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Abstract:

Objective

A general method was developed to analyse and describe tree-like structures needed for
evaluation of complex morphology, such as the cerebral vascular tree. Clinical application of
the method in neurosurgery includes planning of the surgeon's intraoperative gestures.
Method

We have developed a 3D skeletonization method adapted to tubular forms with symbolic
description. This approach implements an iterative Dijkstra minimum cost spanning tree,
allowing a branch-by-branch skeleton extraction. The proposed method was implemented
using the laboratory software platform (ArtiMed). The 3D skeleton approach was tested on
simulated data and preliminary trials on clinical datasets mainly based on magnetic resonance
image acquisitions.

Results

A specific experimental evaluation plan was designed to test the skeletonization and symbolic
description methods. Accuracy was tested by calculating the positioning error and robustness
was verified by comparing the results on a series of 18 rotations of the initial volume.
Accuracy evaluation showed a Haussdorff’s distance always smaller than 17 voxels and
Dice’s similarity coefficient greater than 70%.

Conclusion

Our method of symbolic description enables the analysis and interpretation of a vascular
network obtained from angiographic images. The method provides a simplified representation
of the network in the form of a skeleton, as well as a description of the corresponding
information in a tree-like view.

Key words: Medical imaging, vascular network, angiography, 3D skeletonization,
symbolic description

1. Introduction
Symbolic description enables a summary to be made of an object observed via imaging, by
describing its basic structures (e.g., connected components, branches of vascular trees, pixels,
etc.) and the relations existing between its structures. In contrast to segmentation (which only
allows a pixel to be classified as “in” or “out” of the object), symbolic description provides an
environment in which the object is described according to a hierarchy enabling the
exploration of its characteristics ([[[pixel € branch] € connected component] € vascular
network] € ..., etc.).

The human body contains a wide variety of elements which have a tree-like structure with a
descending hierarchical organization (mother branches splitting to children branches). The



relevance of studying such structures using symbolic description approaches has already been
shown for different areas.

In 1993, Gerig et al, [1] proposed an extraction method for 3D structures, in order to represent
them using a symbolic approach, where the topological and geometrical information is
represented in a tree-like form.

Later, in 2001, Bullit et al [2] highlighted the importance of knowing the relationships
between the different branches of the cerebrovascular tree. Their study centered on the
neurosurgical context of lower neck tumor resection, where the use of a clamp interrupted
blood flow. It showed that understanding the relationships between the different vessels
enabled cerebral perfusion to be anticipated and planned for during the operation.

More recently, Megalooikonomou et al [3] have presented a method for characterizing,
classitying, and analyzing the similarities of tree-like structures in medical images. Using
clinical data obtained from X-ray galactograms, they studied the branching of the lactiferous
ducts, combining symbolic representation by graph with “text-mining” techniques. They
suggest expanding the potential field of application to the study of links between the form of
tree-like structure and the corresponding pathology.

In general, symbolic description has many applications. In the introduction to their article,
Palagyi et al [4], highlight its use in, for example:

- virtual navigation (e.g., bronchoscopy or endovascular procedures), where a
descriptive summary of the data allows the treatment linked to the simulation to be
optimized

- exploration of complex structures (e.g., cerebral or hepatic vascular networks), which
can be simplified as a result of navigation on a graph

- quantitative analysis of tubular forms (e.g., measurement of the vascular lumen or wall
thickness)

- ete. (this list is not exhaustive)

The implementation of symbolic description usually follows an identical plan, in which the
description is obtained after the extraction of data (binarization) and a skeletonization [4-7].
However, no matter the location nor the application, the root of the problem remains in the
skeletonization. Much has been written about this subject, including reviews covering
methodology [8-17], and its applications in medical imaging [18-26].

In this article, we concentrate especially on the whole cerebral vascular tree for which there is
still very few references [1, 2, 27-29] despite the possible applications. Once the algorithm
fully validated, it is expected to be applied in stereotactic neurosurgery. The main application
is focused on finding the optimal and safest optical fibre path for brain interstitial
photodynamic therapy [30].

