynomial) the abscissa map of p, i.e. the maximal real
part of the roots:

a(q) := max
k=1,...,m

<(sk(q)), q ∈ Q.

Equivalently, with i =
√
−1 and s = x+ iy write

p(q, s) = p<(q, x, y) + ip=(q, x, y)
for two real polynomials p<, p= ∈ R[q, x, y] of total degree m. Then

a(q) = max{x ∈ R : ∃y ∈ R : p<(q, x, y) = p=(q, x, y) = 0}, q ∈ Q.

We observe that function a : Q → R is semi-algebraic and we define the basic closed
semi-algebraic set

Z := {(q, x, y) ∈ Rn × R2 : q ∈ Q, p<(q, x, y) = p=(q, x, y) = 0}.
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Remark 1. Set Z is compact, since Q is compact and p is monic in s.

Now we can write the abscissa map as

a(q) = max{x ∈ R : ∃y ∈ R : (q, x, y) ∈ Z}, q ∈ Q.

Since p is monic, its abscissa a is continuous, though in general not Lipschitz continuous.
For example, for n = 1 and p(q, s) = s6 + q the map a(q) is only Hölder continuous with
exponent 1

6 for small q. To be precise, a is always Hölder continuous by the Łojasiewicz
inequality [3], since Q is compact.

3 Upper abscissa approximation

3.1 Primal and dual formulation

Given a polynomial p defined as above, the solution to the following linear programming
(LP) problem gives an upper approximation of its abscissa function a on Q:

ρ = inf
v∈C (Q)

∫
Q
v(q) dq (1)

s.t. v(q)− x ≥ 0 for all (q, x, y) ∈ Z

with C (Q) denoting the space of continuous functions from Q to R.
Remark 2. Since the continuous functions defined on compact set Q can be approximated
uniformly by polynomials by the Stone-Weierstraß theorem [11, §16.4.3], we can replace
C (Q) in problem (1) by the ring of polynomials R[q].

The LP dual to problem (1) reads

ρ∗ = sup
µ∈M +(Z)

∫
Z
x dµ(q, x, y) (2)

s.t.
∫
Z
qα dµ =

∫
Q
qα dq, for all α ∈ Nn,

where qα stands for the monomial qα1
1 qα2

2 · · · qαnn and M +(Z) denotes the cone of non-
negative Borel measures supported on Z, identified with the set of all non-negative
continuous linear functionals acting on C +(Z), the cone of non-negative continuous
functions supported on Z.
Remark 3. The constraint

∫
Z q

α dµ =
∫
Q q

α dq for all α ∈ Nn implies that the marginal of
µ on Q is the Lebesgue measure on Q, i.e. for every g ∈ C (Q) it holds that∫

Z
g(q) dµ(q, x, y) =

∫
Q
g(q) dq.

In particular this implies that ‖µ‖ = volQ where vol(·) denotes the volume or Lebesgue
measure.
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Lemma 1. The supremum in LP (2) is attained, and there is no duality gap between LP
(1) and LP (2), i.e. ρ = ρ∗.

Proof. The set of feasible solutions for the dual LP (2) is a bounded subset of M +(Z)
with Z compact and therefore it is weak-star compact. Since the objective function is
linear, its supremum on this weak-star compact set is attained. For elementary background
on weak-star topology, see e.g. [2, Chapter IV].

To prove that there is no duality gap, we apply [2, Theorem IV.7.2]. For this purpose
we introduce the notation used in [2] in this context. There, the primal and the dual are
written in the following canonical form:

ρ∗ = sup
x∈E1

〈x, c〉1 ρ = inf
y∈F2

〈b,y〉2

s.t. Ax = b, x ∈ E+
1 s.t. A∗y− c ∈ F+

1

So we set E1 := M (Z) with its cone E+
1 := M +(Z). Then their (pre-)duals are F1 := C (Z)

and F+
1 := C +(Z) respectively. Similarly, we define E2 := M (Q) and F2 := C (Q).

Setting x := µ ∈ E1, c := x ∈ F1, b ∈ E2 the Lebesgue measure on Q and y := v ∈ F2,
the linear operator A : E1 → E2 is given by x 7→ πQx where πQ denotes the projection
onto Q, i.e., Ax(B) = x(B × R2) for all B ∈ B(Q).

According to [2, Theorem IV.7.2] the duality gap is zero if the cone {(Ax, 〈x, c〉1) : x ∈ E+
1 }

is closed in E2×R. This holds in our setup since x 7→ Ax and x 7→ 〈x, c〉1 are continuous
linear maps and E+

1 = M +(Z) is weak-star closed due to the compactness of Z. So if
for some a ∈ E2, Axn → a as n → ∞ then from the definition of the mapping A and
as (xn) ⊂ E+

1 , one has ‖xn‖ → ‖a‖ as n → ∞ (see Remark 3). Therefore the sequence
(xn) ⊂ E+

1 is bounded and by Banach-Alaoglu’s theorem [1, 2], it contains a subsequence
(xnk) ⊂ E+

1 that converges to some x ∈ E+
1 for the weak-star topology. By continuity of

the mappings A and c, the result follows.

Remark 4. The infimum in LP (1) is not necessarily attained, since the set of feasible
solutions is not compact. It is neither attained when we replace C (Q) with R[q], since a
is non-Lipschitz, so in particular not polynomial.

However, the infimum is attained if we replace C (Q) with R[q]d for d finite. Then, with
M := minq∈Q a(q) > −∞ and ṽ(q) := v(q)−M we can rewrite LP (1) as the equivalent
problem

inf
ṽ∈R[q]d

∫
Q
ṽ(q)dq s.t. ṽ(q) +M − x ≥ 0 on Z.