For this location, we studied an iterative minimum cost spanning tree method based on
Dijkstra’s algorithm [31].This algorithm is especially interesting for our application as the
search for the centerline uses the notion of the graph. Finally, the main novelty of our
methodology is the application of Dijsktra’s algorithm to both skeletonize and describe the
brain vascular tree.



The first part of this article describes the modalities of vascular imaging used in our
application. We also describe how we implemented the skeletonization algorithm.

In the second part, we present a new evaluation plan for skeletonization, in which we
introduce the use of digital phantoms, as well as tests on clinical data. Finally, we present and
analyze the results.

2. Material and methods
As Palagyi et al [4] have noted . an overall solution for skeletonization adapted to all types of
locations or forms does not seem to exist. By concentrating on their pulmonary airway tree
application, these authors resolved certain difficulties [4], but problems remain for other
applications. These problems are mainly linked to the properties defining the skeleton [32]:

- Thickness: the skeleton must have a unitary thickness (one voxel)

- Position: the skeleton is ideally positioned at the center of the forms

- Homotopy: the median axis has exactly the same number of connected components,

and each component has the same number of holes as the initial form

- Stability: when the skeleton calculation is done by thinning, all or part of the

skeleton should not be able to be eroded again once it has stabilized.

Two other properties can also be taken into consideration:
- Invariance by translation and rotation
- Reversibility of the skeleton: the form should be able to be reconstructed from the
skeleton and the maximum ball rays.

For the vascular application that we are interested in here, we therefore chose to test a method
that corresponds in part to the above properties (homotopy, position, thickness and
reversibility). This method is mainly used for virtual colonoscopy, as it is particularly well
adapted to tubular forms [31]. It is based on the construction of the Dijkstra’s minimum cost
spanning tree.

Our implementation followed the plan generally accepted in the literature for skeletonization
and tree extraction, represented Figure 1.
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Figure 1: Summary of the different stages of symbolic description.

The main topic of this paper being skeletonization and symbolic description, for our purpose
the correct segmentation is considered to be given independently on method use. Therefore,
any segmentation techniques could be used in this symbolic description method. In this study
we have used a specific segmentation approach, which relies on the Maximum of Intensity
Projection [33]. The efficiency of this approach was previously evaluated for different
modalities [34, 35] and especially for different MR angiography sequences[36, 37].

2.1.  Skeletonization using Dijkstra’s tree
Skeletonization is the standard method used to determine a form’s centerlines. In continuous
or discrete fields, the choice of methods is fairly varied. However, one of the problems that is
frequently encountered is the presence of surfaces or small barbules (especially of clusters of
voxels at the level of junctions) in a skeleton that we would prefer to be thin [38]. Using
iterative Dijkstra’s minimum cost spanning tree to extract the thin branches can solve this
constraint.

This solution for skeletonization, introduced by Wan et al [31] for application in virtual
colonoscopy, has also been used by Hassan et al in the setting of vascular analysis of
aneurysms [27, 39]. However, in these articles, the authors used this skeletonization stage
with the aim of extracting only one part of the tree: the central colonic axis in [31] or the
branches affected by an aneurysm with the intent of carrying out “Computed Fluid Dynamic
simulations™ [27, 39].

In the first case, the technique used only allowed the extraction of the principal centerline. In
order to extract the first generation branches, the authors therefore proposed an extension to
the algorithm from this centerline [31].



In our context, this extension proved to be inadequate, and we therefore propose a new
extension in order to skeletonize the tree down to the most distant vessels. In this
generalization, it is advisable to reiterate the process for each first generation branch

associated with the centerline.

Our method aims to extract the skeleton in a recursive manner from an iterative Dijkstra
minimum cost-spanning tree. From the longest branch of the vascular structure the main
centerline was first extracted. Then, from the main centerline, the child centerlines being
directly connected were identified. Finally, the process was reiterated for each newly detected
child centerline.

2.1.1. Construction of the iterative minimum cost spanning tree
In graph theory, Dijkstra’s algorithm [40] is used to resolve the shortest path problem. It
applies to a related graph in which the weight linked to the edge is nonnegative

Firstly, the volume had to be converted into a weighted 3D graph. The centre of each voxel
therefore represented a vertex in the graph and the relations of 26-neighborhood between the
voxels are symbolised by the edges of the graph.

In our case, the weight attributed to each vertex depends on the distance with respect to the
boundary (Distance from Boundary [DFB]). The further the voxel under consideration is from
the boundary, the higher the probability is that it will be on the centerline. To calculate the
DFB, we calculated the smallest Euclidean distance between each voxel and the boundary
points (boundary points refer to voxels with at least one neighbour belonging to the
background).

To describe the algorithm, we define the following variables:
- vertex S: source vertex
- vertex C: node being processed at a given iteration
- N/N;represents a neighbor of vertex C
- EndPointList/JunctionList: lists storing the endpoints and the junctions of the
detected centerlines, respectively.

In our implementation Source vertex definition is automatic. Indeed, the root is obviously at
one end of the tree structure. Thus from an arbitrary voxel (centered on the volume) and from
which the distance to all the form’s voxels is calculated, the point furthest away refers as the
source vertex

Each vertex has several properties:
- pathlink: indicates the link with the neighbor
- Distance from source (DFS): is the distance from the vertex to the source vertex
weighted according to the DFB
- the state of the vertex indicates if it has already been processed during an iteration
(Mark (C) = true if processed, otherwise fulse).
From these definitions and using a heap to process the vertices, the algorithm is described
Figure 2:
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Figure 2: Algorithm for the calculation of Dijkstra’s tree, where dist(N,C) is the Euclidean distance from

NtoC

2.1.2. Main vessel centerline and its child centerlines extraction using
Dijkstra’s tree

Let us define a centerline be a set of vertices from the Dijkstra’tree. Thus, the centerline
extraction algorithm was based on the movement through the tree from the vertex at
maximum DFS up to the Source point. By using each vertex’s pathlink property and
considering the tree as an oriented graph (in which reversing is impossible), the main
centerline was defined as the longest branch. The identification of the vertex of the maximum
DFS is enough to enable a gradual retracing up to the Source vertex (chosen in section 2.2);
via the pathlinks.

The extraction of first generation child centerline was based on the following stages:

sweeping through the main centerline by retracing from E to S (see F igure 3) along
the pathlinks

for each vertex C of the main centerline, looking at its neighbors (apart from those
belonging to the main centerline) and finding the N;’s which have their pathlink at
C (e.g., pathlink(N;)=C)

for every N;, searching for all its linked vertices V (either directly pathlink(V)=Nj)
or indirectly pathlink(pathlink(...pathlink(V)))=N)).

finding the vertex T; which had the largest DFS of all the vertices V

storing T; as the tip of a child centerline (i.e., T; € EndPointList) if DFS(T;) was
above a fixed threshold L (L is a threshold used to prevent from noise to be
detected as a centerline).

storing C as being a junction (i.e., C € JunctionList)



Figure 3 shows an example of searching for a branch, in 2D. Figure 4 summarizes the method.
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Figure 3: Extraction of the main centerline and its child centerlines. S and E are the source voxel and the
end voxel, respectively; C is the current voxel, and Ti is the end voxel of a secondary branch Bi.
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Figure 4: Extraction of centerlines using Dijkstra’s tree. Centerline extraction makes use of centerline
detection to detect the centerline indirectly connected to the current vertex.

A unique characteristic of our algorithm is the storing of the tips of the centerlines, as
appropriate, in the EndPointList or JunctionList. This enables the simultaneous interpretation
of the information gathered, both for the preliminary stages of symbolic description and for
skeletonization.

After this stage, we extracted the first generation child centerlines, i.e., the child centerlines
directly linked to the main centerline. For the extraction of more distal branches centerlines,
we chose to implement the algorithm in a recursive manner; this enabled the detection of 2",
3 and later generations, for every extracted centerline. The implementation of this new
overall method is illustrated in Figure 5.
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Figure 5: Recursive skeletonization

The extraction of the 2" generation branches centerline and onwards was based on the same
principle as for the Ist generation. The minor modifications required in the algorithm were:
- sweeping the child centerline from T; to C while retracing from E towards S along
the pathlinks
- storing T; as the centerline tip (i.e. T; € EndPointList) if DFS(T;) was above a
fixed threshold L (the length of the centerline was its number of vertices).