Now, any feasible ṽ is non-negative on Q, so
∫
Q ṽ(q)dq = ‖ṽ‖L1 ≥ 0 and for every R ∈ R

the set {ṽ ∈ R[q]d : R ≥
∫
Q ṽ(q)dq and ṽ(q) +M − x ≥ 0 on Z} is closed and bounded in

the strong topology, thus compact. Besides, due to the continuity of a, there always exists
an R <∞ such that the mentioned set is not empty, hence the infimum is attained.
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3.2 SDP hierarchy

Let d0 ∈ N be sufficiently large. As presented in [9], we can write a hierarchy of finite-
dimensional convex semidefinite programming (SDP) problems for LP (1) indexed by the
parameter d ∈ N, d ≥ d0:

ρd = inf
vd,σ0,σj ,τ<,τ=

∫
Q
vd(q) dq

s.t. vd(q)− x = σ0(q, x, y) +
n∑
j=1

σj(q, x, y)(1− q2
j ) (3)

+ τ<(q, x, y)p<(q, x, y) + τ=(q, x, y)p=(q, x, y)

for all (q, x, y) ∈ Rn × R2 and with vd ∈ R[q]2d, σ0 ∈ Σ[q, x, y]2d, σj ∈ Σ[q, x, y]2d−2 for
j = 1, . . . , n and τ<, τ= ∈ R[q, x, y]2d−m.
Remark 5. The quadratic module generated by the polynomials 1−q2

1, . . . , 1−q2
n, ±p<, ±p=

is archimedean by [10, Lemma 3.17], since it contains the polynomial f(q, x, y) := ∑n
j=1(1−

q2
j )− p2

<− p2
= and the set {(q, x, y) ∈ Rn×R2 : f(q, x, y) ≥ 0} is compact. By [9, Theorem

4.1], this implies that the hierarchy converges, i.e. limd→∞ ρd = ρ.
Remark 6. Note that SDP (3) is not equivalent to LP (1), not even with C (Q) replaced
by R[q] or R[q]2d in the latter, but it is a strengthening of it, meaning ρd ≥ ρ. To be more
specific, SDP (3) is a reinforcement of the following LP:

inf
v∈R[q]2d

∫
Q
v(q) dq s.t. v(q)− x > 0 for all (q, x, y) ∈ Z.

where we exchanged non-negativity for a specific certificate of positivity. See [9, Chapter
4.2] for details.

Example 1. The infimum in SDP (3) is not necessarily attained, e.g. consider the
polynomial p(q, s) = s2. Then p<(q, x, y) = x2−y2, p=(q, x, y) = 2xy and Z = Q×{(0, 0)}.
Obviously, the optimal solution to LP (1) is v ≡ 0. For SDP (3) we would want

v(q)− x = σ0(q, x, y) + σ1(q, x, y)(1− q2) + τ<(q, x, y)(x2 − y2) + 2τ=(q, x, y)xy,

meaning 0 ≡ v = x+ σ0 + σ1(1− k2) + τ<x
2 − τ<y2 + 2τ=xy with σ0, σ1 sums of squares.

This is impossible, since it would require the construction of the term −x which in this
case is only possible as a summand of σ0. Then however we would always also produce a
constant positive term. Practically this means that the multipliers σ0, σ1, τ<, τ= blow up.

Hence, an optimal solution might not exist, but we always have a near optimal solution.
This means we should allow solutions vd with

∫
Q vd(q) dq ≤ ρd + 1

d
, e.g. in the above

example we would search for v ≡ ε for an ε > 0 sufficiently small.
Remark 7. The existence of an optimal solution depends on further conditions, like the
ideal generated by the polynomials 1− q2

j , p< and p= being radical, and goes beyond the
scope of this paper. The interested reader is referred to the proof of [7, Lemma 1] for
further details.
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In the following theorem we prove that the associated sequence of solutions converges:

Theorem 1. Let vd ∈ R[q]2d be a near optimal solution for SDP (3), i.e.
∫
Q vd(q) dq ≤

ρd + 1
d
, and consider the associated sequence (vd)d≥d0 ⊂ L1(Q). Then vd converges to the

abscissa a in L1 norm on Q.

Proof. Recall that ρ∗ = ρ according to Lemma 1. First we show that ρ =
∫
Q a(q) dq. For

every (q, x, y) ∈ Z we have x ≤ a(q) and since
∫
Z q

αdµ =
∫
Q q

αdq for all α ∈ Nn which
means that the marginal of µ on Q is the Lebesgue measure on Q (see Remark 3), it
follows that for every feasible solution µ ∈M+(Z) it holds that∫

Z
x dµ(q, x, y) ≤

∫
Z
a(q) dµ(q, x, y) =

∫
Q
a(q) dq.

Hence ρ ≤
∫
Q a(q) dq. On the other hand, for every q ∈ Q there exists (q, xq, yq) ∈ Z such

that a(q) = xq. Let µ∗ be the Borel measure concentrated on (q, xq, yq) for all q ∈ Q, i.e.
for A in the Borel sigma algebra of Z it holds

µ∗(A) := 1A(q, xq, yq).

Then µ∗ is feasible for problem (2) with value∫
Z
x dµ∗(q, x, y) =

∫
Q
a(q) dq,

which proves that ρ ≥
∫
Q a(q) dq, hence ρ =

∫
Q a(q) dq.

Next we show convergence in L1. Since the abscissa a is continuous on the compact set Q,
by the Stone-Weierstraß theorem [11, §16.4.3] it holds that for every ε > 0 there exists a
polynomial hε ∈ R[q] such that

sup
q∈Q
|hε(q)− a(q)| < ε

2 .

Hence, the polynomial vε := hε + ε satisfies vε − a > 0 on Q and we have vε(q)− x > 0 on
Z. Since the corresponding quadratic module is archimedean (see Remark 5), by Putinar’s
Positivstellensatz [9, Theorem 2.5] there exist σε0, σεj ∈ Σ[q, x, y], τ ε<, τ ε= ∈ R[q, x, y] such
that for all (q, x, y) ∈ Rn × R2 we can write

vε(q)− x = σε0(q, x, y) +
n∑
j=1

σεj (q, x, y)(1− q2
j )

+ τ ε<(q, x, y)p<(q, x, y) + τ ε=(q, x, y)p=(q, x, y).

Therefore, for d ≥ dε := ddeg vε
2 e the tuple (vε, σε0, σεj , τ ε<, τ ε=) is a feasible solution for SDP

(3) satisfying

0 ≤
∫
Q

(vε(q)− a(q)) dq ≤ 3ε
2

∫
Q
dq.
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Together with
∫
Q a(q) dq = ρ ≤ ρd which is due to the first part of the proof and ρd being

a strengthening of ρ, it follows that whenever d ≥ dε it holds that

0 ≤ ρd −
∫
Q
a(q) dq ≤

∫
Q

(vε(q)− a(q)) dq ≤ 3ε
2

∫
Q
dq.

As ε > 0 was arbitrary, we obtain limd→∞ ρd =
∫
Q a(q) dq and since a ≤ vd for all d, this is

the same as convergence in L1:

0 ≤ lim
d→∞
‖vd − a‖1 = lim

d→∞

∫
Q
|vd(q)− a(q)| dq

= lim
d→∞

∫
Q

(vd(q)− a(q)) dq ≤ lim
d→∞

(
ρd + 1

d

)
−
∫
Q
a(q) dq = 0.

For linear systems, a polynomial is called stable if all its roots lie in the open left part of the
complex plane, i.e. if its abscissa is negative. Hence for a polynomial with parameterized
coefficients, as we consider in this paper, the stability region is the set of parameters for
which the abscissa is negative, in our notation

{q ∈ Q : a(q) < 0}.

The following statement on polynomial inner approximations of the zero sublevel set of
the abscissa function follows immediately from the L1 convergence result of Theorem 1,
see also [7].

Corollary 1. Let vd ∈ R[q]2d denote, as in Theorem 1, a near optimal solution for SDP
(3). Then {q ∈ Q : vd(q) < 0} ⊂ {q ∈ Q : a(q) < 0} and limd→∞ vol {q ∈ Q : vd(q) <
0} = vol {q ∈ Q : a(q) < 0}.

3.3 Examples

As stated in Corollary 1, while approximating the abscissa function from above we also
get an inner approximation of the stability region. The authors of [7] surveyed a different
approach. They described the stability region via the eigenvalues of the Hermite matrix of
the polynomial and approximated it using an SDP hierarchy. In the following examples we
compare the two different methods and highlight the specific advantages of our abscissa
approximation.

In this section and in the remainder of the paper, all examples are modelled by Yalmip
and solved by Mosek 7 under the Matlab environment, unless indicated otherwise.

Example 2 (The damped oscillator [6]). Consider the second degree polynomial depending
on n = 1 parameter q ∈ Q = [−1, 1]:

p : s 7→ p(q, s) = s2 + 2qs+ 1− 2q.
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Figure 1: Abscissa (black) and its polynomial upper approximations of degree 4 (left, gray)
and 10 (right, gray) for Example 2. The quality of the approximation deterioriates near
the minimum, where the abscissa is not Lipschitz.

Then Z = {(q, x, y) ∈ [−1, 1] × R2 : x2 − y2 + 2qx + 1 − 2q = 2xy + 2qy = 0} and the
corresponding hierarchy of SDP problems (3) reads

ρd = inf
vd,σ0,σ1,τ<,τ=

∫ 1

−1
vd(q) dq

s.t. vd(q)− x = σ0(q, x, y) + σ1(q, x, y)(1− q2)
+ τ<(q, x, y)(x2 − y2 + 2qx+ 1− 2q) + τ=(q, x, y)(2xy + 2qy)

for all (q, x, y) ∈ R3 and with vd ∈ R[q]2d, σ0 ∈ Σ[q, x, y]2d, σ1 ∈ Σ[q, x, y]2d−2 and
τ<, τ= ∈ R[q, x, y]2d−2. Apart from that, we only need the moments of the Lebesgue
measure on [−1, 1] for a successful implementation. These are readily given by

zα =
∫ 1

−1
qα dq = 1− (−1)α+1

α + 1 ,

meaning that
∫ 1
−1 vd(q) dq = ∑d

α=1 vdαzα with vdα denoting the coefficient of the monomial
qα of vd. See Figure 1 for the graphs of the degree 4 and 10 polynomial upper approximations
of the abscissa.

For the Hermite approximation we compute the Hermite matrix H of p (see [8] for details)

H(q) =
(

4q − 8q2 0
0 4q

)

and write the hierarchy of optimization problems as presented in [7]:

max
gd,σ0,σ1,τ

∫ 1

−1
gd(q) dq

s.t. uTH(q)u− gd(q) = σ0(q, u) + σ1(q, u)(1− q2) + τ(q, u)(1− uTu)

9



for all (q, u) ∈ [−1, 1] × R2 and with gd ∈ R[q]2d, σ0 ∈ Σ[q, u]2d, σ1 ∈ Σ[q, u]2d−2 and
τ ∈ R[q, u]2d−2. Already for d = 6 we observe a close match between the genuine stability
region, which is {q ∈ [−1, 1] : a(q) < 0} = (0, 1

2), the Hermite inner approximation {q ∈
[−1, 1] : −g6(q) < 0}, and the polynomial upper approximation {q ∈ [−1, 1] : v10(d) < 0}.
These three intervals are visually indistinguishable, so we do not represent them graphically.
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Figure 2: Abscissa (black) and its polynomial upper approximations of degree 6 (gray,
left) and 12 (gray, right) for Example 3. The quality of the approximation deterioriates
near the points of non-differentiability of the abscissa.
Example 3. Consider the polynomial

p : s 7→ p(q, s) = s3 + 1
2s

2 + q2s+ (q − 1
2)q(q + 1

2)

for q ∈ Q = [−1, 1]. The abscissa function a(q) of p is not differentiable at three points
and therefore it is rather hard to approximate in their neighborhoods. In Figure 2 we see
the abscissa and its polynomial upper approximations of degrees 6 and 12. Comparing
the genuine stability region {q ∈ [−1, 1] : a(q) < 0}, the polynomial inner approximation
{q ∈ [−1, 1] : v12(q) < 0} and the Hermite inner approximation {q ∈ [−1, 1] : −g10(q) < 0},
we observe, maybe surprisingly, that the approximations are very similar and miss the
same parts of the stability region. These are not reproduced graphically.

Remark 8. Evidently, the approach via the Hermite matrix does not tell us anything
about the abscissa function itself besides from where it is negative. As an illustration
consider a polynomial of the form p(q, s) = s2 + p0(q) for n = 1. Then p(q, ·) has either
0 as a multiple root, two real roots (of which one is positive) or only imaginary roots,
i.e. the stability region of p is empty and its Hermite matrix H(q) is zero. Therefore the
eigenvalues and their approximation gd are also zero for every d. In contrast, the upper
abscissa approximation vd gives a suitable approximation for the abscissa function.

On the other hand, practical experiments (not reported here) reveal that computing
the abscissa approximation is typically more challenging numerically than computing
the Hermite approximation. For instance, computing the upper abscissa approximation
may fail for polynomials with large coefficients, while the Hermite approximation keeps
providing a proper inner approximation of the stability region.

10



Figure 3: Abscissa (dark, below) and its polynomial upper approximations of degrees
6 (left, transparent) and 10 (right, transparent) for Example 4. We observe that the
approximation deteriorates near the regions of non-differentiability of the abscissa.

Example 4. Consider the polynomial

p : s 7→ p(q, s) = s3 + (q1 + 3
2)s2 + q2

1s+ q1q2

depending on n = 2 parameters q ∈ Q = [−1, 1]2. Then Z = {(q, x, y) ∈ [−1, 1]2 × R2 :
x3 − 3xy2 + (q1 + 3

2)x2 − (q1 + 3
2)y2 + q2

1x+ q1q2 = −y3 + 3x2y + 2(q1 + 3
2)xy + q2

1y = 0}.
In Figure 3 we represent the graphs of the abscissa a and its polynomial approximations
v6 and v10. In Figure 4 we represent the stabilizability region, i.e. the zero sublevel set of
the abscissa {q ∈ [−1, 1]2 : a(q) < 0} (dark gray region), the degree 8 Hermite sublevel set
{q ∈ [−1, 1]2 : −g8(q) < 0} (light gray region, left) and the degree 10 polynomial sublevel
set {q ∈ [−1, 1]2 : v10(q) < 0} (light gray region, right).