2.2 Identification of particular points
At this stage, the skeleton was defined from the vertices and centerline previously obtained.

On a skeleton, we can identify three types of points: the endpoints (which have only one 26-
neighbor), the junctions (which have more than two 26-neighbors) and the skeleton points
(which have exactly two 26-neighbors) Thus from this specific points, the different vascular
segments or branches can be easily identified.

There are 3 cases if we consider the skeleton to be oriented:
- a branch beginning with an endpoint and ending with a junction: mother branch E-

d

- abranch beginning with a junction and ending with a junction: intermediate child
branch J-J

- abranch beginning with a junction and ending with an endpoint: end child branch
J-E.

Usually, the symbolic description is made from the analysis of the skeleton. In our case, we
already had the skeleton’s characteristic voxels in the EndPointList and the JunctionList from
the analysis of Dijkstra’s tree as described above. Indeed, endpoints and junction analysis is



performed simultaneously with the extraction through the application of Dijkstra's algorithm.
This specificity of the algorithm could result in an appreciable reduction in the manipulation
of the voxel matrix, and thus reduces calculation time.

As our algorithm is recursive, we extract only the E-J centerline. Each centerline then has to
be divided into mother, intermediate centerline or end centerline, according to the cases
described above.

2.3 Partitioning of the vascular tree and associated measures

From the skeleton and the centerlines previously extracted, we wanted to link every voxel to a
centreline from the skeleton. The method took the segmented volume and the data gathered
from the skeletonization (i.e., the skeleton and particular points) as input. As output, the result
was a volume for which every voxel was labelled, depending on the branch it belonged to.

Partitioning was carried out automatically by calculating the distances between every voxel in
the volume extracted by segmentation and the voxels in the skeleton. For a given voxel, we
searched for the nearest skeletal voxel (which had already been labelled during the
skeletonization). The unlabelled voxel was attributed the same label as the skeletal voxel.

Figure 6 shows the result obtained on an artificial volume and a vascular network:

Figure 6: Partitioning of an artificial volume and a vascular network taken from clinical data

Using the formula for the volume of a cylinder as an approximation, this stage also allowed us
to calculate the theoretical radius of each branch. Once the voxels were labelled, we knew the
list of those belonging to each branch. Assuming that the vessels could be modelled as
cylinders, all that was needed was to calculate the volume corresponding to the group of these
voxels and the number of voxels in that branch of the skeleton. These values correspond to the
volume (number of voxels x size of voxel) and the length (number of voxels in the branch)
respectively of the theoretical cylinder representing the vessel. Obviously, this radius
calculation is only a rough approximation since it has been demonstrated that the veinous
network does not fit a cylinder or tubular model [41] and the different arteries cannot be
considered as tube with constant diameter [42]. The constant radius model is used here as
illustration and a more suitable approach could be further investigated specially when dealing
with vessels with radius smaller than the voxel size [43].

2.4 Image datasets
The approach described in this paper was evaluated on two different datasets including digital
phantom and clinical images. Indeed, in the absence of ground truth concerning clinical data,



we tested the accuracy of our method on simulated data, using a digital phantom constructed
using Matlab© (The MathWorks™, http://www.mathworks.fr).

a) Simulated data
We created an interface using Matlab (Figure 7 (a)) which allowed us to generate digital
models from a reference skeleton (a spline). Secondary branches were connected to a
principal branch, forming the skeleton of a tree-like structure. A volume was then constructed
from the skeleton and the given branch diameters.

(a) (b)
Figure 7: (a) The digital model’s creation interface enabling the evaluation of the skeletonization
algorithm and the symbolic description (b) Resulting digital model

The digital model built up in this way, Figure 7 (b), allowed us to precisely define the
characteristics of the skeleton under research: the point coordinates, the radii, the length of
branches, relationships, etc..