Remark 9. In the examples we always chose lower degrees for the Hermite approximation
than for the upper abscissa approximation. The Hermite approximation converges relatively
fast making it unnecessary to consider higher degrees, especially since they require much
more time. On the contrary, the upper abscissa approximation usually needs higher degrees
to provide a useful approximation, but it is faster to compute.
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Figure 4: Stabilizability region (dark gray region) and its inner approximations with degree
8 Hermite (light gray region, left) and degree 10 upper polynomial approximation (light
gray region, right).

4 Lower abscissa approximation

At first thought, finding a lower approximation for the abscissa map might sound like a
straightforward task, since one is tempted to just solve the analogue of LP (1):

sup
w∈C (Q)

∫
Q
w(q) dq (4)

s.t. x− w(q) ≥ 0 for all (q, x, y) ∈ Z.

This, indeed, gives a valid lower bound on the abscissa function, however in general a very
bad one since it is not approximating the abscissa but the minimal real part of the roots
of p. To understand the reason we recall that

Z = {(q, x, y) ∈ Rn × R2 : q ∈ Q, p<(q, x, y) = p=(q, x, y) = 0}

and therefore this set contains all roots of p and not only those with maximal real part.

Example 5. On the left of Figure 5 we show the degree 12 solution to the SDP hierarchy
corresponding to LP (4) for the polynomial p(q, s) = s2 + 2qs + 1 − 2q of Example 2,
which gives a tight lower approximation to the abscissa only in the left part of the domain,
corresponding to a pair of complex conjugate roots. We observe that the SDP solver
Mosek does not return a correct answer for this particular problem, and we had to use
the SDP solver SeDuMi instead in this case. On the right of Figure 5 we show the
degree 12 solution to the SDP hierarchy corresponding to LP (4) for the polynomial
p(q, s) = s3 + 1

2s
2 + q2s + (q − 1

2)q(q + 1
2) of Example 3. The lower approximation is

nowhere tight, due to the presence of roots with real parts smaller than the abscissa.

12



−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

q

re
a

l 
p

a
rt

s
 o

f 
th

e
 r

o
o

ts
 a

n
d

 t
h

e
ir
 a

p
p

ro
x
im

a
ti
o

n

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

q

re
a

l 
p

a
rt

s
 o

f 
th

e
 r

o
o

ts
 a

n
d

 t
h

e
ir
 a

p
p

ro
x
im

a
ti
o

n

Figure 5: Real parts of the roots (black) and degree 12 polynomial lower approximations
(gray) for the second degree polynomial (left) and third degree polynomial (right) of
Example 5.

To find a tighter approximation for the abscissa map from below we pursue two different
approaches:

• First, we reformulate the set Z with the help of elementary symmetric functions, in
order to have access to the roots directly. This is a very neat way with options for
variation, such as approximating the second largest real part of the roots from above
or below, but it also includes many additional variables and it is therefore not very
efficient when implemented. However, it can be useful for small problems.

• Second, we restrict LP (4) further using the Gauß-Lucas theorem, i.e. instead of
Z we use a subset of Z which contains only the roots with the abscissa as its real
parts. This approach is much more complicated, relies on assumptions and one
needs to solve two optimization problems in order to get the lower approximation.
Nevertheless, the implementation is much faster and it can also be used for bigger
problems.

4.1 Lower approximation via elementary symmetric functions

4.1.1 Problem formulation

Let us derive another description of the set of roots of p which allows us to pick single
roots according to the size of their real part. For this purpose let us recall the definition
of our polynomial:

p : s 7→ p(q, s) :=
m∑
k=0

pk(q)sk with pm(q) ≡ 1.
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Following the notation of the previous chapters, we denote the roots of p(q, ·) by sk(q), k =
1, . . . ,m and split them up into their real and imaginary parts, sk(q) = xk(q) + iyk(q) with
xk(q), yk(q) ∈ R. To simplify notations we omit the dependence on q whenever it is clear
and write only sk, xk and yk.

Now we write the coefficients of the polynomial as elementary symmetric functions of its
roots:

pm−k(q) = (−1)k
∑

1≤l1<l2<···<lk≤m
sl1sl2 · · · slk , k = 1, . . . m.

This allows us to define the set of roots of p in the following way, where we can order the
roots arbitrarily:

Z ′o := {(q, x1, . . . , xm, y1, . . . , ym) ∈ Q× Rm × Rm : xk ≤ xm, k = 1, . . . ,m− 1,
pm−k(q) = (−1)k

∑
1≤l1<l2<···<lk≤m

sl1sl2 · · · slk , k = 1, . . . m}.

To avoid complex variables slk in the description of the set, we replace them by slk =
xlk + iylk and split up the sum ∑

1≤l1<···<lk≤m sl1sl2 · · · slk in its real and imaginary parts.
The latter would be zero, since all pm−k(q) are real. In the sequel we omit this procedure,
since it would only complicate the notations.

For illustrative reasons let us fix q for a moment. Then the set Z ′o contains only one
element (q, x1, . . . , xm, y1, . . . , ym). For this it holds that xm = a(q) and the points
(q, xk, yk), k = 1, . . . ,m, are exactly the elements of Z.
Remark 10. One could order the roots further by adding more conditions, like for example
xk ≤ xm−1, k = 1, · · · ,m− 2. Then one could also access the root with the second largest
real part. Of course, this would imply another m− 2 constraints in an implementation
and therefore this would slow down further the solving process.

In theory, m variables suffice to characterize the roots of a real polynomial via the
elementary symmetric functions, but since we need all variables xk explicitly in order to
identify the maximal one, we can only eliminate

⌊
m
2

⌋
:= max{r ∈ Z | r ≤ m

2 } variables.
We set

yk−1 = −yk,

k = 2, . . . ,m if m is even
k = 2, . . . ,m− 3 and ym−2 = −ym−1 − ym if m is odd,

meaning we decide which roots will be pairs in case they are complex. Note that it is
necessary to keep ym, since we defined xm as the abscissa and we do not know whether sm
is real or not. In fact sm(q) can be real for some q and complex for others.
Remark 11. Even though we know for m odd that one root must be real, we cannot
eliminate

⌈
m
2

⌉
variables, since it might happen that sm(q) is the single real root for some

q while it is complex for other q.

14



Now we can write the set of roots with less variables and less constraints. As above we
keep the variables sk in the description of the set for readability reasons, but remark that
with the reduced amount of y variables the constraints 0 = =(∑1≤l1<···<lk≤m sl1sl2 · · · slk)
for k = 1, . . . ,

⌊
m
2

⌋
are superfluous. We have

Zo :={(q, x1, . . . , xm, y2, y4, . . . , y2bm2 c, ym) ∈ Q× Rm × Rd
m
2 e :

xk ≤ xm, k = 1, . . . ,m− 1,
pm−k(q) = (−1)k

∑
1≤l1<l2<···<lk≤m

sl1sl2 · · · slk , k = 1, . . . m}.

Example 6. For m = 3 the set Zo is given by

Zo ={(q, x1, x2, x3, y2, y3) ∈ Q× R3 × R2 : x1 ≤ x3, x2 ≤ x3,

− p2(q) = x1 + x2 + x3,

p1(q) = x1x2 + x1x3 + x2x3 + y2
2 + y2y3 + y2

3,

− p0(q) = x1x2x3 + (−x1 + x2 + x3)y2y3 + x2y
2
3 + x3y

2
2,

0 = (x1 − x2)y2 + (x1 − x3)y3,

0 = (x1 − x2)x3y2 + (x1 − x3)x2y3 + y2
2y3 + y2y

2
3}.

To clarify the formula also for m even, we write Zo down explicitly for m = 4:

Zo ={(q, x1, x2, x3, x4, y2, y4) ∈ Q× R4 × R2 : x1 ≤ x4, x2 ≤ x4, x3 ≤ x4,

− p3(q) = x1 + x2 + x3 + x4,

p2(q) = x1x2 + x1x3 + x1x4 + x2x3 + x2x4 + x3x4 + y2
2 + y2

4,

− p1(q) = x1x2(x3 + x4) + (x1 + x2)x3x4 + (x1 + x2)y2
4 + (x3 + x4)y2

2,

p0(q) = x1x2x3x4 + (x1 − x2)(x4 − x3)y2y4 + x1x2y
2
4 + x3x4y

2
2 + y2

2y
2
4,

0 = (x1 − x2)(x3 + x4)y2 + (x1 + x2)(x3 − x4)y4,

0 = (x1 − x2)(x3x4 + y2
4)y2 + (x3 − x4)(x1x2 + y2

2)y4}.

Here we have set y1 = −y2 and y3 = −y4, so the constraint 0 = =(∑1≤l1<···<lk≤m sl1sl2 · · · slk)
for k = 1 is obviously superfluous, because it reduces to 0 = 0. The second superfluous
constraint is the one for k = 2, that is 0 = (x1−x2)y2 + (x3−x4)y4, since we have x1 = x2,
respectively x3 = x4, in the case s2, respectively s4, is complex.

Finally, we can reformulate LP (4) in such a way that it provides a proper approximation
of the abscissa function from below:

ρ = sup
w∈C (Q)

∫
Q
w(q) dq (5)

s.t. xm − w(q) ≥ 0 for all (q, x1, . . . , xm, y2, y4, . . . , y2bm2 c, ym) ∈ Zo.

With the notation of Section 3.1 its dual LP reads

ρ∗ = inf
µ∈M +(Zo)

∫
Zo
xm dµ(q, x1, . . . , xm, y2, y4, . . . , y2bm2 c, ym) (6)

s.t.
∫
Zo
qα dµ =

∫
Q
qα dq, for all α ∈ Nn.
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In analogy with the upper approximation we have no duality gap and the infimum is
attained:

Lemma 2. The infimum in LP (6) is attained, and there is no duality gap between LP
(5) and LP (6), i.e. ρ = ρ∗.

Since Zo is compact, the proof is identical to that of Lemma 1.
Remark 12. For the same reasons as for the upper approximation (1), the supremum in
(5) is not attained for C (Q) or R[q], but it is attained for R[q]d with d finite. See Remark
4 with M := minq∈Q a(q)−N for an N ∈ N sufficiently large, and R :=

∫
Q (a(q)−M) dq.

4.1.2 SDP hierarchy

Let d0 ∈ N be sufficiently large. Then for d ∈ N, d ≥ d0 the corresponding hierarchy of
SDP problems reads

ρd = sup
wd,σ0,σk,σxl ,τ<,k,τ=,k

∫
Q
wd(q) dq (7)

s.t. xm − wd(q) = σ0 +
n∑
j=1

σj(1− q2
j ) +

m−1∑
k=1

σxk(xm − xk)

+
m∑
k=1

τ<,k

(−1)kpm−k(q)−<
 ∑

1≤l1<l2<···<lk≤m
sl1sl2 · · · slk


+

m∑
k=bm2 c

τ=,k=

 ∑
1≤l1<l2<···<lk≤m

sl1sl2 · · · slk


for all (q, x1, . . . , xm, y2, y4, . . . , y2bm2 c, ym) ∈ Rn × Rm × Rd

m
2 e and with wd ∈ R[q]2d,

σ0, σxk ∈ Σ[q, x1, . . . , xm, y2, y4, . . . , ym]2d for k = 1, . . . ,m − 1, σk ∈ Σ[q, x1, . . . , xm,
y2, y4, . . . , ym]2d−2 for k = 1, . . . , n, τ<,k ∈ R[q, x1, . . . , xm, y2, y4, . . . , ym]2d−k for k =
1, . . . ,m and τ=,k for k =

⌊
m
2

⌋
, . . . ,m.

Remark 13. As in Remark 6, SDP (7) is a strengthening of LP (5), meaning ρd ≤ ρ.
Also as in Remark 5, the quadratic module corresponding to Zo is archimedean, i.e.
limd→∞ ρd = ρ.

We conclude the section with the following result:

Theorem 2. Let wd ∈ R[q]2d be a near optimal solution for SDP (7), i.e.
∫
Qwd(q) dq ≥

ρd − 1
d
and consider the associated sequence (wd)d≥d0 ⊂ L1(Q). Then wd converges to a in

L1 norm in Q.

Unsurprisingly, one can prove this result in exactly the same way as Theorem 1, so we do
not detail the proof here. Remark that the first part of the proof can be shortened, since∫
Zo xm dµ(q, x1, . . . , xm, y2, y4, . . . , ym) =

∫
Zo a(q) dµ(q, x1, . . . , xm, y2, y4, . . . , ym).
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4.1.3 Examples

Just as the upper abscissa approximation automatically approximates the stability region
from inside, the lower approximation gives, as a side effect, an outer approximation. In
this section we will examine similar examples as for the upper approximation.