b) Clinical data

The clinical datasets were images taken from different MRA and 3DRA sequences. The sizes
were 345x259x142 (MRI, Time Of Flight, voxel size 0.47x0.47x0.72), 272x188x270 (MRI,
Gadolinium Contrast Enhancement 0.48x0.48x0.65 mm”), 256x256x150 (MRI, 3D Phase
Contrast, voxel size 0.5x0.5x1mm?) and 256x256x256 (3D X ray Rotational Angiography,
voxel size 0.29x0.29.0.29 mm°)
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Figure 8: Qualitative results (a-b) Digital phantoms, (c) to (f) Clinical cases

Figure 8 shows the results on digital phantoms (a-b) and on four clinical cases (¢ — TOF
MRA, d - MRA Gd enhanced, e — 3D Rotational Angiography and f — Phase Contrast MRI).
The initial volume is shown, along with the skeleton extracted using our method, and the
volume reconstructed from the skeleton.

The skeletonization approach copes with both arteries and veins, thus the clinical data
proposed includes arterial system imaging (c, d and e on Figure 8) and venous system (f on
Figure 8). Nevertheless, we can observe that the oriented graph approach with the Dijkstra’s
algorithm may lead to limitations since some parts of the circle of Willis are missing (¢ and d
on figure 8).

3 Experimental methods

Few methods exist for the evaluation of skeletonization algorithms. However, Palagyi et al [4]
have proposed an interesting plan for the quantitative evaluation of skeletonization. Using a
physical phantom, a digital phantom, and in-vivo acquisition, their experimental plan enables
the number of branches detected, the positioning error, and the diameters, lengths, and
volumes of the detected branches to be verified. We adopted approximately the same
evaluation strategy in our study.




3.1. Validation criteria

3.1.1. Accuracy
To verify the accuracy of our solution for skeletonization, we compared the skeleton endowed
with the characteristics extracted using our method with a theoretical skeleton. This involved
examining the skeleton’s positioning error and the precision of the symbolic description
information.

3.1.2. Robustness
The second evaluation criterion was the robustness of the symbolic description, i.e., the extent
to which the results remain stable after any disruption. The conditions under which images are
acquired cannot be exactly the same (especially concerning the orientation of the patient’s
head). However, in images from the same patient, the symbolic description should give the
same result. We therefore decided to observe how the method dealt with a series of rotations.

3.2. Experimental plan
3.2.1. Accuracy

The use of digital model allowed us to have the geometric information concerning the
branches, and as a result, we had the ground truth associated with the volume created (the
spline used to build the volume and related information). We then estimated the positioning
error, calculated by a hyperbolic Hausdorff distance [44] between the reference skeleton and
the obtained skeleton.

To this evaluation, we added the calculation of the Dice Similarity Coefficient (DSC) between
the original volume and the reconstructed volume, which allowed us to assess the skeleton’s
reversibility properties.

The reconstructed volume resulted from information from the skeleton and the symbolic
description. For each point in the skeleton, we thus formed a ball of radius which
corresponded to the Euclidean distance between this point and the edge of the nearest volume
(DFB).

3.2.2. Robustness

Following Palagyi et al’s approach [4], we rotated each volume studied by 5° from -15° to
15°. This enabled us to study the following characteristics of the branches by opposing the
values obtained with or without rotation:

- length

- volume
- surface
- radius

For the statistical analysis, we used the Bland-Altman approach [45, 46] for evaluating the
agreement between two methods. This method is used to compare two methods in the absence
of a gold standard. The aim is to characterize the coherence of the results obtained by the new
method compared with those using the other method. We evaluated the reproducibility by
comparing the results obtained from the original volume with those of the 18 rotations.

4  Results

1



The algorithms were implemented using a software platform owned by ArtiMed laboratory,
and developed in Borland C++. The manipulations were carried out on a personal computer
(processor: AMD 2.4 GHz- RAM: 2Gb). The computation time was less than 30 seconds for a
matrix of 256x256x256 voxels with 140,000 voxels belonging to the vascular tree.

4.1. Accuracy
As previously mentioned, we indicated the hyperbolic Hausdorft distance between the
skeleton obtained using our approach and the native skeleton of the digital phantom. In
addition, for the 18 rotations of the Matlab volume, we determined the mean DSC between
the reconstructed volume and the original volume.

Figure 9 shows the visual and quantitative results obtained on two digital phantoms using our
algorithm for model generation. The images represent the superimposition of the initial
skeleton on the calculated skeleton, and the initial volume superimposed on the volume
obtained after post-skeletonization reconstruction. The numbers given are the mean values of
the hyperbolic Hausdorff distance and the DSC from the 19 volumes.
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Figure 9: Results on digital phantoms (a-c) Superimposition (reference in green, results in red)
(b-d) Numerical results: hyperbolic Hausdorff distance and Dice Similarity Coefficient

4.2. Robustness
For each branch extracted by symbolic description, we compared a given characteristic of the
initial volume (length, radius or number of voxels in the branch) with the same characteristic
in the reconstructed volume after rotation and extraction. For each rotation and each branch,
we therefore obtained the percentage error of the characteristic studied, denoted by err val
in the following way:

1)




For i=1, ..., number of branches
For j=1, ..., number of rotations

va[[m/ -va Zrnl/

err_val, | =f*100 Eg.1
i Va it

end
end

For each characteristic, we then calculated the mean error on all rotations on each branch,

using:
For i=1, ..., number of branches
my _err_val, = mean (err _val, N Eq.2
- - J=1,...,number of rotations - E
end

Finally, the mean percentage error for each characteristic was described by:

mean _% _error = mean (m_err_val))
: Eq.3
sd_error=0 (m_err _val))
i

Table 1 shows the mean percentage errors + SD for the reproducibility of the characteristics
studied between the original volume and the 18 volumes obtained by rotation.

% Gt Simulated Simulated Clinical case Clinical case
volume (a) volume (b) (c) (d)
number of voxels 8.7+4.07 8.9+4.6 9.4+4 4 14.9+10.7
length 3.843 7.2+£3.4 54422 12.5+7.6
radius 13+8 49423 11.1£10.7 12.948

Table 1 : Reproducibility of results: quantitative data

The reproducibility indices for the radius and the number of voxels on the simulated data are
shown in Figure 10; the corresponding indices for two clinical cases are shown in Figure 11.
The Bland-Altman plots indicate the 95% Confidence Intervals.

For each case, the mean difference between the estimates obtained from the 2 methods is
represented, according to the mean of the two estimates, m1 and m2. When there is no
additional information, this mean represents the best estimate of the true value of the
parameter. In our case, the ml estimate was replaced by the values obtained for the initial
volume, and the m2 estimate took the values resulting from each rotation alternately.

On this type of plot, the mean of the differences corresponds to the mean bias between the
two methods. If one hypothesizes that the differences follow a normal distribution, 95% of the
measures will be between the mean value + 1.96 x SD of the differences. According to this
interval’s range, one can determine if the two methods are interchangeable. For example, a
maximum tolerable value of difference can be fixed, so that the methods can be used to
replace one another.




We then studied the reproducibility of the characteristics (branch length, number of voxels per
branch and the radius of branches for the 19 volumes [initial volume + 18 rotations])
according to the rotations.

Finally, on figures 10 and 11, we can observe that 95% of the points are within the confidence
interval demonstrating a good robustness with regard to the volume orientation before
skeletonization and symbolic description.
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Figure 11: Reproducibility of results for clinical data: Bland-Altman plot




5. Discussion

The investigations on symbolic description presented in this paper are within the context of
neurosurgery. According to recent advances in brain photodynamic therapies (PDT) [30, 47], the
development of a planning system to deliver optimal dose with optical fibers in stereotactic
conditions becomes crucial to include PDT in the management of high-grade glioma. The symbolic
description aims to answer the problem of fibers positioning. The problem is strictly the same as in
the Stereo-Electro-Encephalogram procedure (SEEG) [48, 49] in the presurgical evaluation of
focal epilepsy. During SEEG procedure, the risk of collision of an electrode and vessels is
extremely high. A strategy based on symbolic description is expected to minimize the risk by
computing a risk of collision map according to the path of the optical fibers and the description of
the brain vascular network.

The symbolic description we describe is based on the construction of the Dijkstra’s tree. The 3D
segmentation approach used in the methodology has already been described [50, 51]. Nevertheless,
our approach enables the use of any segmentation technics to be further explored. For example,
recent advances in hepatic vessel segmentation [52] could also be investigated and transferred to
our symbolic description approach as these hepatic and brain localizations are both dealing with
the same level of complex vascular structure.