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−0.5

0

0.5

1

q

a
b

s
c
is

s
a

 a
n

d
 i
ts

 l
o

w
e

r 
a

p
p

ro
x
im

a
ti
o

n

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−0.5

0

0.5

1

q

a
b

s
c
is

s
a

 a
n

d
 i
ts

 l
o

w
e

r 
a

p
p

ro
x
im

a
ti
o

n

Figure 6: Abscissa (black) and its polynomial lower approximations of degree 6 (gray, left)
and 10 (gray, right) for Example 7. The quality of the approximation deteriorates near
the minimum, where the abscissa is not Lipschitz, compare with Figure 1.

Example 7. As in Example 2 consider the polynomial

p : s 7→ p(q, s) = s2 + 2qs+ 1− 2q.

We have y1 = −y2, so Zo := {(q, x1, x2, y2) ∈ Q× R3 : x1 ≤ x2, −2q = x1 + x2, 1− 2q =
x1x2+y2

2, 0 = (x1−x2)y2}. In Figure 6 we see the graphs of the degree 6 and 10 polynomial
lower approximations obtained by solving SDP (7). As in Example 5, we observe that the
SDP solver Mosek does not return a correct degree 10 polynomial, and we had to use the
SDP solver SeDuMi instead in this case. Due to the rather big amount of variables and
constraints, computing the degree 10 solution is already relatively expensive, with a few
seconds of CPU time.

Example 8. As in Example 3 consider the polynomial

p : s 7→ p(q, s) = s3 + 1
2s

2 + q2s+ (q − 1
2)q(q + 1

2).

With y1 = −y2 − y3 we calculate Zo as in Example 6. In Figure 7 we see the graphs of
the degree 6 and 10 polynomial lower approximations obtained by solving SDP (7). The
computation time to get the degree 10 solution is around 15 minutes, which is arguably
not a good compromise given the quality of the approximation.

Remark 14. As for the upper abscissa approximation, we observe practically that the
implementation for the lower approximation is rather sensitive to polynomials with large
coefficients.

17



−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

q

a
b

s
c
is

s
a

 a
n

d
 i
ts

 l
o

w
e

r 
a

p
p

ro
x
im

a
ti
o

n

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

q

a
b

s
c
is

s
a

 a
n

d
 i
ts

 l
o

w
e

r 
a

p
p

ro
x
im

a
ti
o

n

Figure 7: Abscissa (black) and its polynomial lower approximations of degree 6 (gray, left)
and 10 (gray, right) for Example 8. The quality of the approximation deteriorates near
the minimum, where the abscissa is not differentiable, compare with Figure 2.

Example 9. As in Example 4, consider the polynomial

p : s 7→ p(q, s) = s3 + (q1 + 3
2)s2 + q2

1s+ q1q2.

Since we have m = 3, the set Zo is again given in Example 6. In Figure 8 we see the outer
approximation of degrees 6 and 10 obtained by solving SDP (7). We notice an opening
in the approximation of the stability region in the lower half of the picture. This is due
to a being zero and non-smooth for q1 = 0, meaning a(0, q2) = 0. This phenomenon also
incapacitates w8 to get tighter to a for q2 > 0 than we observe in the upper half of the
picture.

4.2 Lower approximation via Gauß-Lucas

4.2.1 Problem formulation

As indicated above, we want to find a semi-algebraic subset of Z which contains only
those roots of p whose real part is maximal. This means that, in contrast to the approach
of Section 4.1, we will not rephrase Z, but formulate further constraints.

In order to do this we must distinguish between the roots of p(q, ·) according to the size of
their real parts. For this purpose we use the following result:

Theorem 3 (Gauß-Lucas). The critical points of a non-constant polynomial lie in the
convex hull of its roots.

We refer to [5] for further information and a proof. Let us denote the derivative of p(q, s)
with respect to s by p′(q, s). By Theorem 3, the roots of p′(q, ·) are contained in the
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Figure 8: Stabilizability region (dark gray region) and its degree 6 outer approximation
(light gray region, left) and degree 10 outer approximation (light gray region, right).
Compare with Figure 4.

convex hull of the roots of p(q, ·). It follows readily that the abscissa ap′ of p′ lies below
the abscissa ap of p:

ap′(q) ≤ ap(q) for all q ∈ Q.

However, p may have some roots with real part strictly smaller than ap and strictly bigger
than ap′ , meaning that the root whose real part is the abscissa is not the only one whose
real part lies above ap′ . Of course, this cannot happen for real polynomials R→ R because
of monotonicity, and neither for complex polynomials of degree 2. But, for example, for
n = 1 the polynomial p(q, s) = s4 + (q2 + 1)s+ q has two roots with different real parts
greater than ap′ for q ∈ [−1,−0.4].

To prevent the lower abscissa approximation from converging to the real part of a root
smaller than the abscissa, we make the following assumption:

Assumption 1. None of the real parts of any root of p lies strictly between ap and ap′,
i.e. x /∈ ]ap′(q), ap(q)[ for all (q, x, y) ∈ Z.

Remark 15. Unfortunately, we do not know how restrictive this assumption is. For n = 1
it was rather difficult to find examples that violate it.

Now let v̂ ∈ C (Q) be a near optimal solution to LP (1) for the polynomial p′, meaning∫
Q v̂(q) dq ≤ ρ+ ε for an ε > 0. Then, v̂ is an upper approximation of the abscissa ap′ of
p′. We define the following subset:

Zr := {(q, x, y) ∈ Z | x− v̂(q) ≥ 0}.

In order to see where we are going, let us pretend for a moment that we have an optimal
solution. Then, under Assumption 1, the set Zr would contain exactly the points (q, a(q), yq)
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with yq denoting the imaginary part of the root of p(q, ·) with maximal real part. Hence,
the solution to the following LP would give a lower approximation of the abscissa function
ap of p:

sup
w∈C [q]

∫
Q
w(q) dq (8)

s.t. x− w(q) ≥ 0 for all (q, x, y) ∈ Zr.

Since v̂ might not be optimal, the projection of Zr onto Q can have holes of volume ε. As
a consequence, w might not be a valid lower bound of the abscissa on these holes.

Taking this into account, we build an SDP hierarchy for LP (8) in the next section. The
issue is that we have to consider the hierarchy for the upper approximation of ap′ first and
the solution to it might interfere with ap.

4.2.2 SDP hierarchy

For d′0 ∈ N sufficiently large we denote by v̂d′ , d′ ≥ d′0, the solutions to SDP (3) for the
polynomial p′. Thus, the v̂d′ are polynomials in R[q]2d′ and by Theorem 1 the sequence
(v̂d′)d′∈N converges to ap′ from above in L1 norm.

Next, we want to describe the set Zr via the polynomials v̂d′ in order to have an imple-
mentable problem, i.e. we define

Zr,d′ := {(q, x, y) ∈ Z : x− v̂d′(q) ≥ 0}.

Of course, the set Zr,d′ is highly dependent on the quality of v̂d′ and hence on the choice
of d′. Evidently, Zr,d′ is a subset of Zr, possibly strictly. To ensure that Zr,d′ contains all
roots of p with the abscissa as their real parts we need v̂d′ ≤ ap. However, in practice this
is impossible in some cases:

Example 10. The abscissa ap of p(q, s) = (s3 + q)2 and the abscissa ap′ of p′ coincide
and have a point of non-differentiability at q = 0. As another example consider the
polynomial p(q, s) = s4 + qs for which both ap and ap′ are not differentiable at q = 0 and
ap(0) = ap′(0) = 0.

For these examples we cannot achieve v̂d′ ≤ ap with d′ finite, since v̂d′ is a polynomial and
therefore differentiable everywhere.

As a consequence, we formulate another assumption. In general, the points that may cause
problems are the ones where ap and ap′ coincide, i.e. the points of the set

D := {q ∈ Q | ap(q) = ap′(q)}.

On this set the polynomial v̂d′ should approximate ap′ perfectly for a finite d′. Calling a
solution v̂d′ near optimal if it satisfies

∫
Q v̂d′(q) dq ≤ ρd′ + 1

d′
, we assume:
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Assumption 2. There is a near optimal solution v̂d′ to SDP (3) for the polynomial p′
with d′ finite such that v̂d′ and ap′ coincide on D.

Remark 16. A sufficient condition for a violation of Assumption 2 is the existence of a
value of q for which ap′ is not differentiable and ap(q) = ap′(q). This is the case for the
examples given above. Note also that they are of degenerate nature.

To face another issue, we denote the projection of Zr,d′ onto the set Q by πQ(Zr,d′), i.e.

πQ(Zr,d′) = {q ∈ Q : ∃x, y ∈ R : (q, x, y) ∈ Zr,d′}.

Since v̂d′ converges to a in L1, but not necessarily uniformly, it might have spikes or
similar irregularities, meaning that the set Q \ πQ(Zr,d′) is not empty. However, the L1

convergence of v̂d′ , or more precisely the convergence in measure, implies that there is a
subsequence (v̂d′

l
)l∈N which converges to ap′ almost uniformly (see e.g. [1, Theorem 2.5.3]).

In other words, for all δ > 0, there exists a set Aδ in the Borel sigma algebra of Q such
that

∫
Aδ dq < δ and v̂d′

l
converges uniformly on ACδ to ap′ when l→∞, where ACδ is the

set-theoretic complement of Aδ in Q. With this notation we have

πQ(Zr,d′) ⊆ ACδ ⊆ Q.

Lemma 3. Let Assumption 2 hold. Then, for every δ > 0 there is a finite d′ ∈ N such
that v̂d′ ≤ ap on ACδ .

Proof. Fix δ > 0. Obviously we want

0 ≤ ap(q)− v̂d′(q) = ap(q)− ap′(q) + ap′(q)− v̂d′(q) (9)

for every q ∈ ACδ ⊆ Q. By Theorem 3, we have ap(q)−ap′(q) ≥ 0 for all q ∈ Q. Otherwise,
the difference ap′(q)− v̂d′(q) is negative by construction, but due to Theorem 1 we find a
subsequence v̂d′

l
converging uniformly to ap′ on ACδ . Hence, there is a finite d′l∗ such that

(9) is fulfilled for all q ∈ {q ∈ ACδ : ap(q) > ap′(q)}. Because of Assumption 2 there is also
a finite d′ such that ap′(q)− v̂d′(q) vanishes on {q ∈ ACδ : ap(q) = ap′(q)}. Taking d′l′ ≥ d′

with l′ ≥ l∗ completes the proof.

Remark 17. Choosing d′ according to Lemma 3 implies πQ(Zr,d′) = ACδ .

Under Assumption 1 and 2 and with an appropriate choice of d′ (depending on δ) the
solution to the following LP gives a lower approximation of the abscissa function ap of p
on the set ACδ ⊆ Q:

ρd′ = sup
w∈C [q]

∫
πQ(Zr,d′ )

w(q) dq (10)

s.t. x− w(q) ≥ 0 for all (q, x, y) ∈ Zr,d′ .

Remark 18. Note that under Assumption 1, LP (10) always provides a proper approximation
for the abscissa ap from below on πQ(Zr,d′), but this might not be very useful, since for
bad v̂d′ this set may have big holes or even be empty. To achieve suitable results on ACδ
we need Assumption 2 and an appropriate d′, meaning a sufficiently good v̂d′ ensuring
πQ(Zr,d′) = ACδ .
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In analogy with (2), the dual LP reads

ρ∗d′ = inf
µ∈M +(Zr,d′ )

∫
Zr,d′

x dµ(q, x, y) (11)

s.t.
∫
Zr,d′

qα dµ =
∫
πQ(Zr,d′ )

qα dq, for all α ∈ Nn

with the notation of Section 3.1.
Lemma 4. The infimum in LP (11) is attained, and there is no duality gap between LP
(10) and LP (11), i.e. ρd′ = ρ∗d′.

Since Zr,d′ is a compact subset of Z, we can mimic the proof of Lemma 1 in order to get a
proof of Lemma 4.
Remark 19. As in Remark 4, the supremum in LP (10) is not attained for C (Q) or
R[q], but it is attained for R[q]d with d finite. To adjust the proof of Remark 4, set
M := minq∈Q a(q)−N for an N ∈ N sufficiently large, and R :=

∫
Q (a(q)−M) dq as in

Remark 12.

Finally, for d′ as in Lemma 3 and d0 ≥ d′ sufficiently large we can write an SDP hierarchy
indexed by d ∈ N, d ≥ d0:

ρd′,d = sup
wd,σ0,σj ,σv̂ ,τ<,τ=

∫
πQ(Zr,d′ )

wd(q) dq (12)

s.t. x− wd(q) = σ0(q, x, y) +
n∑
j=1

σj(q, x, y)(1− q2
j ) + σv̂(q, x, y)(x− v̂d′(q))

+ τ<(q, x, y)p<(q, x, y) + τ=(q, x, y)p=(q, x, y)

for all (q, x, y) ∈ Rn × R2 and with wd ∈ R[q]2d, σ0 ∈ Σ[q, x, y]2d, σj ∈ Σ[q, x, y]2d−2 for
j = 1, . . . , n, σv̂ ∈ Σ[q, x, y]2d−d′ and τ<, τ= ∈ R[q, x, y]2d−m.
Remark 20. As in section 3.2, SDP (12) is a strengthening of LP (10), meaning ρd′,d ≤ ρd′ .
Besides, the archimedean quadratic module corresponding to the set Z is contained in
the quadratic module corresponding to Zr,d′ . Hence, the latter is also archimedean, i.e.
limd→∞ ρd′,d = ρd′ = ρ∗d′ .
Remark 21. For numerical applications one can assume that Aδ is empty and substitute
πQ(Zr,d′) by Q.