The method that we have proposed for the extraction of centerlines and the descriptive analysis of
tubular objects has several interesting properties. Firstly, the basic tool for the calculation of the
skeleton is the construction of Dijkstra’s tree. This enables a thin result to be obtained (1 voxel
thick) without the need of a pruning stage, as a length limit is applied during the branch detection
phase. Secondly, the use of this approach to skeletonization allows a preliminary description to be
carried out “during the extraction”. The iterative detection of the skeletal branches enables a first
analysis of the tree structure.

The accuracy of our method was evaluated only on simulated data, for which we knew the ground
truth of the construction. We could see the good superimposition obtained between the skeleton
and the construction spline, with a hyperbolic Hausdorff distance of 15 voxels. We can conclude
that, on the simulated data, the method is satisfactory, as the value of 15 (which notably reveals
non-detection of the smallest branches) is highly acceptable, given the severe criteria chosen.

In the same way, we evaluated the accuracy using the skeleton’s reversibility criteria, by
superimposing the original volume on the reconstructed volume. The DSC was chosen to quantify
the superimposition, and the mean value obtained was 76%. Taking into account our spherical
reconstruction model, and the use of the mean radial value of each branch, we conclude that the
index of 76% indicates good reversibility. In fact, the theoretical index calculated for the
reconstruction method used after symbolic description versus the volume obtained by the model
generator gives a maximum value of 90.7%. This value highlights the shortcomings in our
reconstruction model, but enables the value obtained during the experiments to be more clearly
analyzed and understood.

Turning to the robustness, we first presented the means and SDs of the percentage errors for each
characteristic (length, volume and radius of the branches). Apart from that of the radius, the error
SDs obtained were small and therefore highly satisfactory. Taking into account the characteristics
extracted by symbolic description, the error obtained for the radius was not satisfactory; this error
concerned the mean radius of a branch and did not take into account the variability which exists
along the branches. However, no matter which characteristic was studied, the use of the Bland-
Altman plots (figure 10 and figure 11) enabled us to observe that 95% of the points were within the
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confidence interval, thus implying that the method was robust with regard to the volume
orientation before skeletonization and symbolic description.

Obviously, we are aware of the small clinical database used here for the evaluation. However, as a
preliminary study we focused our experiments on simulated data. The clinical data is mainly used
to evaluate the portability of the approach in a multimodality context. A larger clinical images
dataset and more realistic simulations should help to fix issues concerning the circle of Willis as
illustrated on figure 8c and 8d. In [52], the authors proposed an interesting evaluation framework
using a stereo lithography phantom designed from actual patient images. A similar evaluation
framework will be assessed for our approach. Using MRI simulation from actual patient images
will give access to a known ground truth with evaluation material closer to the clinical context.

6. Conclusion and future prospects

We have proposed a new approach to the extraction of the cerebral vascular tree based on the
iterative calculation and analysis of the Dijkstra’s minimum cost spanning tree. Furthermore, we
have proposed a new evaluation framework adapted from [4]. This complete framework is adapted
to all types of tubular forms (blood vessels, lactiferous ducts, the pulmonary network, etc.).

A DSC above 70% proves that the skeleton is reversible. In addition, the weak positioning error
between the reference and the calculated skeleton indicates that the algorithm is robust. This leads
us to conclude that the method is relevant for tree-like objects, and, in particular, satisfies the
fundamental requirements needed for future clinical application. However, our approach has to be
evaluated on a larger clinical database especially with images of the circle of Willis for which the
oriented graph strategy could lead to limitations.

Our method of symbolic description enables the analysis and interpretation of a vascular network
obtained from angiographic images. It provides a simplified representation of the network in the
form of a skeleton, as well as a description of the corresponding information in the form of a tree-
like view. It therefore creates an interaction between visual and descriptive information by linking
these two representations of the network. This type of vessel representation may be of use in the
development of new applications (e.g., in new Computational Fluid Dynamics models, the
association of a subject’s data with a vascular atlas, simulation of the vascular tree / neurosurgeon
tools interactions...).
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