The associated sequence converges:
Theorem 4. Let Assumptions 1 and 2 hold and let ACδ and d′ be as in Lemma 3. Let
wd ∈ R[q]2d be a near optimal solution for SDP (12), i.e.

∫
Qwd(q) dq ≥ ρd,d′− 1

d
. Consider

the associated sequence (wd)d≥d0 ⊂ L1(Q). Then wd is a valid lower bound of ap on ACδ
and it converges to ap in L1 norm on ACδ .

The proof of this result is very similar to the proof of Theorem 1, so we omit it. Note that
by Lemma 3 every feasible solution to SDP (12) is a valid lower bound of ap on ACδ and
that we have πQ(Zr,d′) = ACδ due to our choice of d′. As for the proof of Theorem 2, the
first part can be shortened, since for every (q, x, y) ∈ Zr,d′ it holds that x = a(q).
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4.2.3 Examples
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Figure 9: Abscissa (black) and its polynomial lower approximations of degree 6 (gray, left)
and 12 (gray, right) for Example 11. The quality of the approximation deteriorates near
the minimum, where the abscissa is not Lipschitz, compare with Figures 1 and 6 .

Example 11. As in Examples 2 and 7 consider

p : s 7→ p(q, s) = s2 + 2qs+ 1− 2q.

Assumption 1 is naturally fulfilled, since p is of degree 2. In the same way, Assumption
2 is fulfilled, since ap′(q) = −q is polynomial. We have Zr,d′ = {(q, x, y) ∈ [−1, 1]× R2 :
x− v̂d′(q) ≥ 0, x2 − y2 + 2qx+ 1− 2q = 2xy + 2qy = 0} and the corresponding SDP (3)
reads

ρd′,d = sup
wd,σ0,σ1,σv̂ ,τ<,τ=

∫ 1

−1
wd(q) dq

s.t. x− wd(q) = σ0(q, x, y) + σ1(q, x, y)(1− q2) + σv̂(q, x, y)(x− v̂d′(q))
+ τ<(q, x, y)(x2 − y2 + 2qx+ 1− 2q) + τ=(q, x, y)(2xy + 2qy)

for all (q, x, y) ∈ R3 and with wd ∈ R[q]2d, σ0 ∈ Σ[q, x, y]2d, σ1 ∈ Σ[q, x, y]2d−2, σv̂ ∈
Σ[q, x, y]2d−d′ and τ<, τ= ∈ R[q, x, y]2d−2. Due to the simplicity of ap′ it suffices to choose
d′ = 2. We see the degree 6 and 12 polynomial lower approximations in Figure 9. They
are both computed in less than 2 seconds.

Example 12. As in Examples 3 and 8 consider

p : s 7→ p(q, s) = s3 + 1
2s

2 + q2s+ (q − 1
2)q(q + 1

2).

The abscissa ap′ of p′ is not differentiable in two points, hence it is not a polynomial
and it cannot be described perfectly by v̂d′ for finite d′. Let us choose d′ = 8 and d = 6
resp. d = 12. We observe in Figure 10 that w6 resp. w12 is not everywhere a valid lower
bound. Indeed, the set D = {q ∈ Q | ap(q) = ap′(q)} contains three points and for two
of these (near q = −0.5 and q = 0), the approximation v̂8 is not tight enough to ensure
πQ(Zr,8) = Q. Consequently, Assumption 2 is violated.
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Figure 10: Abscissa (black) and its polynomial lower approximations of degree 6 (gray,
left) and 12 (gray, right) for Example 12. We observe that the approximations are not
valid near q = −0.5 and q = 0, as Assumption 2 is violated.

Example 13. In order to discuss another example for which D is a non-empty interval,
consider the polynomial

p : s 7→ p(q, s) = s2 + (20q2 − 1)s+ q + 1
2 .

Here ap′(q) = −10q2 + 1
2 is a quadratic polynomial. Thus, Assumption 2 is fulfilled, in

particular v̂2 = ap′ , and the lower approximations are valid, see Figure 11.

Example 14. As in Examples 4 and 9 consider the polynomial

p : s 7→ p(q, s) = s3 + (q1 + 3
2)s2 + q2

1s+ q1q2.

We have Zr,d′ := {(q, x, y) ∈ Z : x− v̂d′(q) ≥ 0} with Z given in Example 4. In Figure 12
we see the outer approximations of degree d = 6 resp. d = 12 of the stabilizability region
obtained for the choice d′ = 8. A careful examination reveals that Assumption 2 is slightly
violated here, yet this has no effect on the validity of the zero sublevel set approximation.
Computing the degree 12 approximation takes a few minutes.

5 Conclusion

In this paper we continued our long haul research programme consisting of developing and
applying semidefinite programming hierarchies for approximating potentially complicated
objects (arising in optimization and control) with simple objects, namely polynomials of
given degrees. The complicated object of interest here was the polynomial abscissa, which
has low regularity, while being ubiquitous in linear systems control.

In section 3 we described how to construct polynomial upper approximations to the abscissa
with guarantees of L1 convergence (or equivalently almost uniform convergence) on compact
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Figure 11: Abscissa (black) and its polynomial lower approximations of degree 6 (gray,
left) and 12 (gray, right) for Example 13.

sets. Constructing polynomial lower approximations with similar convergence guarantees
has proved to be much more challenging. We proposed a first approach in Section 4.1
using elementary symmetric functions which is quite general but also computationally
challenging due to the introduction of many lifting variables. This motivated the study of a
second approach in Section 4.2 using the Gauß-Lucas theorem which is less computationally
demanding, but unfortunately much more involved and subject to working assumptions.

An interesting question that would deserve careful investigation is whether our L1 con-
vergence guarantees can be strengthened to L∞, i.e. to uniform convergence, since we
know that the polynomial abscissa is continuous, and hence that it can be uniformly
approximated by polynomials on compact sets. For this the semidefinite programming
hierarchy should be modified accordingly.
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